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Abstract – The paper addresses the problem of 
estimating the parameters of chirp signals embedded in 
Gaussian noise. We consider an estimation method 
based on an approximate linear state space 
representation of the polynomial phase signal. This 
approach offers the opportunity to use a nonlinear but 
exact measurement equation and guides the estimation 
of the states of these signals to an extended Kalman 
filtering algorithm. Procedure simulations were made on 
linear and quadratic phase modulation signals with 
time-varying amplitude and are consistent with the 
theoretical approach. The results given by this new 
algorithm are compared with the performances of a 
standard Kalman technique.  
 
 

I. INTRODUCTION 
 

Polynomial phase signals (PPS) are frequently 
encountered in many signal processing applications 
such as in radar, sonar, laser velocimetry or 
telecommunications. There are non-stationary signals 
having a fast-varying instantaneous frequency. The 
estimation of the parameters of PPS signals affected 
by additive Gaussian noise has received considerable 
interest in signal processing literature and several 
methods formulated as linear system identification 
problems, have been used to solve the problem [1]. 
These approaches admit the solution in the form of a 
linear Kalman filter [2]-[4], which is the optimal 
tracking algorithm when the signal models are 
assumed linear and both state and observation noise 
are additive and Gaussian. A linear state model can be 
obtained by the approximation of Tretter [3], which 
regards as uncorrelated both amplitude and phase 
components of the gaussian noise. 
As the Tretter linear state model works satisfactorily 
as far as the signal-to-noise ratio (S/N ratio) exceeds 
13dB, at lower levels of S/N ratios will be used 
nonlinear state models and Extended Kalman Filtering 
(EKF) procedures [5]-[7] which considers a local 
linearization that uses a first order Taylor expansion 
of nonlinear equations. 

In this paper we consider the estimation of parameters 
of a variable amplitude linear chirp signal, which is a 
second order polynomial phase signal, corrupted by 
additive Gaussian noise. As compared to previous 
works on the subject [5], [6], the EKF algorithm 
developped in this paper removes their phase 
uncertainties by replacing the real-valued signal by its 
analytic representation. 
A drawback of EKF algorithm are the important 
number of divergence cases that arises even at large 
S/N ratios. To overcome this limitation, the EKF 
algorithm that we present uses a procedure that 
overestimates adaptively the variance of noise in 
order to compensate the effect of high-order terms 
neglected by linearization. 
This paper is organized as follows. Section 2 
introduces the state-space model of variable amplitude 
polynomial phase signal affected by additive Gaussian 
noise. In section 3 we describe the EKF algorithm 
used in the estimation of PPS parameters. Section 4 
provides simulation results and comparison with 
respect to linear Kalman filtering algorithm 
introduced in [4]. The results are obvious: in 
comparison with the previous algorithm, EKF works 
satisfactorily well at very low S/N ratios, especially 
with regard to polynomial phase parameters 
estimation  Finally, section 5 gives the concluding 
remarks and sketches the prospective work to be 
done. 
 

II. NON LINEAR STATE-SPACE REPRESEN-
TATION OF POLYNOMIAL PHASE SIGNALS 

 
A polynomial phase complex signal with variable 
amplitude  embedded in additive noise   is expressed 
as 
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where the positive real-valued A n  is the amplitude 
of the signal which can be constant or time varying 
and n  is a deterministic phase polynomial of 
order M, with the phase coefficients 

, 0, ,ib i MK assumed real and unknown. The 
additive noise  is assumed complex, white and 
Gaussian, having zero-mean and variance 2

w . It can 
be written as 
 R Iw n w n jw n  (2) 

with Rw n  and Iw n  the real and the imaginary 
part of the analytical noise. If both parts are not 
correlated between them, having the same variance, 
we can write: 
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where E  is the expectation operator. An analytical 
signal having these properties is called “cyclic” noise 
[8]. 

The State-Space Model and Transition Equation 
The state-space model and the transition equation of a 
polynomial phase signal can be derived taking as a 
starting point the M-order phase polynomial n  
Taylor series expansion [4], [8]: 
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where k n  stands for the k-order derivative of the 
phase function: 
 1 1 1 , 1,k k kn n n k M (8) 
Note that in discrete time other definitions for (8) are 
possible as well [1]. 
In order to obtain the exact state-representation of a 
variable amplitude PPS, we define the following 

2 1M  state vector nx : 

 1 2 TMn A n n n n n⎡ ⎤
⎣ ⎦x K  (9) 

Considering only phase variations of a PPS signal, the 
state transition equation is written as 
 1n nx Fx  (10) 

where the 2 2M M  transition matrix F is 
composed of coefficients in (6) and (7) 
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This model can be extended in order to include 
variable amplitude PPS. We will assume that the 
amplitude of the signal follows a random walk model 
 1A n A n v n  (12) 

where v n  is a sequence of i.i.d. random scalars with 

the distribution 20, vN . Thus, the rate of evolution 

of the chirp amplitude is described by 2
v . 

Including eq. (12) in eq. (10), the final expression of 
state transition equation is 
 1n n v nx Fx G  (13) 

where G is a 2 1M vector 

 1 0 0 0 TG  (14) 
As reveals (13) the state transition equation of PPS 
model is linear. 

The Observation Equation 
In order to estimate the parameters of chirp signals 
corrupted by noise, a nonlinear is used. In this sense, 
the measured signal y n  is expressed as a 2 1  
vector in terms of its real and imaginary parts: 
 Re Im

T
n n n⎡ ⎤⎣ ⎦y y y  (15) 

Viewing (15), the observation equation is nonlinear: 
 n n ny h x w  (16) 

where the 2 1  nonlinear function nh x is written 
as 
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The observation noise vector 
T

R In w n w n⎡ ⎤⎣ ⎦w  is defined by (2)-(5). The 
correlation matrix is also given from the same 
equations 
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In order to use EKF, we apply the first order linea-
rization procedure to nh x  in (17) around the 

estimation of the state vector ˆ 1n n⎡ ⎤⎣ ⎦x : 
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with 

ˆ 1

2 1 2

2 1 2

ˆ ˆ ˆcos 1 1 sin 1 0 0

ˆ ˆ ˆsin 1 1 cos 1 0 0

n n

n

x n n x n n x n n

x n n x n n x n n

⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

x x

hH
x

K

K

 (20) 

As is obvious, the replacement of nh x  by its first 
order approximation has dramatic effects on stability 
and convergence of EKF agorithm, which implies the 
appearance, especially at low S/N ratios, of “lack of 
convergence” cases. A mechanism which practically 
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eliminates these cases will be presented in the next 
Section. 
 

III. THE EKF ALGORITHM 
 
As far as the observation model is nonlinear, in order 
to apply the Kalman filtering procedure as it was 
shown, a first order linearization around ˆ 1n n⎡ ⎤⎣ ⎦x  is 
needed at each step of the standard Kalman algorithm. 
The procedure is well known as Extended Kalman 
Filter (EKF) algorithm [9] and it uses state-space 
equations (13) and (16) as well as the linearization of 
the observation function around the current vector 
estimate (20). 
Assume that the initial state 1x , the observation 

noise nw  and the state noise v n  are jointly 

Gaussian and mutually independent. Let ˆ 1n n⎡ ⎤⎣ ⎦x  

and 1n n⎡ ⎤⎣ ⎦R  be the conditional mean and the 

conditional variance of ˆ nx  given the observations 

1 , , 1ny yK  and let ˆ n n⎡ ⎤⎣ ⎦x  and n n⎡ ⎤⎣ ⎦R  be the 

conditional mean and conditional variance of ˆ nx  

given the observations 1 , , ny yK . Then [9] 
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Time Update 
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where nK  is the Kalman gain matrix at moment n . 
The parameters of variable amplitude PPS, given by 
the vector 0 1

T
MA n b b b⎡ ⎤⎣ ⎦θ K  can be 

estimated from the estimates of the state vector using 
the relation [5] 
 ˆ ˆnn n n⎡ ⎤⎣ ⎦θ CF x  (27) 

where the matrix C  is a diagonal: 
 diag 1 1 1 1! 1 !MC K  (28) 

As EKF is not an optimal estimator, if the initial 
estimation of the state is wrong or if the process is 
modeled incorrectly, the filter may quickly diverge, 
owing to its linearization. This behaviour appears in 
our case since the S/N ratio is lower  than 10dB. As 
example for 0dBSNR , the rate of divergent cases 
may exceed 20%. By contrast, there are not cases of 
divergence for the linear counterpart of the method 
[4]. Figure 1 shows the rate of divergence of standard 
EKF method with respect to SNR obtained from 
simulations made on a typical PPS. 
As a result of many simulations carried out, we 
concluded that is more interesting to overestimate the 
value of the variance of the noise in order to 
compensate for the terms neglected during the 
linearization of measurement equation. The conse-
quences of such an increase on variance are positive: 
the rate of divergence  diminish drastically. The same 
effect is seen with respect to estimation errors. The 
overestimation procedure was established empirically 
and lies in substitution of matrix ˆ

w nQ  in (22) by 

R wk nQ  where the robustness factor Rk  is computed 
as follows 
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The improvements obtained by using Rk  are revealed 
in Figure 1. We designate the EKF that uses Rk  factor 
as robust EKF  algorithm. 
 

IV. SIMULATION RESULTS 
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Figure 2. Second order PPS in Gaussian noise, SNR=5dB. 
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In this section we give some simulation results for the 
estimation of PPS in Gaussian noise based on robust 
EKF algorithm. The 1000 samples second order PPS 
sequence presented in Figure 2 was used. The real 
values of its phase parameters are: 

0 2,b 1 0.0785,b 3
2 1.309 10b . The state 

noise v n  is zero-mean Gaussian white noise with 
2 310v . 

Figures 3 to 7 give the convergence plots for PPS 
parameters for two levels of S/N ratio. The initial 
conditions were as in [5]: 
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By contrast to Kalman-Tretter filtering algorithm 
introduced in [4], the EKF works satisfactorily at low 
levels of S/N ratio, especially if the focus of estima-
tion is put on phase parameters. Only the 
amplitude estimation is strongly affected by high 
levels of noise. The most exact estimation is 
obtained for 2b , while the initial phase 0b  is the 

most difficult to establish, since its estimation 
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Figure 1. Rate of divergence vs. SNR assessed on the same signal  
by Kalman filters under disscussion. 
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Figure 3. Amplitude estimation. 
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Figure 7. RMSE of amplitude vs. SNR. 
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depends on higher order coefficients exact 
estimation. 
The comparison of EKF and Kalman-Tretter 
algorithms performances was the second goal of this 
paper. With that end in view, a statistical analysis was 
made by taking 100 noisy realizations of the test 
signal for S/N ratio values between 0 and 20dB. The 
averages of RMS error were calculated for each of 4 
parameters that describe the second order PPS.  
The results are presented in Figures 7 to 10 and 
certifies that as long the S/N ratio is lower than 13dB, 
the phase parameters estimation by EKF is far better 

than the results given by Kalman-Tretter method. The 
single parameters for which Kalman-Tretter presents 
better performances is the amplitude, but from 10dB 
up, both methods performs identically. As result, we  
can declare that EKF extends the Kalman methods 
range from 13dB as imposed by linear Kalman 
algorithm to approximately 5dB. 
The paper gives a new state space model of variable 
amplitude polynomial phase signals that allows better 
performances for EKF algorithm than the old linear 
Kalman method. The robust EKF implemented on this 
model extends the range of performances of Kalman 
algorithms in the polynomial phase estimation from a 
S/N ratio of 13dB to 5dB. 
If the paper reveals the progress realized on the way 
of Kalman filtering estimation of PPS parameters, a 
lot of problems remain to be solved by future works. 
First at all, we refer to a better amplitude estimation 
for PPS, then to the extension to multicomponent 
chirp signals and higher order polynomial phase 
signals. 
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