
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 54(68), Fascicola 1, 2009

Decoding Performance of Turbo-Codes and
LDPC-Codes with Short Blocklength

Wolfgang Proß, Franz Quint

Abstract – In this paper the decoding performance of a
Turbo-Code and a LDPC-Code are compared. Both
exhibit a binary blocklength of 504 and a coderate of 0.5.
After an explanation of the several channel code’s
construction methods the results of the simulations are
depicted in terms of the Bit Error Rate (BER). For a
channel model the Additive White Gaussian Noise
Channel (AWGNC) has been used. The decoding was
done with the iterative Belief Propagation (BP)-decoding
algorithm. If carefully constructed, the LDPC-Code is
clearly favorable over the applied Turbo-Code.
Keywords: Turbo-Code, LDPC-Code, GF(q), PEG

I. INTRODUCTION

Channel coding is very important in digital systems
and effectively improves the efficiency concerning
transmission of binary information in the presence of
interferences. Since the introduction of A
mathematical theory of communication [9] by Claude
E. Shannon in 1948 channel coding schemes have
tried to achieve the Shannon limit. It is defined as a
lower bound on the Signal to noise ratio (SNR) at
which an appropriate coding scheme can barely allow
for a transmission. When Turbo-Codes were
presented by Berrou, Glavieux and Thitimajshima [2]
in 1993 the concatenated coding scheme was proved
to come up very close to the Shannon limit. Low-
Density Parity-Check (LDPC) – Codes were already
published in 1962 by Robert Gallager [5] and showed
an asymptotically optimal decoding performance. At
first LDPC-Codes were forgotten because of
computational burden but since computation power
has experienced a high increase LDPC-Codes became
interesting again. Since MacKay and Neal had
rediscovered them in 1995 [7] various authors have
published improvements concerning the construction
methods of LDPC-Codes. This yielded in a better
decoding performance where LDPC-Codes have
become competitive to Turbo-Codes even for short
blocklength.

II. TURBO-CODES

A Turbo-Code is attained by a serial or parallel
concatenation of several channel-codes. Furthermore
the appropriate decoder processes soft decision

values. A hard decision of a received bit can take the
values zero or one with respect to the estimated sent
bit. In contrast soft decisions carry the information of
the probability of a bit to be a zero or a one. To
minimize the required computing power soft decision
values are often processed in the Log-domain. A
convenient format to do so is the Log-Likelihood-
Ratio (LLR). The Turbo-decoder takes advantage of
the more precise soft decision values and constantly
refines the estimations of each bit in an iterative
process. This is done by an exchange of extrinsic data
among the several component decoders. Fig.1 shows
the functional principle of a Turbo-Code. One can see
the parallel concatenated Turbo-encoder on the left
side of the channel and the appropriate Turbo-decoder
on the right, consisting of two component encoders
and decoders respectively. The first component
encoder E1 encodes the information word. E2 gets an
interleaved version of the systematic part as an input
signal. The feedback loops in the Turbo-decoder that
carry the extrinsic data are depicted by the dashed
grey lines. At the end of the decoding procedure a
hard decision is performed.

The similarity of the Turbo-Decoder’s functional
principle to a Turbo charger gives rise to the name

Fig. 1. Principle of a Turbo-Code

c
h
a
n
n
e
l

E1 D1

 ߨ

E2

ߨ

D2

ߨ

 ଵିߨ

Fig. 2. Turbo-encoder with r=1/2

ሼݔ௦௞ሽ

ሼݔ௦௞ሽ

൛ݔ௣௞ൟ

D D D

D D D

 ߨ

25
BUPT

Turbo-Code.
A. Turbo-encoder

The Turbo-encoder that is used here consists of two
parallel concatenated 8-state convolutional encoders
described by the generator polynomial in octal
notation:

ܩ ൌ ௣

௤
ൌ ଵଷ

ଵହ
 (1)

The Turbo-encoder is shown in Fig. 2.
The systematic part is denoted as ݔ௦௞ with 1 ൑ ݇ ൑
݊ 2⁄ . Encoder 1 encodes ݔ௦௞ and outputs ݔ௣భ௞ (parity
part one). The second component encoder gets the
interleaved version of the information word ߨሺݔ௦௞ሻ
and outputs ݔ௣మ௞. By use of an appropriate puncturing
pattern ݔ௣భ௞ and ݔ௣మ௞ get compacted into ݔ௣௞. A code
word of a ½-rate Turbo-Code then comprises of the
systematic part and the packed parity part so that

௦௣ݔ ൌ ൛ݔ௦௞ ݔ௣௞ൟ.

B. Turbo-decoder

The Turbo-decoder shown in Fig. 3 processes Log-
Likelihood-Ratios (LLR’s) computed from the output
of the established channel.

In this case an Additive White Gaussian Noise
Channel (AWGNC) is modeled. Thereby white
Gaussian noise is added to the BPSK-modulated
codeword depending on the signal to noise ratio
(SNR). In channel coding simulations the SNR is
usually defined as ܧ௕ (energy per bit) divided by ଴ܰ
(spectral noise density). With ݔ௜ א ሼ1, െ1ሽ being a
sent bit, the conditional probability of a bit ݕ௜ received
by the decoder is then distributed as follows:

௜ሻݔ|௜ݕሺ݌ ൌ
ଵ

ඥଶగఙమ
݁ି

൫೤೔േೣ೔൯
మ

మ഑మ , 1 ൑ ݅ ൑ ݊ (2)

The LLR for the AWGNC is then:

௜ሻݔ|௜ݕሺܮ ൌ ݈݊ ௣ሺ௬೔|௫೔ୀାଵሻ

௣ሺ௬೔|௫೔ୀିଵሻ
ൌ ଶ

ఙమ
· .௜ݕ ሺ1ሻ

The two component decoders DEC1 and DEC2 in
Fig. 3 are BCJR-decoders named after Bahl, Cocke,

Jelinek, and Raviv that presented a trellis-based
decoding method in 1974 in [1]. Thereby the a
posteriori probability ݌ሺݔ௜ ൌ -௜ሻ of a BPSKݕ|ܾ
modulated sent bit ܾ א ሼ1,െ1ሽ is maximized. ݕܮ௦௞
represents the LLR’s of the received systematic part
and ݕܮ௣௞ the LLR’s of the compressed parity parts.
For each bit of the parity parts that was punctured in
the encoding procedure a zero is inserted instead and
the LLR’s of ݕ௣భ௞ and ݕ௣మ௞ get computed. The
extrinsic data of the first component decoder Dec1 is
then obtained by use of the systematic part ݕܮ௦௞, the
extrinsic part of the second decoder ݔ݁ܮ௬௦ଶ and the
parity part 1 ݕܮ௣భ௞. When the desired number of
iterations have been processed, the extrinsic data of
both component decoders and the sytematic part get
added and a hard decision is performed. The result
represents the estimation of the original information
word.

C. Turbo-Code simulations

For the following simulations the allzero codeword is
used which is a codeword that exhibits ݊ zeros. The
allzero codeword is always a valid codeword for a
linear code. To depict the error correcting capabilities
of the code, the bit error ratio (BER) is plotted on the
y-axis of the graph (Fig. 4) while the according
௕ܧ ଴ܰ⁄ -values are plotted on the x-axis. The BER is
obtained by dividing all errors occurring in a decoded
codeword by the length of the code word ݊ where
݊ ൌ 504. The simulation as well as the appropriate
Turbo-decoder were implemented in Matlab.

1,00E‐04

1,00E‐03

1,00E‐02

1,00E‐01

1,00E+00

0 0,5 1 1,5 2 2,5

1 iteration 3 iterations
8 iterations 25 iterations
80 iterations 100 iterations
uncoded

Fig. 4. BER of Turbo-Code , r=1/2, n=504

 ௣௞ݕܮ

Dec1 ିߨ ߨଵ

 ௦௞ݕܮ

 ௣భ௞ݕܮ
 ௣మ௞ݕܮ

௬௦ଵݔ݁ܮ ௬௦ଶݔ݁ܮ

 ො௞ݔܮ

 ො௞ݔ

Dec2

Fig. 3. Turbo-decoder with r=1/2

26
BUPT

III. LDPC-CODES

To create a Low-Density Parity-Check (LDPC) –Code
one constructs the underlying Parity-Check-Matrix
(PCM) or alternatively a Tanner-graph. The PCM and
the Tanner-graph of a LDPC-Code are
interchangeable and fully represent the code. In Fig. 5
the PCM of a LDPC-Code is shown. The name of
LDPC-Codes stems from the fact that the PCM is
always sparse and thus possesses a low-density of
nonzero elements. Furthermore the rows of the PCM
represent parity-check equations that can be seen at
the bottom of Fig. 5.

௠ൈ௡ܪ ൌ ൥
݄ଵଵ ڮ ݄ଵ௡
ڭ ڰ ڭ

݄௠ଵ ڮ ݄௠௡
൩ =

ۏ
ێ
ێ
ێ
ێ
ۍ
૚ 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 1 0 1 0 1 0 0
૚ 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 ے1

ۑ
ۑ
ۑ
ۑ
ې

ܿଵ
ܿଶ
ܿଷ
ܿସ
ܿହ
ܿ଺

ଵݏ ଶݏ ଷݏ ସݏ ହݏ ଺ݏ ଻ݏ ଼ݏ ଽݏ

ܿଵ ՜ ଵݏ ൅ ଶݏ ൅ ଷݏ ൌ 0
ܿଶ ՜ ସݏ ൅ ହݏ ൅ ଺ݏ ൌ 0
ܿଷ ՜ ଻ݏ ൅ ଼ݏ ൅ ଽݏ ൌ 0
ܿସ ՜ ଶݏ ൅ ହݏ ൅ ଻ݏ ൌ 0
ܿହ ՜ ଵݏ ൅ ସݏ ൅ ଺ݏ ൌ 0
ܿ଺ ՜ ଶݏ ൅ ଼ݏ ൅ ଽݏ ൌ 0

A PCM always possesses ݊ columns and ݉ ൌ ݊ െ ݇
rows where ݊ is the codeword’s blocklength and ݇
stands for the length of the information word. The
coderate is then ݎ ൌ ݇ ݊⁄ . With the help of the
Gaussian elimination any PCM can be transformed to

௠ൈ௡ܪ ൌ ሾ்ܲ ௠ൈ௞ ܫ௠ൈ௠ሿ (4)

with ܫ being the identity matrix. From this the
generator matrix

 ௞ൈ௡ܩ ൌ ሾܫ௞ൈ௞ ܲ௞ൈ௠ሿ (5)

is derived. A codeword is then obtained by
multiplying the information word ݔ௦௞ with the

generator-matrix ܩ௞ൈ௡ . In Fig. 6 the corresponding
Tanner-graph to the PCM in Fig. 5 is shown. This
bipartite graph comprises of ݊ symbol-nodes and ݉
check-nodes representing the columns and rows of the
PCM respectively. These nodes are connected via
edges corresponding to the entries in the PCM. The
black edges adjacent to ݏଵ in Fig. 6 for example
correspond to the bold nonzero entries in Fig. 5.
The decoding performance of a LDPC-Code is highly
dependent on the cycles that code exhibit. A cycle is a
closed path of consecutive edges that connect a node
with itself. The number of involveld edges defines the
length of a cycle. In Fig. 6 a 4-cycle is shown. For
each symbol-node ݏ௜ in a Tanner-graph the length of
the shortest cycle passing through this symbol-node is
denoted as local girth ݃௦೔. Global girth ݃ is defined by
the length of the shortest cycle that exists in a Tanner-
graph and so

݃ ൌ min௜൛݃௦೔ൟ. (6)

 A low global girth has a harmful impact on the
decoding performance which is thus mainly
dependent on the construction of the PCM or the
Tanner graph. This is the reason for optimizing the
construction method in reference to the resulting
decoding performance.

A. Regular & Irregular

In [5] Gallager introduced LDPC-Codes and proposed
a pseudo-random construction method for the PCM of
a regular LDPC-Code. The matrix of a regular
LDPC-Code always possesses exacly ߛ nonzero
elements in each column and ߩ in each row and thus
all check-nodes and symbol-nodes share the same
number of adjacent edges respectively. The LDPC-
Code shown in Fig. 5 and Fig. 6 represents a so called
Gallager-code described by ሺ݊, ,ߩ ሻߛ ൌ ሺ9,3,2ሻ. In
contrast to regular LDPC codes, irregular codes
exhibit several row and column weights. They are
described through the use of the symbol-node degree
distribution

Λሺݔሻ ൌ ∑ Λ୧ · x୧

ௗೞ೘ೌೣ

௜ஹଶ , (2)

where ݀௦௠௔௫ is the maximum number of edges
connected to a symbol-node in the graph and Λ୧ is the
fraction of symbol-nodes connected to ݅ check-nodes.
Since it is a distribution it follows:

∑ Λ୧
ௗೞ೘ೌೣ

௜ஹଶ ൌ 1. (3)

B. Progressive-Edge-Growth

The Progressive-Edge-Growth (PEG) algorithm
introduced by Hu, Eleftheriou and Arnold in [6]
constructs the Tanner-graph of an LDPC-Code by
means of progressivley establishing edges between

Fig. 5. PCM of an LDPC-Code, r=1/3, n=9

Fig. 6. Tanner-graph corresponding to the PCM in Fig. 5

cଵ cଶ cଷ cସ cହ c଺

symbol-
nodes

check-
nodes

sଶ sଵ sସ sଷ s଺ sହ s଼ s଻ sଽ

4-cycle

27
BUPT

the symbol- and check-nodes. Each time an
݁݀݃݁ ሺݏ௜, ௝ܿ) is placed the local girth ݃௦೔ of the
involved symbol-node ݏ௜ is maximized. By constantly
maximizing the local girth the global girth is
maximized as well because of (6).
There are three different situations when choosing a
check-node ௝ܿ in order to establish an edge ሺݏ௜, ௝ܿ):

1. If it is the first edge to get connected to a symbol-

node ݏ௜ ՜ choose the check-node having the
lowest check-node degree (fewest connected
edges) under the current graph settings.

2. If there are still check-nodes that are not already
connected to the current graph ՜ choose one of
them.

3. If neither of the two former cases are true ՜
establish a PEG-tree with ݏ௜ as a root of that tree.
Then choose a check-node of the bottom-layer.

If a third edge should be connected to symbol-node ݏଵ
in Fig. 6 for example, a PEG-tree has to be created in
order to find an appropriate check-node ௝ܿ. The root of
that PEG-tree is ݏଵ. In Fig.7 the creation process of
the PEG-tree is depicted.

In correspondence to the third case above, the edge to
be established would be ݁݀݃݁ሺݏଵ, ܿଷ). Hu, Eleftheriou
and Arnold also propose to enhance the matrix
construction by a partitioning of the PCM that
becomes to:

௠ൈ௡ܪ ൌ ௠ൈ௠ܪൣ

௣ ௠ൈሺ௡ି௠ሻܪ,
ௗ ൧, with

௣ܪ ൌ

ۏ
ێ
ێ
1ۍ ݄ଵଶ

௣ ڮ ݄ଵ௠
௣

0 1 ڮ ڭ
ڭ ڮ ڰ ݄ሺ௠ିଵሻ௠

௣

0 ڮ 0 1 ے
ۑ
ۑ
ې

௠ൈ௠

. (4)

By doing so the encoding time of the resulting linear
time encodable LDPC-Code increases with ݊ instead
of with ݊ଶ as it usually does. The codeword’s parity
bits can then be calculated according to:

௜݌ ൌ ∑ ݄௜௝

௣௠
௝ୀ௜ାଵ ௝݌ ൅ ∑ ݄௜௝ௗ௡ି௠

௝ୀଵ ௝݀ ሺmod2ሻ (5)
where ݅ ൌ ݉,݉ െ 1,… ,2,1.

C. LDPC-Codes defined over GF(q)

By an increase of a binary PCM’s column weight, the
Hamming weight spectrum and hence the decoding
performance is improved. The drawback is that if the
PCM possesses more nonzero entries, the number of
cycles increases which results in a degradation of the
codes error correction capabilities. When moving to
GF(q) the mean column weight increases while the
number of cycles in the nonbinary Tanner graph
remains the same [3]. The construction methods to
attain a nonbinary PCM do not differ from those of
binary LDPC codes. In contrast to the latter, the PCM
of nonbinary LDPC codes possesses elements defined
over the Galois field ܨܩሺݍሻ ൌ ሺ2௣ሻ. Thereby theܨܩ
nonzero entries in ܪ are generated through the use of
a primitive polynomial ݌ሺݖሻ where ݌ሺݖሻ ൌ 0. It is
also essential to realize calculations required during
the decoding process in the Galois field ܨܩሺݍሻ. They
are based on a polynomial representation of the
elements. A ܨܩሺݍሻ symbol is represented by ݌ bit,
whereas the exponents of the corresponding
polynomial stand for the indices of the several bits
and the coefficients for their value.

D. LDPC-Code simulations

As in the case of the Turbo-Code simulations the
AWGNC and the allzero codeword with binary
codeword length of 504 were applied in all LDPC-
Code simulations.
The simulation results in Fig. 8 were attained by use
of a irregular linear time encodable LDPC-Code of

rate ݎ ൌ 1 2⁄ . The PCM was constructed based on the
symbol-node degree distribution Λሺݔሻ ൌ

ଶݔ0,47532 ൅ ଷݔ0,279537 ൅ ସݔ0,0348672 ൅
ହݔ0,108891 ൅ .ଵହ that is taken from [6]ݔ0,101385

For the decoding the log-domain based Belief-
Fig. 7. Constructing a PEG-tree to find

an appropriate check-node

Tanner-
graph

PEG-
tree

sଶ sଵ sସ sଷ s଺ sହ s଼ s଻ sଽ

cଵ cଶ cଷ cସ cହ c଺

1 2 3 4 5

cଵ

sହ sଽ

sଵ

cହ

sସsଷ s଺

cଶcସ c଺

s଼ s଻

1
2

3
4

cଷ
5

sଶ

28
BUPT

Propagation (BP) decoder described in [8] has been
applied.

The following simulation results in Fig. 9 show the
BER of an irregular linear time encodable PEG
LDPC-Code over GF(64) with coderate ݎ ൌ 1 2⁄ . The
symbol-node degree Λሺݔሻ ൌ ଶݔ0,94 ൅ ଷݔ0,05 ൅
 ସ for the construction of the PCM has beenݔ0,01
chosen in correspondence to [6]. The decoding was
done with a FFT-based BP-decoder as described in
[4].

IV. TURBO-CODE VS. LDPC-CODE

In Fig. 10 the most promising of the above LDPC-
Codes (the one defined over GF(64)) and the Turbo-
Code explained above are compared in terms of BER.
A codeword of the LDPC-Code is of symbol-length
݊ ൌ 84. Because ܨܩሺ64ሻ ൌ ሺ2଺ሻ a symbolܨܩ
consists of 6 bit so that the binary length becomes to
6 · 84 ൌ 504 and thus is comparable to the Turbo-
Code.

As seen in Fig. 10 the Turbo-Code decreases the BER
between 1 and 3 iterations much more than the
LDPC-Code. But that changes for more iterations
where the Turbo-Code improves his estimation only
marginal between 25 and 100 iterations whereas the
LDPC-Code highly increases the coding-gain. For 25
or more iterations the LDPC-Code is clearly favorable
over the Turbo-Code in terms of BER.

V. CONCLUSION

The PEG algorithm offers an effective construction
method for high girth LDPC codes that are
competitive to Turbo codes. Especially when moving
to higher order Galois fields GF(q) irregular PEG
LDPC codes beat the applied Turbo code even for a
short code word length. As a result of this comparison
we construct a near Shannon limit coding scheme for

1,00E‐05

1,00E‐04

1,00E‐03

1,00E‐02

1,00E‐01

1,00E+00

0 0,5 1 1,5 2

1 iteration 3 iterations
8 iterations 25 iterations
80 iterations 100 iterations
uncoded

1,00E‐05

1,00E‐04

1,00E‐03

1,00E‐02

1,00E‐01

1,00E+00

0 0,5 1 1,5 2

1 iteration 3 iterations
8 iterations 25 iterations
80 iterations 100 iterations
uncoded

1,00E‐05

1,00E‐04

1,00E‐03

1,00E‐02

1,00E‐01

1,00E+00

0 0,5 1 1,5 2

1 iteration ‐ TC 1 iteration ‐ LDPC
3 iterations ‐ TC 3 iterations ‐ LDPC
8 iterations ‐ TC 8 iterations ‐ LDPC
25 iterations ‐ TC 25 iterations ‐ LDPC
100 iterations ‐ TC 100 iterations ‐ LDPC

Fig. 8. BER of irregular linear time encodable LDPC-Code,
n=504, r=1/2

Fig. 9. BER of irregular linear time encodable LDPC-Code
over GF(64), n=84, r=1/2

Fig. 10. BER comparison between irregular linear time encodable
LDPC-Code over GF(64) and a Turbo-Code, both with binary

codeword-length of 504 and coderate 0.5

29
BUPT

2D-Data Matrix code applications using the explored
nonbinary linear-time encoding PEG LDPC code.
This leads to better results in terms of BER and
computational burden.

VI. ACKNOWLEDGMENT

This work is part of the project MERSES and has
been supported by the European Union through its
European regional development fund (ERDF) and by
the German state Baden-Württemberg.

REFERENCES

 [1] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, "Optimal decoding
of linear codes for minimizing symbol error rate (Corresp.)", IEEE
Transactions on Information Theory, vol. 20, no. 2, pp. 284‐287.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, Eds., Near
Shannon limit error-correcting coding and decoding: Turbo-codes,
1993.
[3] M.C. Davey, "Error-correction using low-density parity-check
codes", Univ. of Cambridge PhD dissertation.
[4] D. Declercq, and M. Fossorier, "Decoding algorithms for
nonbinary LDPC codes over GF (q)", IEEE Transactions on
Communications, vol. 55, no. 4, p. 633.
[5] R. Gallager, "Low-density parity-check codes", Information
Theory, IRE Transactions on, vol. 8, no. 1, pp. 21‐28.
[6] X.Y. Hu, E. Eleftheriou, and D.M. Arnold, "Regular and
irregular progressive edge-growth Tanner graphs", IEEE
Transactions on Information Theory, vol. 51, no. 1, pp. 386‐398.
[7] MacKay D.J., and Neal R.M., Good Codes Based on Very
Sparse Matrices: Cryptography and Coding. 5th IMA
Conf.(Cirencester, UK), LNCS 1025: Berlin: Springer, 1995.
[8] W.E. Ryan, "An Introduction to LDPC Codes", The University
of Arizona, 2003.
[9] C.E. Shannon, "A mathematical theory of communication", Bell
System Technical Journal, vol. 27, no. 3, p. 4.

30
BUPT

