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Abstract – In this paper the decoding performance of a 
Turbo-Code and a LDPC-Code are compared. Both 
exhibit a binary blocklength of 504 and a coderate of 0.5. 
After an explanation of the several channel code’s 
construction methods the results of the simulations are 
depicted in terms of the Bit Error Rate (BER). For a 
channel model the Additive White Gaussian Noise 
Channel (AWGNC) has been used. The decoding was 
done with the iterative Belief Propagation (BP)-decoding 
algorithm. If carefully constructed, the LDPC-Code is 
clearly favorable over the applied Turbo-Code. 
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I. INTRODUCTION 
 

Channel coding is very important in digital systems 
and effectively improves the efficiency concerning 
transmission of binary information in the presence of 
interferences. Since the introduction of A 
mathematical theory of communication [9] by Claude 
E. Shannon in 1948 channel coding schemes have 
tried to achieve the Shannon limit. It is defined as a 
lower bound on the Signal to noise ratio (SNR) at 
which an appropriate coding scheme can barely allow 
for a transmission. When Turbo-Codes were 
presented by Berrou, Glavieux and Thitimajshima [2] 
in 1993 the concatenated coding scheme was proved 
to come up very close to the Shannon limit. Low-
Density Parity-Check (LDPC) – Codes were already 
published in 1962 by Robert Gallager [5] and showed 
an asymptotically optimal decoding performance. At 
first LDPC-Codes were forgotten because of 
computational burden but since computation power 
has experienced a high increase LDPC-Codes became 
interesting again. Since MacKay and Neal had 
rediscovered them in 1995 [7] various authors have 
published improvements concerning the construction 
methods of LDPC-Codes. This yielded in a better 
decoding performance where LDPC-Codes have 
become competitive to Turbo-Codes even for short 
blocklength.  
  

II. TURBO-CODES 
 

A Turbo-Code is attained by a serial or parallel 
concatenation of several channel-codes. Furthermore 
the appropriate decoder processes soft decision 

values. A hard decision of a received bit can take the 
values zero or one with respect to the estimated sent 
bit. In contrast soft decisions carry the information of 
the probability of a bit to be a zero or a one. To 
minimize the required computing power soft decision 
values are often processed in the Log-domain. A 
convenient format to do so is the Log-Likelihood-
Ratio (LLR). The Turbo-decoder takes advantage of 
the more precise soft decision values and constantly 
refines the estimations of each bit in an iterative 
process. This is done by an exchange of extrinsic data 
among the several component decoders. Fig.1 shows 
the functional principle of a Turbo-Code. One can see 
the parallel concatenated Turbo-encoder on the left 
side of the channel and the appropriate Turbo-decoder 
on the right, consisting of two component encoders 
and decoders respectively. The first component 
encoder E1 encodes the information word. E2 gets an 
interleaved version of the systematic part as an input 
signal. The feedback loops in the Turbo-decoder that 
carry the extrinsic data are depicted by the dashed 
grey lines. At the end of the decoding procedure a 
hard decision is performed.  

 

The similarity of the Turbo-Decoder’s functional 
principle to a Turbo charger gives rise to the name 

Fig. 1. Principle of a Turbo-Code 

c 
h 
a 
n 
n 
e 
l 

E1 D1 

 ߨ

E2

ߨ

D2 

ߨ

 ଵିߨ

Fig. 2. Turbo-encoder with r=1/2 

ሼݔ௦௞ሽ

ሼݔ௦௞ሽ

൛ݔ௣௞ൟ

D D D 

D D D 

 ߨ

25
BUPT



Turbo-Code. 
A. Turbo-encoder 
 
The Turbo-encoder that is used here consists of two 
parallel concatenated 8-state convolutional encoders 
described by the generator polynomial in octal 
notation: 
 
ܩ ൌ ௣

௤
ൌ ଵଷ

ଵହ
            (1) 

 
The Turbo-encoder is shown in Fig. 2. 
The systematic part is denoted as ݔ௦௞ with 1 ൑ ݇ ൑
݊ 2⁄ . Encoder 1 encodes ݔ௦௞ and outputs ݔ௣భ௞ (parity 
part one). The second component encoder gets the 
interleaved version of the information word ߨሺݔ௦௞ሻ 
and outputs ݔ௣మ௞. By use of an appropriate puncturing  
pattern ݔ௣భ௞ and ݔ௣మ௞ get compacted into ݔ௣௞. A code 
word of a ½-rate Turbo-Code then comprises of the 
systematic part and the packed parity part so that  
 
௦௣ݔ ൌ ൛ݔ௦௞ ݔ௣௞ൟ. 
 

B. Turbo-decoder 
 
The Turbo-decoder shown in Fig. 3 processes Log-
Likelihood-Ratios (LLR’s) computed from the output 
of the established channel.  

 

In this case an Additive White Gaussian Noise 
Channel (AWGNC) is modeled. Thereby white 
Gaussian noise is added to the BPSK-modulated 
codeword depending on the signal to noise ratio 
(SNR). In channel coding simulations the SNR is 
usually defined as ܧ௕ (energy per bit) divided by ଴ܰ 
(spectral noise density). With ݔ௜ א ሼ1, െ1ሽ being a 
sent bit, the conditional probability of a bit ݕ௜ received 
by the decoder is then distributed as follows: 
 

௜ሻݔ|௜ݕሺ݌ ൌ
ଵ

ඥଶగఙమ
݁ି 

൫೤೔േೣ೔൯
మ

మ഑మ , 1 ൑ ݅ ൑ ݊        (2) 

 
The LLR for the AWGNC is then: 
 
௜ሻݔ|௜ݕሺܮ ൌ ݈݊ ௣ሺ௬೔|௫೔ୀାଵሻ

௣ሺ௬೔|௫೔ୀିଵሻ
ൌ ଶ

ఙమ
·   .௜ݕ          ሺ1ሻ 

 
The two component decoders DEC1 and DEC2 in 
Fig. 3 are BCJR-decoders named after Bahl, Cocke, 

Jelinek, and Raviv that presented a trellis-based 
decoding method in 1974 in [1]. Thereby the a 
posteriori probability ݌ሺݔ௜ ൌ -௜ሻ of a BPSKݕ|ܾ
modulated sent bit ܾ א ሼ1,െ1ሽ is maximized. ݕܮ௦௞ 
represents the LLR’s of the received systematic part 
and ݕܮ௣௞ the LLR’s of the compressed parity parts. 
For each bit of the parity parts that was punctured in 
the encoding procedure a zero is inserted instead and 
the LLR’s of ݕ௣భ௞ and ݕ௣మ௞ get computed. The 
extrinsic data of the first component decoder Dec1 is 
then obtained by use of the systematic part ݕܮ௦௞, the 
extrinsic part of the second decoder ݔ݁ܮ௬௦ଶ  and the 
parity part 1 ݕܮ௣భ௞. When the desired number of 
iterations have been processed, the extrinsic data of 
both component decoders and the sytematic part get 
added and a hard decision is performed. The result 
represents the estimation of the original information 
word. 
 

C. Turbo-Code simulations 
 
For the following simulations the allzero codeword is 
used which is a codeword that exhibits ݊ zeros. The 
allzero codeword is always a valid codeword for a 
linear code. To depict the error correcting capabilities 
of the code, the bit error ratio (BER) is plotted on the 
y-axis of the graph (Fig. 4) while the according 
௕ܧ ଴ܰ⁄ -values are plotted on the x-axis. The BER is 
obtained by dividing all errors occurring in a decoded 
codeword by the length of the code word ݊ where 
݊ ൌ 504. The simulation as well as the appropriate 
Turbo-decoder were implemented in Matlab. 
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Fig. 4. BER of Turbo-Code , r=1/2, n=504 
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III. LDPC-CODES 

 
To create a Low-Density Parity-Check (LDPC) –Code 
one constructs the underlying Parity-Check-Matrix 
(PCM) or alternatively a Tanner-graph. The PCM and 
the Tanner-graph of a LDPC-Code are 
interchangeable and fully represent the code. In Fig. 5 
the PCM of a LDPC-Code is shown. The name of 
LDPC-Codes stems from the fact that the PCM is 
always sparse and thus possesses a low-density of 
nonzero elements. Furthermore the rows of the PCM 
represent parity-check equations that can be seen at 
the bottom of Fig. 5. 
 

௠ൈ௡ܪ ൌ ൥
݄ଵଵ ڮ ݄ଵ௡
ڭ ڰ ڭ

݄௠ଵ ڮ ݄௠௡
൩ = 

 

ۏ
ێ
ێ
ێ
ێ
ۍ
૚ 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 1 0 1 0 1 0 0
૚ 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 1 ے1

ۑ
ۑ
ۑ
ۑ
ې

  

ܿଵ
ܿଶ
ܿଷ
ܿସ
ܿହ
ܿ଺

 

ଵݏ  ଶݏ ଷݏ ସݏ ହݏ ଺ݏ ଻ݏ ଼ݏ  ଽݏ
 
ܿଵ  ՜    ଵݏ ൅ ଶݏ ൅ ଷݏ ൌ 0
ܿଶ  ՜    ସݏ ൅ ହݏ ൅ ଺ݏ ൌ 0
ܿଷ  ՜    ଻ݏ ൅ ଼ݏ ൅ ଽݏ ൌ 0
ܿସ  ՜    ଶݏ ൅ ହݏ ൅ ଻ݏ ൌ 0
ܿହ  ՜    ଵݏ ൅ ସݏ ൅ ଺ݏ ൌ 0
ܿ଺  ՜    ଶݏ ൅ ଼ݏ ൅ ଽݏ ൌ 0

 

 
 
A PCM always possesses ݊ columns and ݉ ൌ ݊ െ ݇ 
rows where ݊ is the codeword’s blocklength and ݇ 
stands for the length of the information word. The 
coderate is then ݎ ൌ ݇ ݊⁄ . With the help of the 
Gaussian elimination any PCM can be transformed to  
 
௠ൈ௡ܪ ൌ ሾ்ܲ ௠ൈ௞ ܫ௠ൈ௠ሿ          (4) 
 
with ܫ being the identity matrix. From this the 
generator matrix  
 
  ௞ൈ௡ܩ ൌ ሾܫ௞ൈ௞   ܲ௞ൈ௠ሿ         (5) 
 
is derived. A codeword is then obtained by 
multiplying the information word ݔ௦௞ with the 

generator-matrix ܩ௞ൈ௡  . In Fig. 6 the corresponding 
Tanner-graph to the PCM in Fig. 5 is shown. This 
bipartite graph comprises of ݊ symbol-nodes and ݉ 
check-nodes representing the columns and rows of the 
PCM respectively. These nodes are connected via 
edges corresponding to the entries in the PCM. The 
black edges adjacent to ݏଵ in Fig. 6 for example 
correspond to the bold nonzero entries in Fig. 5. 
The decoding performance of a LDPC-Code is highly 
dependent on the cycles that code exhibit. A cycle is a 
closed path of consecutive edges that connect a node 
with itself. The number of involveld edges defines the 
length of a cycle. In Fig. 6 a 4-cycle is shown. For 
each symbol-node ݏ௜ in a Tanner-graph the length of 
the shortest cycle passing through this symbol-node is 
denoted as local girth ݃௦೔. Global girth ݃ is defined by 
the length of the shortest cycle that exists in a Tanner-
graph and so  
 
݃ ൌ min௜൛݃௦೔ൟ.           (6) 
 
 A low global girth has a harmful impact on the 
decoding performance which is thus mainly 
dependent on the construction of the PCM or the 
Tanner graph. This is the reason for optimizing the 
construction method in reference to the resulting 
decoding performance. 
 

A. Regular & Irregular 
 
In [5] Gallager introduced LDPC-Codes and proposed 
a pseudo-random construction method for the PCM of 
a regular LDPC-Code. The matrix of a regular 
LDPC-Code always possesses exacly ߛ nonzero 
elements in each column and ߩ in each row and thus 
all check-nodes and symbol-nodes share the same 
number of adjacent edges respectively. The LDPC-
Code shown in Fig. 5 and Fig. 6 represents a so called 
Gallager-code described by ሺ݊, ,ߩ ሻߛ ൌ ሺ9,3,2ሻ. In 
contrast to regular LDPC codes, irregular codes 
exhibit several row and column weights. They are 
described through the use of the symbol-node degree 
distribution  
 
Λሺݔሻ ൌ ∑ Λ୧ · x୧

ௗೞ೘ೌೣ

௜ஹଶ ,          (2) 
 
where ݀௦௠௔௫ is the maximum number of edges 
connected to a symbol-node in the graph and Λ୧ is the 
fraction of symbol-nodes connected to ݅ check-nodes. 
Since it is a distribution it follows: 
 
∑ Λ୧
ௗೞ೘ೌೣ

௜ஹଶ ൌ 1.           (3) 
 

B. Progressive-Edge-Growth 
 
The Progressive-Edge-Growth (PEG) algorithm 
introduced by Hu, Eleftheriou and Arnold in [6] 
constructs the Tanner-graph of an LDPC-Code by 
means of progressivley establishing edges between 

Fig. 5. PCM of an LDPC-Code, r=1/3, n=9 

Fig. 6. Tanner-graph corresponding to the PCM in Fig. 5 
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the symbol- and check-nodes. Each time an 
݁݀݃݁ ሺݏ௜, ௝ܿ) is placed the local girth ݃௦೔ of the 
involved symbol-node ݏ௜ is maximized. By constantly 
maximizing the local girth the global girth is 
maximized as well because of (6).  
There are three different situations when choosing a 
check-node ௝ܿ in order to establish an edge ሺݏ௜, ௝ܿ): 
 
1. If it is the first edge to get connected to a symbol-

node ݏ௜  ՜ choose the check-node having the 
lowest check-node degree (fewest connected 
edges) under the current graph settings. 

2. If there are still check-nodes that are not already 
connected to the current graph ՜ choose one of 
them. 

3. If neither of the two former cases are true ՜ 
establish a PEG-tree with ݏ௜ as a root of that tree. 
Then choose a check-node of the bottom-layer. 

 
If a third edge should be connected to symbol-node ݏଵ 
in Fig. 6 for example, a PEG-tree has to be created in 
order to find an appropriate check-node ௝ܿ. The root of 
that PEG-tree is ݏଵ. In Fig.7 the creation process of 
the PEG-tree is depicted. 

 

In correspondence to the third case above, the edge to 
be established would be ݁݀݃݁ሺݏଵ, ܿଷ). Hu, Eleftheriou 
and Arnold also propose to enhance the matrix 
construction by a partitioning of the PCM that 
becomes to: 
 
௠ൈ௡ܪ ൌ ௠ൈ௠ܪൣ

௣ ௠ൈሺ௡ି௠ሻܪ,
ௗ ൧, with 

 

௣ܪ ൌ

ۏ
ێ
ێ
1ۍ ݄ଵଶ

௣ ڮ ݄ଵ௠
௣

0 1 ڮ ڭ
ڭ ڮ ڰ ݄ሺ௠ିଵሻ௠

௣

0 ڮ 0 1 ے
ۑ
ۑ
ې

௠ൈ௠

.      (4) 

 
By doing so the encoding time of the resulting linear 
time encodable LDPC-Code increases with ݊ instead 
of with ݊ଶ as it usually does. The codeword’s parity 
bits can then be calculated according to: 
 
௜݌ ൌ ∑ ݄௜௝

௣௠
௝ୀ௜ାଵ ௝݌ ൅ ∑ ݄௜௝ௗ௡ି௠

௝ୀଵ ௝݀  ሺmod2ሻ   (5) 
where ݅ ൌ ݉,݉ െ 1,… ,2,1. 
 

C. LDPC-Codes defined over GF(q) 
 
By an increase of a binary PCM’s column weight, the 
Hamming weight spectrum and hence the decoding 
performance is improved. The drawback is that if the 
PCM possesses more nonzero entries, the number of 
cycles increases which results in a degradation of the 
codes error correction capabilities. When moving to 
GF(q) the mean column weight increases while the 
number of cycles in the nonbinary Tanner graph 
remains the same [3]. The construction methods to 
attain a nonbinary PCM do not differ from those of 
binary LDPC codes. In contrast to the latter, the PCM 
of nonbinary LDPC codes possesses elements defined 
over the Galois field ܨܩሺݍሻ ൌ  ሺ2௣ሻ. Thereby theܨܩ
nonzero entries in ܪ are generated through the use of 
a primitive polynomial ݌ሺݖሻ where ݌ሺݖሻ ൌ 0. It is 
also essential to realize calculations required during 
the decoding process in the Galois field ܨܩሺݍሻ. They 
are based on a polynomial representation of the 
elements. A ܨܩሺݍሻ symbol is represented by ݌ bit, 
whereas the exponents of the corresponding 
polynomial stand for the indices of the several bits 
and the coefficients for their value. 
 

D. LDPC-Code simulations 
 
As in the case of the Turbo-Code simulations the 
AWGNC and the allzero codeword with binary 
codeword length of 504 were applied in all LDPC-
Code simulations. 
The simulation results in Fig. 8 were attained by use 
of a irregular linear time encodable LDPC-Code of 

rate ݎ ൌ 1 2⁄ . The PCM was constructed based on the 
symbol-node degree distribution Λሺݔሻ ൌ

ଶݔ0,47532 ൅ ଷݔ0,279537 ൅ ସݔ0,0348672 ൅
ହݔ0,108891 ൅  .ଵହ that is taken from [6]ݔ0,101385

For the decoding the log-domain based Belief-
Fig. 7. Constructing a PEG-tree to find 

an appropriate check-node 
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Propagation (BP) decoder described in [8] has been 
applied. 

 

 

The following simulation results in Fig. 9 show the 
BER of an irregular linear time encodable PEG 
LDPC-Code over GF(64) with coderate ݎ ൌ 1 2⁄ . The 
symbol-node degree Λሺݔሻ ൌ ଶݔ0,94 ൅ ଷݔ0,05 ൅
 ସ for the construction of the PCM has beenݔ0,01
chosen in correspondence to [6]. The decoding was 
done with a FFT-based BP-decoder as described in 
[4]. 

 

 

 
IV. TURBO-CODE VS. LDPC-CODE 

 
In Fig. 10 the most promising of the above LDPC-
Codes (the one defined over GF(64)) and the Turbo-
Code explained above are compared in terms of BER. 
A codeword of the LDPC-Code is of symbol-length 
݊ ൌ 84. Because ܨܩሺ64ሻ ൌ  ሺ2଺ሻ a symbolܨܩ
consists of 6 bit so that the binary length becomes to 
6 · 84 ൌ 504 and thus is comparable to the Turbo-
Code. 
 

 

 

As seen in Fig. 10 the Turbo-Code decreases the BER 
between 1 and 3 iterations much more than the 
LDPC-Code. But that changes for more iterations 
where the Turbo-Code improves his estimation only 
marginal between 25 and 100 iterations whereas the 
LDPC-Code highly increases the coding-gain. For 25 
or more iterations the LDPC-Code is clearly favorable 
over the Turbo-Code in terms of BER. 
 

V. CONCLUSION 
 

The PEG algorithm offers an effective construction 
method for high girth LDPC codes that are 
competitive to Turbo codes. Especially when moving 
to higher order Galois fields GF(q) irregular PEG 
LDPC codes beat the applied Turbo code even for a 
short code word length. As a result of this comparison 
we construct a near Shannon limit coding scheme for 
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Fig. 8. BER of irregular linear time encodable LDPC-Code,  
n=504,  r=1/2 

Fig. 9. BER of irregular linear time encodable LDPC-Code  
over GF(64), n=84, r=1/2 
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2D-Data Matrix code applications using the explored 
nonbinary linear-time encoding PEG LDPC code. 
This leads to better results in terms of BER and 
computational burden. 
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