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Abstract – This paper proposes a denoising method that 

associates the Hyperanalytic Wavelet Transform (HWT) 

with a Maximum A Posteriori (MAP) filter named 

bishrink. The method is tested on Optical coherence 

tomography (OCT) images. The experimental results 

prove that the denoising algorithm can effectively reduce 

the speckle noise, while preserving the structural and 

textural features and improves the quality of OCT 

images. 
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I. INTRODUCTION 

 

 Worldwide, degenerative eye diseases such as 

macular degeneration, glaucoma, cataract, or retinal 

detachment are the main causes of blindness [1]. 

More, retinal diseases are already the most common 

cause of childhood blindness worldwide [2]. The main 

microvascular complication of diabetes in the eye is 

the diabetic retinopathy (DR), which is found in 

almost 20% of newly diagnosed diabetic people. Age-

related macular degeneration (AMD) is another retinal 

disease discussed and highlighted as a growing 

concern and it is already the third largest cause of 

blindness in the world. The annual incidence of 

Retinal detachment (RD) is estimated at 10/100,000 

per year. Globally, 90 eyes are blinded by RD every 

hour [3].  

 Optical coherence tomography (OCT) is a non-

invasive imaging test that provides high resolution 

images of retinal structures, helping the early 

detection, diagnosis and treatment guidance for retinal 

diseases in their early stages, before vision is affected. 

The OCT produces cross sectional view of the retina, 

with an accuracy ranging from 5 to 10 microns [4]. It 

is analogous to ultrasound imaging, except that it uses 

light instead of sound [5-6]. 

 One of the main limitations of OCT images is the 

presence of an unwanted speckle noise, a 

multiplicative noise that affects small and low-

intensity features.  Many well known digital denoising 

methods have been adapted for OCT images, 

including median filtering [7-8], anisotropic diffusion 

filters [8-9], or bayesian estimations [10]. Wavelets 

based denoising methods have the advantage of 

performing denoising on multiple resolutions. The 

Dual Tree Complex Wavelet Transform has been used 

in [11], while the curvelet transform was used in [12]. 

 This paper presents a speckle reduction method in 

the wavelets domain, that associates the 

Hyperanalytic Wavelet Transform (HWT) with a 

Maximum A Posteriori (MAP) filter called bishrink. 

 The rest of the paper is structured as follows: 

Section II is dedicated to the theoretical part regarding 

the proposed denoising method. In Section III, the 

experimental results obtained for real OCT images are 

presented, while the last section is dedicated to 

conclusions. 

  

II. MATERIAL AND METHODS 

 

 Images denoising methods can be classified in 

two distinct categories: methods acting in the spatial 

domain and the methods acting in the wavelets 

domain [13]. This paper is focused on the second 

category. This class of denoising methods has three 

steps:  

1. Computation of a wavelet transform, 

2. Detail coefficients filtering, and  

3. Computation of the corresponding inverse 

wavelet transform.  

 

 Regarding the first and the last step, there are 

various wavelet transforms that can be used. One of 

them is the Discrete Wavelet Transform (DWT). 

However, it has three main disadvantages: it is not 

shift invariant, the associated mother wavelets are not 

symmetric, and its directional selectivity is poor.  An 

alternative to the use of the DWT is the Undecimated 

Discrete Wavelet Transform (UDWT). The UDWT, 

also called Stationary Wavelet Transform (SWT), was 

used in [14]. However, even if the UDWT is 

translations invariant, its directional selectivity is poor 

and it is very redundant [13]. The previously stated 
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three disadvantages of the DWT can be diminished 

using complex wavelet transforms. The interest in 

complex wavelets may be linked to the development 

of the dual filter bank [15-16]. The DT-CWT is a 

quadrature pair of DWT trees and its coefficients may 

be interpreted as arising from the DWT associated 

with a quasi-analytic wavelet. The main property of 

the 2D DT-CWT is the quasi-shift invariance [13]: 

perfect shift invariance at level 1, and approximately 

achieved shift invariance beyond this level. In this 

paper, we will focus on the HWT. The HWT is quite 

similar to the DT-CWT behavior. However, the DT-

CWT requires special mother wavelets, while for the 

implementation of the HWT classical mother 

wavelets, such as the ones belonging to the 

Daubechies family, can be used.  

 Concerning the second step of wavelets based 

denoising algorithms, one of the most efficient 

denoising methods implies the use of maximum a 

posteriori (MAP) filters. An interesting MAP filter is 

the bishrink filter. 

 

A. The Hyperanalytic Wavelet Transform (HWT) 

 

  Being given the real mother wavelets, ( ),x yψ , 

the hypercomplex mother wavelet associated to 

( ),x yψ  is defined as:   

( ) ( ) ( ){ }

( ){ } ( ){ }{ }
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where 2 2 2 1i j k= = − = − , ij ji k= =  and H  

represents the Hilbert transform [13]. 

 The HWT of an image ( ),f x y  can be computed 

as:          
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 Using  (1) and (2), it results: 
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In the end we obtain: 

 

( ) ( ) ( ), , ,, { }.f a aHWT f x y x y f x yDWTψ= =       

             (4) 

  
 The HWT of the image can be obtained using the 

2D-DWT of its associated hypercomplex image. The 

HWT implementation is presented in Fig. 1. 

 The HWT implementation shown in Fig. 1 uses 

four trees, each one implementing a 2D-DWT: the 

first one is applied to the input image, the next two 

trees are applied to the 1D Hilbert transforms 

computed across the lines (
xH ) or columns ( yH ) of 

the input image, and the last tree is applied to the 

result obtained by the computation of the two 1D 

Hilbert transforms on the input image. 

 

 
 

Fig. 1. The 2D HWT implementation architecture. 

  

B. Bishrink filtering 
 

 The bishrink filter is a MAP filter that takes into 

account the interscale dependency of wavelet 

coefficients. Based on the observation y = w + n, 

where n represents the wavelet transform of the noise, 

in , obtained as the logarithm of the speckle 

log
i

n sp= , and w represents the wavelet transform of 

the useful component corresponding to the input 

image s, obtained as the logarithm of the noiseless 

component of the acquired image logs u= . The 

MAP estimation of w is given by: 

 

( ) ( ) ( )( ){ }ˆ argmax ln n w
w

w y p y w p w= − ,    (5) 

 

where p
n 

is the noise probability density function 

(pdf), when the noise is AWGN (independent), while 

the a priori distribution of the parameter w, or “prior” 

( )wp w  contains what is known before making the 

measurements. 

 For the construction of the bishrink filter, the 

noise is assumed to be i.i.d. Gaussian [17], because 

the HWT is a unitary transform which do not correlate 

the i.i.d. Gaussian noise [18]: 
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   The model of a noiseless image is given using a 

heavy tailed distribution: 

         

      wp  (w)
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 If we replace these two pdfs in equation (6) we 

obtain:      
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  After several computations it results: 
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   By making the sum 
2

1w +
2

2w , the following result is 

obtained: 
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   In the end it results:        
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    By combining equation (8) and equation (9), we 

obtain: 
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Thus, the input-output relation of the bishrink filter is: 
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 The bishrink filter requires prior knowledge of 

the noise variance and of the marginal variance of the 

noise-less image for each wavelet coefficient. For the 

estimation of the noise variance from the noisy 

wavelet coefficients, a robust median estimator from 

the wavelet coefficients finest scale is used [19]: 

            

 
( )2

median
ˆ ,

0.6745

i

n

y
σ =  sub-bandiy ∈ HH. (14) 

 

 The marginal variance of the k
th

 coefficient can 

be estimated using neighboring coefficients in the 

region N(k), a squared shaped window centered on 

this coefficient, with the size of 7×7 [21]. The 

estimation can be done using the equation:  

            

   
2 2 2

y nσ σ σ= + ,        (15) 

 

where 
2

yσ  represents the marginal variance of the 

noisy observations 
1y  and 

2y .  

    It results: 
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    For the estimation of the marginal variance of the 

noisy observations, the following relation is proposed 

in [17]:           
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^
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σ
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where the neighborhood N(k) has the size M.   

 In order to estimate the local standard deviation 

of the useful component corresponding to the parent 

coefficients, 
2σ̂ , in a given sub-band, the sub-band is 

first interpolated by the repetition of each line and 

column. Then, by applying the relations (16) and (17), 

the local standard deviation of the useful component 

corresponding to the child coefficients is obtained: 

           

 1 2
ˆ ˆ0.5

ˆ
2

σ σ
σ

+ ⋅
=                  (18) 

 
 The local variance of a pixel also gives some 

information about the frequency content of the region 

to which the considered pixel belongs: pixels having 

low local variances imply a corresponding region with 

low frequencies, while pixels having high local 
variances imply a corresponding region containing 

high frequencies. 

 The estimation of the noise variance is obtained 

using the equation:        

         

( )2ˆ ,
n i
σ median y=    

i
y ∈ sub-band HH.    (19) 
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 The standard deviation of the noiseless 

coefficients can be estimated as:     
 

2 2 2 2

( ) ( )

1 1
ˆ ˆ, 0

ˆ

0,

i i

i n i n

y N k y N k

y σ if y σ
σ M M

if not

∈ ∈


− − >

= 



∑ ∑

            (20) 
 

where M is the size of the moving window N(k), 

centered on the kth pixel of the acquired image.  

  The sensitivity of the bishrink filter with the 

estimation of the noise standard deviation nσ̂  can be 

computed with the relation:      
            

    
1
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 Using the input-output relation of the bishrink 

filter in equation (10) we obtain:  
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 The absolute value of the sensitivity is an 

increasing function of ˆ
nσ . The performance of the 

bishrink filter decreases with the increase of the noise 

standard deviation estimation value.  
 An important parameter of the bishrink filter is 

the local estimation of the noiseless image marginal 

variance ( σ̂ ). The sensitivity of the estimation 1ŵ  

with σ̂  is given by:    
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 The estimation precision using the bishrink filter 

decreases with the decreasing of σ̂ .  

 

III. RESULTS 

 

 In this section, we test our denoising approach on 

three OCT images shown in Fig. 2. 

 

   
 

a) OCT 1 

 

    
 

b) OCT 2 

 

 
 

c) OCT 3 
 

Fig. 2.  The three OCT images used for testing. 

 

 The obtained results are analyzed in terms of the 

noise variance and the Equivalent Number of Looks 

(ENL) which quantifies the homogeneity degree of a 

region. The ENL is defined by the ratio of the squares 

of pixels mean and variance situated in the considered 

region. It can be computed as follows: 

 
2

mean
ENL

standard deviation

 
=  
 

.         (24) 

 

   The results are shown in Table 1.  

 
Table 1 

Images ENLi ENLo 
niσ  noσ  

OCT 1  5.19 73.94 8.94 0.28 

OCT 2  5.56 86.82 8.37 0.33 

OCT 3  6.03 100.64 8.386 0.31 
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 In Table 1, ENLi represents the input ENL value, 

while the ENLo is the value obtained after the 

denoising procedure. niσ  and noσ  are the values of 

the noise variance before and after the denoising. 

 The denoising algorithm significantly reduces the 

noise variance and the ENL output values indicate a 

good performance of the proposed denoising 

algorithm. 

 In Fig. 3 two homogenous regions (before and 

after denoising) from each test images, are compared. 
 Based on visual inspection, the proposed 

denoising method seems to be effective.                        

 

IV. CONCLUSIONS 

 

 This paper presents an effective wavelets based 

denoising system for OCT images. Wavelets based 

denoising methods have the advantage of performing 

denoising on multiple resolutions which is useful in 

the case of correlated noise. 

 The proposed denoising algorithm associates the 

Hyperanalytic Wavelet Transform and with the 

bishrink filter. The implementation of the HWT is 

very simple and flexible, permitting the use of any 

orthogonal or biorthogonal real mother wavelets for 

its computation. In this paper we used the Daubechies 

family of mother wavelets. 

 The experimental results presented in Table 1 and 

in Fig. 3 highlight the effectiveness of the proposed 

algorithm. 
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         before              after 

a) OCT 1 

 

              
before              after 

b) OCT 2 

 

               
before              after 

c) OCT 3 

 

Fig. 3. Results for OCT images in an homogenous region before / after HWT+bishrink. 
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