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Abstract—In this paper we present an optimization
procedure for the design of irregular Low-Density Parity-
Check (LDPC) codes with short blocklength. For the
optimization of the Symbol-Node Degree-Distribution
(SNDD) of an irregular LDPC code we adapted the
complete DHS-algorithm to the constrained problem.
This is in contrast to [1], where the authors only
applied a simplified version of the Downhill-Simplex
(DHS) method. Furthermore our optimization procedure
comprises several rounds including differently initialized
simplezes in order to prevent from converging to a local
minimum. Compared to simulation-results based on the
simplified DHS-method provided in [1] the performance
of our designed LDPC code shows a gain up to 0.3dB
for the Bit-Error-Ratio (BER) and 0.2dB for the Word-
Error-Ratio (WER).

I. INTRODUCTION

The importance of channel coding has increased
rapidly together with the still vast growing market
in the field of digital signal processing. One channel
code that is more and more significant is the Low-
Density Parity-Check (LDPC) code. The principle of
this linear block code has already been published
in 1962 by Robert Gallager [2]. After LDPC codes
had been forgotten for decades, mainly because of
their computational burden, they were rediscovered
by MacKay and Neal in 1995 [3]. Since then lots
of design techniques have been developed, yielding
in LDPC codes optimized with respect to different
design criteria (e.g. low error-floor, performance close
to capacity, hardware implementation).

II. LDPC CODES

Low-Density Parity-Check (LDPC) codes are based
on a sparse Parity-Check Matrix (PCM). The n
columns of a PCM stand for the n symbols of a LDPC
codeword and each row represents one of m = n− k
unique parity-check equations with k being the number
of information symbols. The code rate is then r = k

n .
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Parity-check matrix 

Tanner-graph 

Fig. 1. Tanner-graph

An alternative representation is obtained by use of
a Tanner-graph [4]. Such a bipartite graph consists of
n symbol-nodes and m check-nodes corresponding to
the n columns and m rows of the PCM respectively.
The symbol-nodes and check-nodes are connected
dependent on the nonzero entries in the PCM. Figure
1 shows an example of a PCM and the appropriate
Tanner-graph.

The decoding of LDPC codes is done using the
Belief-Propagation (BP) algorithm [2] or an approx-
imation of it (e.g. the Min-Sum (MS) decoder) [5].

A. regular LDPC codes

The PCM of a regular LDPC code always possesses
exactly γ nonzero elements in each column and ρ
nonzero elements in each row and thus the number
of adjacent edges is the same for all symbol-nodes
and check-nodes respectively.
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B. irregular LDPC codes

In contrast to regular LDPC codes, irregular LDPC
codes exhibit several row weights and column weights.
They are described by use of polynomials. The fol-
lowing polynomial is used to specify the symbol-node
degree-distribution (SNDD).

Λ(x) =

dmax
s∑

i>=2

Λix
i (1)

The degree i determines how many edges are con-
nected to one symbol-node (and thus the column-
weight). Λi is the fraction of symbol-nodes for that
degree i applies. Λi multiplied by the total number of
symbol-nodes yields in the number of symbol-nodes
that share the same number of adjacent edges which
is i. dmax

s is the maximum degree. The description of
the check-node degree-distribution is likewise. The use
of a monomial for a pair of degree-distributions (for
the symbol-nodes and check-nodes) leads to a regular
LDPC code where the coefficients have to be one.
Λ(x) = x3 for example denotes a LDPC code with
three adjacent edges for all symbol-nodes and thus a
column-weight of three for all the columns.

C. Design of the symbol-node degree-distribution

Density-Evolution (DE) is a powerful tool to ana-
lyze the asymptotic performance of a LDPC code en-
semble described by a pair of degree-distributions (for
the symbol-nodes and check-nodes respectively). In [6]
and [7] the authors showed the possibility of designing
good irregular LDPC codes based on DE. In [8] and [9]
a concentration theorem is proved that states, that the
performance of an ensemble of LDPC codes decoded
with a BP-decoder is concentrated around the average
performance of the ensemble. The analysis of LDPC
codes using DE is based on the concentration theorem
and on the assumption of a cycle-free code. It is well
known that the shorter the LDPC code the more cycles
occur. Furthermore for short blocklength LDPC codes
the length of the cycles is short with respect to the
decoding iterations required in average which leads to
an harmful impact on the decoding performance. In
[10] it can be seen that the gap between the predicted
performance based on DE and the real performance
increases inversely proportional to the blocklength.
Furthermore the concentration theorem does not hold
for short LDPC codes. This can be seen in [11] where a
significant variation of the decoding performance over
an ensemble of LDPC codes is shown. Thus DE is not
an appropriate tool for the design of short LDPC codes.
That is the reason for Hu, Eleftheriou and Arnold
to consider the Downhill-Simplex (DHS) optimization
for the design of short LDPC codes in [1].

III. DOWNHILL-SIMPLEX OPTIMIZATION

The downhill-simplex (DHS) optimization is a di-
rect search method that involves direct evaluations of
the function itself instead of derivations of the func-
tion. It is also called Nelder-Mead algorithm, named

by the authors that first introduced the optimization
method for multidimensional unconstrained nonlinear
problems in [12]. It is based on a simplex

S = {v1,v2, ...,vN ,vN+1} (2)

consisting of N + 1 vertices when optimizing a min-
imization problem in a N− dimensional space RN .
During the optimization process the vertices are con-
stantly sorted according to their function evaluations
so that

f(v1) ≤ f(v2) ≤ · · · ≤ f(vN ) ≤ f(vN+1). (3)

v1 is called the best vertex and vN+1 the worst vertex.
While the iterative algorithm operates, it always tries
to replace the worst vertex by a better one. The first
step when searching for a better vertex is the reflection
operation. The worst vertex is thereby reflected on the
centroid of the simplex, which is computed without
considering the worst vertex according to

v̄′ =
1

N

N∑
i=1

vi. (4)

The reflection is then computed as follows.
REFLECTION:

vr = v̄′ + α(v̄′ − vN+1) (5)

where α is usually set to α = 1. Depending on the
function evaluation f(vr) of the reflected vertex vr

one of the following operations is processed. The usual
settings of the parameters can be seen in the brackets
to the right of the equations respectively.
EXPANSION

ve = v̄′ + γ(v̄′ − vN+1); (γ = 2) (6)

OUTWARDCONTRACTION

voc = v̄′ + β(v̄′ − vN+1); (β = 2) (7)

INWARDCONTRACTION

vic = vN+1 + β(v̄′ − vN+1); (β = 0.5) (8)

REDUCTION

vinew = v1 + σ(vi − v1) ∀i \ 1; (σ = 0.5) (9)

The whole downhill-simplex algorithm can be seen
in algorithm 1. The while loop is processed until a
predefined termination criterion is fulfilled. As in the
case of creating an initial simplex there are different
possibilities to set up a termination criterion. A valid
criterion would for example be a specific value rt for
the average distance rav of the vertices to the centroid
of the simplex v̄. It is computed as follows.

rav =
1

N + 1

N+1∑
i=1

√√√√ N∑
j=1

(vi,j − v̄j)2 (10)

28

BUPT



vi,j denotes the value of the vertex vi in the j−th
dimension. The centroid v̄ of the simplex is computed
according to

v̄ =
1

N + 1

N+1∑
i=1

vi. (11)

Algorithm 1 Downhill-Simplex algorithm
1: Sinitial = {v1,v2, ...,vN ,vN+1} . create initial

simplex
2: while (Termination criteria is not fulfilled) do
3: SORT VERTICES;
4: COMPUTE REFLECTION;

. f(vr) in between worst and 2.worst
5: if f(vN ) < f(vr) < f(vN+1) then
6: COMPUTE OUTWARDCONTRACTION;
7: if f(voc) < f(vr) then
8: vN+1 ← voc

9: else
10: PERFORM REDUCTION;
11: end if

. f(vr) worse than worst or equal
12: else if f(vN+1) ≤ f(vr) then
13: COMPUTE INWARDCONTRACTION;
14: if f(vic) < f(vN+1) then
15: vN+1 ← vic

16: else
17: PERFORM REDUCTION;
18: end if

. f(vr) better than best or equal
19: else if f(vr ≤ f(v1) then
20: COMPUTE EXPANSION;
21: if f(ve) < f(vr) then
22: vN+1 ← ve

23: else
24: vN+1 ← vr

25: end if
. f(vr) in between best and 2.worst

26: else if f(v1) < f(vr) ≤ f(vN ) then
27: vN+1 ← vr

28: end if
29: end while

IV. DHS OPTIMIZATION OF THE SNDD

To adapt the polynomial description of the symbol-
node degree-distribution (SNDD) from equation (1) to
the downhill-simplex (DHS)-optimization environment
we use xdj in equation (12) with d1 being the lowest
degree which is set to d1 = 2. Thus the maximum
value for dj in equation (12) is dmax = dmax

s − 1
which is the dimension N = dmax of the problem.

N∑
j=1

Λjx
dj (12)

A. Constraints

The SNDD-optimization problem requires a con-
strained optimization-algorithm since

N∑
j=1

Λj = 1. (13)

As in [1] we compute the N−th parameter by

ΛN = 1−
N−1∑
j=1

Λj . (14)

Thus we have the following two inequality constraints.

CONSTRAINT1

0 < Λj < 1 ∀j \N (15)

CONSTRAINT2

0 <
N−1∑
j=1

Λj < 1 (16)

When optimizing the SNDD based on the DHS
algorithm (Algorithm 1) the simplex S in equation
(2) becomes S = {Λ1,Λ2, ...,ΛN ,ΛN+1}. So each
vertex Λi consists of N values {Λi,j}Nj=1 referring
to the fractions of symbol-nodes having dj adjacent
edges.

In contrast to the authors in [1], that used a reduced
version of the DHS algorithm, we established the
complete algorithm and adapted it in order to meet
the two constraints of equations (15) and (16). Every
time a new vertex is computed the first constraint of
equation (15) is respected by use of the procedure in
Algorithm 2 (as in [1]).

Algorithm 2 Ensure 1.constraint
1: procedure ENSURECONSTRAINT1(Λj)
2: while Λj ≥ 1 do
3: Λj = Λj − δ . δ = e−5

4: end while
5: return Λj

6: end procedure

The procedure in algorithm 3 ensures to respect the
second constraint of equation (16).

Algorithm 3 Ensure 2.constraint
1: procedure ENSURECONSTRAINT2(Λa,Λb)
2: while

∑N−1
j=1 Λa,j ≥ 1 do

3: Λanew = Λa+Λb

2
4: for all j \N do
5: ENSURECONSTRAINT1(Λj)
6: end for
7: end while
8: return Λanew

9: end procedure
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Depending on the currently processed operation the
following assignments are done to the pair of vertices
(Λa,Λb):

(Λa,Λb) =



(Λr, Λ̄
′) for REFLECTION

(Λe, Λ̄
′) for EXPANSION

(Λoc, Λ̄
′) for OUTWARDCONTRACTION

(Λic,ΛN+1) for INWARDCONTRACTION

(Λinew
,Λ1) for REDUCTION

(17)

B. Function evaluations

Each time the simplex changes the vertices are
sorted according to equation (3). This is done based on
the function evaluations for each of the vertices. In the
context of SNDD-optimization the function-evaluation
is represented by the computation of the Word-Error-
Rate (WER). Based on the SNDD of a vertex a Parity-
Check-Matrix (PCM) is created, which is done us-
ing the Progressive-Edge-Growth algorithm from [1].
Then a simulation of the resulting LDPC code follows.
We use the Min-Sum-decoder [5](an approximation of
the common Belief-Propagation algorithm [2]) to de-
code 104 codewords. Each of the binary codewords is
affected by a Binary-Input Additive-White-Gaussian-
Noise Channel (BI-AWGNC). Thereby white gaussian
noise is added to each bit of the codeword depending
on a Eb

N0
-value, which is the SNR per bit and was

chosen as in [1]. The WER is then computed by
dividing the number of false decoded codewords by
the total number of codewords.

C. Optimization process

Unfortunately the minimum to which the DHS-
algorithm converges is not necessarily a global mini-
mum. We used the process explained in Algorithm 4
to increase the probability of convergence to the global
minimum.

Algorithm 4 Optimization process
1: k = 1
2: while k < 10 do . 9 repetitions
3: create initial simplex;
4: apply constrained DHS-algorithm;
5: store Λk

best;
6: k = k + 1;
7: end while
8: create initial simplex and integrate
{Λ1

best, ...,Λ
9
best};

9: apply constrained DHS-algorithm;
10: return Λbest

The optimization process showed in Algorithm 4
consists of 10 repetitions of the constrained DHS-
algorithm. This means that an initial simplex is created
for 10 times.

D. Initializing simplex

For the first round of the optimization process (Al-
gorithm 4) the ith vertex Λi = {Λi,1, ...,Λi,N} of the
simplex S = {Λ1,Λ2, ...,ΛN ,ΛN+1} is initialized as
follows:

Λi,j =


0.5− 1

N

N−1 ,∀i \N, ∀j \ i
0.5 + 1

N , j = i

random[0, rmax] , i = N + 1

(18)

with

rmax =

{
1−

∑j−1
l=1 Λi,l ,∀l \ 1

1 , l = 1
(19)

So for the first N vertices all values are exactely the
same except for one degree respectively (when j = i)
to which a bigger value is assigned. For the last of the
N + 1 vertices all values are created randomly under
the restriction of the contraints in equation (15) and
(16).

The initializations of the next 8 start-simplezes are
done based on the following assignment:

Λi,j ← random[0, rmax] (20)

The initializing simplex of the last round is then
created by integrating the best simplezes obtained
from all previous optimization rounds. The remaining
vertices are constructed according to equation (20). At
the end of the optimization process the very best vertex
is returned.

V. RESULTS

Based on the optimization process explained in sec-
tion IV we designed a SNDD for a rate 1

2 LDPC code
of length n = 504. The maximum degree was thereby
set to dmax

s = 15. By use of a following simulation
of the resulting LDPC code, the Bit-Error-Ratio (BER)
as well as the Word-Error-Ratio (WER) was computed
for several Eb

N0
-values. The simulation was done based

on the All-Zero-Codeword (all bits set to zero), an BI-
AWGN channel and the MS-decoder [5]. We thereby
ensured that for each computation at least 200 bit-
errors occurred. The results can be seen in Figure 2 and
Figure 3 for several numbers of processed decoding
iterations. For comparison purposes the results of a
simulation based on the SNDD of [1] are depicted as
well.

It is well seen that if a number of decoding-iterations
i > 50 is processed, the performance of our LDPC
code beats the one from [1] for nearly all Eb

N0
-values

with up to 0.25dB for the BER and up to 0.35dB
for the WER results. Furthermore it is important to
mention that compared to 2(N − 1) vertices used in
[1], we reduced the number of vertices to N + 1 and
thus decreased the computation time for one round of
the DHS-algorithm.
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Fig. 2. Two BER-simulations of a irregular 1
2

-rate LDPC code of
length n = 504. One PCM was constructed based on a SNDD
designed by Hu et. al. [1] and the second PCM based on a
SNDD designed by our constrained DHS-optimization procedure
(Algorithm 4)
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Fig. 3. Two WER-simulations of a irregular 1
2

-rate LDPC code of
length n = 504. One PCM was constructed based on a SNDD
designed by Hu et. al. [1] and the second PCM based on a
SNDD designed by our constrained DHS-optimization procedure
(Algorithm 4)

VI. CONCLUSION

The downhill-simplex (DHS) optimization algo-
rithm has been adapted for the design of irregular
LDPC codes. In contrast to [1], where the authors
used a simple method of the DHS algorithm, we
applied the DHS algorithm including all available
operations, which are: reflection, expansion, outward
contraction, inward contraction and reduction. As in
[1] we considered the underlying constraints when
optimizing the SNDD of a LDPC code. In addition
we processed several optimization rounds based on
differently initialized simplezes in order to prevent
from converging to a local minimum. The results show
a slight improvement of ∼ 0.25dB for the BER and
∼ 0.35dB for the WER compared to the results based
on the simplified method presented in [1]. In the future
we want to use our constrained DHS-method to design

short LDPC codes for a Markov-Modulated Gaussian
Channel (MMGC).
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