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Abstract – In this paper a comparison of the processing 
speed of the disparity map computation using a CPU, a 
GPU and an FPGA is presented. First the straight-
forward implementations of the block matching 
algorithm for the CPU and GPU are presented, followed 
by the newly developed architecture for FPGA 
implementation. The GPU used in this paper is an 
Nvidia Tesla C1060, programmed using the Nvidia 
CUDA API. The sum of absolute differences (SAD) has 
been chosen to compute the matching cost for the block 
matching algorithm, because of its simplicity, which 
facilitates a hardware implementation and makes the 
algorithm suitable for use in applications where a high 
frame rate is required. The last part of the paper 
presents a comparison between the processing speeds of 
the three considered devices. 

Keywords — high speed disparity computation, SAD 
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I. INTRODUCTION 

Stereo vision has become a very important field of 
image processing because of the great benefit it offers 
by facilitating the computation of the 3D location of 
objects from the scene using a pair of images. The 
depth information can be useful for object grasping in 
applications like service robotics [1][2], collision 
avoidance for autonomous robots [3] or object 
detection in driving assistance systems [4][5][6]. The 
depth information is computed using correspondence 
points from the two images. 
The focus in this paper is on the block matching 
method, using the sum of absolute differences (SAD) 
as a matching cost function. Since the implementation 
for a CPU is not fast enough for applications where a 
high frame rate is required, the acceleration using a 
GPU was investigated, as well as the possibility of 
implementing the algorithm using an FPGA. The used 
GPU was an Nvidia Tesla C1060, programmed using 
the Nvidia CUDA API [11]. 
A various set of images has been tested, with the main 
focus on images of street scenes having a resolution 
of 1280x480 pixels and a pixel depth of 8 bit. The 
stereo camera used to capture these images has a 

baseline of 456 mm, a focal length of 11mm and 
square pixels with a width of 12 μm. 
The paper is organized as follows: section II describes 
the disparity map computation, in section III the CPU, 
GPU and FPGA implementations are described, 
section IV shows a comparison in the execution time 
for the three devices and section V presents the 
conclusions and future work. 

II. DISPARITY MAP COMPUTATION 

For a general stereo camera setup the correspondent 
point in the right image for an image point in the left 
image lies along the correspondent epipolar line [7]. If 
the optical axes of the two cameras are parallel, the 
epipolar lines will be parallel to the horizon, therefore 
simplifying the process of finding the correspondence 
point. In this case, the searching process takes place 
along one image line and consists in finding a pixel 
having the closest intensity value to the intensity of 
the reference pixel. Even though this simplifies the 
process, uncertainties can appear if more pixels on the 
same line in the right image have the same intensity 
value.  
In order to overcome this problem, area based 
methods like block matching [8] have been 
developed. The idea behind them is to use the pixel 
neighbourhood for finding the correspondence pixel, 
therefore minimizing the probability of a wrong 
match through the fact that a certain number of 
neighbouring pixels is less likely to match more 
regions in the correspondence image. The only 
problem appears for uniformly textured objects, for 
which the correspondence is still ambiguous. 
 

 
Left Image Right Image 

Fig. 1 Example showing the advantage of an area based method 
compared to pixel matching 
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Fig. 1 shows an example of an image pair for which 
the disparity map should be computed. The current 
pixel is the central pixel in the left image, which 
should be matched with a pixel in the right image. 
The images are considered to be rectified, so the 
correspondence pixel is on the same line in the right 
image. There are two pixels in the right image having 
the same intensity value. This ambiguity can be 
solved if neighbouring pixels are also used. If the 3x3 
window around the considered pixel is used, the 
corresponding region can be uniquely identified in the 
right image. 
The presented example raises the question of how big 
the window size of neighbouring pixels should be. If 
the window is small, like 3x3 or 5x5, it is possible 
that the ambiguity problem cannot be reliably solved 
and that the resulting disparity map contains much 
noise. If the window is big, like 19x19 or 21x21, there 
will be less noise, but the time needed to process the 
whole image would be much bigger and small objects 
might be completely dropped. This means that the 
choice of window size is application and image 
resolution dependent. 
In order to illustrate the difference in resulting 
disparity maps for different window sizes, Fig. 2 
shows the disparity map computed for a 5x5 window 
and Fig. 3 shows the result for a 19x19 window. In 
both cases the original image pair has a resolution of 
1280x480 pixels and the maximum disparity is 64. 
It can be noticed that both images have a black frame 
that is wider in the left side. This is the result of using 
windows for matching and therefore the first and last 
pixels in each row and column do not have enough 
neighbours to form a complete window and are 
dropped. The big number of missing pixels on the left 
side is caused by the used maximum disparity, since 
all reference pixels must have the same number of 
correspondence pixels to be checked. 
Certain reliability tests can be performed in order to 
analyze if the match is reliable. One way is to use a 
threshold  to  exclude  pixels  for which the match was 
 

 
Fig. 2 Disparity map computed for a 5x5 window 

 

 
Fig. 3 Disparity map computed for a 19x19 window 

 

not good enough. Another way is to perform a left to 
right and right to left match to detect occluded regions 
that might cause noise on the resulting image. This 
operation consists in computing the disparity map first 
with respect to the left image then with respect to the 
right image and eliminating pixels from the resulting 
image for which the left to right and right to left 
disparity is not the same. 
In order to accelerate the computation, a priori 
information can be used. If the optical axes of the 
cameras are parallel, an object will always appear in 
the right image shifted to the left, compared to its 
location in the left image. 
In Fig. 4 it can be seen that the two objects in the right 
image appear shifted to the left compared to the left 
image. This information can be used to reduce the 
searching area to pixels located to the left of the 
location of the reference pixel. 
It can also be seen that the cylinder shifted more than 
the cube, which means that it is closer to the camera. 
The disparity is a measure that shows how much an 
object appears shifted in the right image compared to 
the left image. The following formula illustrates this, 
in which d is the disparity and XL and XR represent the 
coordinates of the pixel on the x axis in the left and 
right image. 

                         LR XXd     (1) 
 

The distance from the camera to an object’s plane is 
inversely proportional with the object’s disparity. The 
relationship between the distance and the disparity is: 
 

                            d
fB

D p                  (2) 

 

In this formula, D represents the distance from the 
camera to the object plane, B is the stereo camera base 
line, fp is the focal length of the camera and d is the 
object’s disparity. The focal length has to be 
converted to pixels using the following formula: 
 

                          s

i
p W

fW
f     (3) 

 

In this case, fp is the resulting focal length in pixels, f 
is the focal length in mm, Wi is the image width in 
pixels and Ws is the sensor width in mm. 
 

 
Left Image Right Image 

Fig. 4 Example of image pair taken using cameras with parallel 
optical axes 
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Fig. 5 Distance calculation from disparity values 

 

The plot shown in Fig. 5 has been computed using the 
values for base line and focal length that have been 
presented in the introduction. For small disparity 
values, if for example the disparity value changes 
with one pixel, the change in distance is very 
significant. The conclusion at this point is that the 
used camera system gives reliable distance 
information, within the acceptable tolerance of 5%, 
only for distances up to 20m. Since objects closer than 
6.5m are not interesting for this application, the 
maximum computed disparity is 64. 
In conclusion for the particular application presented 
in this paper, the window size for the block matching 
should be around 19x19 and the maximum disparity 
64. Also the minimum required disparity is 20, so the 
total number of disparity levels to be computed is 44. 

III. IMPLEMENTATION 

In this section the implementation of the block 
matching algorithm using SAD as the matching cost 
will be presented. First the pseudocode of the 
algorithm will be shown, followed by the straight-
forward CPU implementation, and then the GPU and 
FPGA implementations will be briefly described. 
The pseudocode for the block matching algorithm is 
simple and easy to understand. Basically for each 
pixel in the left image, the corresponding pixel in the 
right image must be found, using the sum of absolute 
differences as a matching cost. 
The idea is to iterate through each pixel in the image, 
compute the sum of absolute values (SAD) for the 
entire window having the considered pixel in the 
centre. The window in the right image is then shifted 
one pixel to the left and the SAD value is computed 
again. This operation is repeated until all disparity 
levels have been analyzed. The resulting disparity 
value is obtained for the disparity level that generated 
the minimum SAD value. 
The pseudocode for this algorithm can be seen below. 
 
FOR Y = MIN_Y to MAX_Y  
    FOR X = MIN_X to MAX_X 

        IDX = Y * IMG_WIDTH + X 

        MIN_SAD = MAXINT 

        DISP = 0 

        FOR D = MIN_D to MAX_D 

            XL = X 

            XR = X - D 

            CURR_SAD = computeSAD (XL, XR, Y) 

            IF CURR_SAD < MIN_SAD 

               MIN_SAD = CURR_SAD 

               DISP = D 

            END IF 
        END FOR 

        DISP_IMG (IDX) = D 
    END FOR 

END FOR 

 
The X and Y limits are obtained by taking into 
consideration only the pixels that have all required 
neighbours, considering the maximum disparity and 
the size of the SAD window: 
 
MIN_X = MAX_DISP + SAD_SIZE/2 – 1 

MAX_X = IMG_WIDTH - SAD_SIZE/2 – 1  (4) 
MIN_Y = SAD_SIZE/2 

MAX_Y = IMG_HEIGHT - SAD_SIZE/2 – 1 

 

The minimum and maximum disparities are obtained 
from the application requirements. In the considered 
application MIN_D = 20 and MAX_D = 64. 
The computeSAD function computes the sum of 
absolute differences for a window in the left and a 
window in the right image. It takes as an input the 
location of the pixels to be matched, which are in the 
centre of the window to be matched. These pixels are 
on the same y coordinate in the case of rectified 
images taken with cameras having parallel optical 
axes and therefore only one y coordinate needs to be 
passed. XR is the location of the considered pixel in 
the right image and is computed by subtracting the 
currently analyzed disparity from the x coordinate of 
XL, which is the x coordinate of the reference pixel 
from the left image. 

CPU 

The straight-forward CPU implementation using a 
single thread is easy to deduce from the pseudocode 
and will not be described in detail. If more than one 
thread is used, the image must be divided, so that each 
thread operates on a different region of the image, 
therefore finishing the task faster. This division does 
not necessarily mean copying parts of the image into 
different memory locations, since this would create 
additional overhead. The same result can be obtained 
by using more pointers on the same memory location, 
one for each thread. Although more threads run in 
parallel would finish the operations much faster, the 
memory access can easily become a bottleneck of the 
application if all threads access the same memory 
location. However, the straight-forward CPU 
implementation is easy to do and is a good way to get 
acquainted with the disparity map computation. 

GPU 

In this section a straight-forward GPU implementation 
using the Nvidia CUDA API will be briefly described. 
The resulting code has been run on an Nvidia Tesla 
C1060 device. 
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The big difference between CPU and GPU 
programming is the number of cores. A regular CPU 
has 2-4 cores and a good CPU has up to 16 cores, 
while the Nvidia Tesla C1060 GPU has 30 
multiprocessors (MP) of 8 cores each, summing up to 
240 scalar processor cores (SP) [12].  
The software architecture consists of threads, which 
are grouped into blocks. One block can contain a 
maximum of 512 threads and will be executed on one 
MP. A warp, consisting of 32 threads, will be 
physically executed in 4 clock cycles in the MP and a 
scheduler switches between warps. The warp is the 
smallest possible execution unit in CUDA. The 
maximum total number of threads is 65536. The only 
constraint is that at the same time all threads will 
execute the same operation according to the Single 
Instruction, Multiple Data (SIMD) principle [10]. 
Also, all threads in one block have access to the same 
shared MP memory, which has a higher bandwidth 
compared to the bandwidth of the global memory and 
can be used to accelerate the computation.  
In conclusion, the algorithm must be parallelized in 
order to efficiently run on a GPU. The simplest way 
of doing this is to let each thread process only a few 
pixels. The current application has images of 
1280x480 pixels with a pixel depth of 8 bit. The 
considered maximum disparity is 64 and the window 
size 19, which means that the effective size of the 
image that has to be processed, according to the 
relations (4) is 1199x461. A warp consists of 32 
threads, so the total number of threads in a block must 
be a multiple of 32 and not exceed 512. The 
maximum total number of threads is 65536, so there 
can be a maximum of 128 blocks if each block has 
512 threads. The straight-forward implementation 
uses 128 blocks of 480 threads each. Since 461<480, 
an entire image column can be processed by a block at 
a time. Since there are 128 blocks and the image is 
1199 pixels wide, each block should process a total of 
10 image columns. 
 
IDXB = BLOCK_IDX 

IDXT = THREAD_IDX 

TB = TOTAL_BLOCKS 

Y = IDXT 

FOR C = 1 to 10 

    X = IDXB * TB + C 

    IDX = Y * IMG_WIDTH + X 

    MIN_SAD = MAXINT 

    DISP = 0 

    FOR D = MIN_D to MAX_D 

        XL = X 

        XR = X – D 

        CURR_SAD = computeSAD (XL, XR, Y)    

        IF CURR_SAD < MIN_SAD 

           MIN_SAD = CURR_SAD 

           DISP = D 

        END IF 
   END FOR 
   DISP_IMG (IDX) = D 
END FOR 

 

In the presented pseudocode, the changes with respect 
to the CPU version are presented in bold. 
BLOCK_IDX, THREAD_IDX and TOTAL_BLOCKS 
are values delivered by the CUDA API. It can be 
seen that the for loops have been replaced by block 
and thread indexes, which indicate which thread of 
which block is currently accessing the function. The 
only remaining loop is the column loop which goes 
from 1 to 10 for the considered images. A remark has 
to be made here. Considering the fact that there are 
1280x480 operations, from which only 1199x461 are 
valid, in the computeSAD function it must be checked 
if the current pixel is inside the valid domain. 
It can be seen that the pseudocode for the GPU 
implementation is not very different from the 
pseudocode for the CPU implementation, but the way 
of thinking as well as the underlying hardware are 
completely different. 

FPGA 

This section presents a straight-forward FPGA 
implementation, which differs considerably from the 
implementations presented so far. This is because the 
FPGA is highly parallel and is not a processing unit, 
but rather a collection of configurable components. 
Through this high parallelism, high processing speeds 
can be achieved for specialized operations. In this 
paper, a Xilinx Spartan 3A DSP 1800 FPGA [13] has 
been used for implementation, because it is a 
relatively low cost development board that still offers 
a lot of resources and also includes a VGA output for 
displaying the results on a monitor. 
The FPGA implementation has been done for images 
of 128x128 pixels with a pixel depth of 8 bit, a 
maximum disparity of 16 and a SAD window size of 
7x7. 
Fig. 6 shows an overall view of the FPGA 
implementation of a SAD block. The left and right 
images are stored in dual port ROM memories for the 
developed offline application in order to display them 
on the screen at the same time as the disparity map is 
computed. These memories however can be easily 
replaced by buffers in which the pixels coming from 
the  camera  can  be  stored  for the online application,  
 

 
Fig. 6 Global view of the FPGA implementation 
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because at the end only the disparity map is needed 
and the original images don’t have to be displayed 
using the FPGA’s VGA port. 
While in the case of a CPU as well as for the GPU the 
reading from memory is self-evident and does not 
have to be explained, for the FPGA implementation 
this plays an important role and must be explained. 
The image rows are read from the left and right 
images into First-In-First-Out (FIFO) buffers. This is 
done in order to speed up the access to the pixels from 
the next SAD window, because the external memory 
access is very slow compared to the memory located 
in the FPGA chip. 
The output of the FIFO set is shifted into registers in 
order to allow access to all 49 values at the same time. 
After the FIFO set is full, 7 clocks later the registers 
will contain the data needed to compute the first SAD 
window. From that moment, for each clock cycle the 
right FIFO will shift to the right, moving a new 
window column into the register, instead of re-reading 
the whole window from memory. This operation 
continues until the maximum disparity has been 
reached. At this point the left FIFO shifts one window 
column into the register, while the right FIFO is 
reloaded. 
The 49 absolute differences are computed in parallel 
and then summed in a pipeline manner, so that after 
the initial latency, the result of a SAD window is 
obtained every clock cycle. 
The minimum block checks if the currently computed 
SAD value is the minimal value so far for the given 
reference window in the left image. If yes, the new 
value is saved together with the offset that represents 
the actual disparity. At the end of a complete cycle, 
the index reaches the maximum disparity and the 
disparity block will contain the disparity value for the 
current reference pixel. This value will be copied to 
the disparity image, which is stored in a dual port 
RAM. The dual port has the same purpose as in the 
case of the ROM: allowing the image to be displayed 
on the monitor while it is computed. 
The presented structure occupies 1823 slices on the 
Spartan 3A board. Since the board has 16000 slices, it 
is possible to use 8 such structures in parallel in order 
to speed up the process. The final architecture can be 
seen in Fig. 7.  
 

 
Fig. 7 Global view of the FPGA implementation 

There are 8 SAD blocks that can process 8 image 
lines   in   parallel,   which   means   that   the   overall 
processing will be 8 times faster. However the 
performance of the algorithm can be improved if it is 
implemented on a board with more resources, since 
the number of SAD blocks only depends on the FPGA 
resources. 
If many blocks are used, the memory can become a 
bottleneck. This can be solved by simultaneously 
writing the same information in different memory 
blocks and only a limited number of SAD blocks read 
the information from one memory block. 
The used Xilinx FPGA has a 25.175 MHz clock that 
must be used if the VGA output is used to display the 
images and a 125 MHz clock that can be used if the 
images don’t have to be displayed using the on-board 
VGA output. 

IV. PROCESSING SPEED COMPARISON 

In this section the comparison in processing speed 
between the CPU and GPU and between the CPU and 
the FPGA will be presented. The comparison between 
CPU and GPU has been done using 1280x480 images 
with a pixel depth of 8 bit and the images used to 
compare the CPU and the FPGA have a resolution of 
128x128 and an 8 bit pixel depth. Since the 
processing time is long, only one frame has been 
processed for the CPU and 10 frames for the GPU. 
The mean processing time was then computed for the 
10 frames. The values for the FPGA were obtained by 
counting the clock cycles required to complete the 
operation and dividing the value by the frequency of 
the used clock. The number of clocks required was 
obtained using Model SIM. The algorithm 
implemented for the CPU runs on a single core on a 
CPU at 2.6 GHz, the GPU algorithm runs on the 240 
cores of the Tesla C1060 at 1.3 GHz and the FPGA 
implementation runs either using the 25.175 MHz 
VGA clock or the 125 MHz system clock. 
Fig. 8 shows the processing time required by the CPU 
to compute a disparity map for a pair of input images, 
while Fig. 9 shows the processing time required by 
the GPU to produce the same result. The legend 
shows the computed disparity levels followed by the 
considered SAD window size. 
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Fig. 8 Processing time using the CPU 
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Fig. 9 Processing time using the GPU 

 
It can be seen that the processing time increases with 
the chosen SAD window size. If only 44 depth levels 
are processed, as explained at the end of section II, the 
required time to compute the disparity map is shorter 
with 30% for the CPU and 20% for GPU. Overall, the 
computation on the GPU finishes 300-400 times faster 
than on the CPU, which makes the GPU 
implementation useful if speed is important, but the 
high cost of the Nvidia Tesla C1060 might not be 
optimal for a low-cost system, especially if a PC is 
not already part of the system. 
Fig. 10 shows the comparison between the achieved 
frame rate using the CPU and the FPGA 
implementation. The maximum considered disparity 
was 16 and the SAD window was of 7x7. It can be 
seen that the FPGA completes the computation much 
faster than the CPU, therefore being a good solution 
for a low-cost compact system, without even requiring 
a PC. 
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Fig. 10 Processing speed comparison between CPU and FPGA 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper a computation speed comparison 
between straight-forward implementations of the 
block matching disparity map computation using the 
sum of absolute differences (SAD) as the matching 
cost for CPU, GPU and FPGA is presented. For the 
CPU and GPU implementations the pseudocode is 
given that explains the algorithm and the parallel 

processing ability of the GPU. The FPGA 
implementation is described in detail, including the 
possibility of improving the computation speed by 
using an FPGA with more resources. 
For all three implementations all the differences and 
sums are computed for each block that has to be 
matched, even for the FPGA, where the memory 
access has been optimized by using FIFO buffers. A 
way of speeding up the computation is to reduce the 
number of differences and sums computed for every 
block by reusing some of the values that have been 
computed for previous blocks. Besides this, the 
memory tends to become a bottleneck in all three 
cases. In the case of the CPU, processor registers can 
be used to store intermediate results for speeding up 
the process, while in the case of the GPU shared 
memory, as well as registers can be used for this 
purpose. The improvements for the FPGA might 
include a better usage of the data from the FIFO sets 
and also a reuse of values that have already been read 
from memory.  
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