
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 55(69), Fascicola 2, 2010

Disparity Map Computation Speed Comparison
for CPU, GPU and FPGA Implementations

Adrian Leu1, Dan Bacără2, Ioan Jiveţ3

1 Institute of Automation, University of Bremen, e-mail: aleu@iat.uni-bremen.de
2 Facultatea de Electronică şi Telecomunicaţii, Departamentul Electronică Aplicată, e-mail: dan.bacara@gmail.com
3 Facultatea de Electronică şi Telecomunicaţii, Departamentul Comunicaţii, e-mail: joan.jivet@etc.upt.ro

Abstract – In this paper a comparison of the processing
speed of the disparity map computation using a CPU, a
GPU and an FPGA is presented. First the straight-
forward implementations of the block matching
algorithm for the CPU and GPU are presented, followed
by the newly developed architecture for FPGA
implementation. The GPU used in this paper is an
Nvidia Tesla C1060, programmed using the Nvidia
CUDA API. The sum of absolute differences (SAD) has
been chosen to compute the matching cost for the block
matching algorithm, because of its simplicity, which
facilitates a hardware implementation and makes the
algorithm suitable for use in applications where a high
frame rate is required. The last part of the paper
presents a comparison between the processing speeds of
the three considered devices.

Keywords — high speed disparity computation, SAD
block matching algorithm, Tesla GPU, CUDA, FPGA
implementation

I. INTRODUCTION

Stereo vision has become a very important field of
image processing because of the great benefit it offers
by facilitating the computation of the 3D location of
objects from the scene using a pair of images. The
depth information can be useful for object grasping in
applications like service robotics [1][2], collision
avoidance for autonomous robots [3] or object
detection in driving assistance systems [4][5][6]. The
depth information is computed using correspondence
points from the two images.
The focus in this paper is on the block matching
method, using the sum of absolute differences (SAD)
as a matching cost function. Since the implementation
for a CPU is not fast enough for applications where a
high frame rate is required, the acceleration using a
GPU was investigated, as well as the possibility of
implementing the algorithm using an FPGA. The used
GPU was an Nvidia Tesla C1060, programmed using
the Nvidia CUDA API [11].
A various set of images has been tested, with the main
focus on images of street scenes having a resolution
of 1280x480 pixels and a pixel depth of 8 bit. The
stereo camera used to capture these images has a

baseline of 456 mm, a focal length of 11mm and
square pixels with a width of 12 μm.
The paper is organized as follows: section II describes
the disparity map computation, in section III the CPU,
GPU and FPGA implementations are described,
section IV shows a comparison in the execution time
for the three devices and section V presents the
conclusions and future work.

II. DISPARITY MAP COMPUTATION

For a general stereo camera setup the correspondent
point in the right image for an image point in the left
image lies along the correspondent epipolar line [7]. If
the optical axes of the two cameras are parallel, the
epipolar lines will be parallel to the horizon, therefore
simplifying the process of finding the correspondence
point. In this case, the searching process takes place
along one image line and consists in finding a pixel
having the closest intensity value to the intensity of
the reference pixel. Even though this simplifies the
process, uncertainties can appear if more pixels on the
same line in the right image have the same intensity
value.
In order to overcome this problem, area based
methods like block matching [8] have been
developed. The idea behind them is to use the pixel
neighbourhood for finding the correspondence pixel,
therefore minimizing the probability of a wrong
match through the fact that a certain number of
neighbouring pixels is less likely to match more
regions in the correspondence image. The only
problem appears for uniformly textured objects, for
which the correspondence is still ambiguous.

Left Image Right Image

Fig. 1 Example showing the advantage of an area based method
compared to pixel matching

25

32

21 45 37

28

26 35 54

25 62

73

25

32

21 45 37

28

2635 54

25 62

73

7

Fig. 1 shows an example of an image pair for which
the disparity map should be computed. The current
pixel is the central pixel in the left image, which
should be matched with a pixel in the right image.
The images are considered to be rectified, so the
correspondence pixel is on the same line in the right
image. There are two pixels in the right image having
the same intensity value. This ambiguity can be
solved if neighbouring pixels are also used. If the 3x3
window around the considered pixel is used, the
corresponding region can be uniquely identified in the
right image.
The presented example raises the question of how big
the window size of neighbouring pixels should be. If
the window is small, like 3x3 or 5x5, it is possible
that the ambiguity problem cannot be reliably solved
and that the resulting disparity map contains much
noise. If the window is big, like 19x19 or 21x21, there
will be less noise, but the time needed to process the
whole image would be much bigger and small objects
might be completely dropped. This means that the
choice of window size is application and image
resolution dependent.
In order to illustrate the difference in resulting
disparity maps for different window sizes, Fig. 2
shows the disparity map computed for a 5x5 window
and Fig. 3 shows the result for a 19x19 window. In
both cases the original image pair has a resolution of
1280x480 pixels and the maximum disparity is 64.
It can be noticed that both images have a black frame
that is wider in the left side. This is the result of using
windows for matching and therefore the first and last
pixels in each row and column do not have enough
neighbours to form a complete window and are
dropped. The big number of missing pixels on the left
side is caused by the used maximum disparity, since
all reference pixels must have the same number of
correspondence pixels to be checked.
Certain reliability tests can be performed in order to
analyze if the match is reliable. One way is to use a
threshold to exclude pixels for which the match was

Fig. 2 Disparity map computed for a 5x5 window

Fig. 3 Disparity map computed for a 19x19 window

not good enough. Another way is to perform a left to
right and right to left match to detect occluded regions
that might cause noise on the resulting image. This
operation consists in computing the disparity map first
with respect to the left image then with respect to the
right image and eliminating pixels from the resulting
image for which the left to right and right to left
disparity is not the same.
In order to accelerate the computation, a priori
information can be used. If the optical axes of the
cameras are parallel, an object will always appear in
the right image shifted to the left, compared to its
location in the left image.
In Fig. 4 it can be seen that the two objects in the right
image appear shifted to the left compared to the left
image. This information can be used to reduce the
searching area to pixels located to the left of the
location of the reference pixel.
It can also be seen that the cylinder shifted more than
the cube, which means that it is closer to the camera.
The disparity is a measure that shows how much an
object appears shifted in the right image compared to
the left image. The following formula illustrates this,
in which d is the disparity and XL and XR represent the
coordinates of the pixel on the x axis in the left and
right image.

 LR XXd (1)

The distance from the camera to an object’s plane is
inversely proportional with the object’s disparity. The
relationship between the distance and the disparity is:

 d
fB

D p (2)

In this formula, D represents the distance from the
camera to the object plane, B is the stereo camera base
line, fp is the focal length of the camera and d is the
object’s disparity. The focal length has to be
converted to pixels using the following formula:

 s

i
p W

fW
f (3)

In this case, fp is the resulting focal length in pixels, f
is the focal length in mm, Wi is the image width in
pixels and Ws is the sensor width in mm.

Left Image Right Image

Fig. 4 Example of image pair taken using cameras with parallel
optical axes

XRCY

XRCU

XLCY

XLCU

8

Distance obtained from Disparity

0

10

20

30

40

50

5 55 105 155 205 255
Disparity (pixel)

D
is

ta
nc

e
(m

)

Fig. 5 Distance calculation from disparity values

The plot shown in Fig. 5 has been computed using the
values for base line and focal length that have been
presented in the introduction. For small disparity
values, if for example the disparity value changes
with one pixel, the change in distance is very
significant. The conclusion at this point is that the
used camera system gives reliable distance
information, within the acceptable tolerance of 5%,
only for distances up to 20m. Since objects closer than
6.5m are not interesting for this application, the
maximum computed disparity is 64.
In conclusion for the particular application presented
in this paper, the window size for the block matching
should be around 19x19 and the maximum disparity
64. Also the minimum required disparity is 20, so the
total number of disparity levels to be computed is 44.

III. IMPLEMENTATION

In this section the implementation of the block
matching algorithm using SAD as the matching cost
will be presented. First the pseudocode of the
algorithm will be shown, followed by the straight-
forward CPU implementation, and then the GPU and
FPGA implementations will be briefly described.
The pseudocode for the block matching algorithm is
simple and easy to understand. Basically for each
pixel in the left image, the corresponding pixel in the
right image must be found, using the sum of absolute
differences as a matching cost.
The idea is to iterate through each pixel in the image,
compute the sum of absolute values (SAD) for the
entire window having the considered pixel in the
centre. The window in the right image is then shifted
one pixel to the left and the SAD value is computed
again. This operation is repeated until all disparity
levels have been analyzed. The resulting disparity
value is obtained for the disparity level that generated
the minimum SAD value.
The pseudocode for this algorithm can be seen below.

FOR Y = MIN_Y to MAX_Y
 FOR X = MIN_X to MAX_X

 IDX = Y * IMG_WIDTH + X

 MIN_SAD = MAXINT

 DISP = 0

 FOR D = MIN_D to MAX_D

 XL = X

 XR = X - D

 CURR_SAD = computeSAD (XL, XR, Y)

 IF CURR_SAD < MIN_SAD

 MIN_SAD = CURR_SAD

 DISP = D

 END IF
 END FOR

 DISP_IMG (IDX) = D
 END FOR

END FOR

The X and Y limits are obtained by taking into
consideration only the pixels that have all required
neighbours, considering the maximum disparity and
the size of the SAD window:

MIN_X = MAX_DISP + SAD_SIZE/2 – 1

MAX_X = IMG_WIDTH - SAD_SIZE/2 – 1 (4)
MIN_Y = SAD_SIZE/2

MAX_Y = IMG_HEIGHT - SAD_SIZE/2 – 1

The minimum and maximum disparities are obtained
from the application requirements. In the considered
application MIN_D = 20 and MAX_D = 64.
The computeSAD function computes the sum of
absolute differences for a window in the left and a
window in the right image. It takes as an input the
location of the pixels to be matched, which are in the
centre of the window to be matched. These pixels are
on the same y coordinate in the case of rectified
images taken with cameras having parallel optical
axes and therefore only one y coordinate needs to be
passed. XR is the location of the considered pixel in
the right image and is computed by subtracting the
currently analyzed disparity from the x coordinate of
XL, which is the x coordinate of the reference pixel
from the left image.

CPU

The straight-forward CPU implementation using a
single thread is easy to deduce from the pseudocode
and will not be described in detail. If more than one
thread is used, the image must be divided, so that each
thread operates on a different region of the image,
therefore finishing the task faster. This division does
not necessarily mean copying parts of the image into
different memory locations, since this would create
additional overhead. The same result can be obtained
by using more pointers on the same memory location,
one for each thread. Although more threads run in
parallel would finish the operations much faster, the
memory access can easily become a bottleneck of the
application if all threads access the same memory
location. However, the straight-forward CPU
implementation is easy to do and is a good way to get
acquainted with the disparity map computation.

GPU

In this section a straight-forward GPU implementation
using the Nvidia CUDA API will be briefly described.
The resulting code has been run on an Nvidia Tesla
C1060 device.

9

The big difference between CPU and GPU
programming is the number of cores. A regular CPU
has 2-4 cores and a good CPU has up to 16 cores,
while the Nvidia Tesla C1060 GPU has 30
multiprocessors (MP) of 8 cores each, summing up to
240 scalar processor cores (SP) [12].
The software architecture consists of threads, which
are grouped into blocks. One block can contain a
maximum of 512 threads and will be executed on one
MP. A warp, consisting of 32 threads, will be
physically executed in 4 clock cycles in the MP and a
scheduler switches between warps. The warp is the
smallest possible execution unit in CUDA. The
maximum total number of threads is 65536. The only
constraint is that at the same time all threads will
execute the same operation according to the Single
Instruction, Multiple Data (SIMD) principle [10].
Also, all threads in one block have access to the same
shared MP memory, which has a higher bandwidth
compared to the bandwidth of the global memory and
can be used to accelerate the computation.
In conclusion, the algorithm must be parallelized in
order to efficiently run on a GPU. The simplest way
of doing this is to let each thread process only a few
pixels. The current application has images of
1280x480 pixels with a pixel depth of 8 bit. The
considered maximum disparity is 64 and the window
size 19, which means that the effective size of the
image that has to be processed, according to the
relations (4) is 1199x461. A warp consists of 32
threads, so the total number of threads in a block must
be a multiple of 32 and not exceed 512. The
maximum total number of threads is 65536, so there
can be a maximum of 128 blocks if each block has
512 threads. The straight-forward implementation
uses 128 blocks of 480 threads each. Since 461<480,
an entire image column can be processed by a block at
a time. Since there are 128 blocks and the image is
1199 pixels wide, each block should process a total of
10 image columns.

IDXB = BLOCK_IDX

IDXT = THREAD_IDX

TB = TOTAL_BLOCKS

Y = IDXT

FOR C = 1 to 10

 X = IDXB * TB + C

 IDX = Y * IMG_WIDTH + X

 MIN_SAD = MAXINT

 DISP = 0

 FOR D = MIN_D to MAX_D

 XL = X

 XR = X – D

 CURR_SAD = computeSAD (XL, XR, Y)

 IF CURR_SAD < MIN_SAD

 MIN_SAD = CURR_SAD

 DISP = D

 END IF
 END FOR
 DISP_IMG (IDX) = D
END FOR

In the presented pseudocode, the changes with respect
to the CPU version are presented in bold.
BLOCK_IDX, THREAD_IDX and TOTAL_BLOCKS
are values delivered by the CUDA API. It can be
seen that the for loops have been replaced by block
and thread indexes, which indicate which thread of
which block is currently accessing the function. The
only remaining loop is the column loop which goes
from 1 to 10 for the considered images. A remark has
to be made here. Considering the fact that there are
1280x480 operations, from which only 1199x461 are
valid, in the computeSAD function it must be checked
if the current pixel is inside the valid domain.
It can be seen that the pseudocode for the GPU
implementation is not very different from the
pseudocode for the CPU implementation, but the way
of thinking as well as the underlying hardware are
completely different.

FPGA

This section presents a straight-forward FPGA
implementation, which differs considerably from the
implementations presented so far. This is because the
FPGA is highly parallel and is not a processing unit,
but rather a collection of configurable components.
Through this high parallelism, high processing speeds
can be achieved for specialized operations. In this
paper, a Xilinx Spartan 3A DSP 1800 FPGA [13] has
been used for implementation, because it is a
relatively low cost development board that still offers
a lot of resources and also includes a VGA output for
displaying the results on a monitor.
The FPGA implementation has been done for images
of 128x128 pixels with a pixel depth of 8 bit, a
maximum disparity of 16 and a SAD window size of
7x7.
Fig. 6 shows an overall view of the FPGA
implementation of a SAD block. The left and right
images are stored in dual port ROM memories for the
developed offline application in order to display them
on the screen at the same time as the disparity map is
computed. These memories however can be easily
replaced by buffers in which the pixels coming from
the camera can be stored for the online application,

Fig. 6 Global view of the FPGA implementation

of one SAD block

LEFT IMAGE

FIFO SET
REGISTER

SET
7x7

ABS.
DIFF.

SUM MINIMUM

DISPARITY

DISPARITY
IMAGE

REGISTER
SET
7x7

FIFO SET

RIGHT IMAGE

L0

L48

R0

R48

. .
 .

. .
 .

. .
 .

AD0

AD48

10

because at the end only the disparity map is needed
and the original images don’t have to be displayed
using the FPGA’s VGA port.
While in the case of a CPU as well as for the GPU the
reading from memory is self-evident and does not
have to be explained, for the FPGA implementation
this plays an important role and must be explained.
The image rows are read from the left and right
images into First-In-First-Out (FIFO) buffers. This is
done in order to speed up the access to the pixels from
the next SAD window, because the external memory
access is very slow compared to the memory located
in the FPGA chip.
The output of the FIFO set is shifted into registers in
order to allow access to all 49 values at the same time.
After the FIFO set is full, 7 clocks later the registers
will contain the data needed to compute the first SAD
window. From that moment, for each clock cycle the
right FIFO will shift to the right, moving a new
window column into the register, instead of re-reading
the whole window from memory. This operation
continues until the maximum disparity has been
reached. At this point the left FIFO shifts one window
column into the register, while the right FIFO is
reloaded.
The 49 absolute differences are computed in parallel
and then summed in a pipeline manner, so that after
the initial latency, the result of a SAD window is
obtained every clock cycle.
The minimum block checks if the currently computed
SAD value is the minimal value so far for the given
reference window in the left image. If yes, the new
value is saved together with the offset that represents
the actual disparity. At the end of a complete cycle,
the index reaches the maximum disparity and the
disparity block will contain the disparity value for the
current reference pixel. This value will be copied to
the disparity image, which is stored in a dual port
RAM. The dual port has the same purpose as in the
case of the ROM: allowing the image to be displayed
on the monitor while it is computed.
The presented structure occupies 1823 slices on the
Spartan 3A board. Since the board has 16000 slices, it
is possible to use 8 such structures in parallel in order
to speed up the process. The final architecture can be
seen in Fig. 7.

Fig. 7 Global view of the FPGA implementation

There are 8 SAD blocks that can process 8 image
lines in parallel, which means that the overall
processing will be 8 times faster. However the
performance of the algorithm can be improved if it is
implemented on a board with more resources, since
the number of SAD blocks only depends on the FPGA
resources.
If many blocks are used, the memory can become a
bottleneck. This can be solved by simultaneously
writing the same information in different memory
blocks and only a limited number of SAD blocks read
the information from one memory block.
The used Xilinx FPGA has a 25.175 MHz clock that
must be used if the VGA output is used to display the
images and a 125 MHz clock that can be used if the
images don’t have to be displayed using the on-board
VGA output.

IV. PROCESSING SPEED COMPARISON

In this section the comparison in processing speed
between the CPU and GPU and between the CPU and
the FPGA will be presented. The comparison between
CPU and GPU has been done using 1280x480 images
with a pixel depth of 8 bit and the images used to
compare the CPU and the FPGA have a resolution of
128x128 and an 8 bit pixel depth. Since the
processing time is long, only one frame has been
processed for the CPU and 10 frames for the GPU.
The mean processing time was then computed for the
10 frames. The values for the FPGA were obtained by
counting the clock cycles required to complete the
operation and dividing the value by the frequency of
the used clock. The number of clocks required was
obtained using Model SIM. The algorithm
implemented for the CPU runs on a single core on a
CPU at 2.6 GHz, the GPU algorithm runs on the 240
cores of the Tesla C1060 at 1.3 GHz and the FPGA
implementation runs either using the 25.175 MHz
VGA clock or the 125 MHz system clock.
Fig. 8 shows the processing time required by the CPU
to compute a disparity map for a pair of input images,
while Fig. 9 shows the processing time required by
the GPU to produce the same result. The legend
shows the computed disparity levels followed by the
considered SAD window size.

0

150

300

450

600

CPU processing time

16 @ 7x7

64 @ 7x7

64 @ 11x11

64 @ 15x15

64 @ 19x19

44 @ 19x19

tim
e(

s)

49
77

183

336

538

372

Fig. 8 Processing time using the CPU

LEFT
IMAGE

SAD
BLOCK

0

DISPARITY
IMAGE

SAD
BLOCK

7

BUFFER

SAD
BLOCK

1

SAD
BLOCK

6

. .
 .

RIGHT
IMAGE

11

0

0,5

1

1,5

2

GPU processing time

16 @ 7x7

64 @ 7x7

64 @ 11x11

64 @ 15x15

64 @ 19x19

44 @ 19x19

tim
e(

s)

0.05
0.21

0.53

1

1.61

1.31

Fig. 9 Processing time using the GPU

It can be seen that the processing time increases with
the chosen SAD window size. If only 44 depth levels
are processed, as explained at the end of section II, the
required time to compute the disparity map is shorter
with 30% for the CPU and 20% for GPU. Overall, the
computation on the GPU finishes 300-400 times faster
than on the CPU, which makes the GPU
implementation useful if speed is important, but the
high cost of the Nvidia Tesla C1060 might not be
optimal for a low-cost system, especially if a PC is
not already part of the system.
Fig. 10 shows the comparison between the achieved
frame rate using the CPU and the FPGA
implementation. The maximum considered disparity
was 16 and the SAD window was of 7x7. It can be
seen that the FPGA completes the computation much
faster than the CPU, therefore being a good solution
for a low-cost compact system, without even requiring
a PC.

1

10

100

1000

CPU vs. FPGA

Fr
am

es
 p

er
 se

co
nd

 (f
ps

)

(25 MHz)
(1xSAD)

12

(125 MHz)
(1xSAD)

60

(25 MHz)
(8xSAD)

96

(125 MHz)
(8xSAD)

480

5

FPGACPU
Fig. 10 Processing speed comparison between CPU and FPGA

V. CONCLUSIONS AND FUTURE WORK

In this paper a computation speed comparison
between straight-forward implementations of the
block matching disparity map computation using the
sum of absolute differences (SAD) as the matching
cost for CPU, GPU and FPGA is presented. For the
CPU and GPU implementations the pseudocode is
given that explains the algorithm and the parallel

processing ability of the GPU. The FPGA
implementation is described in detail, including the
possibility of improving the computation speed by
using an FPGA with more resources.
For all three implementations all the differences and
sums are computed for each block that has to be
matched, even for the FPGA, where the memory
access has been optimized by using FIFO buffers. A
way of speeding up the computation is to reduce the
number of differences and sums computed for every
block by reusing some of the values that have been
computed for previous blocks. Besides this, the
memory tends to become a bottleneck in all three
cases. In the case of the CPU, processor registers can
be used to store intermediate results for speeding up
the process, while in the case of the GPU shared
memory, as well as registers can be used for this
purpose. The improvements for the FPGA might
include a better usage of the data from the FIFO sets
and also a reuse of values that have already been read
from memory.

VI. REFERENCES

[1] Grigorescu S.M., Prenzel O., Gräser A. (2010). Model Driven
Developed Machine Vision System for Service Robotics. 12th
International Conference on Optimization of Electrical and
Electronic Equipment, OPTIM 2010. pp. 877 - 883

[2] Li L., Kohl Y.T., Gel S.S., Huang W. (2004). Stereo-Based
Human Detection For Mobile Service Robots. 8th
International Conference on Control, Automation, Robotics
and Vision Kunming, China. Vol 1. pp. 74 - 79

[3] Saurav K. (2009). Binocular Stereo Vision Based Obstacle
Avoidance Algorithm for Autonomous Mobile Robots. IEEE
International Advance Computing Conference (IACC 2009).
pp. 254 - 259

[4] Talukder A. and Matthies L. (2004). Real-time Detection of
Moving Vehicles using Dense Stereo Objects from Moving
and Optical Flow. Proceedings of 2004 IEEE/RSJ
International Conference on Intelligent Robots and Systems.
pp. 3718-3725

[5] Nedevschi S., Vatavu A., Oniga F., Meinecke M. M. (2008).
Forward Collision Detection using a Stereo Vision System.
International Conference on Intelligent Computer
Communication and Processing, 2008. ICCP 2008. pp. 115 -
122

[6] Nedevschi S., Danescu R., Marita T., Oniga F., Pocol C., Sobol
S., Tomiuc C., Vancea C., Meinecke M. M., Graf T., To T. T.,
Obojski M. A. (2007). A Sensor for Urban Driving Assistance
Systems Based on Dense Stereovision. Proceedings of the
2007 IEEE Intelligent Vehicles Symposium. pp. 276-283

[7] Papadimitriou D. V. and Dennis T. J. (1996). Epipolar Line
Estimation and Rectification for Stereo Image Pairs. IEEE
Transactions On Image Processing 5(4):672-676

[8] Tao T., Koo J. C., Choi H. R. (2008). A Fast Block Matching
Algorthim for Stereo Correspondence. IEEE Conference on
Cybernetics and Intelligent Systems. pp. 38-41

[9] Hadjitheophanous S., Ttofis C., Georghiades A. S., and
Theocharides T. (2010). Towards Hardware Stereoscopic 3D
Reconstruction A Real-Time FPGA Computation of the
Disparity Map. Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 1743 - 1748

[10] Cockshott, W. P., Renfrew, K. (2004). SIMD programming
manual for Linux and Windows, Springer

[11] http://www.nvidia.com/object/cuda_home_new.html
[12] http://www.nvidia.com/object/product_tesla_c1060_us.html
[13] http://www.xilinx.com/products/devkits/HW-SD1800A-DSP-

SB-UNI-G.htm

12

	Fascicola 2_final_2010_corectata_final 10
	Fascicola 2_final_2010_corectata_final 11
	Fascicola 2_final_2010_corectata_final 12
	Fascicola 2_final_2010_corectata_final 13
	Fascicola 2_final_2010_corectata_final 14
	Fascicola 2_final_2010_corectata_final 15

