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Abstract – This application solve analytically and with 
optimization algorithms a function minimization using 
the gradient method. To build a model for a real 
groundwater system it is necessary to solve both the 
forward problem and a so called inverse problem. Two
optimization algorithms methods exist: indirect and 
direct method.  In this paper only the indirect method is 
used to solve actual problems. 
Keywords: Gradient methods, parameter estimation, 
optimization algorithms, inverse problem

I. INTRODUCTION IN FORWARD AND 
INVERSE PROBLEMS IN GROUNDWATER 

STUDIES

To build a model for a real groundwater system it is 
necessary to solve both the forward problem and a so 
called inverse problem. So far we have only been 
dealing with the forward,  i.e. simulation problem.  In 
the forward problem we predict the unknown heads 
by solving either steady-state or transient equations 
assuming that the parameter values, control variables 
and boundary conditions are known.   In the inverse 
problem we have to determine unknown physical 
parameters by fitting the model to observed heads.   
According to Sun (1994), studies on these two 
problems are not in balance.  The study of forward 
problem has developed rapidly but the study of 
inverse problems is still limited to very simple 
models as compared with the complexity of the 
models used for forward simulations.  The book by 
Sun (1994) is the first book on the subject of solving 
the inverse problem in groundwater studies.
The progress of inverse solution techniques is 
blocked by three main difficulties.
First, the inverse problem is often ill-posed, i.e., its 
solution may be non-unique and unstable with respect 
to the observation error.
Second, the quantity and quality of observation data 
are usually insufficient.
Third, the model structure error, which is difficult to 
estimate, often dominates the error.
In two-dimensional groundwater models the key 
parameters to be estimated based on all information 
available are the transmissivity T for confined aquifer 
or hydraulic conductivity K for unconfined aquifer, 
storage coefficient S and recharge R from 
precipitation.  Usually it is not advisable to include R 
as a fitting parameter but to try to estimate R based 
on precipitation, evapotranspiration and surface 

runoff calculations, i.e. calculate the water balance of 
the soil column above the groundwater level
The very complex and difficult problem of deciding 
if the inverse solution exists, if it is unique and stable, 
and if the model is identifiable, are briefly discussed 
here.
A well-posed mathematical problem must satisfy the 
following requirements: Existence, uniqueness and 
stability.  Basically, the existence of an inverse 
solution seems to be no problem at all, since the 
physical reality must be a solution.  However, the 
observation error of the head values cannot be 
avoided and therefore, it is possible that an accurate 
solution of the inverse problem may not exist.  
However, existence is not the major difficulty in the 
solution of inverse problems.  Even if completely 
accurate solution may not exist, it is possible to 
determine the parameters in such a way that the 
square sum between the calculated and observed 
values is minimized.  
Usually the major difficulty is to find unique set of 
parameter values. Different combinations of hydro 
geological conditions may lead to similar 
observations of water level.  In this type of case it is 
impossible to uniquely determine the parameters of 
an aquifer only by observing the hydraulic head 
values, i.e. non-uniqueness of the inverse solution is 
often observed.  This can be formulated in another 
way by noticing that different type of parameter 
combinations may lead to completely same values for 
calculated heads.
An example of the case when no unique solution can 
be obtained. Consider a one-dimensional state-state 
problem in confined aquifer by

d

dx
T x

dH

dx
( )
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With Dirichlecht-type boundary conditions H(x1) = 
H1 and H(x2) =H2.
The necessary condition for the solution of the
inverse problem is that we have measurements of 
H(x) and consequently, we can assume that the 
derivative dH/dx =H’(x) is known. 
Now it is straightforward  to integrate (1) to yield

T x
C

H x
( )

'( )
 (2)

Where C is an arbitrary integration constant.
Therefore, T(x) is not unique, although the head is 
observed at interval (x1,x2). 
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This kind of non-uniqueness cannot be removed by 
increasing the number of observation wells. As a 
general conclusion it can be stated that if Dirichlecht-
type boundary conditions are used in steady-state 
solution all over the aquifer boundaries, it is usually 
not possible to obtain a unique solution to inverse 
problems unless there exist some flux boundaries or 
additional sinks/sources in the aquifer area.   E.g. if 
the left boundary in the previous example is replaced 
by a given flux boundary condition T(dH/dx) at x=x1

is -q, it is possible to obtain a solution

T x
q

H x
( )

'( )



(3)

Which implies that T(x) is now uniquely determined.
Therefore, it is crucial to recognize the influence of 
the boundary conditions on the existence of a unique 
solution to inverse problems.
Usually, it is also possible to obtain a unique solution 
to inverse problems if additional information on the 
parameter values can be supplemented.  In the 
previous example it would imply a measurement of  
transmissivity T(x) at any point between x1 and x2.
Moreover, if dynamic measurements are available, 
i.e. H(x,t) is known, it is possible to have a unique 
solution. Unfortunately, inverse solutions in 
groundwater modeling are often unstable and the 
main reasons for this are the head observation errors.  
This type of solution is said to be ill-posed

II. PARAMETER ESTIMATION BY 
OPTIMIZATION ALGORITHMS

Two main solution methods exist: indirect and direct 
method. In this paper only the indirect method is used 
to solve actual problems
The trial-and-error procedure is the simplest way to 
solve the inverse groundwater problem. In this 
method we need some hydraulic head measurements, 
a model that calculates the forward problem 
(simulation) and a person (e.g. hydro geologist) who 
is familiar with the considered aquifer. The flow 
chart of the trial-and-error procedure is given in Fig. 
1.

  Begin

    Yes
     End

       No

1. Input observation data Hobs

2. Give initial values for parameters

3. Solve the forward problem (simulation 
with the given parameters). Get Hc.

4. Compare Hc with Hobs

5. Is the result satisfactory?

6. Modify parameters 

Fig. 1. Flowchart of the trial -and-error procedure

The trial-and-error procedure described in the 
previous section can be replaced by a computer 
program which transfers inverse problems into 
optimization problems. 
Referring to Fig. 1, we need to see what steps can be 
completed by computer. To replace Step 4, it is 
possible to calculate a criterion to measure the 
difference between observed and calculated heads.
The most common criterion is the Output Least 
Squares OLS) defined by

22

1

( ) ( )
M

c obs
m m m

m

E p W H p H


     (4)

Where H pm
c ( )  is the calculated head and H m

obs  is 

the observed head, M is total number of 
measurements and Wm is a weight associated to 
measurement m and p  is the parameter vector and 

the components  (p1 p2 ... pN)T need to be estimated.  
If  E( p 2) < E( p 1)  then parameter vector p 2 is 

better than p 1.

Step 5 of Fig. 1. can be replaced by checking that 
either the error E( p ) is smaller than a prescribed 

convergence criteria  or that the successive 
parameter values do not differ from each other more 
than a prescribed amount.
Step 6 is the crucial step in the solution of the inverse 
method and the purpose is to solve the following 
optimization problem: find the specific set of
parameters p OPT such that

E( p OPT) = min E( p ) (5)

The summary of the indirect method is given in Fig. 
2.  As shown in Fig. 2, the forward problem is solved 
several times. In other words, the inverse problem is 
solved indirectly through the solution of the forward 
problem. 

  Begin

    Yes
     End

       No

1. Input observation data Hobs

2. Give initial values for parameters p 0

3. Solve the forward problem (simulation 
with the given parameters). Get Hc( p 0)

4. Calculate E( p 0)

5. E( p 0)<?

6. Modify p0 by some optimiz. algorithm 
to obtain new estimate for p0

Fig. 2. Flowchart of the indirect method

The advantage of the indirect method is that inverse 
problems can be solved rapidly by computer without 
human participation.  Moreover, a set of “best fitting” 
parameters can be found by solving the optimization 
problem.  However, there is always a danger that the 
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optimization method does not find a global but a 
local optimum. 

III. FORMULATION OF THE NON-LINEAR 
OPTIMIZATION PROBLEM

Consider the N-dimensional optimization problem 
(number of parameters to be optimized is N):

min E( p ) (6)

Where the objective function E( p ).

If function E( p ) is second-order differentiable, the 

following are necessary conditions for p  being a 

local minimum of E( p ):

- First derivate (gradient g= E( p )) vanishes at p




E

pn P

 0        (n=1,...,N) (7)

- Hessian matrix G= 2E( p ) (second derivate of E 

with respect to p ) is a positive  semi-definite matrix
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If E( p ) is a differentiable convex function, then 

 E( p )̂=0 is the necessary and sufficient condition 

for p  ̂ being a local minimum of E( p ). In the 

identification of model parameters, objective function 
E( p ) depends on model output and therefore we 

cannot get an explicit expression for  E( p ) and 

equation cannot be solved directly. For practical 
optimization problems,  E( p ) has to be obtained 

numerically and the solution of the problem is 
iterative:
Step 1) Choose initial guess  p 0.

Step 2) Designate a way to generate a search 
sequence:

p 0, p 1, p 2, ..., p k (9)

such that E( p k+1) < E( p k) for all iteration index k.

Step 3) Check the convergence and if it is satisfied, 
then end the search procedure, and a local minimum 
is approximately achieved.
Search sequence has a general form:

p k+1= p k+skdk (10)

Where sk is a step size along a direction that is called 
displacement direction dk. 
The key problem of the parameter optimization 
procedure is how to determine sk and dk.
Three different methods for solving this problem 
various optimization algorithms can be divided into 
three main categories:
1) An optimization is called a search method if 
it only utilizes values of the objective functions 
(downhill simplex method);
2) An optimization algorithm is called a 
gradient method if it utilizes gradients of objective 
functions;
3) An optimization algorithm is called a second 
order method if it utilizes second derivatives of 
objective functions;

IV. GRADIENT METHODS

The basic principle of the gradient methods is to use 
the negative gradient direction as the search direction 
in each iteration.  In other words: the function E( p ) 

to be minimized is most rapidly reduced in the 
direction of its negative gradient. This implies that dk

of Eq. (10) is replaced by
dk = -gk (11)

where gk = E( p k). 

The optimal step sk of Eq. (10) could be obtained by 
performing a line search in one direction The 
gradient method and a simple method to determine sk

is described in detail in Example.

IV. EXAMPLE

The problem is to minimize a two-variable function
F(x,y) = x2 + 2y2 - 4x - 4y +6 (12)

The derivatives of F(x,y) with respect to Fx(x,y) and 
Fy(x,y) are

Fx(x,y) = 2x - 4 (13)
Fy(x,y) = 4y - 4 (14)

The Hessian matrix is now

G










2 0

0 4
(15)

Analytically it is easy to solve  F(x ,̂y )̂ = 0 to yield 
x  ̂= 2 and y  ̂= 1 and calculate that min F(x ,̂y )̂=0.
In this Example the goal is to use iterative gradient 
method for solving the same problem. As initial 
guess for x and y the following values are used: x0 = 
y0 = -1.  The optimization procedure is shown in the 
file in Table 1. 
The procedure is described step by step in Frame 1.
The procedure shown in Frame 1 and Table 1 
converges to the exact solution in 10 iterations if the 
initial step size s0 is 2. 
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Table 5-1.  Function minimization using the gradient method
   A       B      C        D         E           F        G      H      I       J        K

1 Iter      Xk     Yk          F         F'x           F'y        dF       Sk Xk+1     Yk+1      Fk+1
2 0 -1 -1 17 -6 -8 10 2 0.2 0.6 3.56
3 1 0.2 0.6 3.56 -3.6 -1.6 3.93954 2 2.028 1.41228 0.340708
4 2 2.0276 1.412 0.34071 0.055246 1.649108 1.65003 0.5 2.011 0.91256 0.015411
5 3 2.0109 0.913 0.01541 0.021764 -0.349771 0.35045 0.125 2.003 1.03732 0.002795
6 4 2.0031 1.037 0.00279 0.006238 0.149264 0.14939 0.06 2.001 0.97737 0.001025
7 5 2.0006 0.977 0.00102 0.001227 -0.090527 0.09054 0.03 2 1.00737 0.000109
8 6 2.0002 1.007 0.00011 0.000414 0.029462 0.02947 0.008 2 0.99987 4.61E-08
9 7 2.0001 1 4.6E-08 0.000203 -0.000535 0.00057 2E-04 2 1.00009 1.49E-08

10 8 2 1 1.5E-08 3.67E-05 0.000342 0.00034 1E-04 2 0.99997 1.97E-09

Table 1 Function minimization using the gradient method

0) Set iteration index k=0 to cell A2 and initial estimate for x to cell B2 and for y to cell 
    C2, respectively.
1) Use the initial estimate shown in cells B2 and C2 to calculate F(xk,yk) in cell D2
2) Calculate derivative of F(x,y) with respect to x,  Fx(xk,yk), and with respect to 
    y,  Fy(xk,yk).  The results are shown in cells E2 and F2.  
3) Calculate the lenght of the gradient vector to cell G2: 

   F  F (x ,y ) F (x , y )x k k x k k

2 2

4) Choose estimate for step size sm in Eq. (5-7) (cell H2).
5) Calculate new estimate for unknown parameters x and y using Eq. (9):
     

x x s
F x y

Fk k k
x k k

  1

( , )
   or  in EXCEL: I2 = B2 - H2*(E2/G2)

y y s
F x y

Fk k k
y k k

  1

( , )
    or  in EXCEL: J2 = C2 - H2*(F2/G2)

6) Calculate function value F(xk+1,yk+1) to cell K2
7) Compare if F(xk+1,yk+1) < F(xk,yk), i.e. if K2 < D2?  If this is true then accept   
    (xk+1,yk+1) and go to step 8).  If F(xk+1,yk+1) > F(xk,yk) then reduce step in H2 by 50 % 
    and go back to step 5).
8) Test if F(xk+1,yk+1)  smaller than iteration stopping criteria  (in this example  =10-8)?     
     If F(xk+1,yk+1) < accept (xk+1,yk+1) as the final solution of the problem.
     If F(xk+1,yk+1) > use (xk+1,yk+1) as the initial value for the next iteration, set k = k+1
     and go to 1).  In EXCEL-solution (xk+1,yk+1)  from cells I2 and J2 and F((xk+1,yk+1) ) 
     from cell K2 are copied to the next row to cells B3, C3 and D3, respectively. 

Frame 1 Step by step solution of function F(x,y) minimization using the gradient method. EXCEL-cells shown 
in Table 1

The drawback of the gradient method is that if the 
initial estimate is too far from the true solution, the 
method terminates far from the solution due to round-
off errors. However, the basic principles of the 
optimization methods are very well presented in this 
example and the reader is encouraged to go through 
the calculations very carefully.

V. CONLUSIONS

The trial-and-error procedure is the simplest way to 
solve the inverse groundwater problem. In this 
method we need some hydraulic head measurements, 
a model that calculates the forward. The trial-and-
error procedure can be replaced by a computer 
program which transfers inverse problems into 
optimization problems. The advantage of the indirect 
method is that inverse problems can be solved rapidly 
by computer without human participation.  
The basic principle of the gradient methods is to use 
the negative gradient direction as the search direction 
in each iteration.  
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