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Abstract – This paper analyses the performances of 
turbo coded modulation with antenna diversity at 
transmission and reception, considering asymmetric 
turbo codes. We studied the cases when the component 
convolutional codes have memory 2 and 3, respectively, 
and their generator polynomials are both primitive and 
non-primitive. Simulations were performed to study 
these cases, considering both quasi-static and block 
fading, and the bit error rate (BER) and the frame error 
rate (FER) performances of asymmetric turbo coded 
modulation were evaluated. Based on this analysis, we 
note that primitive polynomials lead to better 
performances for FER, whereas the non-primitive ones 
lead to slightly improvements of BER in low SNR range.  
Keywords: space-time modulation, antenna diversity, 
asymmetric turbo codes 
 

I. INTRODUCTION 
 

Even if wireless communications experienced 
exponential growth during the last two decades, 
obtaining reliable high speed data services continues 
to be a major goal for the research community. The 
main challenge consists in obtaining robust 
communications under difficult channel conditions. It 
has been proven that the capacity of a system 
encountering block Rayleigh fading significantly 
improves when using multiple transmission and 
reception antennas [1], [2]. 
The block fading channel model [3] uses a codeword 
of length N=F·L with F blocks of length L. The group 
of F blocks is named a frame. The fading value for 
each block is assumed constant and each block is sent 
through an independent channel. Moreover, symbols 
from the F blocks can be spread using an interleaver, 
resulting in independent fades. Such an example is the 
slow frequency hopping technique used in GSM 
systems. 
The error correcting codes have become an 
indispensable tool for digital communication over 
noisy channels. Among the error correcting codes, 
turbo codes with iterative decoding have become an 
area of maximum interest in the past decade [4]. 
These codes have been discovered by Berrou, 
Glavieux and Thitimajshima in 1993 [4]. 
Lately, a great interest has been shown for space-time 
coding. Stefanov and Duman [5] introduced turbo-

coded modulation for transmission and reception 
systems with antenna diversity over block fading 
channels. They only considered symmetric turbo 
codes with component convolutional codes with 
memory 2. This paper will consider asymmetric turbo 
codes for the turbo-coded modulation. 
The paper is structured in five sections. Section 2 
presents the used system model and the relations 
specific to the fading channel. Section 3 presents the 
block schemes of the transmission and reception 
systems and the relation that governs demodulation 
for the antenna diversity case. An overview of 
asymmetric turbo codes is presented and several 
examples composed by convolutional codes of 
memory 2 and 3 and different generating polynomials 
are provided. Section 4 shows simulation results and 
Section 5 concludes the paper. 
  

II. SYSTEM MODEL 
 

We consider a mobile communication system with Nt 
transmitting antennas and Nr receiving ones. The 
information bits are turbo coded, serial to parallel 
converted and transformed into a constellation 
symbol. At each time instant, the signal at the 
modulator output is ,t ic , transmitted using antenna i, 
for 1 ti N . All signals have the same transmitting 
period T and are simultaneously transmitted by a 
different antenna.  
The received signal is a noisy superposition of the 
transmitted signals corrupted by Rayleigh fading. The 

,i j  coefficient is the path gain from the transmit 
antenna i, 1 ti N , to the receive antenna j, 
1 rj N . As we assumed block Rayleigh fading, 
the path gains are modeled by realizations of complex 
Gaussian random variables, with zero mean and 
variance 0.5 for each dimension. In addition, the path 
gains are constant over blocks of L symbols 
corresponding to Rc·L information bits, and 
independent from one block to another. Rc is the 
system spectral efficiency. 
At time instant t, the signal received by antenna j, ,t jr , 
is given by: 
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where the noise samples ,t j  are modeled as 
independent realizations of a complex Gaussian 
random variable with zero mean and variance 0 2N  
for each dimension. The signal-to-noise ratio (SNR) is 
defined as 0E N , where E  is the total energy 
corresponding for each transmission interval. More 

precisely, 
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symbol energy at transmission antenna i. 
Equivalently, we can write 
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The obtained results are compared to the outage 
probability corresponding to the capacity of a channel 
with multiple transmitting and receiving antennas. For 
a system with no delay constraints, where the number 
of blocks F is not bounded and the channel is 
perfectly known at the receiver, this value is  
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where  is the signal-to-noise ratio, 
rNI  is the 

r rN N  identity matrix and H  is the transposed 
conjugate of H. To compute the channel capacity we 
will assume an ergodic channel and use Monte-Carlo 
integration method, which averages over a large 
number of channel realizations. 
  

III. ASYMMETRIC TURBO CODES FOR 
ANTENNA DIVERSITY SYSTEMS 

 
We will use the block scheme in [5], using 
asymmetric turbo codes [6] instead of the symmetric 
ones. The transmitter and receiver structures are 
unchanged (Fig. 1 and Fig. 2). Data is divided into 
blocks of N bits and coded with a binary asymmetric 
turbo code [6]. The coded bits are interleaved, serial 
to parallel converted and transformed into a 
modulation symbol. Different spectral efficiencies can 
be obtained by modifying the coding rate and 
constellation dimensions. As we assumed block 
fading, the turbo code interleaver dimension will be a 
multiple of Rc·L. The additional interleaver is used to 

decorrelate successive bits. Its dimension is chosen 
such that no additional system delay is introduced. 
The additional interleaver is needed to decorrelate 
LLR (Logarithm Likelihood Ratio) of adjacent bits. 
Moreover, it disperses error groups caused by strong 
fading over the whole frame, leading to increased 
diversity. 
The encoded modulation scheme is obtained by 
concatenating Nt memoryless modulators through the 
additional bit interleaver, representing a bit 
interleaved coded modulation [7] with antenna 
diversity. 
The reception scheme involves a sub-optimal 
algorithm which first computes LLRs for transmitted 
bits and then uses them as LLRs for observations 
from a BPSK modulation over a AWGN channel. 
The chosen constellation is bi-dimensional and has 
the size 2M , therefore each symbol at the transmission 
antennas will be represented by M bits. 
If in (1) and (2) we eliminate the t index representing 
the time, we obtain 

1, 1 2, 2 ,t tj j j N j N jr c c cK     (6) 

The received signals 1, ,
rNr rK  correspond to tN M  

encoded bits. Let b be the bit vector representing 
symbols 1 2, , ,

tNc c cK   

1 1, , , , ,
tM M N Mb b b bb K K       (7) 

The group of bits 1 1, , iMi Mb bK  is used to determine 
the constellation symbol for transmission antenna i, 
noted ic , 1, 2, , ti NK . Then, the LLR for lth element 
of b, lb  is given by 
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where f  is the modulator function. 
An asymmetric turbo code is composed of two 
recursive convolutional codes with different generator 
polynomials [6]. In order to improve the BER, in [8], 
one of the component codes was “weak” (non-
primitive feedback polynomial), and the second code 
was “strong” (primitive feedback polynomial). The 
weak component code leads to the improvement of 
the BER at low SNR values, while the strong 
component code, at high SNR values, being 
responsible for creating a larger minimum distance of 
the asymmetric turbo code. 
Different combinations of primitive and non-primitive 
polynomials will be used. The primitive polynomial 
leads to a maximum cycle length in the states 
diagram. 
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The turbo codes which have parallel concatenated two 
systematic recursive convolutional codes (SRCC), c1 
and c2 are noted with CT[c1 , c2], where the first trellis 
is terminated and second is not. We have to mention 
that in literature the focus was on the premise that the 
component codes are identical. The convolutional 
codes will be denoted by (FFoct, FBoct), where FFoct 
represents the feed forward encoding polynomial and 
FBoct is the feedback encoding polynomial. Both 
scenarios will be studied, when the feedback 
polynomial is primitive and, also, when the feedback 
polynomial is non-primitive. 
The simulations were performed for a turbo code 
having the global coding rate of 1/2, with puncturing, 
over a block Rayleigh fading channel, with a M-PSK 
(M- Phase Shift Keying) modulation. The criteria for 
stopping the iterations are of the type of genie stopper, 
meaning that the iterations in turbo decoding are 
stopped when the decoded bit frame is identical to the 
information bit frame originally coded. 
The interleaver used was the 260 length S-random or 
1300 length QPP (Quadratic Permutation Polynomial) 
with largest spread. The development of the S-random 
interleaver is performed based on the random 
choosing of permutation elements, with a restriction 
over the magnitude of the spreading [9]. The S 
parameter must fulfill the requirement: 

( ) , 0,1, , 1i j LK , with i j S , we have  

( ) ( )i j S ,                         (9) 
where  represents the permutation describing the 
interleaver. 
The increased value of the S parameter together with 
the high normalized dispersion ( 0.81) lead to the 
fact that the use of this interleaver can determine very 
good performances for lots of applications, despite the 
used constitutive codes. 
QPP interleavers with largest spread ant their 
advantages are described in [10]. 
It has been proven that the feedback polynomial must 
be primitive, in order for the effective free distance 
(the minimum distance obtained for the input 
sequence of weight 2) to be high. This applies to 
AWGN channel. 
In Table 1 the component convolutional codes for the 
turbo codes are presented. Px denotes the primitive 
generator polynomial of the x state component code 

and NPx denotes the non-primitive generator 
polynomial of the x state component code. 
 
Table1: Table of Turbo-Code Notation 

Asymmetric Turbo Code Short Notation 
CT[(5,7) , (5,7)] P4 – P4 

CT[(5,7) , (15,13)] P4 - P8 
CT[(5,7) , (15,17)] P4 - NP8 
CT[(15,17) , (5,7)] NP8 – P4 
CT[(7,5) , (15,13)] NP4 - P8 
CT[(15,13) , (7,5)] P8 - NP4 
CT[(7,5) , (15,17)] NP4 - NP8 

 
IV. SIMULATION RESULTS 

 
Simulations were performed for turbo code interleaver 
lengths of 260 and 1300. The coding rate is 1/2, 
obtained by alternatively puncturing parity bits and 
the decoding algorithm is Maximum A Posteriori 
Probability (APP) given in [11]. The used modulation 
is QPSK (M=2). There are two transmit antennas and 
two receive antennas, leading to a spectral efficiency 
of 2 bits/sec/Hz. The fading model was quasi-static 
Rayleigh fading for the 260 length and block fading 
for both lengths. For the block fading, the path gains 
are constant for L=65 successive transmissions, 
corresponding to 130 information bits for the 260 
length (F=2) and for L=130 successive transmissions, 
corresponding to 260 information bits for the 1300 
length (F=5). For the quasi-static fading, the path 
gains are constants for the whole bit frame 
corresponding to the interleaver length. 
Fig. 3 presents FER and BER curves for the above 
mentioned cases and five codes from table 1 for 
quasi-static fading. It can be noticed that, for the FER 
curves, the codes P4-P4 and P4-P8 lead to identical 
performances. The performances of the P4-NP8 are 
closed to the previous ones. The performances 
degrade for the turbo codes NP4-P8 and NP4-NP8, in 
this order. We can also observe that the memory 2 
code has a stronger influence on the BER 
performance. The BER performances are relatively 
close for the simulated codes. At low SNR we can 
notice a slight performance improvement for codes 
with non-primitive polynomial component codes.  
 

Modulator 

Source Turbo  
Encoder 

Interleaving S/P 
Converter

Modulator 

M  

Fig. 1. Turbo encoder transmitter block scheme

Log-Likelihood 
Computation 

Deinterleaving Turbo 
Decoder 

Sink M  

Fig. 2. Receiver block scheme 
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Fig.3. a) FER and b) BER curves for N=260 length interleaver and 
quasi-static fading (Nt=2, Nr=2) 

 
Fig. 4 presents FER and BER curves for the above 
mentioned cases and codes from Table I for block 
fading. The performance order for the simulated codes 
is the same as for quasi-static fading, but the SNR 
values required to obtain the FER=10-2 are about 
2.5dB lower for the best codes. The performances 
degrade for the turbo codes NP4-P8, NP8-NP4 and 
NP4-NP8, in this order. 
The simulation results for length 1300 are given in 
Fig. 5 for Nt=2, Nr=2. The codes, in the FER 
performance order are P4-P8, P4-P4, P4-NP8 with 
similar performances and NP4-P8 and NP4-NP8 with 
considerably lower performances. Again, we notice 
the strong influence of the memory 2 code with 
primitive polynomial on the performance. 

From a BER point of view, the first three codes have 
similar performances, NP4-P8 has a slightly lower 
performance and NP4-NP8 the lowest performance. 
At low SNR we notice a small improvement for codes 
with non-primitive polynomials. 

 

V. CONCLUSIONS 
 

A simulation based analysis of performances of turbo-
coded modulation with transmit and receive antenna  
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Fig.4. a) FER and b) BER curves for N=260 length interleaver and 
block fading(Nt=2, Nr=2) 

 
diversity was performed, considering both quasi-static 
and block fading. The turbo code component codes 
are not identical. We considered the cases when the 
memory of the component encoders is 2 and 3 for 
primitive and non-primitive polynomials. The turbo-
code interleaver lengths are 260 and 1300, 
respectively. 
For both lengths, the performance difference between 
codes with primitive and non-primitive polynomials is 
more visible in the FER domain.  
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Fig. 5. a) FER and b) BER curves for N=1300 length interleaver 
and block fading (Nt=2, Nr=2) 

 
The codes with primitive polynomials lead to better 
results and those with memory 2 have a higher 
influence on the system performance when they are 
upper codes in turbo codes. This can be explained by 
the fact that only the first trellis in the turbo code is 
terminated and second one is not. In the BER domain 
the performances are similar for length 260 and lower 
for non-primitive polynomials for length 1300. A 
slight improvement can be noticed for the codes with 
non-primitive polynomials at low SNR. 
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