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Abstract: In this paper, we present  new speech denosing 
methods based on some types of maximum a posteriori 
(MAP) filters applied in the wavelet domain. These 
methods take into account the statistical properties of 
the discrete wavelets transform (DWT) coefficients of 
speech signals. The experimental results are compared 
with those obtained in another paper published in this 
magazine, [1].  
Keywords: wavelets, bishrink, MAP filters, Bayes, 
Wiener. 

 
I. INTRODUCTION 

 
The wavelets constitute a powerful tool for 
mathematical analysis which revolutionized the world 
of signal processing. The wavelets are functions with 
null average and finite energy. Their field of 
application is very large: compression, segmentation, 
denosing etc. The term denoising was introduced by 
David Donoho, [2]. He treated the case of signals 
perturbed by additive white Gaussian noise. The aim 
of this paper is the denoising of additively perturbed 
speech. Several speech denosing methods already 
exist.  Some of them are based on the use of the 
wavelets transform, [1]. They differ by the type of 
filter used in the wavelets domain but all follows the 
Donoho’s algorithm. It is based on the following three 
steps: 
1. The computation of the wavelet transform,  (WT), 
2. The filtering of the obtained result, 
3. The computation of the inverse wavelet transform, 
(IWT). 
Donoho used the DWT. Another WT, namelly the 
diversity enhanced discrete wavelet transform, 
DEDWT, was preffered in [1]. 
For filtering in the DEDWT domain we will use in the 
following, MAP filters. Some of them will differ of 
the bishrink filter, used in [1]. The knowledge of the 
type of noise to be eliminated and of the probability 
density function (pdf) of the useful signal are  
essential for the second step of the denoising method. 
The success of the denosing procedure depends on the 
selection of the noise and useful signal pdfs. In the 
following, we present a speech denoising method 
which uses two types of MAP filters associations: 
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i) the bishrink filter and the Wiener filter 
on the one hand and  

ii) the marginal MAP filter and the Wiener 
filter on the other hand. 

The structure of this paper is the following. Section II 
consists in modeling the speech in order to estimate 
its pdf. Section III explains the proposed denoising 
method. Some variants, based on the use of different 
filters in the wavelets domain are described. The 
results obtained using these different variants are 
compared in section IV. The final section is dedicated 
to concluding remarks. 
 

II. STATISTICAL MODELING OF THE 
SPEECH SIGNAL 

 
The various MAP filters, which we will study and 
compare, require the knowledge of the pdf of the 
useful signal. In this section we will identify the pdf 
of speech on the basis of the comparison of the 
histogram of a speech signal with the elements of a 
family of usual pdfs. We consider the family of 
gamma generalized distributions, [3], defined for N 
random variables, }{ 1 2 NX X ,X ,...,X=  by: 

    ( ) ( ) ( )γ−ηγ
η

β−
ηΓ

γβ
= xexpxxf X

1

2
             (1) 

where ( )ηΓ  is the gamma function and η, β, γ are 
positive real-valued parameters; β is related to η and γ 
by: 
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For certain particular values of η and γ, the following 
models are found: 
If : γ = 1, the (general) gamma pdf; 

ηγ = 1, the generalized Gaussian pdf;                           
γ = 2 and η = 0.5, the Gaussian pdf; 
γ = 1 and η = 1, the Laplacian pdf.  

Analyzing this class and the histogram of speech 
signal, we can observe that this signal is close to the 
Laplacian pdf. This observation is highlighted in 
figure 1. The Laplacian pdf is defined by: 
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Fig. 1: The histogram of the speech segment feets well with a 
Laplacian distribution. 
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where 2b is the variance and  µ  the mean. In the case 
considered in the experiment already reported the 
mean is null. The results obtained come to confirm the 
assumption that certain authors make in the treatment 
of the speech signals [1]. 
 

III. MAP FILTERS ASSOCIATIONS 
 
In the previous section is given a model for the speech 
signal pdf. The aim of this section is the study of the 
pdf transformation realized by the DWT computation. 
The DEDWT is a colection of DWTs. First, we 
determine the connection between the pdfs of the 
input signal and of the wavelet coefficients. Second, 
the relation already obtained is verified by 
simulations. 
 
A. The derivation of the wavelets transform 
coefficients pdf according to the speech signal pdf 

 
Let us consider a random variable X with a pdf 

)(xfX  and the change of random variable Y =αX 
with α a constant. The relation connecting the pdfs of 
X and Y is: 

1X
X

Y X

yf ( )f ( x ) yf ( x ) f ( )
dy
dx

α= = =
α α α

        (4)                                  

If we consider the following relation between the 
random variables Z and the independent random 

variables kY , Kk ,1= ,  ∑∑
==

α==
K

k
kk

K

k
k XYZ
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with kα  ≠ 0 and Kk ,1= ,  then:  

    ( ) ( ) ( )
1 2

f z f z f ( z ) f zZ Y Y YK
= ∗ ∗⋅⋅⋅∗              (5) 

and if the random variables kY , Kk ,1= , represent 

changes of the random variables kX , Kk ,1= , 

following the relations kY  = kk Xα , then the pdf of 
the random variable Z, becomes: 
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This relation can be used to compute the pdf of 
wavelet coefficients, ( )yfY  of a process X, on the 

basis of the pdf of this process )(xfX , if we consider 

that XXXX K ==⋅⋅⋅== 21 . In our case, the 
process X is a speech signal. So, the relation between 
the wavelet coefficients of a speech signal and its own 
pdf is: 
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where kα  represent the coefficients of the filters (h 
or g) used for the computation of the wavelet 
transform. This relation can be applied to each filter 
of the DWT computation diagram, represented in 
figure 2. For the first iteration of the DWT, the pdf 
obtained after the first low-pass filter h is: 
 

     

( )
( )

1 11 11
1

1

7

1 1

1 1K K
U X XKk kk kk

k
k

u uf u f f
h hh h

= =

⎛ ⎞ ⎛ ⎞
⇒ = ∗ = ∗⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∏  

              ( )
1 1

1

K
U h Xk k

uf u P f
h=

⎛ ⎞
⇒ = ∗ ⎜ ⎟⎜ ⎟

⎝ ⎠
              (8) 

and 
∏

= K

k
k

h
h

P

1
1

1 . 

In the same way, the pdf obtained after the second 
high-pass filter g becomes: 
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Fig. 2. The DWT first iteration computation diagram. 
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Using the last two relations, we can compute the 
detail coefficients pdf after the first iteration: 
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While proceeding in the same way, the following 
result is obtained for the second iteration: 
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Finally, after the Nth iteration, the pdf of the detail 
coefficients becomes: 
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We have proved in section II, that the pdf of the 
speech signal can be approximated with a Laplace 
law: 
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So, if we compute the DWT of a speech signal, the 
model of the corresponding wavelet coefficients 
becomes:                                                                
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If we compute the DWT of a zero mean white noise, 
which has a Gaussian distribution, whose formula is: 
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the output pdf is given by: 
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and:  
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The central limit theorem stipulates that any 
sum of independent and identically distributed 
random variables will tend to be distributed according 
a normal law when their number tends towards the 
infinite [4]. Then we can affirm that the speech signal 
pdf converges towards a Gaussian after a certain 
number of convolutions, or equivalently after a certain 
number of DWT iterations. The problem is how fast 
this convergence is. In other words it is interesting to 
know if after a finite number of DWT iterations, the 
output pdf can be considered Gaussian. The number 
of convolutions required for one DWT iteration 
depends on the type of mother wavelets used, because 
a different number of coefficients K correspond to 
different types of mother wavelets. The smallest 
convolutions number per DWT iteration is obtained 
when the Haar wavelet mother is used. So, the 
smallest convergence speed is obtained using this 
mother wavelets. We have simulated the convergence 
process, using the Haar mother wavelets, for which 
we have the following values: 

2=K ; 
2

1
1 =h ; 

2
1

2 =h ; 
2

1
1 =g ; 

2
1

2 −=g  

Starting from a Laplace pdf we obtain for the first and 
the second iterations, the detail wavelet coefficients 
pdf curves presented by figure 3 and figure 4. It can 
be observed that the curve of figure 4 is close to a 
Gaussian. So, we can assume that using Daubechies 
mother wavelets (all those mother wavelets have a 
higher corresponding K value), the pdf of the wavelet 
coefficients of a speech signal can be considered 
Gaussian, after some iterations of the DWT. So, the 
starting conditions, used for the MAP filter 
construction, that will be presented in the following, 
concerning the distribution of the wavelet coefficients, 
cannot be kept unchanged throughout the entire 
denoising process in the wavelets domain. For 
different iterations different models for the 
distribution of the wavelet coefficients of the clean 
speech must be considered. 
 
B. Histograms of DWT coefficients of the speech 

signal 
 
The aim of this section is to give a practical 
verification of the theoretical results obtained in the 
previous section. We have calculated and represented 
the histograms of the DWT coefficients of the same 
segment of speech signal used in section II, in order to 
study their pdfs. The histograms are represented on 
figure 5. The Laplace distribution is heavy tailed. Its 
speed of descent towards zero is smaller then the 
speed of descent towards zero of a Gaussian 
distribution. Analyzing figure 5, it can be observed 
that the speed of descent towards zero of the curves 
increases with the level of decomposition. This means  
that the pdf of the DWT coefficients converges 
asymptotically towards a Gaussian. Intermediate 
simulation results proved that the difference between 
the speeds of descent towards zero of the curves 
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Fig. 3: A comparison of the input (Laplacian) distribution with the 

output distribution after the first iteration. 
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Fig. 4: A comparison of the input (Laplacian) distribution with the 
output distribution after the second iteration and with the Gaussian 

distribution. 
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Fig. 5: A comparison of the histograms of the speech signal before 
the calculation of the DWT and those of the DWT coefficients after 

the first and the fifth iteration. 
 
 

corresponding to the fourth and the fifth iteration is 
not important; so we could think that convergence 
is reached after four iterations. This conclusion is in 
agreement with the results of the previous section. 
 
C. Filters associations 
 
We have just shown that the starting conditions 
concerning the distribution of the wavelet coefficients 
cannot be kept unchanged throughout the entire 
denoising process in the wavelets domain. This is why 
we propose an association of filters: a first-one when 
the pdf of the wavelet coefficients is supposed 
Laplacian and a second association when this law 
becomes Gaussian. In this section we were 
particularly interested in the choice of the second 
filter. If we consider y a noisy wavelet coefficient, w 
the true coefficient and n the noise, [5], we can write 
that: 

            y = w + n                          (15) 
 
The classical MAP estimator for (15) is: 

    ( ) ( )ywPmaxargyw yw
w

=
∧

          (16)                              

Using Bayes rule, one gets: 
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Equation (17) is equivalent to: 
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If the signal and the noise have both a Gaussian pdf, 
then:  
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With the aid of the last two relations, the argument of 
the right hand side of (18) becomes: 
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To maximize (21), the following equation is solved: 
 

              
( ) ( )

0n wd ln P y w ln P w
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Using (21) it becomes: 
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or:   

( ) 0222 =σ+σ+σ− yw n  
 
So, the solution of the MAP equation is in this case: 

                  22

2

n
yw

σ+σ

σ
=

∧
                      (23)  

 
This relation corresponds to the zero order Wiener 
filter whose impulse response is: 
 

      [ ] [ ]
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2 2
n

h n nσ
= δ

σ + σ
 

 
Then the second filter to be considered is necessarily 
the Wiener filter. For the first filter, we have two 
possibilities: 

a) If we do not take into account the inter-scale 
dependency of the wavelet coefficients, for the first 
iterations, where the coefficients of the DWT of the 
speech signal follows a Laplace law,  one obtains: 
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Supposing that the wavelet coefficients corresponding 
to the noise n are Gaussian distributed, the MAP 
equation becomes: 
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The solution of (22) is in this case: 
  

( ) 02 2 =σ−−σ wwyw n  
or: 

   ( )( ) 02 2 =σ−−σ nwywsgn  
 
This equation has two possible solutions: 

If w >0, the solution is:  

σ
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2 nyw  

If w<0, the solution is:   

       
σ

σ
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2 nyw  

We can notice that if  
σ

σ
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2
2 ny  then  

w > 0, and the solution of the MAP equation is: 
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2 nyw  

If 
σ
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2
2 ny   then w < 0, and the solution of the 

MAP equation becomes: 

σ
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Therefore, if   
σ

σ
>

2
2 ny , the solution of the MAP 

equation can be written in the following compact 
form: 
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the relation (26) can be written in the final  form: 
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The right hand side of equation (27) is the classical 
soft shrinkage function. This is the input-output 
relation of the MAP filter still called soft-thresholding 
filter. It requires to estimate 2

nσ , the noise variance 
and the standard deviation σ  of the useful signal.  
The estimate of the noise variance is done by using 
the sequence of the details obtained after the DWT 
first iteration and the estimate of the standard 
deviation of the useful signal coefficients is done 
locally in a moving window.  In short, if the scale 
inter-dependency of the DWT coefficients is not 
considered, the filter which should be used is the soft-
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thresholding filter with local threshold. In the 
following, this filter will be called marginal MAP 
filter. 

b) On  the other hand if the estimate takes into 
account two successive iterations, we can write:  

( )21 , www =  and the pdf  proposed by Levent 
Sendur and Ivan W. Selesnick [3] for the wavelet 
coefficients, is: 
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Let us find the MAP estimator corresponding to the 
model given in (28), if the noise is again considered to 
be Gaussian distributed. 
If we define ( ) ( )( )wPwf wlog= , then (18) 
becomes: 
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(29) 

 
This is equivalent to solve the system composed by 
the following two equations, if ( )wf  is assumed to 
be strictly convex and differentiable: 
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where 1f and 2f  represent the derivative of  ( )wf  

with respect to 1w  and 2w , respectively. Taking into 
account the relation (28), it can be written: 
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and the solutions of the system already mentioned are: 
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Solving (30) and (31) by using (33) and (34), the 
MAP estimator can be written as: 
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This relation gives place to the use of a filter called 
bishrink filter. 
 

IV. EXPERIMENTAL RESULTS 
 

Section III enables us to consider two 
associations of possible filters: 
1. In the case where the inter-scale dependency of the 
DWT coefficients is not considered, for the first 
iterations, we use the marginal MAP filter and for the 
last iterations, we use the Wiener filter. We called this 
association of filters, the MAP_Wiener filter. 
2. When we take into account the inter-scale  
dependency of the coefficients of two successive 
iterations, the association that we called 
Bishrink_Wiener is used. 
We simulated the denoising method proposed and 
compared the signal to noise ratio (SNR) 
enhancement obtained for these two associations of 
filters for the marginal MAP filter and for the bishrink 
filter, proposed in [1], called in the following 
Bishrink_f, for different values of the input SNR. The 
results are represented on  figure 6. 

A first conclusion obtained analyzing this 
figure is that the Bishrink_Wiener gives a better result 
than the bishrink filter and the Bishrink_f filter. This 
comes to confirm the theoretical results obtained in 
section III, highlighting the importance of 
commutation between models, especially when the 
inter-scale dependency is considered. Afterwards, 
there is not any difference between the MAP_Wiener 
filter and the marginal MAP filter. The two 
corresponding curves are identically. So, if the inter-
scale dependency is not considered, the commutation 
between models is not required. These curves have the 
larger increasing speed, reason that makes us think 
that for the speech signals, the inter-scale dependency 
between the DWT coefficients of two consecutive 
iterations can be   neglected in the denosing process. 
We have repeated the experiments with colored noise. 
It was generated by filtering a zero mean white 
Gaussian noise with the aid of a first order IIR low-
pass filter. We have simulated two such filters, having 
different cut-off frequencies. We have obtained each 
time practically the same results like those represented 
in figure 6. So, the denoising  method proposed in this 
paper, is robust against the nature of the power 
spectral density of the perturbing noise. This is, of 
course, an important advantage of the proposed 
denoising method. It can be also observed that the 
proposed method has an excellent performance for 
low input SNRs. At – 5 dB, its SNR gain is of 10 dB.  
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Fig. 6: Comparison of the output SNR for various MAP filters. 
 
 

V. CONCLUSION 
 

In this article, we proposed new methods of speech 
enhancement. At the beginning, on the basis of the 
statistical properties of the speech signals and those of 
the DWT coefficients, we showed that it is necessary 
to combine different MAP filters at different DEDWT 
decomposition levels for an efficient denoising. 
Combining different types of filters, deduced in this 
paper, we have built two MAP filters associations. To 
follow, we have tested, by simulation, these 
associations. The results obtained by comparing the 
output SNR, are better than those of the Bishrink filter 
and those of the Bishrink_f filter, used in [1]. So, the 
method proposed is better than the noise spectral 
subtraction method or the pure statistical denoising 
method, that has inferior SNR improvements, versus 
the association DEDWT-Bishrink_f, like is proved in 
[1]. Moreover, these results show that the association 
that does not take into account the inter-scale 
dependency of the DWT coefficients is the best for 
denoising speech signals. The method proposed is 
efficient especially for low input SNR signals (see 
figure 6). This is the reason why it can be used in 
applications where the quality of speech is very bad. 
For example, the proposed denoising method can be 
applied for the enhancement of the robustness of a 
Voice Activity Detector. When the SNR of the speech 
is high enough, the distortion introduced by the 
proposed denoising method is important, being better 
to avoid its utilization in applications where a high 
quality of the speech signal is required.    
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