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Abstract – The paper presents a new version of the 
generalised hybrid method for the analysis of the analog 
circuits with strong nonlinearities, driven by signals with 
widely separated frequencies. The key idea is to 
formulate the circuit equations by using multiple time 
variables, which enable an efficient representation of 
this kind of signals. Using multiple time-scale the 
differential algebraic equations (DAE) describing the 
nonlinear analog circuits are transformed into multi-
time partial differential equations (MPDE). An 
illustrative example is presented. 
Keywords: Hybrid method, Nonlinear analog circuits, 
Steady-state analysis 
 

I. INTRODUCTION 
 

The systems that work with signals in a large range of 
frequencies from the kHz (for the modulated signal) 
to GHz (for the carrier) as, for example, RF-IC 
applications, are called systems with multi-rate 
signals. These systems are typically difficult to 
analyze using traditional numerical integration 
algorithms, such as those in SPICE like programs [1]: 
following fast-varying signal components long 
enough to obtain information about the slowly-
varying ones is computationally expensive, and can 
also be inaccurate. So finding the steady-state by the 
brute-force method is, in this case, time-consuming 
[1, 2]. The multi-rate signals, can be represented 
efficiently as functions of two or more time variables, 
i.e., as multivariate functions. If a circuit is described 
with differential-algebraic equations (DAE), using 
multivariate functions for the unknowns naturally 
leads to a partial differential equation (PDE) form, 
called Multi-rate Partial Differential Equations 
(MPDE). Applying time-domain numerical methods 
to solve the MPDE directly for the multivariate forms 
of the unknowns, we are able to analyze the 
combination of strong nonlinearities and multi-rate 
signals. In order to reduce the computing time and the 
memory it is necessary to separate the circuit into a 
linear part and a nonlinear one. This “separation” 
allows the calculation of those terms in the circuit 
equations depending on the parameters of the linear 

circuit elements, only once, at the beginning of the 
computing process.  
Among the many distinct methods for formulating 
circuit equations is the m-port hybrid-analysis 
approach [2-4, 11 and 14]. This method is more 
general and more efficient when the under-
consideration circuit contains a large percentage of 
linear circuit elements and controlled sources. 
Another advantage of the hybrid-analysis approach is 
that it allows the nonlinearities to be either voltage-
controlled (c. v.) or current-controlled (c. c.), a 
flexibility not shared by nodal-analysis method. The 
basic philosophy is to form an m-port Ĉ  from the 
given circuit by extracting an appropriate set of two-
terminal elements so that the resultant m-port contains 
only linear capacitors, inductors, resistors, and linear 
controlled sources. Our objective in this paper is to 
develop a general algorithm for formulating the 
hybrid equations of a very large class of nonlinear 
analog circuits. This method - called hybrid analysis 
- allows a mixture of both current and voltage-
controlled resistors, voltage-controlled (v. c.) 
nonlinear capacitors, current-controlled (c. c.) 
nonlinear inductors, linear capacitors, inductors 
(magnetic coupled or not), resistors, independent 
sources, and all four types of linear controlled sources 
Replacing each capacitor and inductor (magnetic 
coupled or not) by a discrete resistive model 
associated with a preselected implicit numerical 
integration algorithm (backward Euler algorithm, 
trapezoidal algorithm, or Gear’s second-order 
algorithm), efficiency in numerical computing of the 
associated MPDE is obtained.  
The hybrid equations (HEs) are very easy to formulate 
and to implement into a program [14]. The 
characteristics of the nonlinear circuit elements are 
approximated by piecewise-linear continuous curves 
[5-11].  

II. NUMERICAL METHOD TO SOLVE MPDE 
In order to analyze the nonlinear analog circuit, driven 
by multi-tone signals, we shall use the hybrid 
equations.  
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To avoid dealing with certain types of circuits whose 
hybrid equations either do not exist or are 
pathological, in the sense that hybrid equation 
solutions depend on the precise value of some element 
parameters, we shall assume that our circuits meet the 
following requirements: 

1. Consistency assumptions: a) There does not exist 
any loop made up of only independent and/or 
controlled voltage sources (E loop); b) There does not 
exist any cutest made up of only independent and/or 
controlled current sources (J cuset). 

2. Assumption on controlling variables: the 
controlled sources can be depended only the currents 
(the voltages) of the c. c. (c. v.) nonlinear circuit 
elements and of linear resistors (inclusively the linear 
resistors from the companion models corresponding to 
the linear dynamic elements). 

3. Normal-tree assumptions: We choose a special 
tree – called the normal tree (NT)– whose elements 
are selected according to the following priority: a) all 
independent and controlled voltage sources; b) all c.v. 
nonlinear circuit elements (capacitors and/or 
resistors); c) as many linear resistors (inclusively the 
linear resistors from the companion models 
corresponding to the linear dynamic elements). NT 
does not contain any independent and controlled 
current source and any c.c. nonlinear element 
(inductor and/or resistor). 
We consider the two-rate case. The MPDE have the 
periodic boundary conditions 
(BCs) . We take a uniform 
grid 

( ) ( 121122 ,ˆ,ˆ ttTtTt xx =++ )
)}({ i,jt  of size (p2+1)x(n1+1) on the rectangle 

[0, T2]x[0, m1T1] (Fig.1), where )()( 12 i__j t,tj,it = , 
with t2_j = (i-2)T2+(j-1)h2, 

,11 )1( hit i −=− ;11  11 12 +=+= n,i,p,j  h2 = = T2/p2, 
and h1 = m1T1/n1 = T1/p1. Consider that the slow 
components of variables depend on t1 and the fast 
components depend on t2. The periodic boundary 
conditions and the integration algorithm are described 
in Fig. 1 [13]. At each time t (j,i) we have to solve a 
nonlinear algebraic equation system. For this, we can 
use the Newton-Raphson algorithm or other efficient 
numerical iteration algorithms [2-4, 9-14]. 
Let C be a circuit that satisfies the standing 
assumptions, and let T be a normal tree and L its 
corresponding co-tree. Our first task is to form a 
linear m-port , with m = nĈ e+nj+nv+nc (where, for 
example, nv (nc) is the c.v. (c.c.) nonlinear element 
number), obtained by extracting from C all 
independent sources, all c.v. nonlinear elements 
(capacitors and resistors), and all c.c. nonlinear 
elements (inductors and resistors), as shown in Fig. 2, 
a. In view of our procedure for selecting the NT, all 
extracted elements on the left of Ĉ  are tree branches 
and therefore constitute a part of NT and all elements 
on the right of Ĉ  are co-tree branches (links) and 
belong to the co-tree L. The remaining elements in the 

m-port  consist only of linear capacitors, inductors 
(magnetic coupled or not), resistors, and linear 
controlled sources. Substituting all nonlinear elements 
from the left side in Fig. 2, a by ideal voltage sources 
and all nonlinear elements from the right side by ideal 
current sources, and replacing the linear capacitors 
and inductor by their resistive discrete circuit models 
associated with a given integration algorithm (for 
example, the backward Euler algorithm), we obtain 
the linear and time-invariant circuit in Fig. 2, b. 

Ĉ

 

Fig. 1. A uniform grid  { ( )i,jt } of size ( ) ( 11 12 )+×+ np . 

 

Fig.2. a) The linear m-port Ĉ  created by extracting all independent 
sources and all nonlinear elements; 

b) Linear m-port Ĉ  with the tree voltage ports appearing on the 
left side and the cotree current ports appearing on the right side. 

10
BUPT



Applying the superposition theorem to the linear m-
port in Fig. 2, b, for the time moment Ĉ ( )j,it , when 
all linear capacitors and all linear inductors are 
replaced by discrete resistive models associated to 
backward Euler algorithm, and at the (k+1)th  iteration 
of the Newton-Raphson algorithm, it results: 
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(1) 

In relation (1) ( )v,cc,v AB   represents the current 
(voltage) transfer coefficient matrix of the tree-branch 
(link) v.c. (c.c.)  nonlinear elements in respect of the 
link (tree-branch) c.c. (v.c.) nonlinear elements; 

( )
( )

( )
( )( )11  ++ k

i,j,c
k

i,j,v iv  is the voltage (current) vector of the v.c. 
(c.c.) tree-branch (link) nonlinear elements from the 
time moment )( i,jt , and the (k+1)th iteration and 
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voltage (current) vector of the ideal independent 
voltage (current) sources from the companion scheme 
of linear inductors (capacitors) at the time moments 
( i,jt 1− )  and ( )1−i,jt . 

If we denote by: 

( )
( ) ( )

( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ; ; ; 1

1
11

1

1
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= +

+
++

+

+
+

k
i,j,c

k
k,vk

i,j
c,cv,c

c,vv,v
k

i,j,c

k
i,j,vk

i,j i
v

x
RA
BG

H
v
i

X  
 

(2,a) 
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(2,b) 

the equations (1) become 

( )
( )

( )
( )

( ) ( ) ,i,jLCi,j
k

i,j
k

i,j 11
11   −−
++ ++= SSHxX  (3) 

where: H is circuit hybrid matrix;  represents the 
source vector corresponding to the independent 
voltage and current sources from the time 

( )i,jS

( )j,it  and 

)  is the source vector corresponding to the 
companion schemes of the linear inductors and 
capacitors, at the previous time steps 

( 11 −− i,jLCS

( )i,jt 1−  
and ( )1−i,jt . 
 The nonlinear resistor characteristics 
approximated by piecewise linear continuous curves 
have, for the time moment ( )j,it  and the (k+1)th 
iteration, the following expressions: 
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for the v. c. nonlinear resistors, and 
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for the c. c. nonlinear resistors. 
According to the equation (4) ((5)) each v. c. (c. c.) 
nonlinear resistor, for any arbitrary segment ( )

( )k
i,js (for 

the moment ( )j,it , and the (k+1)th iteration), can be 
substituted by the equivalent circuit shown in Fig. 3,a 
(Fig. 3,b). 

 
Fig. 3. Equivalent circuits for the piecewise linear nonlinear 

resistors. 

The current expression of a v. c. nonlinear 
capacitor, when it’s characteristic is approximated by 
piecewise linear continuous curve, and for the time 
moment ( )j,it , and the (k+1)th iteration (using the 
backward Euler integration algorithm), has the 
following expression: 
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(6) 

According to the equation (6) each v. c. nonlinear 
capacitor can be substituted by a discrete resistive 
model associated with: backward Euler algorithm 
shown in Fig. 4. The voltage expression of a c.c. 
nonlinear inductor, when it’s characteristic is 
approximated by piecewise linear continuous curve, 
and for the time moment ( )j,it , and the (k+1)th 
iteration (using the backward Euler integration 
algorithm), has the following expression: 
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Fig.4. Discrete resistive model associated with: backward Euler 
algorithm for a v. c. nonlinear capacitor. 
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(7) 

Equation (7) leads to the discrete resistive model 
associated with: backward Euler algorithm shown in 
Fig. 5. 

 

Fig.5. Discrete resistive model associated with: backward Euler 
algorithm for a c. c. nonlinear inductor. 

Introducing into equations (1) the linear piecewise 
characteristic of the nonlinear circuit elements, we 
obtain the circuit equations from the moment ( )j,it , 

and the (k+1)th iteration 
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Equation (8) constitute m=m1+m2 independent 
equations in m1 unknown voltages – voltage 
vector , and m( )

( )1+k
i,jvv 2 unknown currents – current 

vector ( )
( 1+k

i,jci
)

) 11 −− i,jLCS

, and are called the hybrid equations of 
the nonlinear circuit C. 

We observe that since the hybrid submatrices 
 and  and the two source 

vectors ,  and )  (relations (2, 

b)) are fixed, only

,,, v,cc,vv,v ABG c,cR
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, and 

( )
( )( )1+k

i,jc sê  need be changed in each iteration. 
Therefore, the Jacobian matrix in Eq. (8) can be 
obtained simple from the “slope” of the appropriate 
segment of the nonlinear curves. Keeping as symbols 
only the parameters associated to the nonlinear circuit 
elements the Newton-Raphson algorithm becomes 
very efficient. Structure of the hybrid equations (8) is 
adequate also to solve the nonlinear circuits by the 
electrical machine heating and/or cooling system is 
modelled. 

III. EXAMPLE 

 Let be the nonlinear circuit shown in Fig. 6, a. 

 

(a) 

 

(b) 
Fig. 6. a) Diagram circuit; b) Linear m-port . Ĉ

The algorithm of the partial symbolic hybrid analysis, 
for the nonlinear circuit in Fig. 6, a, consists in the 
following steps: 

1. According to the assumptions from Section II, we 
generate the normal tree. Tree branches is represented 
in Fig 6, a by dashed lines. 

2. We substitute, at the time moment ( )j,it , and the 
(k+1)th iteration, all c.v. nonlinear elements by ideal 
voltage sources and all c.c. nonlinear elements by 
ideal current sources, and replacing the linear 
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capacitors and inductors by their resistive discrete 
circuit models associated with a given integration 
algorithm (for example, the backward Euler 
algorithm), we obtain the linear and time-invariant 
circuit in Fig. 6, b. 

3. For the numerical values of the linear element 
parameters: L7 = 1µH, C6 = 2pF, R6 = 2kΩ, C7 = 4pF, 
R7 = 1kΩ, G5_6 = 0.001S, a8_7 = 2, h1 = 10-10s, h2 = 
5.10-12s, RC6 = 2.38Ω, RL7 =210kΩ and RC7 = 1.19Ω it 
is analyzed, by partial symbolic hybrid method [10, 
12-14], the linear m-port in Fig. 5, b. In this way we 
obtain the hybrid equations (1). Running  SYMNA 
program [13] we obtain the following hybrid 
equations: 
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                (9) 

4. Introducing into equations (9) the linear piecewise 
characteristic of the nonlinear circuit elements, we 
obtain the circuit equations from the time moment 
( )j,it , and the (k+1)   iteration: th

( )
( )( )

( )
( )( )

( )
( )( )

( )
( )

( )
( )

( )
( )

( )

( )

( )

( )

( )

( )( )
( )( )
( )( )

( )

( )

.

e

j
.

se
sj
sj

j

e

..

..

..

i

j

e

...
...

...

i
v
v

sR..
..sG.

...sG

)i,jLc

i,jCv
k

i,jLc

k
i,jCv

k
i,jRv

i,j

i,j

i,jC

i,jC

i,jL

k
i,j

k
i,j

k
i,j

k
i,jdLc

k
i,jdCv

k
i,jdv

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡−

+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅−
⋅

+

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
⋅−⋅
⋅−⋅−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⋅+⋅−

−−⋅+

−−

−−
−

−

−−

−−

−−
−−

−−

+

+

+

−−

−

113

112

3

2

1

9

45

5

117

116

117
55

55

1
3

1
2

1
1

3

3
2

5

5
1

00

000095720
001047850
001047850

018240000095720
109117000118801047850
109117000237701047850

011011
9998010504401047850

0100100401047850

            (10) 
5. The structure of the equations (10) allows to use an 
efficient iteration algorithm (Newton Raphson 
algorithm, Katzenelson algorithm [1, 3]). We remark 
that from an iteration to the other must be chanced 
only the parameters associated to the nonlinear circuit 
elements. The Jacobian matrix in Eqs. (10) can be 
obtained simple from the “slope” of the appropriate 
segment of the nonlinear curves. Considering e4(t) = 
10sin(2π107t) and j9(t) = 2sin(2π1010t) mA, and using 
the ACAP program [14] we obtain the results 
represented in Figs. 7 and 8.  

 
Fig. 7. Variations of v1, v2, and v3. 

Fig. 8. Variation of i1. 

IV. CONCLUSION 

The hybrid analysis method of the nonlinear analog 
circuits presents the advantage that it allows the 
computation only once at the beginning of the 
iteration process of those parts of the circuit equations 
that exclusively depend on the parameters of the 
linear elements.  

The technique of the hybrid matrix generation is 
very useful for steady-state response computation and 
it may be successfully integrated in the frequency-
domain approach. The method is remarkable by its 
great efficiency and generality. The procedure uses 
multiple time variables to describe multi-rate 
behavior, leading to multi-time partial differential 
equations. The hybrid equation formulation in a 
partially symbolic reduced form is used in order to 
obtain a MPDE form with a minimum number of 
independent variables. A new way to compute the 
appropriate BCs of the MPDE in order to accelerate 
the reaching of the periodic steady state is proposed.  

Combining this hybrid procedure with a very 
efficient implicit integration algorithm, in which only 
the symbols of the parameters corresponding to the 
nonlinear circuit elements are considered, a 
significant efficiency in circuit analysis and an 
improvement of the accuracy in the numerical 
calculations are obtained.  
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