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Abstract – The aim of this paper is to propose 
some new techniques for the analysis of Linear 
Feedback Shift Registers LFSR and of Multiple 
Input Shift Registers MISR, based on their 
generating polynomials. First, mathematical 
representations of those polynomials ranks are 
found. Second, analytic expressions for their 
weights are discovered. Using these parameters the 
LFSR and MISR, associated to a given generating 
polynomial can be designed and simulated. Some 
simulation results proving the qualities of the new 
design, proposed in this paper, are presented. 
Keywords: cryptography, feedback shift register, 
calculation. 
 
 

I. INTRODUCTION 
 

The Shift Register Cryptosystems’ variant has 
been developed from the evolution of the 
encrypting techniques [2].  
Such a cryptosystem is based upon generating a 
sequence in a finite field and for obtaining it a 
Feedback Shift Register is used. 
The Linear Feedback Shift Registers are used in 
a variety of domains [3]: sequences generators; 
counters; BIST (Built-In-Self-Test) [4]; 
encryption; PRBS (Pseudo-Random Bit 
Sequences). 
There are two types of LFSR from the utilization 
point of view:  

• the well-known LFSR, that is a “in-
tapping” LFSR; 

• the “out-tapping” LFSR. 
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The “in-tapping” LFSR is usually called a MISR 
(Multiple Input Shift Register). 
Cycle codes belong to algebraically codes for 
errors detecting.  
All arithmetical operations will be developed in a 
Galois group. 
This paper develops an analysis of a Linear 
Feedback Shift Register and a Multiple Input 
Shift Register. 

 
 

II. THE DESCRIPTION OF THE 
EXPERIMENT 

 
First of all, the algorithm was applied using 
grade 4 polynomials. 
The results were correct and accurate. 
Then the next natural step was to change the 
grade of the polynomial used for generating the 
scheme used in the calculus process. The chosen 
grade was 8, [1]. 
The Rijndael algorithm (chosen as replacement 
for the well known DES) is based on the 
implementing with shift registers of a method 
based on working in a Galois field, with the 
generator polynomial an irreducible grade 8 
polynomial, thus substantially improving 
security [1]. 
Out of the programs, we came to the conclusion 
that the results should also rely on the previous 
link (given by the “equal with one” coefficient of 
the polynomial). 
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This “specific” link that is also part of the 
calculation for MISR is to be taken after the 
XOR was made for that rank of the polynomial. 
The mathematically representation of each rank 
of the polynomial was made accordingly to these 
“specific” links. 
Also, this new revealed thing was verified with 
the help of programs. 
In the end, correlating the results obtained for the 
grade 4 polynomials with the results obtained for 
the 8 grade polynomials, we came to   
mathematical relations for calculating each rank. 
The knowledge of the generating polynomial 
rank is very important in the estimation of the 
security level of a cryptosystem.  
These relations point out the previous existing 
links and act similarly to a feedback “calculated” 
also from the previous links. 
The link acts after the XOR was calculated and 
in this way takes the result that was previously 
obtained. 
In order to demonstrate that those presented 
above are correct and precise, we made an 
analysis for all the 30 irreducible grade 8 
polynomials that were also found in another 
program made by us, coming to three particular 
cases. 
Out of this analysis, there was made a 
generalization, that led to the writing of specific 
programs for each irreducible grade 8 
polynomial, used for the substantially 
improvement of security [1]. 
The simulation programs were tested in both 
ways: with the method of making tables 
according to the proposed circuits and also with 
mathematical methods that materialize the hard 
operations. 
As input data sets were used several different 
multiple combinations of bits, randomly 
generated. 
The two programs are described in this paper, 
one of them simulating the functioning of a 
LFSR and the functioning of an analytic MISR, 
and the other one simulating the functioning of a 
synthetic MISR. The programs are based on 
irreducible grade 8 polynomials, allowing the 
user to introduce the coefficients of the chosen 
polynomial. 
There have been chosen three polynomials for 
testing these two programs. 
The first one is the polynomial 
P(x)=x8+x6+x5+x3+1; the coefficients would be 
introduced in the program as it follows: 1 0 1 1 0 
1 0 0 1, and would lead to the following scheme 
depicted in “Fig. 1.”: 
 

 
Fig. 1. Scheme for the polynomial 

P(x)=x8+x6+x5+x3+1 
 

In the program the weights for each chosen 
polynomial are calculated.  
The knowledge of those weighs is necessary for 
the design of the LFSR and MISR associated to 
the corresponding generating polynomial.  
For the case in the “Fig. 1.” Scheme, the weights 
are: 
S0=1 P(x) 
S1=x P(x) 
S2=x2 P(x) 
S3=(x3+x) P(x) 
S4=(x4+x2+x) P(x) 
S5=(x5+x3+x2) P(x) 
S6=(x6+x4+x3+x) P(x) 
S7=(x7+x5+x4+x2) P(x) 
The second one is the polynomial 
P(x)=x8+x4+x3+x+1; the coefficients would be 
introduced in the program as it follows: 1 0 0 0 1 
1 0 1 1, and would lead to the following scheme 
depicted in “Fig. 2.” : 
 

 
Fig. 2. Scheme for the polynomial 

P(x)=x8+x4+x3+x+1 
 

In the program the weights for each chosen 
polynomial are calculated.  
For the case in the “Fig. 2.” scheme, the weights 
are: 
S0=1 P(x) 
S1=x P(x) 
S2=x2 P(x) 
S3=x3 P(x) 
S4=x4 P(x) 
S5=(x5+x) P(x) 
S6=(x6+x2+x) P(x) 
S7=(x7+x3+x2) P(x) 
 
The third one is the polynomial 
P(x)=x8+x7+x6+x4+1; the coefficients would be 
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introduced in the program as it follows: 1 1 1 0 1 
0 0 0 1, and would lead to the following scheme 
depicted in “Fig.3.”: 
 

 
Fig. 3. Scheme for the polynomial 

P(x)=x8+x7+x6+x4+1 
 

In the program the weights for each chosen 
polynomial are calculated.  
For the case in “Fig. 3.” scheme, the weights are: 
S0=1 P(x) 
S1=x P(x) 
S2=(x2+x) P(x) 
S3=(x3+x2+x) P(x) 
S4=(x4+x3+x2) P(x) 
S5=(x5+x4+x3+x) P(x) 
S6=(x6+x5+x4+x2) P(x) 
S7=(x7+x6+x5+x3) P(x) 
In order to get the final results from the 
programs, the user has to introduce in the 
program the polynomial’s coefficients as 
described above and also the input data sets, 
consisting of 8 columns, each of them having a 
length of 2n elements (where n is an integer). 
In the MISRS.CPP program the synthetic MISR 
is calculated for the input data given by the user  
and then the results are provided in the end. 
Calculating the results consists of categorizing 
the 8 SRi steps in which the scheme will be 
treated in 3 major types of ways according to the 
below described types:  

1. the first type is characterized by the 
existence of the coefficient of the i 
power corresponding to the SRi; in 
this case the procedure prel_SA is 
called, having i+1 as an argument; 

2. the second type is characterized by 
the absence of the coefficient of the 
i power corresponding to the SRi; 
in this case the procedure prel_SN 
is called, having i+1 as an 
argument; 

3. the third type is actually a 
particular one: it refers to the case 
of SR0, and the procedure prel_SZ 
is called, having no argument. 

The prel_SZ procedure is reproduced below: 

void prel_SZ()//SR0 calculation 
{ int i,j,xor=0; 
  for (j=1;j<=n;j++) 
  { xor=0; 
    for (i=0;i<8;i++) 
    { if (ax[i]==1) //there is a //“connection” 
    xor=xor^sr[i][j-1]; 
  if (i!=0) 
    sr[i][j]=sr[i-1][j-1]; 
 } 
    sr[0][j]=xor^col[0][j-1]; 
   } 
  for (i=0;i<8;i++) 
    rez[i][0]=sr[i][n]; 
 } 
In this procedure, the result was calculated by 
translating the elements corresponding to the 
SRis, with i from 1 to 7, and by “collecting” the 
feedback in the SR0 while executing XOR with 
all the SRis that have a corresponding 
“connection” (the power i exists in the chosen 
polynomial). 
The prel_SN procedure is reproduced below: 
void prel_SN(int ind) 
{ int i,j,xor=0; 
  for (i=0;i<8;i++)  

for(j=0;j<51;j++)         sr[i][j]=0; 
  for (j=1;j<=n;j++) 
  { xor=0; 
    for (i=0;i<8;i++) 
    { if (ax[i]==1)  
    xor=xor^sr[i][j-1]; 
  if (i!=0) 
    sr[i][j]=sr[i-1][j-1]; 
 } 
    sr[ind][j]=col[ind][j-1] ^sr[ind-1][j-1]; 
    sr[0][j]=xor; 
   } 
  for (i=0;i<8;i++) 
    rez[i][ind]=sr[i][n]; 
 } 
In this procedure, the result was calculated by 
translating the elements corresponding to the 
SRis, with i from 1 to 7 without ind (the 
argument of the procedure), by “connecting” the 
feedback in the SR0 while executing XOR with 
all the SRis that have a corresponding 
“connection” (the power i exists in the chosen 
polynomial) and by executing XOR with the 
element of the corresponding column and the 
element of the corresponding SRind. 
The prel_SA procedure is reproduced below: 
void prel_SA(int ind) 
{ int i,j,k,xor=0; 
  for (i=0;i<8;i++)  

for(j=0;j<51;j++) sr[i][j]=0; 
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  for (j=1;j<=n;j++) 
  { xor=0; 
    for (i=0;i<8;i++) 
    { if ((ax[i]==1)&& 
         ((ind-1)!=i)) 
    xor=xor^sr[i][j-1]; 
  if (i!=0) 
    sr[i][j]=sr[i-1][j-1]; 
 } 
    sr[ind][j]=col[ind][j-1] 
^sr[ind-1][j-1]; 
    sr[0][j]=xor^sr[ind][j]; 
   } 
  for (i=0;i<8;i++) 
    rez[i][ind]=sr[i][n]; 
 } 
In this procedure, the result was calculated by 
translating the elements corresponding to the 
SRis, with i from 1 to 7 without ind (the 
argument of the procedure), by “connecting” the 
feedback in the SR0 while executing XOR with 
all the SRis that have a corresponding 
“connection” (the power i exists in the chosen 
polynomial) and with the current corresponding 
SRind, and by executing XOR with the element 
of the corresponding column and the element of 
the corresponding SRind. 
The difference between prel_SN and prel_SA is 
given by the SRind: it is taken into consideration 
in the procedure prel_SA in SR0, and does not 
appear in the procedure prel_SN in SR0.  
The final result is calculated by making XORs 
with all the partial results obtained in the 8 steps 
on each and every column of all the eight 
columns. 
 
 

III. THE RESULTS’ INTERPRETATION 
 
In the MISRALF.CPP program the analytic 
MISR and LFSR are calculated for the input data 
given by the user and the results are provided in 
the end.  
For the given polynomial, the program calculates 
in the procedure genr the corresponding 8 
weights. These weights are a base for calculation 
MISR and LFSR also.  
The whole procedure for the analytic MISR 
consists of 8 steps: for each step is considered 
the corresponding column which is multiplied by 
the corresponding weight, then it is divided by 
the chosen polynomial, again it is multiplied by 
x8 and, finally, divided by the chosen 
polynomial.  

The result obtained in this way is the result of the 
current step of the calculation for the analytical 
MISR.  
For each of the eight cases, the result is obtained 
as described above. 
The final result for the analytical MISR is 
obtained by making XORs with all the results of 
the 8 steps on each and every column of all the 
eight columns.  
The interpretation of this final result is that the 
ones and zeroes (eight by the number) obtained 
are the coefficients of a polynomial. The grade of 
this polynomial may be any of those between 
seven and zero. 
The whole procedure for the LFSR is simpler: it 
is obtained by making XOR with all the weights 
multiplied by the corresponding column, and 
then, using the result obtained (whose grade 
gives the number of rounds that are to be done) 
as o column corresponding to the SR0 and no 
other columns, translating all the elements 
without 0, and “collecting” the feedback in the 0 
element executing XOR with all the other 
elements that have a corresponding “connection” 
(the power with that rank exists in the chosen 
polynomial).  

In this case, the final result consisting of those 
eight figures (ones and zeroes) represents also 
the coefficients of a polynomial, just as in the 
case of MISR. 

The results obtained from the MISRS.CPP 
program and the other two results obtained from 
the MISRALF.CPP program are the same, 
especially since they have been obtained from 
the same input data used for calculation that are 
equivalent. 
These kinds of calculation for verifying the 
correctness of the results have been made 
primarily on paper. 
 
 

IV. CONCLUSIONS 
 
Analyzing the experiments already presented it 
can be observed that the simulation speed for the 
MISR is higher versus the simulation speed for 
the LFSR. 
The mathematical expressions of generating 
polynomial weights, reported in this paper, were 
very useful for the simulation of the 
corresponding LFSR and MISR. 
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