
Buletinul Ştiinţific al Universităţii Politehnica” din Timişoara
Seria ELECTRONICĂ şi TELECOMUNICAŢII

TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 50(64), Fascicola 2, 2005

A comparison between a linear feed-back shift register
and a multiple input shift register

Mirella Amelia V. Mioc1
1

Abstract – The aim of this paper is to propose
some new techniques for the analysis of Linear
Feedback Shift Registers LFSR and of Multiple
Input Shift Registers MISR, based on their
generating polynomials. First, mathematical
representations of those polynomials ranks are
found. Second, analytic expressions for their
weights are discovered. Using these parameters the
LFSR and MISR, associated to a given generating
polynomial can be designed and simulated. Some
simulation results proving the qualities of the new
design, proposed in this paper, are presented.
Keywords: cryptography, feedback shift register,
calculation.

I. INTRODUCTION

The Shift Register Cryptosystems’ variant has
been developed from the evolution of the
encrypting techniques [2].
Such a cryptosystem is based upon generating a
sequence in a finite field and for obtaining it a
Feedback Shift Register is used.
The Linear Feedback Shift Registers are used in
a variety of domains [3]: sequences generators;
counters; BIST (Built-In-Self-Test) [4];
encryption; PRBS (Pseudo-Random Bit
Sequences).
There are two types of LFSR from the utilization
point of view:

• the well-known LFSR, that is a “in-
tapping” LFSR;

• the “out-tapping” LFSR.

1 Facultatea de Automatica si Calculatoare,
Departamentul de Calculatoare, Bd. V, Parvan
Nr. 2, 300223, Timisoara, e-mail:
mmioc@cs.utt.ro

The “in-tapping” LFSR is usually called a MISR
(Multiple Input Shift Register).
Cycle codes belong to algebraically codes for
errors detecting.
All arithmetical operations will be developed in a
Galois group.
This paper develops an analysis of a Linear
Feedback Shift Register and a Multiple Input
Shift Register.

II. THE DESCRIPTION OF THE
EXPERIMENT

First of all, the algorithm was applied using
grade 4 polynomials.
The results were correct and accurate.
Then the next natural step was to change the
grade of the polynomial used for generating the
scheme used in the calculus process. The chosen
grade was 8, [1].
The Rijndael algorithm (chosen as replacement
for the well known DES) is based on the
implementing with shift registers of a method
based on working in a Galois field, with the
generator polynomial an irreducible grade 8
polynomial, thus substantially improving
security [1].
Out of the programs, we came to the conclusion
that the results should also rely on the previous
link (given by the “equal with one” coefficient of
the polynomial).

39

BUPT

This “specific” link that is also part of the
calculation for MISR is to be taken after the
XOR was made for that rank of the polynomial.
The mathematically representation of each rank
of the polynomial was made accordingly to these
“specific” links.
Also, this new revealed thing was verified with
the help of programs.
In the end, correlating the results obtained for the
grade 4 polynomials with the results obtained for
the 8 grade polynomials, we came to
mathematical relations for calculating each rank.
The knowledge of the generating polynomial
rank is very important in the estimation of the
security level of a cryptosystem.
These relations point out the previous existing
links and act similarly to a feedback “calculated”
also from the previous links.
The link acts after the XOR was calculated and
in this way takes the result that was previously
obtained.
In order to demonstrate that those presented
above are correct and precise, we made an
analysis for all the 30 irreducible grade 8
polynomials that were also found in another
program made by us, coming to three particular
cases.
Out of this analysis, there was made a
generalization, that led to the writing of specific
programs for each irreducible grade 8
polynomial, used for the substantially
improvement of security [1].
The simulation programs were tested in both
ways: with the method of making tables
according to the proposed circuits and also with
mathematical methods that materialize the hard
operations.
As input data sets were used several different
multiple combinations of bits, randomly
generated.
The two programs are described in this paper,
one of them simulating the functioning of a
LFSR and the functioning of an analytic MISR,
and the other one simulating the functioning of a
synthetic MISR. The programs are based on
irreducible grade 8 polynomials, allowing the
user to introduce the coefficients of the chosen
polynomial.
There have been chosen three polynomials for
testing these two programs.
The first one is the polynomial
P(x)=x8+x6+x5+x3+1; the coefficients would be
introduced in the program as it follows: 1 0 1 1 0
1 0 0 1, and would lead to the following scheme
depicted in “Fig. 1.”:

Fig. 1. Scheme for the polynomial

P(x)=x8+x6+x5+x3+1

In the program the weights for each chosen
polynomial are calculated.
The knowledge of those weighs is necessary for
the design of the LFSR and MISR associated to
the corresponding generating polynomial.
For the case in the “Fig. 1.” Scheme, the weights
are:
S0=1 P(x)
S1=x P(x)
S2=x2 P(x)
S3=(x3+x) P(x)
S4=(x4+x2+x) P(x)
S5=(x5+x3+x2) P(x)
S6=(x6+x4+x3+x) P(x)
S7=(x7+x5+x4+x2) P(x)
The second one is the polynomial
P(x)=x8+x4+x3+x+1; the coefficients would be
introduced in the program as it follows: 1 0 0 0 1
1 0 1 1, and would lead to the following scheme
depicted in “Fig. 2.” :

Fig. 2. Scheme for the polynomial

P(x)=x8+x4+x3+x+1

In the program the weights for each chosen
polynomial are calculated.
For the case in the “Fig. 2.” scheme, the weights
are:
S0=1 P(x)
S1=x P(x)
S2=x2 P(x)
S3=x3 P(x)
S4=x4 P(x)
S5=(x5+x) P(x)
S6=(x6+x2+x) P(x)
S7=(x7+x3+x2) P(x)

The third one is the polynomial
P(x)=x8+x7+x6+x4+1; the coefficients would be

40

BUPT

introduced in the program as it follows: 1 1 1 0 1
0 0 0 1, and would lead to the following scheme
depicted in “Fig.3.”:

Fig. 3. Scheme for the polynomial

P(x)=x8+x7+x6+x4+1

In the program the weights for each chosen
polynomial are calculated.
For the case in “Fig. 3.” scheme, the weights are:
S0=1 P(x)
S1=x P(x)
S2=(x2+x) P(x)
S3=(x3+x2+x) P(x)
S4=(x4+x3+x2) P(x)
S5=(x5+x4+x3+x) P(x)
S6=(x6+x5+x4+x2) P(x)
S7=(x7+x6+x5+x3) P(x)
In order to get the final results from the
programs, the user has to introduce in the
program the polynomial’s coefficients as
described above and also the input data sets,
consisting of 8 columns, each of them having a
length of 2n elements (where n is an integer).
In the MISRS.CPP program the synthetic MISR
is calculated for the input data given by the user
and then the results are provided in the end.
Calculating the results consists of categorizing
the 8 SRi steps in which the scheme will be
treated in 3 major types of ways according to the
below described types:

1. the first type is characterized by the
existence of the coefficient of the i
power corresponding to the SRi; in
this case the procedure prel_SA is
called, having i+1 as an argument;

2. the second type is characterized by
the absence of the coefficient of the
i power corresponding to the SRi;
in this case the procedure prel_SN
is called, having i+1 as an
argument;

3. the third type is actually a
particular one: it refers to the case
of SR0, and the procedure prel_SZ
is called, having no argument.

The prel_SZ procedure is reproduced below:

void prel_SZ()//SR0 calculation
{ int i,j,xor=0;
 for (j=1;j<=n;j++)
 { xor=0;
 for (i=0;i<8;i++)
 { if (ax[i]==1) //there is a //“connection”
 xor=xor^sr[i][j-1];
 if (i!=0)
 sr[i][j]=sr[i-1][j-1];
 }
 sr[0][j]=xor^col[0][j-1];
 }
 for (i=0;i<8;i++)
 rez[i][0]=sr[i][n];
 }
In this procedure, the result was calculated by
translating the elements corresponding to the
SRis, with i from 1 to 7, and by “collecting” the
feedback in the SR0 while executing XOR with
all the SRis that have a corresponding
“connection” (the power i exists in the chosen
polynomial).
The prel_SN procedure is reproduced below:
void prel_SN(int ind)
{ int i,j,xor=0;
 for (i=0;i<8;i++)

for(j=0;j<51;j++) sr[i][j]=0;
 for (j=1;j<=n;j++)
 { xor=0;
 for (i=0;i<8;i++)
 { if (ax[i]==1)
 xor=xor^sr[i][j-1];
 if (i!=0)
 sr[i][j]=sr[i-1][j-1];
 }
 sr[ind][j]=col[ind][j-1] ^sr[ind-1][j-1];
 sr[0][j]=xor;
 }
 for (i=0;i<8;i++)
 rez[i][ind]=sr[i][n];
 }
In this procedure, the result was calculated by
translating the elements corresponding to the
SRis, with i from 1 to 7 without ind (the
argument of the procedure), by “connecting” the
feedback in the SR0 while executing XOR with
all the SRis that have a corresponding
“connection” (the power i exists in the chosen
polynomial) and by executing XOR with the
element of the corresponding column and the
element of the corresponding SRind.
The prel_SA procedure is reproduced below:
void prel_SA(int ind)
{ int i,j,k,xor=0;
 for (i=0;i<8;i++)

for(j=0;j<51;j++) sr[i][j]=0;

41

BUPT

 for (j=1;j<=n;j++)
 { xor=0;
 for (i=0;i<8;i++)
 { if ((ax[i]==1)&&
 ((ind-1)!=i))
 xor=xor^sr[i][j-1];
 if (i!=0)
 sr[i][j]=sr[i-1][j-1];
 }
 sr[ind][j]=col[ind][j-1]
^sr[ind-1][j-1];
 sr[0][j]=xor^sr[ind][j];
 }
 for (i=0;i<8;i++)
 rez[i][ind]=sr[i][n];
 }
In this procedure, the result was calculated by
translating the elements corresponding to the
SRis, with i from 1 to 7 without ind (the
argument of the procedure), by “connecting” the
feedback in the SR0 while executing XOR with
all the SRis that have a corresponding
“connection” (the power i exists in the chosen
polynomial) and with the current corresponding
SRind, and by executing XOR with the element
of the corresponding column and the element of
the corresponding SRind.
The difference between prel_SN and prel_SA is
given by the SRind: it is taken into consideration
in the procedure prel_SA in SR0, and does not
appear in the procedure prel_SN in SR0.
The final result is calculated by making XORs
with all the partial results obtained in the 8 steps
on each and every column of all the eight
columns.

III. THE RESULTS’ INTERPRETATION

In the MISRALF.CPP program the analytic
MISR and LFSR are calculated for the input data
given by the user and the results are provided in
the end.
For the given polynomial, the program calculates
in the procedure genr the corresponding 8
weights. These weights are a base for calculation
MISR and LFSR also.
The whole procedure for the analytic MISR
consists of 8 steps: for each step is considered
the corresponding column which is multiplied by
the corresponding weight, then it is divided by
the chosen polynomial, again it is multiplied by
x8 and, finally, divided by the chosen
polynomial.

The result obtained in this way is the result of the
current step of the calculation for the analytical
MISR.
For each of the eight cases, the result is obtained
as described above.
The final result for the analytical MISR is
obtained by making XORs with all the results of
the 8 steps on each and every column of all the
eight columns.
The interpretation of this final result is that the
ones and zeroes (eight by the number) obtained
are the coefficients of a polynomial. The grade of
this polynomial may be any of those between
seven and zero.
The whole procedure for the LFSR is simpler: it
is obtained by making XOR with all the weights
multiplied by the corresponding column, and
then, using the result obtained (whose grade
gives the number of rounds that are to be done)
as o column corresponding to the SR0 and no
other columns, translating all the elements
without 0, and “collecting” the feedback in the 0
element executing XOR with all the other
elements that have a corresponding “connection”
(the power with that rank exists in the chosen
polynomial).

In this case, the final result consisting of those
eight figures (ones and zeroes) represents also
the coefficients of a polynomial, just as in the
case of MISR.

The results obtained from the MISRS.CPP
program and the other two results obtained from
the MISRALF.CPP program are the same,
especially since they have been obtained from
the same input data used for calculation that are
equivalent.
These kinds of calculation for verifying the
correctness of the results have been made
primarily on paper.

IV. CONCLUSIONS

Analyzing the experiments already presented it
can be observed that the simulation speed for the
MISR is higher versus the simulation speed for
the LFSR.
The mathematical expressions of generating
polynomial weights, reported in this paper, were
very useful for the simulation of the
corresponding LFSR and MISR.

42

BUPT

V. REFERENCES

[1]B. Schneier, “Applied Cryptography: Protocols,
Algorithms, and Source Code in C”, John Wiley and Sons,
New York, 1996.
[2] H. Niederreiter, “A Public–Key Cryptosystem Based on
Shift Register Sequences”, Proceedings of EUROCRYPT’85,
Linz, Austria 1985.

[3] Horowitz and Hill, “The Art of Electronics”, 2nd edition,
1989.
[4] A. Al–Yamani II, “Logic BIST: Theory, Problems, and
Solutions”, Stanford University, RATS/SUM02, 2002.
[5]http://www.mail-archive.com/cryptography-
digests@senator-bedfellow.mit.edu/msg02659. html
[6]http://www-2.cs.cmu.edu/afs/cs/project/pscico -
guyb/realworld/www/slidesS03/crypto2.4up.pdf

43

BUPT

