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Abstract— Given α ∈ (0, 1), the coverage probability of the
100(1 − α)% Clopper-Pearson Confidence Interval (CPCI) for
estimating a binomial parameter p is proved to be larger than or
equal to 1−α/2 for sample sizes less than a bound that depends
on p. This is a mathematical evidence that, as noticed in recent
papers on the basis of numerical results, the CPCI coverage
probability can be much higher than the desired confidence
level and thence, that the Clopper-Pearson approach is mostly
inappropriate for forming confidence intervals with coverage
probabilities close to the desired confidence level.

I. INTRODUCTION

INTERVAL estimation of a binomial proportion p is one of
the most basic and methodologically important problems in

practical statistics. A considerable literature exists on the topic
and manifold methods have been suggested for bracketing a
binomial proportion within a confidence interval.

Among those methods, the Clopper-Pearson Confidence
Interval (CPCI), originally introduced in 1934 by Clopper and
Pearson [4], is often referred as the ”exact” procedure by some
authors for it derives from the binomial distribution without
resorting to any approximation to the binomial. However,
despite this ”exacteness”, the CPCI is basically conservative
because of the discreteness of the binomial distribution: given
α ∈ (0, 1), the coverage probability of the 100(1−α)% CPCI
is above or equal to the nominal confidence level (1− α).

In this paper, it is proved that this coverage probability is
actually larger than or equal to 1−α/2 if the sample size is less
than ln(α/2)/ ln(max(p, 1−p)). This bound basically depends
on the proportion itself. Thence, as suggested by numerical
results presented in [2] and [3], the CPCI is not suitable
in practical situations when getting a coverage probability
close to the specified confidence level is more desirable than
guaranteeing a coverage probability above or equal to the said
confidence level.

II. THEORETICAL RESULTS

Throughout the rest of this paper, α stands for some real
value in the interval (0, 1) and n for some natural number.
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We start by giving a description of the 100(1−α)% CPCI,
that is the CPCI with level of confidence (1− α) where α ∈
(0, 1). This description is purposely brief for it focuses only
on the material needed for stating proposition 1 below. For
further details on the construction of the CPCI, the reader can
refer to numerous papers and textbooks on statistics ( [2], [3],
[5], [6] amongst many others).

Let (`k)k∈{0,...,n} be the sequence defined as follows. We
put

`0 := 0. (1)

For k ∈ {1, . . . , n}, `k is defined as the unique solution in
(0, 1) for θ in the equation

n∑
i=k

(
n
i

)
θi(1− θ)n−i = α/2. (2)

Similarly, the sequence (uk)k∈{0,...,n} is defined as follows.
We set

un := 1 (3)

and, for k ∈ {0, . . . , n−1}, uk is the unique solution in (0, 1)
for θ in the equation

k∑
i=0

(
n
i

)
θi(1− θ)n−i = α/2. (4)

Let X henceforth stand for a binomial variate for sample size
n and binomial parameter p ∈ [0, 1]. In other words, X stands
for the total number of successes in n independent trials with
constant probability p of success.

Since X is valued in {0, 1, . . . , n}, the random variables `X

and uX are well-defined. The 100(1 − α)% CPCI for size n
is then the random interval (`X , uX) whose lower and upper
endpoints are `X and uX respectively. The CPCI coverage
probability is defined as the probability P ({`X < p < uX})
that the CPCI actually brackets the true value p of the
proportion. The 100(1−α)% CPCI is known to be conservative
in the sense that its coverage probability is always above or
equal to the confidence level ([2], [3], [4]). This standard result
is refined by the following proposition whose proof is given
in section 3.

7

BUPT



Proposition 2.1: With the same notations as above,

(i) If n < − ln(α/2)/ ln(2), then

P ({`X < p < uX}) = 0 for p = 0,

≥ 1− α/2 for 0 < p ≤ (α/2)1/n
,

= 1 for (α/2)1/n
< p < 1− (α/2)1/n

,

≥ 1− α/2 for 1− (α/2)1/n ≤ p < 1,
= 0 for p = 1.

(ii) If n ≥ − ln(α/2)/ ln(2), then

P ({`X < p < uX}) = 0 for p = 0,
≥ 1− α/2 for 0 < p < 1− (α/2)1/n,
≥ 1− α for 1− (α/2)1/n ≤ p ≤ (α/2)1/n,
≥ 1− α/2 for (α/2)1/n < p < 1,
= 0 for p = 1.

The following result derives from the proposition above.

Lemma 2.2: With the same notations as above, for every
proportion p ∈ (0, 1) and every natural number n less than
ln(α/2)/ ln(max(p, 1− p)), the CPCI coverage probability is
larger than or equal to 1− α/2.

PROOF: Since max(p, 1 − p) is larger than or equal to
1/2, − ln(α/2)/ ln(2) is less than ln(α/2)/ ln(max(p, 1 −
p)). If n < − ln(α/2)/ ln(2), the result then follows from
proposition 1, statement (i). If − ln(α/2)/ ln(2) ≤ n <
ln(α/2)/ ln(max(p, 1 − p)), p is either larger than (α/2)1/n

or smaller than 1 − (α/2)1/n and the result follows from
proposition 1, statement (ii).

The theoretical results above are thus mathematical evi-
dences that, as suggested in [2] and [3], the CPCI is inaccurate
in the sense that “[...]its actual coverage probability can be
much larger than 1−α unless the sample size n is quite large.”
( [3, Sec. 4.2.1] ).

Figures 1, 2 and 3 illustrate the foregoing by displaying the
coverage probability of the 95% CPCI for p = 0.1, p = 0.05
and p = 0.01 respectively and sample sizes ranging from 1 to
500. In each figure, the value of ln(α/2)/ ln(max(p, 1 − p))
is represented by a vertical red line. On the left hand side of
this line, coverage probabilities are all larger than or equal
to 97.5%; on the right hand side of this same line, coverage
probabilities can be less than 97.5% and even close to 95%.

III. PROOF OF PROPOSITION 2.1

Given θ ∈ [0, 1], let Pθ stand for the distribution of a
binomial variate for sample size n with binomial parameter
θ and let Fθ be the distribution function defined for every real
value x by Fθ(x) = Pθ ((−∞, x]). It is then convenient to
set Gθ(x) = Pθ ([x,∞)) for every real value x. According to
the definitions of Fθ and Gθ, the left hand sides in (2) and
(4) are equal to Gθ(k) and Fθ(k) respectively. Therefore, by
definition of `k and uk,

G`k
(k) = α/2 for every k ∈ {1, . . . , n} (5)
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Fig. 1. The 95% CPCI Coverage probabilities for proportion p = 0.1
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Fig. 2. The 95% CPCI Coverage probabilities for proportion p = 0.05

and

Fuk
(k) = α/2 for every k ∈ {0, . . . , n− 1}. (6)
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Fig. 3. The 95% CPCI Coverage probabilities for proportion p = 0.01

According to [1, Eq. 6.6.4, p. 263], for every given θ ∈
[0, 1],

Gθ(k) = Iθ(k, n− k + 1) for k ∈ {1, . . . , n}, (7)

and

Fθ(k) = 1− Iθ(k + 1, n− k) for k ∈ {0, . . . , n− 1}. (8)

where Ix(a, b) stands for the Incomplete Beta Function ( [1,
Eq. 6.2.1, p. 258, Eq. 6.6.2, p. 263, Eq. 26.5.1, p. 944] ). The
maps θ ∈ [0, 1] 7−→ Iθ(k + 1, n − k) and θ ∈ [0, 1] 7−→
Iθ(k, n − k + 1) are strictly increasing. Thereby, we can
straightforwardly state the following result.

Lemma 3.1: Given θ ∈ [0, 1],
(i) for every k ∈ {0, . . . , n− 1}, the map θ ∈ [0, 1] 7−→

Fθ(k) ∈ [0, 1] is strictly decreasing;
(ii) for every k ∈ {1, . . . , n}, the map θ ∈ [0, 1] 7−→

Gθ(k) ∈ [0, 1] is strictly increasing.

The subsequent lemma states useful properties concerning
the real values `k and uk.

Lemma 3.2: With the same notations as above,
(i) the sequence (`k)k∈{0,...,n} is strictly increasing and

`n = (α/2)1/n;
(ii) the sequence (uk)k∈{0,...,n} is strictly increasing and

u0 = 1− (α/2)1/n.
(iii) for every given k ∈ {0, . . . , n}, `k < uk.

PROOF:

Proof of statement (i). Given k ∈ {1, . . . , n}, `k ∈ (0, 1)
and is therefore larger than `0 = 0. It then suffices to prove
that `k < `k+1 for k ∈ {1, . . . , n − 1} to establish the strict
increasingness of the sequence (`k)k∈{0,...,n}.

Let k ∈ {1, . . . , n − 1}. We have that G`k+1(k + 1) <
G`k+1(k). According to (5), G`k+1(k + 1) = G`k

(k). It thus
follows that G`k

(k) < G`k+1(k). According to lemma 1,
statement (ii), we can conclude that `k < `k+1.

For every θ ∈ [0, 1], Gθ(n) = θn. It then follows from
(5) that `n

n = α/2, which completes the proof of statement (i).

Proof of statement (ii). The strict increasingness of the
sequence (uk)k∈{0,...,n} derives from the same type of
arguments as those used for proving statement (i). Given
k ∈ {0, . . . , n− 1}, uk belongs to (0, 1) and is therefore less
than un = 1. It then suffices to show that uk < uk+1 for
every k ∈ {0, . . . , n− 2} to establish the strict increasingness
of the sequence.

Let k ∈ {0, . . . , n − 2}. We have that Fuk+1(k + 1) >
Fuk+1(k). According to (6), Fuk+1(k + 1) = Fuk

(k).
Therefore, Fuk

(k) > Fuk+1(k). The result then follows from
lemma 1, statement (i).

Given θ ∈ (0, 1), Fθ(0) = (1 − θ)n. Therefore, by (6), we
obtain that Fu0(0) = (1− u0)n = α/2.

Proof of statement (iii). According to (1), (3) and the values
of `n and u0, statement (iii) holds true for k = 0 and k = n.

Consider any k ∈ {1, . . . , n−1}. We can write that F`k
(k−

1) = 1−G`k
(k) = 1− (α/2) > α/2. This follows from the

definition of Gθ, (5) and the fact that α < 1. Since F`k
(k) >

F`k
(k − 1) and α/2 = Fuk

(k) according to (6), we finally
obtain that F`k

(k) > Fuk
(k). The fact that `k < uk then

straightforwardly derives from lemma 1, statement (i).

Lemma 3.3: With the same notations as above,
(i) if p = 0, P

({
`X ≥ p

})
= 1,

(ii) if 0 < p ≤ (α/2)1/n, P
({

`X ≥ p
})
≤ α/2

(iii) if (α/2)1/n < p ≤ 1, P
({

`X ≥ p
})

= 0.

PROOF: Statement (i) is straightforward since `X ≥ 0.
As far as statements (ii) and (iii) are concerned, it is con-

venient to introduce the set E = {k ∈ {0, . . . , n} : `k ≥ p} .
Statement (i) of lemma 2 implies the following facts. First,
E is non empty if and only if p ≤ (α/2)1/n; second, if
0 < p ≤ (α/2)1/n, E = {m, . . . , n} where m ≥ 1 according
to (1).

Thereby, `X ≥ p if and only if X ≥ m. We therefore
have that P ({`X ≥ p}) = Gp(m). Now, since p ≤ `m, it
follows from lemma 1, statement (ii), that Gp(m) ≤ G`m(m).
According to (5), the right hand side in this inequality equals
α/2. Therefore, we obtain that P ({`X ≥ p}) ≤ α/2.

If (α/2)1/n < p ≤ 1, E is empty. Therefore, `X < p and
statement (iii) follows.

Lemma 3.4: With the same notations as above,
(i) if 0 ≤ p < 1− (α/2)1/n, P

({
uX ≤ p

})
= 0,

(ii) if 1− (α/2)1/n ≤ p < 1, P
({

uX ≤ p
})
≤ α/2,

(iii) if p = 1, P
({

uX ≤ p
})

= 1.

PROOF: Set F = {k ∈ {0, . . . , n} : uk ≤ p}. It follows from
statement (ii) of lemma 2 that F is empty if and only if 0 ≤
p < 1− (α/2)1/n. Therefore, if 0 ≤ p < 1− (α/2)1/n, uX is
larger than p and statement (i) holds true.

Under the condition 1−(α/2)1/n ≤ p < 1, F is not empty.
According to statement (ii) of lemma 2 and (3), we obtain that
F = {0, . . . , L} with L ≤ n− 1. Therefore, the event {uX ≤
p} is the event {X ≤ L} so that P ({uX ≤ p}) = Fp(L).
Since uL ≤ p, it follows from statement (i) of lemma 1 that
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Fp(L) ≤ FuL
(L). According to (6), the right hand side in this

inequality equals α/2 and statement (ii) follows.
Statement (iii) holds true since uX ≤ 1.

We now complete the proof of proposition 2.1. According
to lemma 3.2, statement (iii), `X < uX . Thereby, {p ≤ `X} ⊂
{p < uX} so that

P ({`X < p < uX}) = P ({p < uX})− P ({p ≤ `X})
= 1− P ({p ≥ uX})− P ({p ≤ `X})

Since the condition 1− (α/2)1/n ≤ (α/2)1/n is equivalent to
n ≥ − ln(α/2)/ ln(2), proposition 1 straightforwardly follows
from lemmas 3.3 and 3.4.

IV. CONCLUSION

Because of the discreteness of the binomial distribution, the
coverage probability of the 100(1−α)% CPCI for estimating
a binomial parameter p is larger than or equal to 1 − α. In
addition to this standard result, this paper proves that this
coverage probability is, in fact, larger than or equal to 1−α/2
when the sample size is less than a specific bound. Because
this bound depends on the proportion to estimate, the coverage
probability of the CPCI can be much larger than the confidence
level. This is a major drawback of the CPCI. Therefore, the
CPCI is not suitable for applications where it is important to
form a confidence interval whose coverage probability is close
to the specified confidence level.
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