
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 50(64), Fascicola 1, 2005

Algorithm for Frequent Pattern Recognition in
Telecommunication Alarm Logs

Petru Serafin1

1 Alcatel Romania, R&D Department, 9 Gh.Lazar, 300081 Timişoara, Romania, e-mail: petru.serafin@alcatel.ro

Abstract – In telecommunication networks all the
perturbations that influence the quality of telephony
services must be presented to the network monitoring
system by proper means that are generically called
alarms. Alarms are registered in alarm logs. This paper
presents a study of data mining over alarm logs in order
to determine sequences of alarms that repeat themselves
with a certain frequency. Such sequences of alarms
constitute frequent patterns and may be of a certain
interest for network monitoring systems.
Keywords: Alarm logs, pattern recognition, candidate
patterns, frequent patterns.

I. INTRODUCTION

In the actual context of the development of
telecommunications, the volume of information that is
transported in telecommunication networks is
continually increasing. Therefore, an important matter
for the network monitoring system [2] is to be able to
process the information with real-time constraints in
order to determine the optimal functioning conditions
for the network elements. Network monitoring
systems are based on data acquisition of information
provided within the network.

Generally, the information of notification about
functional states of network elements at a given
moment is called alarms. The information flow of all
these alarms for the entire network is registered in
alarm logs.

The architecture of most network monitoring
systems is based on a modular organization. The data
acquisition process consists of collecting alarms into
alarm logs. The main objective of the network
monitoring system is to guarantee and increase the
quality of telephony services. It is important to
analyze alarm logs to determine eventual faults in the
supervised system.

The analysis of alarm logs [1], [4], [7], [8] aims
to diagnose the functioning state of the network
elements to be able to provide data for the expert
system to make decisions for operating and
maintenance of the telecommunication network. The
important flow of alarms transmitted to the network

monitoring system reveals the problem of alarm
processing. Alarm processing eventually correlates
alarms into relevant categories and tries to eliminate
non-relevant alarms that do not influence the quality
of services.

One of the methods of alarm processing is to find
sequences of alarms that repeat frequently in a
telecommunication alarm log. These sequences of
alarms are called frequent patterns and they may be of
some importance for the network monitoring system
since they express a correlation between alarms that
the system has to further analyze.

II. ALARM LOGS

An alarm log is defined as a list of alarm that is

ordered chronologically following their moments of
appearance in the network. An alarm log contains
registered information about the functional state of
network elements, for a given time interval. This time
interval is called the observation window for the alarm log.

For example, in Figure 1 it is presented an alarm
log for an observation window of 15 minutes about
two network elements, UNIT1 and UNIT2:

*A009/05-05-25/12H04/TYP=COM/CAT=IM/UNIT1 OUT OF SERVICE ()4,1c↔

*A007/05-05-25/12H05/TYP=COM/CAT=ID/UNIT2 OVERLOAD ()5,2b↔

*A007/05-05-25/12H07/TYP=COM/CAT=ID/UNIT1 OVERLOAD ()7,1b↔

*A009/05-05-25/12H07/TYP=COM/CAT=IM/UNIT1 OUT OF SERVICE ()7,1c↔

*A001/05-05-25/12H10/TYP=COM/CAT=WI/UNIT1 IN SERVICE ()10,1a↔

*A009/05-05-25/12H11/TYP=COM/CAT=IM/UNIT2 OUT OF SERVICE ()11,2c↔

*A007/05-05-25/12H13/TYP=COM/CAT=ID/UNIT1 OVERLOAD ()13,1b↔

*A001/05-05-25/12H15/TYP=COM/CAT=WI/UNIT2 IN SERVICE ()15,2a↔

*A009/05-05-25/12H14/TYP=COM/CAT=IM/UNIT1 OUT OF SERVICE ()14,1c↔

*A009/05-05-25/12H15/TYP=COM/CAT=IM/UNIT1 OUT OF SERVICE ()15,1c↔

*A001/05-05-25/12H05/TYP=COM/CAT=WI/UNIT1 IN SERVICE ()5,1a↔

*A001/05-05-25/12H01/TYP=COM/CAT=WI/UNIT1 IN SERVICE ()1,1a↔

Figure 1. Alarm log example
The mathematical expression of an alarm is a

couple of elements),(0txi , where ix is the type of

30

BUPT

the alarm referring to network element i , and 0t is
the moment of appearance of the alarm in the network
[3]. Using this notation, the alarm log represented in
Figure 1 can be expressed using of a set of alarms that
concern UNIT1, 1a for IN SERVICE, 1b for OVERLOAD
and 1c for OUT OF SERVICE. In the same manner,
concerning network element UNIT2, it can be
expressed using the alarm set 2a , 2b and 2c .

With the notations introduced above, the alarm log in
Figure 1 can be expressed mathematically as follows:

()()()()()()()()()()()(){ }15,15,14,13,11,10,7,7,5,5,4,1, 121121112111 cacbcacbbacaJ = (1)

An important observation is that the alarms which
compose the log in equation (1) are distinct one to
another, because each alarm has its own type and
moment of appearance in the network. Another
observation is that the alarms referring to network
element UNIT1 are repetitive because they can be
found more than one time in the alarm log. Therefore
from the given alarm log we may be able to extract
two sub-logs, each referring to a different network
element.

For network element UNIT1, the mathematical
expression of the given alarm log is the following:

()()()()()()()()(){ }15,14,13,10,7,7,5,4,1, 1111111111

]15..1[ccbacbacaJt ==
 (2)

For network element UNIT2, the alarm log can be

expressed as follows:

()()(){ }15,11,5, 2222
]15..1[acbJt == (3)

In Figure 2 it is depicted the graphical

implementation of the sub-log in relation (2) for
network element UNIT1:

Figure 2. Moments in an alarm log

An important remark about equations (1) and (2)

is that they may express some simultaneous alarms.

For example)5,2()5,1(ba ↔ , () ()7,7, 11 cb ↔ and

() ()15,15, 12 ca ↔ . In reality these alarms probably do
not appear at the same time in the network but with
very short delays between them. But because of the
discrete timing of moments of appearance, these short
delays seem as simultaneous moments. In order to
keep the characteristic of simultaneous alarms in
equation (2), but still not indicate the exact

appearance moments, we can write the equivalent
equation (4):

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= 1111
1

1
111 ccba

c
bacaJ (4)

Equation (4) is also referred as expressing an

alarm log without indicating the moments of
appearance of alarms, thus meaning it does not
contain temporal constraints, it contains only the
ordering constraints.

III. FREQUENT PATTERNS

The main idea to analyze alarm logs to find
sequences of alarms that repeat themselves with a
certain frequency, is to generate some possible
sequences of alarm, that are called candidate patterns,
and to retain only those patterns that are frequent.
This means that a calculation has to be done to
determine if a candidate pattern is frequent. This
calculation can be done considering the moments of
appearance of each alarm in the log at the given time
of the calculation or considering the moments of
appearance by sub-logs.

The algorithm for frequent pattern recognition
hereby presented is based on a fundamental propriety
of frequent patterns (see [2]): if a pattern in an alarm
log is frequent then all its sub-patterns are necessary
to be also frequent in that alarm log. Another
expression of this theorem is that the necessary and
sufficient condition for a pattern to not be able to be
frequent is that at least one of its sub-patterns is not
frequent. Of course, nothing can be implied for a
pattern with all its sub-patterns frequent: even if all
sub-patterns are frequent we can only assume that the
pattern may be frequent, not that it should be frequent.
 For example, considering pattern][abc and all its
sub-patterns][a ,][b ,][c ,][ab ,][bc and][ac , one
can clearly determine that if any of these sub-patterns
is not frequent then surely the pattern][abc itself is
not frequent. On the other hand, even if all sub-
patterns are frequent, one can only determine that
pattern][abc may be frequent. So, considering][ab
is frequent, we determine that][a and][b are
frequent. The algorithm needs to check the frequency
of][bc and][ac , to be able to retain][abc as a
possible frequent pattern.

IV. THE ALGORITHM

 The algorithm can be written as a logical diagram
as presented in Figure 3. At each iteration i of the
algorithm, there are generated sub-patterns of
dimension 1+i starting from the frequent sub-
patterns of inferior dimension. The frequency
calculation eliminates sub-patterns that are not
frequent and therefore eliminates the whole branch of

Alarm log [J1]

a1 [IN SERVICE]

b1 [OVERLOAD]

c1 [OUTOFSERVICE]

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Moments [min]

31

BUPT

patterns of superior order that can be deducted starting
from these sub-patterns.

START

STOP

Generate sub-patterns of
n-dimension

Calculate frequencies for
candidate sub-patterns

Candidates are
frequent?

Increase
sub-pattern
dimension

n=n+1

n=1

YES

NO

Figure 3. Logical diagram of the algorithm

 An important parameter of the algorithm is the
minimal considered frequency minf that allows more
or less complexity of the construction of candidate
sub-patterns.
 The algorithm ends at iteration i for which there
are no more frequent patterns calculated. Of course,
the maximal dimension of the solution is given by the
maximal dimension of the sub-log J that is being
analyzed, Jn dim≤ .
 Given a sub-log of alarms J and a process of
pattern recognition we can note ()JAi the set of
solutions of dimension i that are found in sub-log J .
Evidently the solutions depend on the strategy of sub-
patterns generation and frequency calculation that are
chosen. Let us suppose the strategy means that any
two sub-patterns are distinct one to another.
 The algorithm may be written in programming
pseudo-language as follows:
Algorithm Frequent pattern recognition()

In J =alarm log or sub-log, minf =minimum

frequency considered

Out ()JA =assembly of frequent patterns in

J log
/* Initialization of dimension 1 (unitary)
alarms */

() ;)(, min
1dim

1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥∈←
=

fafJaaJA ii
a

i

i

U

/* Initialization of dimension n = 1 */

;1←n

/* Sequential do while list of frequent
patterns of dimension n is not empty */

Do While () NULLJAn ≠

/* Generate candidate sub-patterns of

dimension 1+n */

() ;))((_*
1dim

1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==
+=

+ JAcandidateccJA ni
nc

in
i

U

/* Calculate minimum frequencies and retain
in list only frequent sub-patterns of

dimension 1+n */

() () ;)(, min1
1dim

1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥∈= +
+=

+ fafJAaaJA ini
na

in
i

U

/* Increment dimension n */

;1+← nn

/* End of sequential do while */
End Do;

/* Construct list of results as assembly of

all frequent sub-patterns from dimension 1 to
1−n form J log*/

Return () ;)(
1

1
U
−

=

←
n

i
i JAJA

Because we need to avoid the problem of infinite
multiplicity of superior dimension candidate patterns,
we must allow a predefined order between the alarms.
For example we may consider the space of parallel
alarms, which means candidate patterns are generated
from previous dimension patterns by adding alarms of
superior or equal order in the pattern. For example,
the pattern ab generates candidate patterns abb and
abc , but we need no longer to generate candidate
aab because this pattern contains sub-pattern aa
which is not frequent and was not retained.
 The procedure for determination of frequent
patterns in parallel space can be written in
programming pseudo-language as follows:
Procedure candidate parallel() Generates
parallel candidate patterns
/* Generates candidate pattern using a
parallel-style space for alarm assembly */

In ()JAn assembly of frequent patterns of

dimension n

Out)(1 JAn+ assembly of candidate patterns of

dimension 1+n
/* Initialization of candidate patterns of

dimension 1+n */

() ;1 NULLJAn =+

For ()JAaaa ni ∈∀ ...21

 For Ja j ∈∀ AND]..1[, nkaa kj ∈∀≥

/* Adding alarms of superior or equal type */

Candidate-parallel-pattern = jiaaaa ...21 ;

/* Verify sub-patterns of the candidate
pattern */

If all sub-patterns

jiaaaa ...21)(JAn∈

 then jinn aaaaJAJA ...)()(2111 U++ = ;

 End If;
 End For;
 End For;
/* Solution in candidate patterns of

dimension 1+n */

Return)(1 JAn+ ;

 For the determination of candidate patterns in the
serial space alarms do not respect a certain order. New
dimension candidate patterns are obtained just by adding
alarms at the end of the assembly of previous patterns.

32

BUPT

The procedure for determination of frequent
patterns in parallel space can be written in
programming pseudo-language as follows:
Procedure candidate serial() Generates
serial candidate patterns
/* Generates candidate patterns using a
serial-type assembly relation for alarms */

In ()JAn assembly of frequent patterns of

dimension n

Out)(1 JAn+ assembly of candidate patterns of

order 1+n
* Initialization of assembly of candidate

patterns of order 1+n */

() ;1 NULLJAn =+

For ()JAaaa ni ∈∀ ...21

 For Ja j ∈∀

/* Adding alarms at the end of the assembly
of candidate pattern */

Candidate-serial-pattern = jiaaaa ...21 ;

/* Verify sub-patterns for the candidate
serial pattern */

If all sub-patterns

jiaaaa ...21)(JAn∈

 then

jinn aaaaJAJA ...)()(2111 U++ = ;

 End If;
 End For;
 End For;
/* Solution in candidate patterns of

dimension 1+n */

Return)(1 JAn+ ;

IV. PARTIAL RESULTS

We can graphically represent the solutions for the

frequent pattern recognition applied to alarm log from
equation (1) in parallel-style assembly as follows:

2, min =
⎭
⎬
⎫

⎩
⎨
⎧

= fabcc
c
b

acaJ

a b c

ab ac bc cc

bccacc abc

abcc
Figure 4. Frequent patterns in parallel-style assembly

Also, in serial-type assembly the frequent

patterns for the same alarm log in equation 1 can be
expressed as follows:

2, min =
⎭
⎬
⎫

⎩
⎨
⎧

= fabcc
c
b

acaJ

a b c

ab ac ccbc

acc acb

cb

abc

Figure 4. Frequent patterns in serial-style assembly

The software implementation of the frequent
pattern recognition algorithm was realized in the
development environment OMNeT++ [6] as presented
in Figure 5:

Alarm
Generation

(pilot)

Frequent Pattern
Recognition

(client process)

Functional
Library

Alarm
Collecting

System

Flow
Adaptor

Figure 5. Module implementation

 Some partial experimental results obtained in
testing the algorithm over an alarm log of 10,000
alarms can be viewed in Table 1:

Minimal
freq.

Frequent
alarms

Candidate
patterns

Frequent
patterns

50 56 366 152

75 43 135 95

100 24 83 38

125 15 72 26

150 12 69 23

200 10 66 19

Table 1. Partial experimental results

 For further extension of the algorithm by
introducing Petri Nets formalism see [5].

IV. REFERENCES

[1] A.Aghasaryan, C.Dousson, E.Fabre, O.Osmani, Y.Pencolé –
Modeling Fault Propagation in Telecommunications
Networks for Diagnosis Purposes, Proceedings of 18th World
Telecommunications Congress, Paris, 2002

[2] G.Fiche, G.Hébuterne - Trafic et performances des réseaux
de télécoms, Ed. Hermes-Science, Groupe des Ecoles de
Télécommunications & Lavoisier, Paris, 2003

[3] L.Ioan – Probabilităţi şi variabile aleatorii în
telecomunicaţii – teorie şi aplicaţii, Ed. Matrix Rom,
Bucureşti, 1998

[4] M.Mannila, H.Toivonen, A.I.Verkamo - Discovering
frequent episodes in sequences Proceedings of 1st KDD, pp.
210-215, 1995

[5] P.Serafin – Petri Net and Chronicle Recognition in Analysis
of Telecommunication Alarm Logs, Acta Tehnica
Napocensis – Electronics and Telecommunications,
Technical University of Cluj-Napoca, 2005

[6] P. Serafin – Network Simulation using OMNet++
environment, Buletinul Ştiinţific UPT, Tom 49 (63),
Fascicola 1, pp. 407-411, Symposium of Electronics and
Telecommunications, Timişoara, 22-23 October 2004

[7] Y. Pencolé, Marie-Odile Cordier - A formal framework for
the decentralized diagnosis of large scale discrete event
systems and its application to telecommunication networks ,
Artificial Intelligence Journal , Ed. Elsevier, Vol. 164, No.
1-2, p.121-170, 2005

[8] B. Guerraz, C. Dousson – Chronicles Construction Starting
from the Fault Model of the System to Diagnose,
International Workshop on Principles of Diagnosis (DX),
pp.51-56, Carcassonne, France, 2004.

33

BUPT

