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Abstract – We propose an alternative diffusion 
technique, starting from a tensor-based method that can 
perform both isotropic and anisotropic smoothing using 
as directional information the eigenvectors of the image 
structures. The method employs two tensors, a structure 
and a diffusion tensor respectively, the novelty 
consisting in the manner in which we design the 
diffusion tensor. The developed method allows a fast 
implementation and a reduced number of time 
iterations, being discretized by a trace-based method. 
Testing is performed both on synthetic and real images, 
with quality measurements and remarks.   

Keywords: diffusion, PDEs, trace operation, tensor 
fields, vector field visualisation. 

 
I. INTRODUCTION 

 
The first topic discussed in this paper is related to the 
notion of isotropic and anisotropic diffusion based on 
time-evolving PDEs. The starting point of our method 
is described in [1] where a multi-channel image is 
considered to be a RGB colour image, where each 
colour channel is viewed as a separate image. The 
diffusion technique can be implemented using the 
traditional numerical schemes described in [13] or by 
an alternative method proposed in [15], where the 
evolving PDE can be viewed as the convolution 
between the input image and a time depending, 
diffusion tensor-oriented Gaussian kernel, see also [1, 
2, 3]. The experimental part was implemented using a 
derived form of the classical PDE equation, based on 
the trace operator, its equivalence being demonstrated 
in [15, 17]. A more in-depth discussion about this will 
follow in the next paragraph and in the “Results and 
Remarks” paragraph results of the numerical 

implementation of this method will be presented as 
such.  
In order to have a robust diffusion algorithm, 
insensitive to edges and corners as the one described 
in [1, 2, 3] we also need to develop a way of steering 
the diffusion process according to the structure 
vectors. An interesting method of mapping a vector 
field was first described in [4] with the purpose of 
vector field visualization in order to overcome the 
resolution-dependent problems inherent to the 
previous methods. The idea is similar to the one 
presented in [1, 2, 3], that is, to develop an adapted 
model of vector mapping, similar to the one described 
in [4] and to use this vector map to steer the diffusion 
process along vector lines, also known as LICs (Line 
Integral Convolutions). This part of the diffusion 
process will be discussed in further detail in paragraph 
3. 
The experimental results of our work so far, along 
with remarks regarding these results, are presented in 
paragraph 4. These results include the practical 
implementation of the theoretical aspects presented in 
paragraphs 2 and 3. The tests presented in paragraph 4 
were performed only on 8-bit grey level images, 
extensions to RGB images and 3D space will be 
performed as a further developing step.  
The final paragraph of this article offers an insight of 
our future work, some of the ideas that we intend to 
investigate in the future along with emerging concepts 
regarding both diffusion and fusion processes. The 
ultimate goal is to develop a robust theoretical model 
for a diffusion process insensitive to image structures 
and then adapt this model into a fusion one, thus 
obtaining a hybrid process that performs fusion with 
diffusion-like characteristics, mainly denoising 
performed in parallel to the main fusion process.   
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II. MULTI-CHANNEL PDE-BASED DIFFUSION 

 
The idea of multi-channel diffusion is related to 
colour images that can be interpreted as separate 
channels (i.e. R, G and B) and can be processed 
separately or together. A multi-channel image can be 
mathematically viewed as a mapping nRI →Ω:  
(where in this case n is considered to be the number of 
channels, thus n=3 for RGB colour images). The 
domain Ω in this case is considered to be: 2R⊂Ω . A 
single channel can be defined as RIi →Ω:  where the 
value of each pixel of the multi-channel image is 
defined as follows [1]:                 

Tn
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The following discussions will focus on the methods 
used to describe the geometry of a grey-level image. 
Therefore, from this point onward, for the simplicity 
of our discussion, we will consider the original image 
corrupted by noise as being RI →Ω:  and 2R⊂Ω . 

Before performing the diffusion on an image 
corrupted by noise, we need to make sure that we 
have a robust method of describing its geometry. A 
good way of doing that is by computing the local 
geometry based on the eigenvectors and eigenvalues 
of the structures of the image. An efficient way of 
containing that information in a unified manner is to 
compute a structure tensor G based on the local 
gradient computed in each pixel of the image I [10]: 
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The discretization of the partial derivatives used in 
computing the gradient can be done in a 
straightforward manner by using central finite 
differences, described in detail in [13], or alternatively 
by means of a convolution mask, also detailed in [13]. 
By designing the structure tensor in this manner, we 
implicitly contain the information regarding the 
eigenvectors and eigenvalues also G can be 
equivalently written as follows:   

TT
X vvvvGX +++−−− ⋅⋅+⋅⋅=Ω∈∀ λλ,   (2) 

Where v- and v+ are two eigenvectors (orthogonal 
vectors), unit vectors of R2, computed in each pixel X 
of the image and corresponding to the local minimum 
and maximum variations of image intensities in that 
pixel. λ- and λ+ are the corresponding eigenvalues 
(positive values), they measure the effective 
variations of the image intensities along the 
corresponding eigenvectors and are related to the 
local strength of an edge. 

In order to obtain a more coherent geometry, a 
smoothed version of the structure tensor GX is 
computed by performing the convolution between GX 
and Kσ which is a 2D Gaussian kernel of the form:  
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An alternative way of applying the convolution kernel 
is to apply a 1D Gaussian kernel of the form: 
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direction of the structure tensor and then on the 
vertical direction of the intermediary structure tensor. 
In this way we obtain a smoothed structure tensor σ

XG , 
which better describes the local geometry of the 
image I at point X.  

Based on the local geometry retrieved from the 
smoothed structure tensor, [1] proposes the design of 
a field )2(: PT →Ω  comprised of diffusion tensors, 
used to steer the direction process. T also depends on 
the local geometry of the image I and is defined in the 
following manner: 

TT
X vvfvvfTX +++−+−−+−− ⋅⋅+⋅⋅=Ω∈∀ ),(),(, λλλλ         (4) 

In other words RRf →+−
2

/ :  represent two functions 
that set the strength of the smoothing along the two 
directions given by the eigenvectors v- and v+. The 
classical definition of f-/+ can be found in [1]: 
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On the other hand we proposes a new approach in 
defining these two functions, one that better preserves 
the dependence on the two eigenvalues that basically 
indicate the strength of the two eigenvectors: 
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p1 and p2 are two control parameters used to better 
control the diffusion process. In paragraph 5 we will 
present some test images that show that by choosing 
the functions this way we can better preserve the 
overall geometry of the initial image while still 
performing a good denoising. Also the solution’s 
convergence is faster than with the classical definition 
given in [1]. The smoothing behaviour according to 
the diffusion tensor T can be interpreted as follows: if 
the pixel X is located on the edge of an image 
structure, λ+ is high therefore the smoothing in X will 
be performed mostly on the v- direction since f+<<f- 
(in this case we deal with an anisotropic diffusion); 
the smoothing strength in this case is inversely 
proportional to the contour strength. The alternative is 
that X is located in a homogenous region of the image, 
thus λ+ is low, and in this case the smoothing is 
performed in all possible directions, approaching an 
isotropic diffusion process. In this way a controlled 
process that can perform both isotropic and 
anisotropic diffusion is obtained, the type of the 
diffusion being controlled by its own parameters, 
unified under T.  

The classical diffusion equation can be written as 
follows:  
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An alternative equation was demonstrated and 
proposed by [1] based on the trace operator: 
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This formulation can be seen as a small convolution 
applied around each X with a Gaussian mask Kt 
oriented by the tensor T [1]: 
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The simplest diffusion process is the linear and 
isotropic diffusion that is equivalent to a convolution 
with a Gaussian kernel. The similarity between such a 
convolution and the heat equation was proved by 
Koenderink [18]: 
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The pros and cons of this formulation are given in [1]. 
The results presented in paragraph 4 are obtained 
using this discretization along with the proposed T. 
The practical implementation of the method can be 
done either by computing only once the structure 
tensor and the diffusion tensor respectively (based on 
the original input image) which reduces the overall 
computational cost, or by computing the two tensors 
with each time step (the discretized values of dt) on 
the updated version of the input image, which 
increases the computational costs, but helps in 
preserving the image geometry. 

  
III. VECTOR FIELD VISUALISATION 

 
One way of steering a diffusion process is by means 
of a diffusion tensor obtained from a structure tensor 
of the original image, assumed corrupted by noise. As 
we have already discussed in the previous paragraph 
the diffusion can be effectively steered by 
appropriately choosing T i.e. its functions f-/+. Even if 
the results are pertinent, they still present an over-
smoothing behaviour around edges and corners. The 
work in [1] proposes as a solution to counteract these 
unwanted effects the steering of the diffusion process 
along pre-computed paths inside the vector field. A 
seminal work in this direction is represented by [4], 
where a method for visualising vector fields 
irrespective of the field resolution is presented, named 
LIC (Line Integral Convolution). The method in its 
entirety does not represent the subject of the present 
paper, but the method of computing the sub-pixel 
coordinates of the advections in each pixel represents 
a key element in solving our problem of diffusion 
steering. The reason why this method is important is 
that it can compute vector field directions at a sub-
pixel level, thus being very receptive to small 
variations in the vector field, variations usually found 

at structure corners or edges. Having a method that 
can follow this type of variations accurately is of 
paramount importance in the development of robust 
diffusion mechanism, and by using the diffusion 
approach described by [1, 2, 3] we can envision a 
unified formulation for a future PDE-based fusion 
method. 
The model proposed in [4] represents a model 
designed for vector field visualisation, thus we need 
to define an adapted version of it in order to suit our 
needs.  
In defining a model for constructing the positive and 
negative advections starting from an image point X 
like the one represented in Fig. 1 we have to define a 
method of computing the next step of the advection 
according to the orientation of the vector in the 
current cell. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Visual representation of 2D vector field and a local 
streamline starting from cell X spreading in the positive and 
negative direction according to the orientation of each vector from 
each cell it passes. 
 

A simplified model of doing just that is presented 
in [4]. In order to use this technique for diffusion 
steering we need a more robust model: 
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Here, the {top, bottom, left, right} represents the 
system of reference with respect to the vector 
corresponding to the point X, when the assumption 
that a pixel is of square shape is made. Equation (11) 
represents the positive advection starting from X and 
as it can be seen from the formulation of Pi the 

XX 
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coordinates have sub-pixel values since they do not 
always lay in the discreet lattice coordinate system, 
hence the sub-pixel accuracy of the method. The 
negative advection is obtained in a similar way, with 
the following differences: 
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In [4] the complete algorithm for visualizing the 
vector field based on the streamlines obtained using 
eq. (11) and (12) is presented, but as we have already 
pointed out we are interested only in obtaining the 
streamline coordinates and will be used in a future 
work to steer diffusion along the image structures 
described by the eigenvectors (v- describe the 
structure edges and contours). 
 

IV. RESULTS AND REMARKS 
 
In this paragraph we will start by presenting the 
results of our diffusion method based on the trace 
discretization, followed by a comparative test with the 
base method presented in [1], where the diffusion 
tensor T is built in a different manner. Another 
important step that will be tested is the vector 
coordinates method that will be used in our future 
work in developing a robust fusion method. 
The first set of images, represented in Fig. 2, is the 
results of the trace-based PDE implementation 
suggested in [1] as an alternative to the classical 
diverge-based method where the diffusion tensor T 
was computed according to equations (4) and (6): 
       

      
   a)      b) 
Fig. 2 a) Original Boats image with Gaussian white noise of RMSE 
= 25; b) Denoised Boats image using T from eq. (4) and (6) the 
trace-based discretization and 30 iterations with p1=p2=1, dt=0.1 
and σ=1, RMSE=14.22, PSNR=24.83[dB];  
 
As it can be seen from Fig. 2 the proposed diffusion 
method performs well in removing noise without 
creating artefacts in the process and using a reduced 
number of iterations, thus leading to convergence in a 
short time interval. Similar results can be obtained 
using as few as 10 iterations. The anisotropy 
parameters (p1 and p2) were deliberately set for 
favouring edge preservation and, in this case, some 
artefacts are created on the background of the image. 
Fig. 3 represents a set of images obtained using the 
definition of T given by equations (4) and (6) 
compared to the images obtained using the definition 

of T given in [1]. The original image of Boats with 
Gaussian white noise can be found in Fig. 2a. 
 

     
   a)      b) 
Fig. 3 a) Boats denoised image using the proposed method for T 
after 30 iterations with p1=p2=3, dt=0.1 and σ=5, RMSE=12.65, 
PSNR=25.84[dB]; b) Boats denoised image using the proposed 
method for T after 43 iterations with p1=p2=3, dt=0.1 and σ=4, 
RMSE=12.47, PSNR=25.96[dB];  
 

       
   c)         d) 
Fig.3 c) Boats denoised image using the [1] method for T after 30 
iterations with p1=0.1 p2=1.2, dt=0.1 and σ=4, RMSE=13.51, 
PSNR=25.27[dB]; b) Boats denoised image using the [1] method 
for T after 80 iterations with p1=0.1 p2=1.2, dt=0.1 and σ=4, 
RMSE=12.72, PSNR=25.79[dB]; 
 
As it can be seen from the tests presented in Fig. 3, 
the proposed method based on equations (4) and (6) 
needs fewer iterations (i.e. half) to smooth the image 
to the same degree or even higher as the original 
method presented in [1]. Another set of tests can be 
performed on synthetic images (with Gaussian noise 
added of RMSE=25), like the ones presented in Fig. 
4: 
 

     
   a)        b) 
Fig.4 a) Shapes denoised image using the [1] method for T after 40 
iterations with p1=0.1 p2=1.2, dt=0.1 and σ=4, RMSE=8.08, 
PSNR=26.6[dB]; b) Shapes denoised image using the proposed 
method for T after 20 iterations with p1=p2=1, dt=0.1 and σ=4, 
RMSE=7.87, PSNR=26.83[dB]; 
 
The number of iterations used in the testing process 
was chosen in order to provide a similar PSNR and 
also to keep the 1:2 ratio between the two methods, 
thus proving the proposed method as being twice as 
fast. The time evolution is interpreted as being dt * 
number of iterations, therefore for dt=0.1 and number 

127

BUPT



of iterations=40, time evolution would be 4 seconds, 
the actual computing time depending on the PC speed 
usually being higher than the mathematical time 
evolution. 
The stopping time for each method was determined 
experimentally as in most similar PDE based 
approaches in the literature. 
The vector visualisation problem discussed in 
paragraph 3 is represented in Fig. 4, where we use the 
method described in [4] for visualising the 2D vector 
field with the streamline coordinates obtained using 
our model described by equation (11).  
 

       
    a)    b)      c) 
Fig. 5 a) Source image for extracting the 2D vector field, in this 
case the eigenvectors v- defining the image structures and edges; 
b) Gaussian white noise image used for vector representation;   
c) Vector field visualisation; 
 
An alternative method of visualising the same vector 
field (Fig. 5a) is by distorting a second image 
according to this field, this method was also tested in 
[4] and the results can be viewed in fig. 6b. 
 

    
   a)      b) 
Fig. 6 a) Lena original image used for the vector field visualisation; 
b) Lena distorted image according to the vector field extracted from 
the synthetic image from fig. 5a;  

The vector visualisation technique is considered to be 
the first step in our future work which includes 
developing a new numerical scheme for our diffusion 
method, steered by vector streamlines, obtained 
theoretically using equation (11). 

  

V. FUTURE WORK 
 
Our ultimate goal is to develop a robust fusion 
method derived from a diffusion one, since we are 
interested in combining the effects of fusion with the 
ones of diffusion thus obtaining a simpler faster 
method that can perform both denoising and image 
restoration at the same time. So far we have defined, 
implemented and tested diffusion methods along with 
vector field streamlines generation (intended for use 
in steering fusion and diffusion process alike). The 
next step is to develop a mathematical model that 
unifies the diffusion equations along with the LIC 

method (vector streamlines method), finally obtaining 
a fusion model with robust edge preservation and 
denoising capabilities. 
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