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Abstract – In this work a new compact scheme of a 
branch-current reference is proposed, composed of two 
cross-connected classical current mirrors: a modified 
Wilson mirror and a Widlar mirror. This reference- 
source type can be connected to a charge with grounded 
or connected to voltage-supply end only by a 
supplementary mirror branch.  The first and second-
order thermal-compensation conditions are deduced. 
The design and the simulation results are included. The 
second-order thermal-compensation reference-source 
performances are: a reference-current maximum 
variation of 0.9% across a temperature range of 0 - 
100oC and a „supply regulation” of 4550ppm/V. 
Keywords: CMOS analog integrated circuits, current 
references, temperature compensation. 
 

I. INTRODUCTION 
 
The compact and simple reference-current sources, 
composed of two cross-connected current mirrors 
were brought back in discussion by work [1]. There it 
was considered first time the controlled temperature 
dependence of the two source-branch current ratio. 
Then this concept permitted to design a source 
composed of a diode-completed Widlar mirror and a 
“reverse”-Widlar mirror with cross-connection 
(fig.1), for the purpose of obtaining a spectacular 
second-order thermal-compensation of a branch 
current, which led to very good performances. But, in 
work [1] it is no showed or discussed the reference-
current extraction for use in a charge with grounded 
or connected to voltage-supply end. Of course, this 
current can be sent to the charge by a supplementary 
current mirror but, as it was established by our 
simulations, the new-mirror current ratio is 
temperature-affected too. So, the output current 
stability should have an important degree of 
compromising as against the obtained performance 
on the main source branch. Moreover, a simple 
additional branch cannot always assure a satisfactory 
value of the „supply-regulation” parameter for the 
output-towards-charge circuit. 
The works [2] and [3] have introduced for these 
compacted sources the notion of  reference “total” 
current, representing the sum of two-branch currents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Second-order temperature-compensation branch-current 
reference (Fiori-Crovetti) 

 
It is a new concept, which permits a very simple, 
serial interconnection of the reference-current source 
and the charge having grounded or connected to 
voltage-supply end. This kind of source assures two 
good performances relating to the maximum current 
variation in a given temperature range and to the 
„supply regulation” parameter. Some total-reference-
current-source parameters became worse because of 
a resistance-value growth, which lead to the increase 
of circuit minimum supply voltage and occupied-on-
chip area. Maybe future researches will guide to the 
attenuation of this total-reference-current-source 
disadvantages. 
In the present work another cross-connected 
classical-mirror combination is proposed (not used to 
date): a modified Wilson mirror (with resistance 
replacing the diode) and a normal Widlar mirror. The 
first (having three components) assures implicitly a 
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first-order temperature compensation for a certain 
diode-replacing-resistance value and is simpler than a 
diode-completed-Widlar mirror (four components, to 
assure the first-order thermal compensation, [1]). 
Moreover, the proposed here reference current source 
can assure a better supply regulation.    
Section II establishes the first-order thermal-
compensation condition for the total-reference 
current. Section III includes the deduction of second-
order thermal compensation condition. Section IV 
shows the calculus of first and second-order 
temperature coefficients of ratio m. The practical 
source scheme is the section-V object.  In section VI 
the results of simulations of the proposed circuit with 
output branch are exposed. Finally, section VII 
summarizes the work conclusions. 
 

II. FIRST-ORDER TEMPERATURE 
COMPENSATION OF THE REFERENCE 

CURRENT 
 

Paper [1] presents a reference-current source, 
composed of a lower modified-Widlar mirror and an 
upper reverse-Widlar mirror, cross-connected, where 
second-order thermal compensation is achieved for 
the left-branch I1 current (fig.1). The authors 
established that it is necessary to impose as well the 
temperature dependence of the two-branch current 
ratio m (I2=mI1). They affirm that without transistor 
M5 (“diode” connected) it is not possible the first-
order thermal compensation. Thus, the lower current 
mirror is a modified-Widlar one.   
With the goal of second-order thermal compensation, 
the reverse-Widlar mirror (M3, M4, R2) achieves a 
ratio m with positive first-order temperature 
coefficient.  The scheme in fig.1 is named in 
succession the Fiori-Crovetti source. Unfortunately, 
the thermal-compensated current I1 cannot be 
extracted from the source left branch and used in a 
charge without affecting the scheme and thus, the 
wanted thermal compensation. In [1] are deduced the 
first and second-order compensation conditions for 
the current I1.  
The proposed new reference-current source is shown 
in Fig.2. It is composed of lower modified-Wilson 
mirror (with M1, M2, R1) and an upper Widlar mirror 
(with M3, M4, R3) which are cross-connected. 
Without the resistance R3, the scheme is known 
classical one [4]. Here, with the help of R3 it will be 
achieved the second-order thermal compensation of 
the reference current I1. 
To obtain the first-order thermal-compensation of the 
proposed-source current I1 in fig.2, one establishes 
here the condition that the resistance R1 must fulfill.   
The current I1 equation can be obtained starting from 
that written on source lower loop:  
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Here 2oxnn Cµβ =  is the gain factor of NMOS 
transistors (the same for all transistors, non-
considering dimensions); α1 represents the transistor 
dimension-ratio W1/L1 for M1; VTn is the NMOS -
transistor threshold voltage (the same for all 
transistors, non-considering dimensions) and m is the 
branch-current ratio (I2=mI1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Proposed second-order temperature-compensation 

branch-current reference 
 
After replacing here the above βn -factor expression 
one obtains:  
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To establish the first-order thermal-compensation 
condition for the current I1 in relation (2), noted as 
f(T), one uses the “total” derivative of the function  
               ( ) ( ) 0,,,, 11 == mVRIfTf Tnnµ             (3) 
in which, the five variables are, everyone at its turn, a 
temperature function: 
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Introducing, such as in [1], the (relative) temperature 
coefficients for five variables, defined in the form 
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(with a variable noted here as “v”) and representing 
the relative variation of that variable with 
temperature, the following equation is written: 
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After the partial derivative calculus in relation (2) 
and the radical replacement by the expression 
extracted from the same equation, that is 
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the following expression can be obtained: 
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If imposes here the condition of current first-order 
thermal compensation, kI1=0, one obtains the 
necessary value for the resistance R1: 
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which is simpler that the obtained in [1] one. A great 
value of m assures a lower value of R1. In this 
relation they exist really two unknown variables: R1 
and km. If the obtained in simulation R1 value (for 
that the variation slope of I1 current against 
temperature is minimum) is introduced here one 
obtains, for the adopted process, a temperature 
coefficient km of negative value.  Consequently, to 
achieve the second-order temperature compensation 
of current I1, it must be used an upper mirror of 
normal Widlar type (M3, M4, R3) unlike the used in 
fig.1 one, of reverse Widlar type [1]. 
An important observation is referred to the voltage 
drop on R1 which is mI1R1 (9). This is done by the 
product of VTn and the fraction which is nearly 
constant (9). So, knowing that kµn is negative and has 
a great absolute value, to reduce the voltage drop on 
R1, it is necessary to choose an integrated resistor 
with very small or negative temperature coefficient 
kR1. Because the value of resistance R1 is relatively 
great it is recommended to use a resistor type having 
great resistance per square, limiting the chip area. 
It must be mentioned that the cross-connexion of a 
simple current mirror and a modified-Wilson one [4] 
can establish itself in a zero current state, which 
imposes the circuit completion by a starting one. But 
our upper mirror is of Widlar type and the 
simulations do not signalized the necessity of this 
completion. Also, it must be mentioned that the try at 
first-order thermal compensation of current I2 
(instead of I1), to profit of Wilson-mirror great output 
resistance, do not has success. 
 

III. SECOND-ORDER TEMPERATURE-
COMPENSATION OF THE REFERENCE 

CURRENT  
 
The establishment of second-order compensation 
condition for the reference current I1 in fig.2, pursues 
the procedure from [1]. So, starting from the first-
order temperature coefficient of the reference current 
in (8), put in the form: 
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the second-order current temperature coefficient will 
be [1]: 
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In relation (11), the numerator N(T)=0 because it is 
just the first-order compensation condition for the 
total current [2]. Consequently, after simplification 
by D(T), from relation (11) one obtains: 
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If now is imposed the second-order temperature- 
compensation condition, that is kI1I1=0, having D(T) 
as finite quantity, the following condition results: 

( ) 0=
dT

TdN                            (13) 

The calculus of this condition is developed here and 
it will consider that for the adopted process, in 
conformity with the transistor and resistor-model- 
parameters table, the parameters kVTn and kR1 do not 
depend on temperature, thus, for the variables VTn 
and R1 do not exists a second-order temperature 
coefficients. Also, one will consider that the current 
I1 is constant against the temperature, this fact just 
representing the current-first-order-temperature- 
compensation condition. 
After the evaluation of derivative in (13) and 
introduction of first and second-order temperature 
coefficients of variables µn, VTn and m, it result in: 
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Here one used notations with repeated index for 
second-order coefficients, defined as first-order-
temperature-coefficient derivatives against 
temperature [1], [3].  
Now, in relation (14) will be substituted the factor 
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and one obtains, after some simplifications, the 
second-order thermal-compensation condition: 
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In relation (16) the first term is a negative quantity and 
the parenthesis product gives a positive one. Thus, the 
second-order temperature-compensation condition will 
fulfil for a particular pair of values of m and σ. These 
can be calculated with approximation by repeated 
trials. With their help can be calculated approximately 
the resistances R1 and R3 values that will be used at 
start in simulation. 
 

IV. FIRST AND SECOND-ORDER 
TEMPERATURE COEFFICIENTS OF RATIO m 

 
The first-order temperature-coefficient calculus for the 
branch-current ratio m in the proposed source (fig.2) 
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follows the procedure from [3] but applied to the 
normal-Widlar mirror. 
Thus, on the M3 and M4 input loop (fig.2) it can 
write the equation: 

                3431 GSGS VVRI −=                 (17)                              
wherefrom, after substitution of voltages against 
currents and reciprocal reduction of threshold voltages, 
one obtains:  
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where βp is the PMOS-transistor gain factor and α is 
the W/L dimensional factor of transistors M3 
respectively M4. The relation (18) is written now: 
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αα 13

34

1 =−               (19) 

and then, using the notation 43 αασ = , it is put in 
the form 

3131 αβσ pIRm =−                (20)                                

With this relation, after establishing m and σ variables, 
one can calculate the resistance R3 value. Here, it is 
necessary to remark the fact that, to obtain a positive 
value for resistance R3 , it must fulfil the condition: 

11 >> msaum σσ             (21)                                 
To calculate the first-order temperature coefficient of 
m ratio, noted km, the relation (20) is put in an 
adequate form to easy calculation of total derivative 
against temperature: 
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Here, the gain factor has been replaced by the known 
relation 
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The f1(T) function total derivative against temperature 
is written: 
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After partial derivative calculation and replacement of 
simple derivative with corresponding first-order 
temperature coefficients, defined as in [1] and [2] in 
general form (for a variable v): 

v
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Here, the current thermal-compensation condition, 
kI1=0,  is imposed, then the radical appearing in the left 
part of the relation (20) written as:  

1
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is introduced. This results in: 
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(28) 
and from this : 

( )321
Rpm kk

m
mk +⋅−= µσ

σ            (29)                          

With the obligatory (21) condition the above 
expression fraction is positive while the parenthesis 
factor (including the temperature coefficients) is 
negative for the 0.35µm adopted process. Thus, km<0, 
as such it is necessary for the second-order thermal-
compensation of the branch-current source in fig.2. 
To do the same compensation for the source of [1] it 
was necessary a temperature coefficient km>0, so that 
the authors used an upper reverse-Widlar mirror 
(fig.1). 
Based on relation (29) further one will determine the 
second-order temperature coefficient of current ratio 
m, defined simply [1] as: 
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where: kmm, kµpµp and kR3R3 represent the second-order 
temperature-coefficients of m, µp and R3. The 
coefficient kµpµp has been established in paper [2] 
while the coefficient kR3R3 is comprised in the table of 
integrated-resistor model parameters. For the process 
used in the present work and the N+

 diffusion-sheet-
resistance type, kR3R3=0.  
Calculating the partial derivative and replacing km with 
relation (29), after some term reduction, the next 
expression is obtained: 
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(32) 
After the adoption of ratio m [2] and, considering the 
condition (21) of dimension ratio σ, kmm can be 
calculated. But, the calculus precision will not be very 
good because of using typical-parameter values given 
in model tables for certain transistor-channel 
dimensions. It is known, in the 0.35µm process, 
transistor parameters depend moreover on dimensions 
in the proximity of smaller as few µm values. 

 
V. PRACTICAL SOURCE SCHEME 

 
Considering the current I1 (fig.1 and fig.2) cannot be 
used in a charge, the circuit in fig.3 has been 
introduced. Here, it has been added a supplementary 
output branch, with transistor M5 (with similar 
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dimension as M4) and the resistance R4 (close of R3 
value) optimized by simulation for a better thermal 
compensation of current Io. Thus, the output has been 
achieved by a normal-Widlar mirror. 
Using the current formula for the Widlar-mirror 
transistor M3 given in [4] and adapted to scheme in 
fig.3: 
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represents the overload voltage (part of VGS4) for M4, 
and, using a similar relation for the current Io in 
transistor M5 (which has a dimension ratio α5= α4), the 
current ratio is obtained:  
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Fig.3. Final reference-current source with output 
 towards the charge with grounded end 

 
 
 

VI. SIMULATION RESULTS 
 

The simulation of scheme in fig.2 in view of finding 
optimal values for transistor dimensions and 
resistances with the goal of achieving the second-
order-temperature compensation of current I1, has 
been done starting from the situation obtained after 
first-order thermal compensation. There have been 
already established the transistor M1, M2, M4 
dimensions and the resistance R1 value. Then, the W3 
value for transistor M3 has been found which assures 
the necessary ratio σ (fulfilling the condition (21)). 
Simulations have been achieved, for different m and σ 
values and for a branch current comprised in the range 
8...15µA. The performance results have been similar: 
the maximum current I1 variation across the 
temperature range of 0...100oC is situated around 
2.25%, minimum supply voltage is VDDmin=4.7V, the 
„supply regulation” parameter is SR=12000ppm/V. 
This results correspond to values: I1=8.3µA, m=1, 
σ=6.4, L1=20µm, L2,3,4=5µm, W1,2=2µm, W3=25µm, 
W4=3,6µm, R1=270kΩ and R3=45kΩ. 
Comparing the above obtained performances with the 
reported in [1] and [3] ones one may see the first are 
not completely satisfactory. It is especially matter of 
maximum current I1 variation.  
The simulation of the practical scheme in fig.3, 
including the seeking of the R4 resistance optimal 
value which    achieves the output-current Io second-
order thermal compensation, confirmed the relation 
(36) correctness and leads to superior performances in 
comparison with the initial one. Thus, having 
R4=35.8kΩ (imposed by the thermal compensation 
condition for the output branch), I1=8.3µA, a charge 
with a voltage drop of 1V, for the output current Io one 
has obtained the following performances: maximum 
current variation in the temperature range of 0...100oC 
situated around 0.9% (fig.4) at a current value of 4.3 
µA (imposed by the relation (36)), minimum supply 
voltage is VDDmin=4.7V, the „supply regulation” 
parameter is SR=4550ppm/V. These results 
correspond to situation when M5 is identical to M4. 
 

 
Fig.4. Reference-current variation against the temperature  
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Another very important parameter for the output 
current is the “load regulation” and the measured 
value of this is LR=1550ppm/V, which represents a 
very good one. 
The obtained performance in maximal current 
variation is 2 times worse than the reported in [3] one 
and 2.5 times worse than the reported in [1] one, for 
the same temperature range. In exchange, such as we 
expected in the Wilson-mirror case, the obtained  
„supply regulation” parameter in the fig.3 scheme is 
about the value reported in [1] and 1.7 times better 
than the reported in [3] one. It can be improved by 
increasing the transistor cannel length.  
The minimum necessary supply voltage for our 
circuit is relatively great, 4.5V, such as expected [2], 
[3]. For that reason, the models 5V of transistors have 
been used in simulation.  
 

VII. CONCLUSIONS 
 

This work analyzed the current first and second-order 
thermal compensation in a source composed by two 
usual cross-connected current mirrors, completed by 
an extra output branch, with the object to simply 
attach a grounded-end charge. To obtain a second-
order thermal-compensation of the reference current 
it was used a modified source in comparison with 
known ones: from [1], where is compensated the one 
branch current, and from [3], where is compensated 
the total current. With regard to scheme in paper [1], 
where the reference current cannot be used in the 
charge without affecting the scheme and the thermal 
compensation, here a practical solution to convey the 
reference current in the charge is proposed (fig.3).  
In the present work are deduced, by similar methods 
as in [1], [2] and [3], the first and second thermal-

compensation conditions for a branch reference 
current in the scheme. The first and second-order 
ratio-m temperature-coefficient formulas for the 
upper Widlar-type mirror are deduced too. 
Having the advantages: circuit simplicity, simplest 
charge connection to the current reference and good 
performances, the current thermal compensation 
brings a disadvantage too: the increase of a resistance 
of the modified-Wilson current source. This causes 
two undesirable consequences: the increase of 
occupied on chip area and the increase of minimum 
supply voltage (VDDmin). These problems can be 
solved if a resistor R1 with very small or negative 
temperature coefficient is used.  
The performance in reference-current maximum 
variation of 0.9%, in the range of 0-100oC, is 2…2.5 
times worse as the realized in [1] and [3] one. 
The achieved supply regulation is better than the 
reported in [3] one and around the reported in [1] 
one. The charge regulation parameter is discussed 
only here and has a very good value of 1550ppm/V 
while in [3] it is the same with the supply regulation 
and has 3 times worse value. 
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