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Abstract 
The property of shift-invariance associated with 
the property of good directional selectivity are 
important for the application of a wavelet 
transform in many fields of image processing. 
Unfortunately, the classical discrete wavelet 
transform is shift-variant. All modified algorithms 
proposed in the literature for the computation of a 
shift invariant transform are less or more 
redundant and difficult to implement, and 
consequently thorny to use in signal processing 
applications. In this paper, we propose a new, 
quasi shift-invariant wavelet transform, without 
redundancy and easy to implement.     
 

1. INTRODUCTION 
 

A wavelet transform (WT), is shift-sensitive 
if an input signal shift causes an unpredictable change 
of the transform coefficients. 
 Shift-sensitivity is an undesirable property 
because it implies the impossibility to distinguish 
between wavelet transform coefficients 
corresponding to input signal shifts. 
 The shift-sensitivity of the Discrete Wavelet 
Transform (DWT) is generated by the down-samplers 
used for its computation. 
 The property of shift-invariance associated with 
the property of good directional selectivity are 
important for the application of a wavelet transform in 
many fields of image processing including denoising,  
de-blurring, super-resolution, watermarking, 
segmentation and classification. 
 In the next section, several quasi shift-invariant 
WTs, proposed in the literature are presented. Our 
transform is introduced and explained in section 3. 
Simulation results are presented in section 4, in order 
to illustrate the degree of shift invariance of the 
proposed transform. In the final section, a few 
conclusions are exposed and future possible research 
directions on the subject are indicated.  
 

 
2. TYPES OF WAVELET TRANSFORMS 

  
There are in the literature some wavelet transforms 
which are shift-invariant or quasi shift-invariant. In 
the following, some of them are presented.  
 
A. UDWT 
 
 Since down-samplers in the DWT 
implementation create shift-sensitivity, Mallat [1], 
Beylkin [2], Coifman and Donoho [3] and Guo [4], 
devised the un-decimated DWT (UDWT), which is a 
wavelet transform without down-samplers. Although 
the UDWT is shift-insensitive, it has high redundancy, 
caused by the absence of down-samplers. 
Unfortunately, the high redundancy incurs a massive 
storage requirement that makes the UDWT 
inappropriate for most signal processing applications. 
Another disadvantage of the UDWT comes from the 
fact that it requires the implementation of a large 
number of different filters. 
 
B. Shift Invariant Discrete Wavelet Transform  
 
 Lang, Guo, Odegard, Burrus and Welles [4] have 
proposed a new shift-invariant but very redundant 
wavelet transform, named Shift Invariant Discrete 
Wavelet Transform, SIDWT. Their proposition is 
based on a translation invariant algorithm proposed by 
Coifman and Donoho [3]. The computation of this 
transform implies the consideration of all circular 
shifts of the input signal. After the computation of the 
DWT of every shifted version of the signal, this 
method requires the shifting back (or unshifting) and 
averaging over all results obtained. 
 
C. Cycle Spinning 
 

The method introduced by Coifman and Donoho 
in [3] and called Cycle Spinning (CS) was conceived 
to suppress the artefacts in the neighbourhood of 
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discontinuities introduced by the classical DWT, and 
it implies the rejection of the translation dependence. 
For a range of shifts, data (time samples of a signal) is 
shifted (right or left as the case may be), the DWT of 
shifted data is computed, and than the result is un-
shifted. Doing this for a range of shifts, and averaging 
the several results so obtained, a quasi shift-invariant 
discrete wavelet transform is obtained. The degree of 
redundancy of this transform is proportional to the 
number of shifts of the input signal produced. Cycle 
spinning over the range of all circular shifts of the 
input signal is equivalent to SIDWT.    

  
D. Dual Tree Complex Wavelet Transform  
 
 Abry [5], first demonstrated that approximate 
shiftability is possible for the DWT with a small, 
fixed amount of transform redundancy. He designed a 
pair of real wavelets such that one is approximately 
the Hilbert transform of the other. This wavelet pair 
defines a complex wavelet transform (CWT). For 
explaining that such a transform is complex, consider 
the pair of DWT trees associated with the wavelet pair 
already mentioned. A complex wavelet coefficient is 
obtained by interpreting the wavelet coefficient from 
one DWT tree as being its real part, whereas the 
corresponding coefficient from the other tree is 
interpreted as its imaginary part. This transform is 
represented in figure 1. 
 

 
 
 
  
Kingsbury [6] developed the dual tree complex 
wavelet transform (DTCWT), which is a 
quadrature pair of DWT trees, similar to Abry’s 
wavelet transform (see figure 1). The DTCWT 
coefficients may be interpreted as arising from 
the DWT associated with a quasi-analytic 
wavelet. Both DTCWT and Abry’s transform are 
invertible and quasi shift-invariant; however the 
design of these quadrature wavelet pairs is quite 
complicated and it can be done only through 
approximations. 
 
E. Mapping-based Complex Wavelet Transform  
 
 Fernandes, van Spaendonck and Burrus have 
introduced, in [7], a two-stage mapping-based 
complex wavelet transform (MBCWT) that consists 
of a mapping onto a complex function space followed 
by a DWT of the complex mapping computation. The 
authors of this article have observed that the DTCWT 

coefficients admit also another interpretation: they 
may be interpreted as the coefficients of a DWT 
applied to a complex signal associated with the input 
signal. The complex signal is defined as the Hardy-
space image of the input signal. As the Hardy-space 
mapping of a signal is impossible to compute, they 
have defined a new function space called the Softy-
space, which is an approximation to Hardy-space.   
 The advantages of this method are:  

- controllable redundancy of the mapping 
stage that offers a balance between the 
degree of shift sensitivity and the transform 
redundancy; 

- the possibility to use any mother wavelet for 
the computation of the DWT in the transform 
implementation, which provides flexibility to 
this transform.    

 
3. ANALYTIC DISCRETE WAVELET 

TRANSFORM  
 
In this paper, we propose a new complex wavelet 
transform, similar to the DTCWT but easier to 
implement. It involves computing a single DWT but, 
instead of applying it to the original signal we apply it 
to the analytical signal associated with our input 
signal. The analytical signal associated with the signal  
x is defined as xa=x+iH{x}, where H{x} denotes the 
Hilbert transform of the input signal.  

In the following, this transform will be called 
analytic discrete wavelet transform, ADWT. The 
equivalence between the DTCWT and the ADWT is 
illustrated in figure 2. 

 

 
 
 
 
In [8], Simoncelli  has defined a new measure of the 
shift-invariance, called “shiftability”. According to 
their definition, a transform is shiftable if and only if 
any subband energy of the transform is invariant 
under input-signal shifts. Although weaker than shift 
invariance, shiftability is important for applications 
because it is equivalent to interpolability, which is a 
property ensuring the preservation of transform-
subband energy under input-signal shifts. 
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Figure 2. The equivalence between the DTCWT (top) and the 
ADWT (bottom). 

Figure 1. Abry’s CWT. 
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4. SIMULATIONS 
  
 In order to evaluate the shift-invariance 
performance of our transform, we introduced a new 
criterion: the degree of shift invariance. In order to 
calculate this measure, we calculate the energies of 
every set of detail coefficients (at different 
decomposition levels) and of the approximation 
coefficients, corresponding to a certain delay (shift) of 
the input signal samples. This way, we obtain a 
sequence of energies at each decomposition level, 
each sample of this sequence corresponding to a 
different shift. Then the mean m and the standard 
deviation d of every energy sequence are computed. 
Our degree of invariance is defined as:   
 

Grad = 1 – d/m                        (1) 
 
 We perform the normalization with respect to the 
mean of the energy sequence because we want the 
values of the degree of invariance to be within the 
interval [0, 1], for better interpreting it.  

If the transform is shift-invariant, then the value 
of its degree of invariance is 1 because the standard 
deviation of the energy sequence is zero in this case. 
The reciprocity is not guaranteed. There are quasi 
shift invariant wavelet transforms with the degree of 
shift-invariance equal to 1 that are not perfectly shift-
invariant. However, generally, when the transform is 
not shift-invariant the value of this degree of 
invariance is smaller than 1. This observation is also 
sustained by experimental work.  

We consider that the degree of shift invariance is 
an objective way of analysing the shift invariance of a 
transform. 

In the simulations purpose, we used as input 
signal a unitary step, like in [6]. In fact, 16 different 
unitary steps were used. They were generated one 
from another by delaying with a sample. Each unitary 
step is composed of 1024 samples. The number of 
iterations used for the computation of the DWT was 3. 
We repeated the simulations for several mother 
wavelets commonly used in the literature 
(Daubechies, Symmlet and Coiflet). 

In the first set of simulations we have compared 
the degree of shift invariance of our transform with 
the degree of shift invariance of the DWT. 

In the second set of simulations we have 
compared the degree of shift invariance of our 
transform with the degree of shift invariance of the CS 
with a various number of cycle spins and for a variety 
of spinning steps (a spinning step is the number of 
samples the signal is shifted once).  

In table 1 we present a comparison between our 
transform and the DWT. This comparison is based on 
the values of the degree of shift invariance calculated 
for the approximation coefficients obtained after the 
3rd iteration of the DWT computation algorithm 
(Scaling fn., level 3), for the detail coefficients 
obtained after the 3rd iteration (Wavelets level 3), for 
the detail coefficients obtained after the 2nd iteration  

 

 

 

Table 1. A comparison between the proposed WT and the DWT 
with respect to the degree of shift-invariance 

(Wavelets level 2) and for the detail coefficients 
obtained after the 1st iteration (Wavelets level 1). By 
recomposing all these signals, the initial step signal 
should be obtained.  Mother wavelet used was 
Daubechies-10 (with five vanishing moments). In 
order to isolate the coefficients corresponding to each 
level, after the computation of the DWT, we put all 
the complex coefficients corresponding to the other 
levels to zero, by applying a “mask” on the sequence 
obtained after DWT computation. For a better 
understanding of this procedure, we illustrate in figure 
3 the system used for the analysis of the shift-
invariance at the 3rd decomposition level of the 
ADWT.  
 

 
 

The first experiment already described is illustrated in 
figure 4. The results obtained using the proposed WT 
are presented in figure 4 a) and the results obtained 
using the classical decimated DWT in figure 4 b). It 
can be observed that the DWT is not shift-invariant. 
The ADWT is quasi shift-invariant. It can be observed 
that the ADWT is quasi shift-invariant. That is, for 
shifted version of the same signal applied to the 
transform’s input, we obtained shifted-like versions of 
the signal reconstructed following the steps indicated 
in figure 3.  
In fig. 5 we show the dependency of the degree of 
shift invariance of the proposed WT with respect to 
the regularity of the mother wavelet used for its 
computation. We investigated the Daubechies family, 
each element being indexed by its number of 
vanishing moments. As the curve illustrated in figure  
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Figure 3. The system used for the shift-invariance analysis of 
the third level of the wavelet decomposition. 
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Table 2. A comparison between two quasi shift-invariant WTs, the 

ADWT and the CS. 

5 indicates, the degree shift-invariance increases with 
the regularity of the mother wavelets used. In table 2  
we present a comparison between our transform and 
the CS. It can be observed, analyzing this table, that 
the ADWT is equivalent to the CS with redundancy 
64, from the degree of shift-invariance point of view. 
This in an excellent result, given that our transform is 
non-redundant, since for L samples to the input of 
ADWT, we still get L complex samples in the wavelet 
domain. 
 

5. CONCLUSION 
 
In this paper we propose a new complex non-
redundant quasi shift-invariant WT. A new measure 
of the degree of shift-invariance of a WT is 
introduced. The degree of shift-invariance of the 
proposed transform is studied using this new measure. 
We show, on an illustrative example chosen, that the 
ADWT is equivalent from the degree of shift-
invariance point of view with the CS with redundancy 
64, when both WTs are applied to a signal having a 
duration of 1024 samples. This research will be 
continued on the following directions:   

- a comparison of the degree of shift-
invariance obtained applying the proposed 
WT with the degree of shift-invariance 
obtained applying other WTs like the 
DTCWT or the MBCWT.  

- The generalization of ADWT in 2D. 
- The construction and the study of a new 2D 

ADWT with improved directional selectivity, 
2D ADWTIDS. 

- The implementation and the study of a new 
2D ADWTIDS with enhanced diversity, 2D 
ADWTIDSED. 

- The construction and the study of a wavelet 
packets transform inspired by the 2D 
ADWTIDSED. 

Symmlet, 10 ADWT     
 

CS 
step=1  
64 delays  

CS   
step=1   
512 delays 

Redundancy 
Non 
redundant 64 512 

Scaling fn. level 3 0,8594   0,7551 
Wavelets level 3 0,9962 0,9962 0,9995 
Wavelets level 2 0,9963 0,9965 0,9996 
Wavelets level 1 0,9992 0,9985 0,9998 

Daubechies, 10 ADWT 
CS 
step=1  
64 delays 

CS   
step=1   
512 delays 

Scaling fn. level 3 0,8594 0,7551 0,7551 
Wavelets level 3 0,9981 0,9965 0,9996 
Wavelets level 2 0,9982 0,9968 0,9996 
Wavelets level 1 0,9992 0,9985 0,9998 

b) 

Figure 4. A comparison between the ADWT (a) and  the DWT (b).
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Figure 5.  The dependency of the degree of shift-invariance 
of ADWT on the regularity of the mother wavelet used. for 

its computation. 
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- The utilization of the 2D AWFTIDSED for 
the de-blurring and denoising of SONAR 
images. 
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