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Abstract – In this paper we introduce a library 
component implementation of the IDEA cryptographic 
algorithm that may be used embedded in security 
applications. The model allows scalability in the number 
of bits of the plaintext and ciphertext and in the number 
of keys. The hardware design has been modeled in 
VHDL portable code resulting in a technology 
independent soft-core. 
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I. IDEA ALGORITHM 
 

The IDEA (International Data Encryption Algorithm) 
block cipher is a symmetric-key algorithm, which 
encrypts 64-bits plaintext blocks to 64-bit cipher text 
blocks using a 128-bit key K. The same algorithm is 
used for both encryption and decryption as it is a 
symmetric-key encryption system [1], [2], [3], [4]. 
IDEA has been patented in the U.S. and in several 
European countries, but the non-commercial use of 
IDEA is free everywhere. The cryptographic strength 
of IDEA is summarized by the following 
characteristics:  

• Block length: The block length should be 
long enough to avoid preferences in the 
block appearance. The use of a block size of 
64 bits is recognized as sufficiently strong. 

• Key length: The key length should prevent 
exhaustive key searches. IDEA uses 128 bits. 

• Confusion: The ciphertext should depend on 
the plaintext and key in a complicated and 
involved way. The objective is to complicate 
the determination of how the statistics of the 
ciphertext depend on the statistics of the 
plaintext. This goal is obtained by applying 
the operations of exclusive-OR, addition of 
integers modulus 216 (65536) and 
multiplication of integers modulus 216 + 1 
(65537) over two inputs of 16 bits. These 
three operations are incompatible in the 
sense that no pair of these three operations 
satisfies a distributive or an associative law. 

• Diffusion: Each plaintext bit and each key 
bit should influence every ciphertext bit. The 

spreading out of a single plaintext bit over 
many ciphertext bits hides the statistical 
structure of the plaintext. The diffusion is 
provided by the basic building block of the 
algorithm denoted as MA (multiplication and 
addition). This block takes as inputs two 16-
bit values derived from the plaintext and two 
16-bit subkeys derived from the key and 
produces two 16-bit outputs. This particular 
structure is repeated eight times in the 
algorithm, providing very effective diffusion. 

  
II. COMPUTATIONAL STRUCTURE 

 
IDEA consists of 8 computationally identical rounds 
followed by a final transformation, as can be seen in 
Fig. 1. The 64-bit data block is divided into four 16-
bit sub-blocks: X1, X2, X3 and X4. These four sub-
blocks become the input to the first round of the 
algorithm. In each round the four sub-blocks are 
XOR-ed, added and multiplied with each other and 
with six 16-bit sub-keys (K1

(1)… K6
(8)). Between 

rounds, the second and third sub-blocks are swapped. 
Finally, the four sub-blocks are combined with four 
sub-keys (K1

(9)… K4
(9)) in a final transformation 

block.  
In the next sub-sections the structure of a single round 
and final transformation stages will be described. And 
also sub-keys generation from the main key will be 
presented. The structure is described in terms of the 
basic operations involved in the algorithm and 
mentioned in the confusion characteristic, that is: 

 

    Exclusive OR 

    Modulus addition 

            Modulus multiplication 
 
A. Single round stage 
 
The basic structure for a single round is illustrated in 
Fig. 2. Specifically, it shows the structures for the first 
round. Next rounds have the same structure but with 
different sub-keys and ciphertext-derived inputs. The 
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round, begins with an initial transformation that 
combines the four inputs sub-blocks (Y1, Y2, Y3, Y4) 
with four sub-keys (DK1, DK2, DK3, DK4), by using 
the addition and multiplication operations. The four 
outputs of this transformation (D1, D2, D3, D4) are 
then combined using the XOR operation to form two 
16-bit blocks that are the input (D5 and D6) to the 
MA structure. The MA structure also takes two sub-
keys (DK5 and DK6) as input and combines these 
inputs to produce  two 16 bits-outputs. Finally, the 
four output blocks (D1, D2, D3, D4) from the upper 
transformation are XOR-operated with the obtained 
outputs (D9, D10) from the MA structure producing 
the four outputs blocks for this round. After this 
process, the output blocks Y1-2, Y1-3 are exchanged, 
so that Y1-1, Y1-3, Y1-2 and Y1-4 are used as input 
to the next round (in that order) along with the next 6 
sub-keys. This procedure is followed for the eight 
rounds in total giving four output blocks: Y8-1, Y8-3, 
Y8-2 and Y8-4. 

 

ROUND 1 

ROUND 2 

ROUND 8 

FINAL 
TRANSFORMATION 

K1
(1)

 
K6

(1) 

K1
(2)

 
K6

(2) 

K1
(8)

 
K6

(8) 

K1
(9)

 
K4

(9) 

 X1            X2                   X3        X4 

   Q11             Q12                        Q13           Q14 

   Q21             Q22                       Q23          Q24 

   Q71            Q72                     Q73             Q74 

   Q81            Q82                     Q83           Q84 

 Y1           Y2                    Y3        Y4 

64-bit ciphertext Y 

64-bit plaintext X 

 
                   Figure 1. IDEA general structure  
 

 
Figure 2. Structure for the first round 

B. Final transformation stage 

The final transformation stage has the same 
computational structure as the first transformation 
step of the structure for the first round, as can be seen 
in Figu. 3. The only difference is that the second and 
third inputs are interchanged before being applied to 
the operational units. This has the effect of undoing 
the interchange at the end of the eight rounds. The 
reason for this extra interchange is so that decryption 
has the same structure as encryption. This stage 
requires only four sub-key inputs, compared to six 
sub-key inputs for each of the first eight stages. The 
final four blocks, X1 to X4 are re-attached to form a 
64-bit block of plain text. The whole process is 
repeated for each successive 64-block of ciphertext 
until all of the ciphertext has been decrypted. 

 
Figure 3. Final transformation structure 

C. Sub-key generation 
 
As mentioned earlier the algorithm works exactly the 
same in encryption and decryption modes, with the 
only difference being that sub-keys used for addition 
and multiplication are different. Encryption uses sub-
keys derived directly from the main key. For the 
purpose of decryption, inverse sub-keys derived from 
the encrypted ones, are used. 

D. Encryption 
 
All 52 sub-keys used in encryption are obtained from 
the input key K. The scheme for generation is as 
follows. The first eight sub-keys are taken directly 
from the key. Then a circular left shift of 25 positions 
is applied to the key, and the next eight keys are 
extracted. This procedure is repeated until all 52 keys 
are generated. 

E.  Decryption 
 
The derivation of the decryption sub-keys from the 
encryption is as follows: The first four sub-keys of 
decryption round r are derived from the first four sub-
keys of encryption round (10 – r), where the final 
transformation is counted as round 9. The first and 
fourth decryption sub-keys are equal to the 
multiplicative inverse modulus (216 + 1) of the 
corresponding first and fourth encryption sub-keys. 
For rounds 2 through 8, the second and third 
decryption sub-key share is equal to the additive 
inverse modulus (216) of the corresponding third and 
second encryption sub-keys. For rounds 1 and 9, the 
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second and third decryption sub-keys are equal to the 
additive inverse modulus (216) of the corresponding 
second and third encryption sub-keys. And finally for 
the first eight rounds, the last two sub-keys of 
decryption round r are equal to the last two sub-keys 
of the encryption round (9 - r).  

III. IMPLEMENTATION ISSUES AND RESULTS 
 
The general structure described above was modeled in 
VHDL, according to the restrictions and 
recommendations for high level behavioral synthesis 
[5]. The data format size was defined as a generic 
parameter taking value 16, as default. The design 
strategy adopted was bottom up, developing in the 
first instance the basic blocks: XOR, modulus adder 
and multiplier. The complex blocks of the structure 
were constructed by using the basic blocks, and they 
were designed using the available techniques for 
circuit technology-independent power reduction at the 
RTL level.  These techniques mainly focus on better 
management of switching activity of the dynamic 
power consumption. Thus, pipelining and path 
balancing techniques have been applied to avoid 
glitch propagation and to balance the delay among 
basic blocks [6].  The basic blocks, the arithmetic 
operators, one round structure and the complete 
system with 8 rounds were simulated, synthesized and 
tested using the EDA tool Quartus II from Altera. The 
designs have been implemented on the NIOS 
development board EP2S60F672C5ES. This provides 
a hardware platform for developing embedded 
systems based on Altera Stratix II devices. The results 
are measured in terms of the resource utilization and 
delays. Concerning the resource demand, the number 
of adaptive look-up tables (ALUT) and DSP blocks 
and registers are given.  The measured delays are the 
delays between an input and an output (I/O tpd) and 
the key changes to output (K/O tpd). 
 
A.  Arithmetic operators 
 
The addition operations, both modulus 2 and modulus 
216 are implemented by using the XOR and ‘+’ 
addition defined in the IEEE.STD_LOGIC_1164 and 
IEEE.NUMERIC_STD libraries. The multiplication 
modulus 216+1 is a slightly more complex operation 
than the others. It has been implemented following an 
algorithmic approach that includes unsigned 
multiplication, addition, subtraction and comparison 
operations: 

1. if operand1 = 0 then operand1 := 216 

2. if operand2 = 0 then operand2 := 216 
3. multiplication := operand1*operand2 
4. div := multiplication/216 

5. rem := multiplication mod 216 

6. if (rem>div) then result := rem − div 
   else result := rem − div + 216 + 1 

 
The implementation of the multiplication modulus 
216+1 uses the modulus 216 multiplication synthesized 

by the development tool. The division and modulus is 
calculated by taking the upper 16 bits and lower 16 
bits of the multiplication result. The addition and 
subtraction are the operations defined in the 
IEEE.NUMERIC_STD library for the UNSIGNED 
data type. The comparisons used in the 
implementation are UNSIGNED ‘>’ and ‘=0’. 
The key distribution block is implemented using a 
simple structural design, producing every key for the 
different stages of the algorithm from the 128 bit 
encryption key. The following table shows the 
synthesis results for the basic operators involved in 
the algorithm. The adders demand a similar amount of 
physical resources but the adder modulus 216 is 
around a 1.3 times slower that the adder modulus 2. 
The multiplier is 1.9 times slower than the adder 
modulus 216 and 2.5 times slower than the adder 
modulus 2. These delay factor relations will be of 
interest when balancing the delays among blocks, as 
we will see later on. 
 

Table 1.  Synthesis results for the basic arithmetic operators 
Operation ALUs DSP  I/O tpd
Multiplication mod 216+1 73 2 24.9ns 
Addition mod 216 16 0 12.9ns 
Addition mod 2 16 0 9.8ns 

 
B.  Rounds 
 
We have implemented a direct version of the IDEA 
algorithm as it is shown in the dependencies graph in 
Fig. 2, by using the operators described in the last 
section. The synthesis results obtained for the 
INITIAL, MA  and XOR blocks, a single round, the 
output transformation, and the complete IDEA 
algorithm composed of eight rounds are shown in 
Table 2. The INITIAL, the MA and final 
transformation blocks involve the same type and 
number of operations. They all demand 4 DSP units 
as they have two multipliers embedded. The number 
of ALUT’s is similar for both the MA and Final 
transformation blocks and it is higher in the INITIAL 
because the two adders modulo 2 have been enclosed 
on this block. Concerning the delay, the MA block is 
the slowest of all three. This is due to the way in 
which the adders and multipliers are connected. In 
this case, the realization of a multiplication is 
followed by realization of an addition and vice versa. 
While in the other two blocks the four operations are 
independent and can be done in parallel.   

Table 2.  Synthesis results for the direct implementation. 
Block ALUTs DSP K/O 

tpd 
I/O 
tpd 

INITIAL 210 4 < I/O 27.3ns
MA 164 4 < I/O 42.5ns

XOR 64 0 <I/O 10ns 
Single round 407 8 59.2ns 58.3ns

Final 
transformation 

178 4 25.9ns 25.5ns

IDEA 3135 68 418ns 414ns 
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The delay results obtained for the complete IDEA 
algorithm implies a processing capacity of: 

 
 2.41 Mwords/s * 64bits/word = 154 Mbps  
                                                 = 19.28 MBytes/s 
 
A global view of the RTL synthesis results for the 
complete system is shown in Fig. 4. 
 

 
Figure 4. RTL synthesis results 

 
In order to balance the delay among the blocks the 
action of each round inside the algorithm is 
decomposed into three pipeline stages, as shown in 
Fig. 5. The first stage holds the result of the first block 
and the first two addition operations: D1, D2, D5, D6, 
D3 and D4, from Fig. 2. The second stage holds the 
result of the MA block: D10 and D9, and again D1, 
D2, D3 and D4.  The third stage holds the result of the 
output block: Y1_1, Y1_3, Y1_2, Y1_4. Each 
pipeline stage is controlled by a clock signal, enable 
signal, and reset signal, allowing for the control by an 
external asynchronous state machine.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Pipeline structure 
 
Finally, the eight rounds and the final transformation 
stage are connected together with the key distribution 
block to build up a complete IDEA encryption or 
decryption system. That makes a total of 25 pipeline 
stages (8*3 + 1 for the input latch), which means that 

25 cycles are needed to get 64 bits of data from the 
input to the output. Table 3 shows the synthesis 
results for the pipelined structure shown in Fig. 5. 

 
Table 3. Synthesis results for the pipeline implementation 

Block ALUT Registers DSP F.max 
(MHz.) 

INITIAL 226 96 4 N/A 
MA 180 96 4 N/A 

XOR 64 64 0 N/A 
Single 
round 

470 256 8 39.37 

Final 
transfor 

178 0 4 N/A 

IDEA 3.945 2.112 68 37.13 
 

The results in terms of ALUTs and DSP resources are 
similar to the ones obtained for the direct 
implementation case in Table 2. But now, 
additionally, a 2.112 bit register is needed. The max 
frequency for the complete IDEA algorithm is 37.13 
MHz, which means:  

37.13 Mwords/s * 64bits/word = 2.376.32 Mbps 

                                                  = 297.04  MBytes/s. 

IV. SUMMARY 
 

In this paper, the design of the IDEA encryption and 
decryption algorithm oriented toward a high level 
synthesis for FPGA’s implementation has been 
described. Two different structural approximations 
have been proposed. The first is based on the direct 
mapping to natural operations sequence and the 
second is an improved version introducing three 
pipelining stages. Both versions demand the same 
number of ALUT’s  and DSP blocks. The pipeline 
version demands the additional amount of 2.112 
registers but this allows for a speed improvement of 
15.37 times. The pipelined version of this design is 
suitable for high speed communication, video or audio 
encryption. The non pipelined version could be useful 
in secure controllers, and accessing encrypted 
memory program or data. 
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