

Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 2, 2006

An IP design of the idea cryptographic algorithm

M. A. Ajo1, G. Fericean2, M. Borda2 and V. Rodellar1

1 Departamento de Arquitectura y Tecnología de Sistemas Informáticos. Facultad de Informática. Universidad Politécnica de Madrid.
Campus de Montegancedo s/n. Boadilla del Monte (28660 Madrid – SPAIN) email: ajo@adtech.es, victoria@pino.datsi.fi.upm.es
2 Faculty of Electronics and Telecommunications. Technical University of Cluj-Napoca. C. Daicoviciu No. 15
(400020 Cluj Napoca – ROMANIA) email: Gabriel.Fericean@com.utcluj.ro, Monica.Borda@com.utcluj.ro

Abstract – In this paper we introduce a library
component implementation of the IDEA cryptographic
algorithm that may be used embedded in security
applications. The model allows scalability in the number
of bits of the plaintext and ciphertext and in the number
of keys. The hardware design has been modeled in
VHDL portable code resulting in a technology
independent soft-core.

Keywords: Reusability, IP core, IDEA algorithm,
Cryptography.

I. IDEA ALGORITHM

The IDEA (International Data Encryption Algorithm)
block cipher is a symmetric-key algorithm, which
encrypts 64-bits plaintext blocks to 64-bit cipher text
blocks using a 128-bit key K. The same algorithm is
used for both encryption and decryption as it is a
symmetric-key encryption system [1], [2], [3], [4].
IDEA has been patented in the U.S. and in several
European countries, but the non-commercial use of
IDEA is free everywhere. The cryptographic strength
of IDEA is summarized by the following
characteristics:

• Block length: The block length should be
long enough to avoid preferences in the
block appearance. The use of a block size of
64 bits is recognized as sufficiently strong.

• Key length: The key length should prevent
exhaustive key searches. IDEA uses 128 bits.

• Confusion: The ciphertext should depend on
the plaintext and key in a complicated and
involved way. The objective is to complicate
the determination of how the statistics of the
ciphertext depend on the statistics of the
plaintext. This goal is obtained by applying
the operations of exclusive-OR, addition of
integers modulus 216 (65536) and
multiplication of integers modulus 216 + 1
(65537) over two inputs of 16 bits. These
three operations are incompatible in the
sense that no pair of these three operations
satisfies a distributive or an associative law.

• Diffusion: Each plaintext bit and each key
bit should influence every ciphertext bit. The

spreading out of a single plaintext bit over
many ciphertext bits hides the statistical
structure of the plaintext. The diffusion is
provided by the basic building block of the
algorithm denoted as MA (multiplication and
addition). This block takes as inputs two 16-
bit values derived from the plaintext and two
16-bit subkeys derived from the key and
produces two 16-bit outputs. This particular
structure is repeated eight times in the
algorithm, providing very effective diffusion.

II. COMPUTATIONAL STRUCTURE

IDEA consists of 8 computationally identical rounds
followed by a final transformation, as can be seen in
Fig. 1. The 64-bit data block is divided into four 16-
bit sub-blocks: X1, X2, X3 and X4. These four sub-
blocks become the input to the first round of the
algorithm. In each round the four sub-blocks are
XOR-ed, added and multiplied with each other and
with six 16-bit sub-keys (K1

(1)… K6
(8)). Between

rounds, the second and third sub-blocks are swapped.
Finally, the four sub-blocks are combined with four
sub-keys (K1

(9)… K4
(9)) in a final transformation

block.
In the next sub-sections the structure of a single round
and final transformation stages will be described. And
also sub-keys generation from the main key will be
presented. The structure is described in terms of the
basic operations involved in the algorithm and
mentioned in the confusion characteristic, that is:

 Exclusive OR

 Modulus addition

 Modulus multiplication

A. Single round stage

The basic structure for a single round is illustrated in
Fig. 2. Specifically, it shows the structures for the first
round. Next rounds have the same structure but with
different sub-keys and ciphertext-derived inputs. The

34

BUPT

round, begins with an initial transformation that
combines the four inputs sub-blocks (Y1, Y2, Y3, Y4)
with four sub-keys (DK1, DK2, DK3, DK4), by using
the addition and multiplication operations. The four
outputs of this transformation (D1, D2, D3, D4) are
then combined using the XOR operation to form two
16-bit blocks that are the input (D5 and D6) to the
MA structure. The MA structure also takes two sub-
keys (DK5 and DK6) as input and combines these
inputs to produce two 16 bits-outputs. Finally, the
four output blocks (D1, D2, D3, D4) from the upper
transformation are XOR-operated with the obtained
outputs (D9, D10) from the MA structure producing
the four outputs blocks for this round. After this
process, the output blocks Y1-2, Y1-3 are exchanged,
so that Y1-1, Y1-3, Y1-2 and Y1-4 are used as input
to the next round (in that order) along with the next 6
sub-keys. This procedure is followed for the eight
rounds in total giving four output blocks: Y8-1, Y8-3,
Y8-2 and Y8-4.

ROUND 1

ROUND 2

ROUND 8

FINAL
TRANSFORMATION

K1
(1)

K6

(1)

K1
(2)

K6

(2)

K1
(8)

K6

(8)

K1
(9)

K4

(9)

 X1 X2 X3 X4

 Q11 Q12 Q13 Q14

 Q21 Q22 Q23 Q24

 Q71 Q72 Q73 Q74

 Q81 Q82 Q83 Q84

 Y1 Y2 Y3 Y4

64-bit ciphertext Y

64-bit plaintext X

 Figure 1. IDEA general structure

Figure 2. Structure for the first round

B. Final transformation stage

The final transformation stage has the same
computational structure as the first transformation
step of the structure for the first round, as can be seen
in Figu. 3. The only difference is that the second and
third inputs are interchanged before being applied to
the operational units. This has the effect of undoing
the interchange at the end of the eight rounds. The
reason for this extra interchange is so that decryption
has the same structure as encryption. This stage
requires only four sub-key inputs, compared to six
sub-key inputs for each of the first eight stages. The
final four blocks, X1 to X4 are re-attached to form a
64-bit block of plain text. The whole process is
repeated for each successive 64-block of ciphertext
until all of the ciphertext has been decrypted.

Figure 3. Final transformation structure

C. Sub-key generation

As mentioned earlier the algorithm works exactly the
same in encryption and decryption modes, with the
only difference being that sub-keys used for addition
and multiplication are different. Encryption uses sub-
keys derived directly from the main key. For the
purpose of decryption, inverse sub-keys derived from
the encrypted ones, are used.

D. Encryption

All 52 sub-keys used in encryption are obtained from
the input key K. The scheme for generation is as
follows. The first eight sub-keys are taken directly
from the key. Then a circular left shift of 25 positions
is applied to the key, and the next eight keys are
extracted. This procedure is repeated until all 52 keys
are generated.

E. Decryption

The derivation of the decryption sub-keys from the
encryption is as follows: The first four sub-keys of
decryption round r are derived from the first four sub-
keys of encryption round (10 – r), where the final
transformation is counted as round 9. The first and
fourth decryption sub-keys are equal to the
multiplicative inverse modulus (216 + 1) of the
corresponding first and fourth encryption sub-keys.
For rounds 2 through 8, the second and third
decryption sub-key share is equal to the additive
inverse modulus (216) of the corresponding third and
second encryption sub-keys. For rounds 1 and 9, the

35

BUPT

second and third decryption sub-keys are equal to the
additive inverse modulus (216) of the corresponding
second and third encryption sub-keys. And finally for
the first eight rounds, the last two sub-keys of
decryption round r are equal to the last two sub-keys
of the encryption round (9 - r).

III. IMPLEMENTATION ISSUES AND RESULTS

The general structure described above was modeled in
VHDL, according to the restrictions and
recommendations for high level behavioral synthesis
[5]. The data format size was defined as a generic
parameter taking value 16, as default. The design
strategy adopted was bottom up, developing in the
first instance the basic blocks: XOR, modulus adder
and multiplier. The complex blocks of the structure
were constructed by using the basic blocks, and they
were designed using the available techniques for
circuit technology-independent power reduction at the
RTL level. These techniques mainly focus on better
management of switching activity of the dynamic
power consumption. Thus, pipelining and path
balancing techniques have been applied to avoid
glitch propagation and to balance the delay among
basic blocks [6]. The basic blocks, the arithmetic
operators, one round structure and the complete
system with 8 rounds were simulated, synthesized and
tested using the EDA tool Quartus II from Altera. The
designs have been implemented on the NIOS
development board EP2S60F672C5ES. This provides
a hardware platform for developing embedded
systems based on Altera Stratix II devices. The results
are measured in terms of the resource utilization and
delays. Concerning the resource demand, the number
of adaptive look-up tables (ALUT) and DSP blocks
and registers are given. The measured delays are the
delays between an input and an output (I/O tpd) and
the key changes to output (K/O tpd).

A. Arithmetic operators

The addition operations, both modulus 2 and modulus
216 are implemented by using the XOR and ‘+’
addition defined in the IEEE.STD_LOGIC_1164 and
IEEE.NUMERIC_STD libraries. The multiplication
modulus 216+1 is a slightly more complex operation
than the others. It has been implemented following an
algorithmic approach that includes unsigned
multiplication, addition, subtraction and comparison
operations:

1. if operand1 = 0 then operand1 := 216

2. if operand2 = 0 then operand2 := 216
3. multiplication := operand1*operand2
4. div := multiplication/216

5. rem := multiplication mod 216

6. if (rem>div) then result := rem − div
 else result := rem − div + 216 + 1

The implementation of the multiplication modulus
216+1 uses the modulus 216 multiplication synthesized

by the development tool. The division and modulus is
calculated by taking the upper 16 bits and lower 16
bits of the multiplication result. The addition and
subtraction are the operations defined in the
IEEE.NUMERIC_STD library for the UNSIGNED
data type. The comparisons used in the
implementation are UNSIGNED ‘>’ and ‘=0’.
The key distribution block is implemented using a
simple structural design, producing every key for the
different stages of the algorithm from the 128 bit
encryption key. The following table shows the
synthesis results for the basic operators involved in
the algorithm. The adders demand a similar amount of
physical resources but the adder modulus 216 is
around a 1.3 times slower that the adder modulus 2.
The multiplier is 1.9 times slower than the adder
modulus 216 and 2.5 times slower than the adder
modulus 2. These delay factor relations will be of
interest when balancing the delays among blocks, as
we will see later on.

Table 1. Synthesis results for the basic arithmetic operators
Operation ALUs DSP I/O tpd
Multiplication mod 216+1 73 2 24.9ns
Addition mod 216 16 0 12.9ns
Addition mod 2 16 0 9.8ns

B. Rounds

We have implemented a direct version of the IDEA
algorithm as it is shown in the dependencies graph in
Fig. 2, by using the operators described in the last
section. The synthesis results obtained for the
INITIAL, MA and XOR blocks, a single round, the
output transformation, and the complete IDEA
algorithm composed of eight rounds are shown in
Table 2. The INITIAL, the MA and final
transformation blocks involve the same type and
number of operations. They all demand 4 DSP units
as they have two multipliers embedded. The number
of ALUT’s is similar for both the MA and Final
transformation blocks and it is higher in the INITIAL
because the two adders modulo 2 have been enclosed
on this block. Concerning the delay, the MA block is
the slowest of all three. This is due to the way in
which the adders and multipliers are connected. In
this case, the realization of a multiplication is
followed by realization of an addition and vice versa.
While in the other two blocks the four operations are
independent and can be done in parallel.

Table 2. Synthesis results for the direct implementation.
Block ALUTs DSP K/O

tpd
I/O
tpd

INITIAL 210 4 < I/O 27.3ns
MA 164 4 < I/O 42.5ns

XOR 64 0 <I/O 10ns
Single round 407 8 59.2ns 58.3ns

Final
transformation

178 4 25.9ns 25.5ns

IDEA 3135 68 418ns 414ns

36

BUPT

The delay results obtained for the complete IDEA
algorithm implies a processing capacity of:

 2.41 Mwords/s * 64bits/word = 154 Mbps
 = 19.28 MBytes/s

A global view of the RTL synthesis results for the
complete system is shown in Fig. 4.

Figure 4. RTL synthesis results

In order to balance the delay among the blocks the
action of each round inside the algorithm is
decomposed into three pipeline stages, as shown in
Fig. 5. The first stage holds the result of the first block
and the first two addition operations: D1, D2, D5, D6,
D3 and D4, from Fig. 2. The second stage holds the
result of the MA block: D10 and D9, and again D1,
D2, D3 and D4. The third stage holds the result of the
output block: Y1_1, Y1_3, Y1_2, Y1_4. Each
pipeline stage is controlled by a clock signal, enable
signal, and reset signal, allowing for the control by an
external asynchronous state machine.

Figure 5. Pipeline structure

Finally, the eight rounds and the final transformation
stage are connected together with the key distribution
block to build up a complete IDEA encryption or
decryption system. That makes a total of 25 pipeline
stages (8*3 + 1 for the input latch), which means that

25 cycles are needed to get 64 bits of data from the
input to the output. Table 3 shows the synthesis
results for the pipelined structure shown in Fig. 5.

Table 3. Synthesis results for the pipeline implementation

Block ALUT Registers DSP F.max
(MHz.)

INITIAL 226 96 4 N/A
MA 180 96 4 N/A

XOR 64 64 0 N/A
Single
round

470 256 8 39.37

Final
transfor

178 0 4 N/A

IDEA 3.945 2.112 68 37.13

The results in terms of ALUTs and DSP resources are
similar to the ones obtained for the direct
implementation case in Table 2. But now,
additionally, a 2.112 bit register is needed. The max
frequency for the complete IDEA algorithm is 37.13
MHz, which means:

37.13 Mwords/s * 64bits/word = 2.376.32 Mbps

 = 297.04 MBytes/s.

IV. SUMMARY

In this paper, the design of the IDEA encryption and
decryption algorithm oriented toward a high level
synthesis for FPGA’s implementation has been
described. Two different structural approximations
have been proposed. The first is based on the direct
mapping to natural operations sequence and the
second is an improved version introducing three
pipelining stages. Both versions demand the same
number of ALUT’s and DSP blocks. The pipeline
version demands the additional amount of 2.112
registers but this allows for a speed improvement of
15.37 times. The pipelined version of this design is
suitable for high speed communication, video or audio
encryption. The non pipelined version could be useful
in secure controllers, and accessing encrypted
memory program or data.

REFERENCES

[1] Stallings W. “Cryptography and Network Security: Principles

and Practice Second Edition”, Prentice Hall, New Jersey,
1999.

[2] Borko Furth, Darko Kirovski, “Multimedia Security
Handbook”, February 17, 2004.

[3] W. Mao, Modern Cryptography, Prentice-Hal, 2004.
[4] A. J. Menezes, V. Oorschot and S. A. Vanstone, Handbook of

Applied Cryptography, CRC Press, New York 1997.
[5] Michel Keating and Pierre Bricand, Reuse Methodology

Manual: For System-on-a-Chip Designs. Third Edition.
Kluwer Academic Publishers, 2002.

[6] Christian Piguet, Low-Power CMOS Circuits. Technology,
Logic Design and CAD Tools. CRC Press 2006.

DK5, DK6

CLK,
ENABLE,
RESET

Initial transformation

Pipeline stage-1

XOR operation

MA block

Pipeline stage-2

Pipeline stage-3

outputs

inputs

DK1, DK2,
DK3 , DK4

37

BUPT

