

Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 1, 2008

Advanced production integration service using

temporary tables and SQL optimization via neural

networks

Vasile Corniţă, Rodica Strungaru, Sever Paşca
1

1
 Faculty of Electronics, Telecommunications and Information Technology Applied Electronics and Information Engineering

Department Bucharest - 1, Polizu street, nr.1, Building D, Floor 1, Room D110, emails: cornita_vasile@yahoo.com,

rodica.strungaru@elmed.pub.ro, sever.pasca@elmed.pub.ro

Abstract- This paper presents an advanced

production system integration techniques using

neural networks for optimization purpose. One

important aspect to consider when realizing the

integration component between two or more systems

is the data structure passing technique, taking into

account specific system implementation issues like:

data structures organization, storage, retrieval and

dynamic requests. Nowadays there are many

dedicated applications for specific business to

consider, but when there is no such software

application with all required functionalities;

integration between existing applications should be

considered.

Keywords: software application integration, SQL

query optimization, neural networks, object oriented

programming, database management system kernel,

enterprise application integration, artificial

intelligence.

I. INTRODUCTION

Nowadays, specific businesses has

acquired production software applications, mostly

when necessary and solving a particular set of

necessities. In our globalization period, as business

expands, is appear the need for geographically

separated departments, associated business

processes to be connected together.

As corporate dependence on technology

has grown more complex and far reaching, the need

for a method of integration disparate applications

into a unified set of business process has emerged

as a priority. After creating islands of automation

through generations of technology, users and

business managers are demanding that seamless

bridges be built to join them. In effect they are

demanding that ways be found to bind these

applications into a single, unified enterprise

application. The development of Enterprise

Application Integration(EAI), which allow many of

the stovepipe applications that exist today to share

both processes and data, allow for an answer to this

demand. [1]

From practice, when considering the integration

between two software applications, let’s denote

these applications AppA and AppB, good results

are obtained when the integration is carried out by

the software company that produced either, AppA

or AppB, because only one application data details

are to be learned from scratch.

In order to integrate two software

applications, two important aspects are to be taken

into account:

• The data model: The exchanged data

are in fact business documents and

not simple character strings. It is

highly probable that these documents

(the two application documents) will

contain lots of identical data, but it

will not necessary be in the same

format. A conversion job from one

model to another is therefore needed.

• The communication system: In this

context it is very important the

communication protocol used to

exchange data. Here will come to the

role of middleware. A large part of

software application integration is

about the different technologies and

techniques implementing this

exchange. [2]

Typically, in internet contexts, the protocol used is

HTTP (Hypertext Transfer Protocol).

Also data availability and data security policies

have to be taken into account when integrating

software applications.

200
BUPT

 The main purpose of the proposed

production integration service is to provide with

real time data from a production application that

formulates a considerable number of SQL queries

per second to a relational database, to the

proprietary business management reporting tool

application.

 The integration service can be configured

to start manually or automatically, and, in case of a

system failure the service is configured to start

automatically. One of the advantages of using a

service for the integration task is the service

independence and ease of maintenance operations

like service version update, starting and stopping

the service.

 The service comprises functions for giving

real time data to reporting part of the management

application as well as commands formulated by the

management application for the production system

to execute.

 The production system logic is controlled

by either the business management application

(external control via the integration service) or by

its own logic module if activated.

 The service integration module uses

temporary tables as buffers in order to exchange

data between production application and business

management tools. Reading and writing from/into

these tables is done with access rights for both of

the applications. The service integration module is

a part of a database system kernel server which

works in a conjunction with a client application

that connects to the mentioned server and

formulates requests.

II. DATABASE MANAGEMENT SYSTEM

KERNEL SERVER(DBMSK)

The database management system kernel

represents the general server which has as an

application integration configurable module.

The server uses a typical architecture. The

remote client sends a request to the Database

Server. For a particular request, the server decides

on and takes the appropriate action.

This can be represented graphically as below:

Fig.1. DBMSK general architecture

The main functions of each block are explained

below:

• Request processor takes as input a request

expressed in structured query language

and interprets it. After all request

characteristics have been determined, it is

up to the execution block to act

appropriately.

• Execution block communicates with both

the request processor and the Database

layers in order to execute the client

request. It must be mentioned that this

layer executes when the request

characteristics have been determined by

the request processor layer and only then.

Both, requests and responses can take message or

file transfer forms, depending on the specific

context.

A simplified graphical representation of the

Client application architecture is depicted below:

Fig.2. Client general architecture

As it can be easily seen, all that happens is

driven by user commands, making use of a well-

designed graphical user interface.

 The command processor is a logical entity

that transforms client requests into an appropriate

format for the server to understand and process.

Request can take the following two forms:

• structured query language requests

• standard requests

All these requests are transported between

client and the server encapsulated in a general

request type, this ensuring both, flexibility and

extensibility for the request transport level. The

communication mechanism between client and

server uses both messages and files. The data

interchange operation is realized via file transfer

making use of standard XML language.

For implementing the Server and Client

software applications general programming books

[4] [11], C++ programming books [3] [5] [8] [12],

database books systems [6] [7] [8] and socket

programming books [9] [10] have been used.

Request

Response

 Database

Request

processor

Execution

block

reply

command

GUI

Command

 Processor

response

request

201
BUPT

III. SERVICE INTEGRATION MODULE

We present in Fig.3 the general

architecture of a production system. Generally, the

integration must be accomplished in order to give a

reporting system or management software

application with real data from the production

system.

Fig. 3 System Integration – General Architecture

The demand of the enterprise is to share data

and processes without having to make sweeping

changes to the applications or data structures. Only

by creating a method of accomplishing this

integration can Enterprise Application Integration

be both functional and cost effective. [1]

In general, software application integration

must take into account all application specific

aspects, communication protocol and various ways

of storing data structure (proprietary methods for

manipulating data or general relational databases

like Oracle, Microsoft SQL Server).

In considered integration, production system

uses a relational database to which several

production applications formulate continuously

SQL requests. These requests are general request

made by production application like: insert, select,

update, delete. It is well known the fact that every

relational database management system kernel

achieves lock database operations on some specific

table when executing specific SQL requests.

In this context, appears the problem of

generating data for management applications via a

real time system integration component of the

proposed database management system kernel.

A very important aspect is that management

data is needed on a constant base for decision

purposes. The client application, which commands

the kernel server, is responsible for business data

representations and integration workflow.

The integration service main responsibility is

to get the desired data from the production system

taking into account specific data format and

production business logic and provide the

management software application with necessary

data in required format and according to

management application’s logic. To execute this

function the kernel server formulates SQL queries

to production relational database. The problem to

solve is that due SQL requests generated by

production software application: App1 …Appn, the

production relational database is overloaded and

kernel server SQL requests can not be executed in a

specific, fixed period of time set by kernel server at

query setup phase. To solve the problem, dynamic

values for that timeout period of time, depending

on production relational database overload are to be

determined for specific periods of time.

The integration SQL has to get required data

from tables pertaining to proprietary software

application AppA:
Select [Field1, Field2, Field3, Field4 …

Fieldn]

From

 T1

 Inner join T2 on [specific fields]

 Left join T3 on [specific fields]

 …

 Inner join Tm on [specific fields]

 Where [Integration condition]

where:

• T1, T2, … Tm represent specific

tables associated with software

application AppA.

• [Field1, Field2, Field3, Field4 …

Fieldn] represent required

integration fields from AppA.

• [specific fields] represent fields on

which join between tables is carried

out.

• [Integration condition] represents

specific SQL integration condition,

used to select integration data

The data generated using integration SQL is

used to populate the tables of software application

AppB. AppB usually writes specific data to its

associated tables. Hence, data writing to AppB

must be synchronized between the integration

module and AppB itself.

As production AppA generated a

considerable amount of data as a daily basis, which

is reflected in the data composition of the

associated tables (the number of records in AppA’s

tables is growing faster), integration SQL execution

time does not satisfy integration time requirement.

Proper index structure was considered when

executing integration SQL.

A solution would be to change significantly

database structure associated to AppA, but this is

not the case because we are dealing with

proprietary system. Also, the cost to design and

build from scratch the whole necessary software is

very high.

Thereby, a timestamp field will be added to

202
BUPT

large tables pertaining to AppA. Let us denote this

field TS. This is a field used only by integration

module. After the integration for a particular set of

data is achieved, the corresponding TS field will be

updated with the integration moment of time. We

also need an index associated to this field.

The modified integration SQL takes into

account the TS field. The extra condition is as

follows:

• TS > T1

• TS > T1 and TS <=T2

where T1 and T2 are specific moments of time for

which the integration will be carried out.

Depending on the database load, we must

adjust integration SQL query time and T1,

respectively T2 when necessary in order to

successfully execute integration SQL in a

reasonable amount of time (the target SQL

execution time is at least 12 seconds).

Without this parameters adjustment, normal SQL

execution times are:

TABLE 1. Integration SQL execution time

No.

Days

1 10 15 20 30 45 50 60

Seconds 2 5 10 20 25 30 40 >60

As it can be seen from this table, after a

production system run for 60 days, the integration

SQL does not execute in due time. With the

proposed adjustment, SQL execution time is

between 2-10 seconds, depending on the database

load.

A typical back-propagation neural network

[13][14] is capable of solving the problem in order

to constantly adjust query timeout at setup phase

and T1, respectively T2 timestamps, based on

previous SQL execution time on the production

database.

 The neural network will have as input T1

and T2 corresponding to the integration moment of

time, previous SQL query execution times,

previous SQL query timeouts (the time interval for

which the kernel server will wait for a response

from production relational database for a specific

query). The output layer will be used to adjust

timeout interval for the integration module, T1

moment of time and T2 moment of time when

necessary.

The neural network, the server kernel and

client as well as the described integration service

were implemented in C++. As compared to other

proprietary integration systems (IBM, Oracle)

proposed solution, besides implementation cost has

the advantage of having less middleware levels

which translates in smaller execution times, but has

not many configuration options like proprietary

systems mentioned above.

IV. CONCLUSIONS

Presented application pertains to software

application integration class. Using SQL

parameters modification via proposed neural

network the integration SQL successfully executed

in a period of time 3-10 seconds. This execution

time compared with static integration SQL

execution time is much lower.

The Database Kernel, which contains the

software applications integration module, was

designed with futuristic thoughts. Therefore, it is

suitable for any kind of application that involves

custom data storage, retrieval and processing. In

addition, the file transfer component of the server

can be used in remote backup applications.

REFERENCES

[1]. David S. Linthicum, Enterprise Application Integration,

Ed. Addison-Wesley Professional; first edition ,(1999)

[2]. Daniel Serain, Middleware and Enterprise Application

Integration: The Architecture of e-Business Solutions,

Springer; 2nd ed. Edition, (2002)

[3]. Shaharuddin Salleh, Albert Y. Zomaya, Sakhinah A.

Bakar, Computing for Numerical Methods Using Visual

C++, 1st edition, (2007)

[4]. Thomas H. Cormen, Charles E. Leiserson, Ronald R.

Rivest, Introduction to algorithms, 2nd edition, The MIT

Press, (2001)

[5]. Bjarne Stroustrup, The C++ Programming Language:

Special Edition, 3rd Edition, (2000)

[6]. Richard A. Bassler, Jimmie J. Logan, The Technology of

Data Base Management Systems College Readings; 3d

ed edition ,(1976)

[7]. Peter Rob, Carlos Coronel, Database Systems: Design,

Implementation, and Management, Eighth Edition,

(2007)

[8]. Lyn Robison, K. David White, Database Programming

with Visual C++ in 21 Days , Pap/Cdr edition, (1998)

[9]. Dave Roberts, Developing for the Internet with

WinSock, Bk&CD-Rom edition, Coriolis Group Books,

(1995)

[10]. Jeffrey Richter, Christophe Nasarre, Windows via C/C++

(Pro - Developer), 1st edition, (2007)

[11]. Anthony Jones, Jim Ohlund, Network Programming for

Microsoft Windows, Microsoft Press, (2002)

[12]. Douglas C. Schmidt, Stephen D. Huston, C++ network

programming, 1st edition , Addison-Wesley Professional,

(2001)

[13]. Toshinori Munakata, Fundamentals of the New Artificial

Intelligence: Neural, Evolutionary, Fuzzy and More

(Texts in Computer Science), Feb 4, 2008

[14]. Jeff Hawkins, Sandra Blakeslee, On Intelligence, 1st

edition, Numenta Inc, 1st edition, (2005)

Prev Exec Time

New Time Out

New T2

New T1

Prev Time Out

Prev T2

Prev T1

203
BUPT

Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 1, 2008

Redundancy and Testability in Digital Filters

Horia Carstea1, D. Margeloiu, O. Mitariu

1 Facultatea de Electronică şi Telecomunicaţii, Departamentul de Electronica Aplicata,
Bd. V. Pârvan Nr. 2, 300223 Timişoara, e-mail horia.carstea@etc.upt.ro

Abstract – Threat issues in specific applications of
digital filters are investigated. Since these redundant
faults tend to appear in the same general location as test-
resistant faults, the presence of many redundant faults
can hide significant untested faults despite high overall
test coverage. Classes of redundant faults that arise in
digital filters are described and we propose a suite of
technologies for identifying and eliminating the most
common redundancies based on arithmetic optimization.

I. INTRODUCTION

With more commercial products incorporating
digital signal processing (DSP) functions, testable
design has become a “pressing issue among DSP
designers”. Developing high coverage tests for
application-specific is considerably complicated by
the presence of these random-test-resistant faults.

We will focus on the finite-impulse response
(FIR) filters since they are perhaps the most widely
implemented class of digital signal processing
applications and are a basic building block of many
more complex systems. However, the general
approach is geared towards any system that can be
described as a network of shift, add, delay sign
extension, and truncation elements.

In order to gauge the efficacy of the approach
across a fairly broad slice of designs, we will use fire
filter specifications selected from the literature [1],[2]
that include three lowpass filters, a wide-band
bandpass filter used in video processing, and a
predistorsion filter.

The overall approach is shown in Fig. 1, where
we will be focusing on the shaded partition.

Fig. 1 Overview of design flow

The register-transfer-level (RTL) design
description is analyzed to identify structures that are
redundant, and the logic is marked to indicate the
specific redundancies that are embodies. The designs
will be implemented using three different common
architectures: cascaded ripple-carry adders, carry-save
pipelines, and adder tree structures.

II. FAULT MODEL

 Since the principal active element in all the
designs was the full-adder cell, the fault model used
for this cell is of a same concern. We used the
common gate-level model shown in Fig. 2, where the
faults modeled are the stuck faults at gate input and
output pins. Often, the hardest tests to apply using
pseudorandom techniques are those associated with
overflow conditions at the next-to-MSB full adder.

Fig. 2 Full adder gate-level model and

associated carry logic test

If the c input is the carry input to the full adder,
under this fault model, testing the carry logic requires
fire tests: the three labeled e (essential) on the right
half of Fig. 2, and one from each of the two
equivalence classes 1 and 2. Under this model,
overflow test 6 is nonessential, since the logic test by
it can also be easier (more probable) test 7.

III. SCALING

The single most important design for testability
optimization that can be performed on filters is to
scale signal widths to the minimum width needed

204
BUPT

eliminating redundant sign bits. Computing the
minimum width needed to hold a signal can be
performed using any member of the standard fixed-
point scaling techniques [3]. In redundancy
elimination we use L1 scaling since it is the most
conservative scaling technique, guaranteeing that the
circuit behavior will not be altered. Mode wk can be
characterized using the idealized impulse response of
the subfilter that outputs at the interval mode:

[] [] []∑
=

−=
kM

i
kk inxihnw

0
 (1)

Where []ihk is the impulse response of the subfilter

and kM is the order of the subfilter.
Using the property that the magnitude of a sum is

less than or equal to the sum of the magnitudes of it’s
terms, and then replacing []inx − with Maxx (the
maximum input signal magnitude) we obtain:

[] [] [] []∑ ∑
=

≤−≤
kM

i
kMaxkk ihxinxihnw

0

 (2)

This gives an upper bound on the signal

amplitude at the internal mode. Without knowing
more about the characteristics of the input signal, we
assume that it is capable of swinging through the full
range available to it (1=Maxx). The upper bound on
the signal amplitude is then:

Bnwk ≤][(3)
and:

[]∑
=

=
kM

i
k ihB

0

 (4)

IV. APPLICATION

The target applications will focus on where the
finite impulse response (FIR) filters are. To provide a
brief review of terms and definitions, FIR filters
essentially perform a weighted moving average of a
sequence of input sample. This is described by the
linear constant coefficient difference equation:

[] []∑
=

−=
M

i
i inxhny

0
 (5)

Where M is the filter order, []ny is the output signal

at time n, []nx is the input at time n, and

nihi ≤≤0, is the set of filter coefficients, which
also corresponds to the impulse response of the filter.

 The designer frequently has some flexibility in
choosing the filter coefficients, and it is often possible
to select the ih , such that they can be expressed as a
power of two or the sum or difference of two powers
of two, which leads to efficient VLSI
implementations.

V. CONCLUSION

Redundant fault can be an obstacle to gauging the
true effectiveness of any test scheme, particularly in
application specific digital filters where these faults
can be hard to distinguish from highly test resistant
fault. Analysis of the register-transfer-level design
using arithmetic techniques based on scaling theory
and signal phase and magnitude constraints provides
an efficient means of identifying and eliminating most
redundant faults in these designs.

Elimination of these faults can be done as a
preprocessing phase for more accurate fault
simulation or it can be used to eliminate redundant
logic from the design itself, in which case it is
possible to make significant area reductions as
compared to moderately optimized designs.

In many cases, smaller than the area of the logic
removal by redundant fault eliminations for a net
reduction in area over the nonoptimized design with
no self test capabilities.

REFERENCES

[1] T.O. Powel, K.M. Butler, M. Ales, R. Haley and M. Perry

“Correlating defect level to final test fault coverage for modular

structured design” Proc VLSI Test, 1994 pp 152-196

[2] P.C. Maxwell, “Reductions in quality caused by uneven fault

coverage of different areas of an integrated circuit” IEEE Trans.

Computer-Aided Design. Vol. 44 pp 603, 606, May 1995

[3] L. Goodby and A. Orailogln, “Pseudorandom pattern test

resistance in high-performance DSP data paths”, Proc 33rd Design

Automation Conf . 1996 pp 813-816

[4] H. Carstea “Strategii de inspectie si testare in electronica”,

Editura de Vest, Timisoara, 2007.

205
BUPT

