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Abstract –A continuous time neural network of )( 2NO  
interconnections is considered. A maximum selector is 
built by a proper choosing of parameters. It processes a 
sequence of lists and the speed is a performance 
criterion. The main point here is a formula for the 
processing time which takes into account the parasitic 
capacitances between inputs. 
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I. INTRODUCTION 
 

The Hopfield networks have proved to be powerful 
analog machines [1]-[4], [12], [15]. They can compete 
well with their digital counterparts as their huge 
parallelism leads to remarkable high speed of 
processing. Therefore, setting up the clocking time of 
an analog neural computational network is essential 
[1], [8]-[11], [13]. On the other hand, the extensive 
interconnection between cells can damage the time 
performances. This is why attentive studies on 
parasitic or fault capacitive coupling have been 
carried out [14], [16]. We report here some of our 
results on time evaluation of Winner Take All 
networks when all pairs of inputs are affected by 
mutual coupling. We are interested in closed form 
expression of processing time, from where the circuit 
and list parameters can be properly chosen for a 
certain performance. The results here are extensions 
of those in [16]. 
 

II. THE WTA CIRCUIT 
 

Fig.1 displays one of the N -cells of a Hopfield 
neural network. The amplifier is described by 

)( ii umgv λ=  where )1,1(: −→ℜg  is a 1C  

function with 1)(lim ±=
±∞→

xg
x

, axg ≤< )(0 '  and 

0)(lim ' =
±∞→

xxg
x

. m and λ  are the amplitude and 

the gain, respectively. p  is the interconnection 

conductance of negative feedback, 0C  and ρ  are the 
ground capacitance respectively resistance of each 

cell. Each ),( ji uu  input pair has a mutual 

capacitance δ  as a parasitic effect. Thus each input is 
capacitively coupled through δ  with all other inputs. 
Although this is certainly a rough approximation of 
real parasitics (or faults) its symmetry allows the time 
evaluations below. 
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Fig. 1. The i-th cell with all its interconnections 
 
Our circuit should process a list of N  items given by 
the currents id  of each input where M , a bias 
source, is also applied. The list elements are distinct, 
with the minimum mutual distance ∆  corresponding 

to a list density 
md

Nz )1( −∆= . Here ],0[ md  is the 

admission interval. Suppose the list elements are 
ordered as  
 

)()2()1( Nddd σσσ >>> L                (1) 
 
The WTA circuit should signal the fact that the 
element of rank )1(σ  is the largest one. This will be 
done by splitting the list of output voltages in two 
parts: )1(σv  above a positive threshold ξ  and all 

other beneath ξ− , i.e. 
 

)()1( jvv σσ ξξ >−>>  for all Nj ,2∈  
 

III. BASIC PROPERTIES 
 
Our circuit obeys the equation 
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Here tr

Nuuuu ),,( 21 L= , tr
Nvvvv ),,( 21 L= , 

)( ii umgv λ= , tr
Nbbbb ),,( 21 L=  where 

ii dMb += . C  is the matrix, with 

δ)1(0 −+= NCCii , δ−=ijC  for all 

Nji ,1, ∈ , ji ≠ . T  is the interconnection matrix, 

with 0=iiT , pTij =  while pNl )1(1 −+=
ρ

. 

The main convergence result tells that for every )(tu  
solution of (2) there exists a stationary state u  such 
that utu

t
=

∞→
)(lim . Even more, if the gain λ  is 

sufficiently high, then any stationary solution  
with ξ≥|| iv  is asymptotically stable. 
 

IV. TIME EVALUATION 
 
Starting from zero at 0=t one can show that, for all 

0>t , the relative order of state components is 
exactly the same as the list order (1): 
 

)()()( )()2()1( tututu Nσσσ >>> L          (3) 
 

This is true provided that 
pam

l>λ  and it extends 

to the vector of )()( tv iσ  and to the stationary state u  

or v  as well [13], [16]. Further on, we distinguish 
two cases (see Figs. 2 and 3). The first one, supposes 

)(2 tu  passes the WTA threshold β−  before )(1 tu  
crosses its β+  level. Rigorously speaking, we 

suppose ]2,0[ βα ∈  and taken the moment αt  when 

αβα −=)(1 tu , βα −=)(2 tu  and for all αtt > , 

β−<)(2 tu . The second case supposes )(1 tu  

reaches β+  in advance of )(2 tu  reaching β− . In 

this case we call αt  the moment when βα =)(1 tu , 

αβα +−=)(2 tu  and for all αtt >  β>)(1 tu . In 

both cases above we call pt  -processing time-, the 

first moment after αt  when β≥)(1 ptu  and 

β−≤)(2 ptu . With these, the problem of finding the 

clocking time pT  reduces to search for upper bounds 

αt  and αtt p −  of αt  and αtt p − respectively. We 

have ααα tttT pp −+=)( . 

The first bound αt  comes from “the difference 
equation” 
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Fig. 2 The processing phase - case 1. The )1(σu  winner surpasses 

the threshold β  after the moment when the losers )2(σu fall 

under β−  
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Fig. 3 The processing phase - case2. The )1(σu  winner goes above 

β  before the moment when )2(σβ u=− . 

 
The first bound αt  comes from “the difference 
equation” 
 

21212121 )()()(
d
d ddvvpuuluu
t

Cn −+−+−−=−

 
where δNCCn += 0 . With 0)0)(( 21 =−uu  and 

αβα −=− 2))(( 21 tuu  we get 
 

)2(
ln

αβαα −−∆
∆=≤

ll
Ctt n           (4) 

 
This is valid equally for the two cases and all 

]2,0[ βα ∈ . 
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The evaluation of αtt p −  in case 1 comes from the 
first equation in (2) written as: 
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It yields  
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Here mzdd =1  and ∆−−= )( jNdd mij . 
For the case 2 we use the second equation in (2) 
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and get again (5) where 
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Here ∆−= mdd2  and ∆−−= )2(12 Ndd m . 

Now, (4) and (5) give the bound )(αpT  of 

processing time for every ]2,0[ βα ∈ . By imposing 

0
d
d

<
α

pT
 we find )0()(max pp TT =α  which 

gives a final bound: 
 

βll
CTt n

pp 2
ln)0(

−∆
∆=≤              (8) 

 
The above imposion results in 0>− βlW  for both 
two cases, and also 02 >−∆ βl . These inequalities 
are made true by a proper choosing of circuit 
parameters M , ξ , β , m , p , md  when the 
minimum list density z  and the maximum parasitic 
capacitance δ  are given. Our evaluations works for 

[ ]2,0 0 −∈ NCδ . 
 

V. CONCLUSION 
 
Taking into account the more and more squeezed chip 
dimensions of today technology, the cross-coupling 
capacitances can be essential for the working speed of 
a neural network. 
Our work succeeds to give an explicit processing time 
formulae for a WTA neural network affected by 
parasitic capacitances between inputs. The clocking 
time expression is remarkable simple. It is valid for a 
certain set of parameters including a limitation in 
parasitic capacitances. 
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