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Abstract –Real leak signals, acquired in industrial 
pipeline systems may manifest two typical non 
stationary signatures: abrupt amplitude random 
changes on one side and a time varying mean on the 
other side. This paper proposes a pre-processing 
algorithm for extracting stationary information from the 
received signals, in order to improve the leak location on 
the pipe. This method combines the wavelet de-noising 
technique with a segmentation algorithm. Comparative 
results show that, in addition, by using a pre-whitening 
filter and closing the pipeline’s end, improved estimates 
can be obtained. 
Keywords: leak location, time delay estimation, 
stationarity index,. 
 

I. INTRODUCTION 
 

In a pipeline transport system early detecting and 
locating leaks is a problem of great economical 
significance. One of the most known methods for leak 
locating is based on the analysis of the acoustic noise 
generated by the fluid passing through the leak. The 
leak locating principle consists of estimating the time 
delay at which the leak signal reaches at two separate 
locations on the pipe [8],[9],[10]. The linear 
mathematical model usually used for this problem is 
described by: 
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where  r1(t), r2(t) are the received signals, n1(t), n2(t) 
are the additive noises at the sensors’ locations, s(t) is 
the primary source leak signal and D is the time delay 
which has to be estimated. The leak position is then 
derived from the noise propagation velocity and the 
distance between the measuring points. For estimating 
the time delay, a typical method is to compute the 
acquired signals’ cross-correlation function and to 
find the argument at which its maximum occurs 
[1],[4]. This technique works well for signals with 
ideal features i.e. stationary, white, Gaussian, 
uncorrelated with the disturbing noises. In practice, 
the leak signals prove to perform certain random 
mean and amplitude variations due to the disturbing 

noises that act in the pipeline system [7]. Fig.1 
presents three typical real leak signals that have been 
captured in a real pipeline installation. The top signal 
performs a number of abrupt amplitude variations 
with a random occurrence, the middle one is 
characterized by a random varying mean while the 
bottom signal has both amplitude and mean changes 
with time.  
This paper studies the possibility of bringing the 
imperfect acquired signals to a form that tends to 
reach the ideal features enumerated above, by 
proposing a pre-processing signals’ treatment.  
Briefly, this procedure combines the wavelet de-
noising technique for cancelling the low-pass noise 
component, with a stationarity index based 
segmentation algorithm for avoiding the amplitude 
bursts,  and the innovations representations, for 
signals’ whitening  [2],[3],[5],[6]. This procedure is 
described in section 2. On the other hand, results 
emerged from an experimental study in which the 
“hardware” operation of closing the pipeline’s end 
was allowed, proved to bring considerable 
improvements especially regarding the signal-to-noise 
ratio and stabilizing the signals’ amplitudes. 
A comparative study on real leak signals, acquired in 
both pipeline operating modes (without and with 
pipeline’s end obstructed), is presented in section 3. 
 

 
Fig.1 Typical leak signals 
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II. THE COMBINED METHOD 
 

The block diagram for the proposed technique is 
presented in fig.2, while fig.3 shows some 
comparative cross-power spectral densities (CPSD’s) 
for the leak (R12) and noise (N12) signals before and 
after applying the algorithm, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Algorithm block diagram. 
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Fig.3 Typical cross-power spectral densities for leak (R12) and 

disturbing noise (N12) signals. 
 
Use As shown in fig.2, the pre-processing algorithm 
consists of two major parts. Firstly, the low-pass 
component is removed from the received signals 
using the wavelet de-noising technique [11],[12], 
according to: 
 

iii rdrwmr −=      (2) 
 
Here, rd denote the signals obtained by wavelet de-
noising, wmr denote the signals resulted by removing 
the  “mean” or low-pass part, and i=1,2. The reason 
for doing this was based on the observation that both 
the leak signals and the disturbing noises spectra 
practically overlap in the low frequency domain and 
become distinct otherwise, as shown in fig.3, top left-
hand corner. By applying (2) a certain part of the 
disturbing noise is removed from the signal and only 
the remaining spectral components that distinguish the 
leak from the background noise is further processed 
(e.g. fig.3, bottom left-hand corner). In this case the 
background noise is practically given by the 
pipeline’s main stream. On the other hand, by closing 
the pipe’s end the background noise is considerably 
reduced, and the leak signal is enhanced, as shown in 
the right part of fig.3.  
The second step of the algorithm consists of 
extracting piecewise stationary segments of maximum 
length from the resulted signals, by avoiding their 
non-stationary amplitude parts. This method is based 
on computing the stationarity index (SI) [3],[6] of the 
signals’ sum, according to the following relationship 
(Kolmogorov distance): 
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where TFR is the time-frequency representation of 
two sub-images around the time instant t; p is the sub-
image’s width and  τ is a time variable, [ ].,0 p∈τ   
In the upper part of fig.4 is presented the SI function 
computed by (3), for the first signal in fig.1. It can be 
observed that this function performs sharp peaks 
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corresponding to the signals’ amplitude abrupt 
changes, and is nearly constant otherwise. Fig. 5 
shows the same function computed for a signal of the 
second type (fig.1, middle). In this case, there are no 
rapid changes in the signal, and the function is nearly 
constant in the entire time domain. In the first case the 
SI function’s mean, m and its trimmed mean, m0, (i.e. 
the mean after excluding a certain percent of the 
extreme values) differ more than in the second case. 
Based on this observation, the algorithm computes 
two quantities, Q1 and Q2, as in: 
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where SIpp is the SI function’s peak to peak amplitude 
and k is a constant factor. Next, the “Q” quantities are 
compared and if Q1>Q2, the algorithm decides that the 
signal pair needs segmentation. Otherwise, the entire 
data acquisition is considered piecewise stationary 
and is used for further processing. 
 

 
 

Fig.4 Extracting a piecewise stationary segment pair 
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Fig.5 Case two- no need for segmentation 
 

In the first case, a threshold level is next chosen based 
on establishing a tradeoff between the burst degree 

contained in the data and the segments’ maximum 
time interval length. In the example from fig.4 the 
distance between the SI maximum and the trimmed 
mean, dSI, was divided in six equal intervals defining 
seven segmentation thresholds according to: 
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where nlev is the total number of thresholds and thri is 
the “i-th” threshold. It also can be noted that the last 
threshold is equivalent to the case of no segmentation. 
Finally, in the bottom part of fig.4 is shown a 
piecewise stationary data pair segment extracted 
through this procedure. 
 

III. COMPARATIVE RESULTS 
 
In order to evaluate the algorithm’s performance, an 
experiment was initiated on a bended metal pipeline 
installation for water transportation of 12.82 meters 
length and 2.54 centimeters diameter.  
In this experiment, the leaks were simulated by 
faucets for flow rate adjustments. The measuring 
points were equally distributed along the pipe at 
intervals of 0.3 meters.  
Two working modalities were involved in this study, 
relatively to the pipeline’s end:  first without and then 
with the pipeline’s end closed.  
The acquisition system was composed of a pair of 
vibration sensors KD Radebeul, two amplifiers M60T 
with adjustable gain between 40 and 60 dB, anti-
aliasing low pass filters and a dSPACE DS1102 board 
connected to a PC.  
The processing algorithms were implemented using 
the MATLAB® environment. The time delay was 
estimated using the maximum likelihood processor 
[1], [4], directly (ML) or after pre-whitening the 
received signals (WML). The propagation velocity of 
the acoustic signals on the pipe was estimated 
beforehand. In the study that followed, one sensor was 
kept fixed while the other sensor was moved 
gradually from one measuring point to the next. The 
reason for doing this was to compare the estimation 
results based on two criterions: the deviation from the 
expected delay, (obtained from the prior estimated 
propagation velocity), shown in fig.6 (top) and the 
deviation from the proportionality on the pipe, 
knowing that the measuring points were equally 
distributed, (as in fig.6, bottom).  
The two graphs on the left hand of fig.6 present the 
error power vs. the segmentation level. Here, the 
wavelet de-noising level was kept fixed and the 
pipeline’s end was not closed. (In this situation, most 
of the acquired signals proved to need segmentation). 
The curves obtained in the left part of Fig. 6 show that 
by processing the acquired signals with a combined 
WMR and WML algorithm, improved estimation 
results can be obtained, especially between the 
threshold segmentation levels three to six.  
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On the other hand, the remaining two curves on the 
right of fig.6 present the error power for the second 
working mode, with the pipeline’s end obstructed.  
In this situation, most of the acquired signals proved 
to need no segmentation, but in exchange they 
performed an accentuated mean variation relative to 
the entire signal, especially in case of small leaks (e.g. 
fig.1, middle). Here, the wavelet de-noising level was 
varied. The results obtained in this study show that the 
lowest estimation error was given by level four when 
using also a combined WMR and WML technique. 
Finally, fig.7 shows a comparison between the 
estimated delays for the most favorable results of no-
end obstructing mode (WMR-WML) and the worst 
favorable results of the end obstructing mode 
(OWMR-WML). The conclusion is that the end 
obstructing mode gives the best estimation results. 
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Fig.7 Results for the best (WMR-WML) and worst (OWMR-WML) 
cases obtained without and with end obstruction, respectively.  

 
IV. CONCLUSIONS 

 
Real leak signals prove to have a non-stationary 
behavior from both mean and variance aspects. These 
features represent a considerable obstacle in locating 
leaks. This paper proposes a pre-processing treatment 
in order to bring the acquired signals to a form that 

makes the classical algorithms easier to apply. The 
proposed method combines the wavelet de-noising, 
segmentation and whitening techniques. The best 
estimation results were obtained yet by closing the 
pipeline’s end. Through this procedure, the rapid 
amplitude changes are avoided in majority of the 
cases and also the WMR method could be applied 
only for small leak signals. 
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