

Doctor

 Medical Center

Data-
base

SERVER

Patient

Patient

 Doctor

Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 2, 2006

Cryptographical System For Secure Client–Server
Communication

Mircea-Radu Campean1 and Monica Borda2

1 Facultatea de Electronică şi Telecomunicaţii, Departamentul
Comunicaţii Str. Constantin Daicoviciu, No. 15, 400020, Cluj-Napoca, e-mail Radu.Campean@com.utcluj.ro
2 Facultatea de Electronică şi Telecomunicaţii, Departamentul
Comunicaţii Str. Constantin Daicoviciu, No. 15, 400020, Cluj-Napoca, e-mail Monica.Borda@com.utcluj.ro

ABSTRACT

The aim of this paper was the research of a way to
implement a cryptographical system for secure Client-
Server communication, designed to satisfy the specific
needs of the health care domain. A real IP based Client-
Server application was created, that assures confidential
message transfer using standardized cryptographic
algorithms and components. A particular PGP (Pretty
Good Privacy) like architecture was designed to ensure
the communication security. Low costs, along with an
easy to use implementation, represent decisive
advantages when trying to implement the system in the
medical area,which has limited budget for
informatization.

Keywords: Cryptography, Encryption, Decryption,
Authentication, Confidentiality, Client-Server

I. INTRODUCTION

Internet network development created the need for
new types of services. The health care domain is one
area, which is starting to benefit from the advantages
Internet offers, providing different kind of services to
help patients when they need medical care.
In our research we wanted to create a system, which
allows patients to communicate with theirs doctors,
using a PC connected to the Internet. For this purpose
we developed a Client – Server application with a
series of key features:

i. limited access to registered users
ii. ensures confidentiality and

authentication
iii. intuitive interface for the Client
iv. limited hardware resources

Borland Delphi 7 was chosen as the programming
language to create the Client – Server application after
carefully considering its advantages over other
solutions (i.e. object oriented programming language;
high quality debugging support; easy to create user
friendly interface; provides good error handling).

 II. CLIENT-SERVER APPLICATION

Before developing an application we had to establish
what were the requirements of the service we wanted
to offer through our project. We intended to create a
simple system, which could be used by patients to
easily contact their doctor, using special software
installed on a PC connected to Internet network. As
shown in Figure1, we imagined that all
communication, between doctor and patients would
be filtered through the Server component, which runs
on a computer situated at the Medical Care Centre.

Fig 1: System structure for application

Due to the fact that both doctors and patients use the
same software (the Client application) to gain access

50

BUPT

into the system, the Server has to activate different
features of the Client component according to the
specific user rights, either doctor or patient. Also a
simple database is used in order to store messages
sent to/from users. The messages are stored in their
original encrypted form, and this is done only if the
recipient is not logged into the system when the
messages are sent.
For the Client – Server part of the project, which
solves the communication problems, we have used
Indy (Internet Direct). Indy is an open source Internet
component suite composed of Internet protocols
written in Delphi and it is included in Delphi 6 and
the later versions. There are more than 60 components
especially designed to support network programming
with Delphi, all grouped in four different categories:

• Indy Clients
• Indy Servers
• Indy I/O Handlers
• Indy Misc

 II.1. THE SERVER APPLICATION

The Server is designed in such a way to implement a
few basic functions like: connecting clients,
authenticating users (verifying their UserID and
Password), basic message processing, administrating
the database, which contains user information and
stored messages.
The Server part of the project is built around
TIdTCPServer component, which implements a multi-
threaded TCP (Transmission Control Protocol) server.
This component uses one or more threads to listen for
clients connections, and in conjunction with
TIdThreadMgr, allocates a separate thread to handle
each client connection to the server.
To successfully start a TCP server we need to specify
the IP address and Port where the Server listens for
clients. This is done using the Bindings property of
the TIdTCPServer component. Also an OnExecute
event handler had to be written, enabling the Server to
reply to commands sent from the client.
As mentioned before the Server has to manage
information found in a database. For this purpose we
had used components found on the ADO (ActiveX
Data Object) page. ADO is a set of COM components
(DLLs) that allows you to access databases as well as
well as e-mail and system files. Three data aware
components were used in this project from the ADO
page:

• DBGrid: - it is used to browse through
the records retrieved from a table or by
query

• DataSource: -used to provide a link
between a dataset and DBGrid
component on a form that enables
display, navigation and editing of the
data underlying the dataset

• ADTtable: -represents a table retrieved
from an ADO data store

II.2. THE CLIENT APPLICATION

The Client component is based upon TIdTCPClient,
which encapsulates a complete TCP (Transmission
Control Protocol) client. As a first step when
connecting to a TCP server, the Host and Port
properties (the IP address and port where the Server
awaits client connections) of the TIdTCPClient, have
to be set.
In general a server cannot, by default, send a
command or data to a client without having the client
specifically asking for something. In our case we
wanted the server to be able to initiate a scenario, in
case it has a message to deliver. Because a Client
(TIdTCPClient) does not implement a standard listen
event, a TTimer component was added for handling
the eventual command from the Server in an OnTimer
event handler.
As mentioned before, doctors and patients will use the
same Client application in order to connect to the
Server, and gain access into the system. Each user
will have a unique UserID and Password. A user-
friendly interface was designed for the Client
component, which has the following features:

• “Login” button - used when a client is trying
to get access into the system

• “Logout” button – used for exiting the
system

• “Send” button – used for sending messages
to other users

• “Clear” button – cleans the message box
• “ChangePassword” – allows users to change

their passwords
• “AddPatient” – allows doctors to add a new

patient to their own list of CONTACTS
Note: Every user, patient or doctor, has one “Contact
List” that contains other users, and with whom they
can communicate.

III. SECURITY ISSUES

When designing a communication system one of the
main concerns is the protection of the transmitted
data, to ensure the confidentiality of system users.
This is done using different cryptographic algorithms.
In order to ensure the communication security, a
particular PGP like architecture was designed.(Note:
we did not use the PGP system, we only used the
principles of PGP security). This solution was chosen
because PGP can be used to protect data in storage, in
contrast to security protocols like SSL, which only
protects data in transit over a network. PGP uses
symmetric and asymmetric – key cryptography. The
asymmetric cryptography part assumes that the
recipient of a message has previously generated a key
pair, a public key and a private key. The destination’s
public key is used by the sender to encrypt a secret
key (session key) that is then used to encrypt the
message (plaintext). The recipient of a PGP encrypted
message decrypts the session key using its private key
and then decrypts the message using the decrypted

51

BUPT

key. Using two ciphers makes sense since there is a
considerable difference in operating speed between
public key and symmetric key cryptography, the latter
being much faster. As an addition to basic PGP is the
possibility to detect whether a message has been
altered, and whether it was actually sent by the person
who claims to be the sender. To solve this, the sender
creates a digital signature of the message using RSA
or a DSA signature algorithm, which is then
compared with a computed message digest at the
recipient.
The algorithms chosen in our system were: Triple
DES using 128 bits keys; RSA with 512 bits keys;
SHA-1 with a digital signature of 20 bytes encrypted
with a 512 bits RSA key.
For this part of our project we used LockBox, a cross-
platform library that can be used in Borland Delphi
and C++ Builder applications under Windows.
LockBox provides services that enable programmers
to add cryptography to their own projects. There is
also the possibility to digitally sign documents, using
components that encapsulate the required
functionality.
LockBox also contains a component hierarchy to offer
an easy to use and but still powerful encryption
possibility. Figure 2 shows this class hierarchy. AT its
base is an encryption engine class, TlbCipher. This
class has virtual methods to encrypt and decrypt an
arbitrary buffer of data into another, a file into
another, a stream or a string into another.
Two simple descendant classes act as roots for the
two types of ciphers, symmetric and asymmetric.
These classes provide extra functionality by dealing
with keys, a single private key in the symmetric case
and the pair of public and private keys in the
asymmetric case. Finally there are the descendent
components that perform the actual encryption and
decryption using specific ciphers.
In our Client – Server application we have used three
of the components presented in the component
hierarchy (Figure2):

• TLb3DES – used for implementing the
symmetric key algorithm

• TLbRSASSA –creating and verifying digital
signatures

• TLbRSA –used for asymmetric key
cryptography

In the encryption process, except for the Triple DES
keys, no key variables are assigned, those being set up
in the user authentication phase. The encryption is
done on strings instead of files, the main reason being
the implementation of the client server
communication part. The encryption has three
important steps. First the digital signature (encrypted
hash) is generated using the plaintext and the sender’s
private key. As mentioned before SHA-1 with a
digital signature of 20 bytes encrypted with a 512 bits
RSA key has been chosen in this project. Then using
Triple DES algorithm the plaintext and digital
signature are encrypted using a session key. The last
step involves the encryption of the session key using

the recipient public key. As I previously said the
application works with strings as plaintext and
ciphertext. The decryption process acts as the reverse
function of the encryption. Firstly, the recipient
decrypts the session key using its own private key,
and then using the session key decrypts the plaintext
and digital signature.

 Fig2: Component hierarchy

IV. CONCLUSIONS AND FUTURE WORK

The system we have created has been tested in
laboratory conditions on a limited number of
computers thus on limited hardware configurations.
We’ve had good results when we tested the
application on computers with different versions of
Windows OS (operating system) without having any
kind of conflicts stating incompatibilities. The
versions on which the application was tested were:
Win 98, Win 98SE, Win 2000, Win XP (Home and
Professional editions).
Another aspect we were interested in was the
hardware resource needed on a PC (Personal
Computer), which runs the Client or the Server
application. The lowest hardware configuration that
we tested had a 450 MHz processor and 64 MB of
RAM. The Client application had no problem running
on this system and both the processor and the memory
usage were at low levels. The server on the other had
would need better resources (at least 128 MB of RAM
and a processor at around 1GHz) when there is a large
number of clients connected in the system.

Key : Tkey64

GetKey
SetKey

TLbCipher

Create()
Destroy()
EncryptBuffer()
EncryptFile()
EncryptStream()
EncryptString()
DecryptBuffer()
DecryptFile()
DecryptStream()
DecryptString()
OutBufSizeNeeded() TLbSymmetricCipher

CBCMode : Boolean = False

GenerateKey()
GenerateRandomKey()

TLbBlowfish

Key : TKey128

GetKey
SetKey

 TLb3DES

Key : TKey128

GetKey
SetKey

 TLbRijndael

Key : TKeyRDL
KeySize : TKeySizeRDL

GetKey
SetKey

TLbAsymmetricCipher

PrivateKey
PublicKey

GenerateKeyPair()

 TLbRSA

52

BUPT

As said before the entire system was tested using a
limited number of computers. The maximum Clients
that we had connected to the Server at one moment
were 20 and the system performed well. There should
be no problem when a larger number of Clients
connect to the Server since both implementations,
Client and Server, are optimised.
In the future we want to develop the system so that it
can be used in hospitals to create and maintain a
database containing patients’ medical charts and when
needed, the patient’s medical history could be sent to
another hospital using the Client-Server application in
a very short period of time. Access to the files
containing the medical charts will be granted only to
the patients’ doctors ensuring in this way the patients
confidentiality.

V. REFERENCES

[1]Bruce Schneier, Applied Cryptography Second Edition:
Protocols, Algorothms, and Source Code in C, John Wiley & Sons,
New York, 1996
[2] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone,
Handbook of Applied Cryptography, CRC Press, Boca Raton, 1997
[3] William Stallings, Cryptography and Network Security –
Principles and Practice. Second Edition, Prentice Hall, Upper
Saddle River, New Jersey, 1999
[4]Titu Bajenescu, Monica Borda, Securitatea în informatică şi
telecomunicaţii, Dacia, Cluj-Napoca, 2001
[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest ,
Clifford Stein , Introduction to Algorithms, Second Edition; MIT
Press and McGraw-Hill, 2001
[6] Marco Cantu, Mastering Delphi 7, Publisher: Sybex Inc..,2003
(ISBN: 0-7821-2874-2)
[7] TurboPower LockBox2 – Manual [pdf] , TurboPower Software
Company, 2000

53

BUPT

