
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 2, 2006

A New Linear Systolic Array for the VLSI
Implementation of 2-D IDST

Doru Florin Chiper1

1 Facultatea de Electronică şi Telecomunicaţii, Bd. Carol I Nr. 11, 6600, Iasi.

Abstract - In this paper a new linear VLSI array
architecture for the VLSI implementation of the 2-D
IDST based on a new systolic array algorithm is
proposed. This new design approach uses a new efficient
VLSI algorithm. It employs a new formulation of the
inverse DST that is mapped on a linear systolic array.
Using the proposed systolic array high computing speed
is obtained with a low I/O cost. The proposed
architecture is characterized by a small number of I/O
channels located at the two extreme ends of the array
together with a low I/O bandwidth that is independent of
the transform length N. The topology of the proposed
VLSI architecture is highly modular and regular and
uses only local connections. Thus, it is well suited for a
VLSI implementation

Keywords: Inverse discrete sine transform, systolic
algorithms, systolic architectures

I. INTRODUCTION

The 2-D forward and inverse discrete sine
transforms are important transform functions that are
widely used in many signal and image processing
applications. They are especially employed in image
compression due to the fact that they behave very
much like the statistically optimal Karhunen-Loeve
transform (KLT). Thus, the forward and inverse 2-D
DST and DCT represent the critical part in the
implementation of JPEG compression [2].
 The forward and inverse DST are computational
intensive. So, in order to use them in real-time
applications the development of application specific
hardware is demanded.

In the literature there are presented several 2-D
VLSI architectures [4-10]. Most of them use the row-
column decomposition method. Some of them are
using a direct method to compute forward or inverse
2-D DST or DCT [7-9].

Systolic arrays [11] are a good architectural
paradigm to be used in real-time applications. They
are also well suited for the VLSI implementation. The
VLSI algorithms for forward and inverse DST have to
be derived specifically. The way of data moving is
very important in determination of the efficiency of a
VLSI algorithm and of its implementation. Thus, the
use of regular and modular computational structures

with local data communications can lead to efficient
VLSI implementation [12, 13] using the systolic array
architectural paradigm. Thus, an efficient way to
convert the inverse DCT into such structures can lead
to optimal VLSI implementations

II. TWO DIMENSIONAL IDST ARCHITECTURE

The 2-D inverse DST (IDST) for a NxN pixel block
can be defined as follows:

() ()
1 1

0 0
(,) (,) sin 2 1 sin 2 1

N N

i j
x k l X i j i j lα α

− −

= =

= ⋅ + ⋅ + ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑∑ (1)

where:

N2
πα = (2)

),(lkx)1,...,1,0,(−= Nlk is the pixel data,
),(jiX)1,...,1,0,(−= Nji is the transform

coefficient .
In the literature there are presented several 2-D VLSI
architectures for IDST. Most of them use the row-
column decomposition method. Some of them are
using a direct method to compute forward or inverse
2-D DCT or DST.
The row-column approach can de expressed in a
matrix form as:

[] [][][]TNNNN SXSx = (3)

where []NS is the 1-D N-point IDCT, with:

[]
⎩
⎨
⎧

⋅+
=

=
otherwiseji

ifor
S jiN])12sin[(

01
, α

 (4)

Equation (4) can be computed by N N-point IDST
along the rows of the input []NX ,

obtaining [] [][]TNNN YXY = , and followed by N
N-point IDSTs along the columns of the matrix
obtained from the row

transformed [] [] []NNN YSx = . It can be observed

9

BUPT

that using the row-column decomposition method we
have to compute two 1-D IDSTs one after the other.

This simple decomposition method reduces the
computation complexity with a factor of 4.

 Fig.1. The linear systolic array for 2-D IDST
computation

III. 1-D N-POINT INVERSE DST
ARCHITECTURE

A. Systolic Algorithm for 1-D Inverse DST

The 1-D N-point inverse discrete sine transform IDST
is defined as follows:

∑
−

=
⋅+⋅=

1

0
];)12sin[()()(

N

i
ikiYkx α (5)

Nk ,...,2,1=

with
N2

πα = (6)

In order to reformulate relation (5) as a circular
correlation form we introduce some auxiliary
sequences and use the proprieties of the Galois Field
of indexes to appropriate permute the input and output
sequences.

The output auxiliary sequence
{ }1,...,2,1:)(−= NkkT can be computed as
follows:

)(2)(' kTkT = (7)
The new auxiliary output sequence
{ }1,...,2,1:)(' −= NkkT can be computed as a
circular correlation, if the transform length N is a
prime number, as following:

)2sin(

)]()1(

)()1[()(

2/)1()2/)1(,(

2/)1(

1

),('

α

ψ

ψ

×><×

×><⋅−+

+><⋅−=><

+

−+−+

−

=
∑

N
ki

Ni
C

Nik

N
i

C

N

i

ik
N

k

g

gY

gYgT

 (8)

where Nx >< denotes the result of x modulo N and

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢ ><−><×><
=

+

N
ggg

ik N
kii

N
k

),(ψ (9)

with ⎣ ⎦x the greater integer smaller the x and is
called the floor function.
We have used the properties of the Galois Field of
indexes to convert the computation of the auxiliary
output sequence { }1,...,2,1:)(' −= NkkT as a
circular correlation.
The auxiliary input sequence
{ }1,...,2,1:)(−= NiixC is defined as following:

)cos()()(αiiYiYC ⋅= (10)

Finally, the output sequence can be recursively
computed using the auxiliary output
sequence{ }1,...,2,1:)(−= NkkT as:

1,...,2,1);1()()(−=−−= NkkxkTkx (11)

∑
=

=
N

i
S iYx

1
)()0((12)

with
)sin()()(αiiYiYS ⋅= (13)

B. An Example

To illustrate our approach, we will consider an
example for 1-D IDST with the length N=11 and the
primitive root g=2.
We can write (8) in matrix-vector product form as:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

±±
±±
±±
±±
±±

×

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′
′
′
′
′
′
′
′
′
′

)]1()10([
)]6()5([
)]3()8([
)]7()4([
)]9()2([

)10()5()8()4()9(
)5()8()4()9()10(
)8()4()9()10()5(
)4()9()10)5()8(
)9()10()5()8()4(
)10()5()8()4()9(
)5()8()4()9()10(
)8()4()9()10()5(
)4()9()10()5()8(
)9()10()5()8()4(

)1(
)6(
)3(
)7(
)9(
)10(
)5(
)8(
)4(
)2(

CC

CC

CC

CC

CC

xx
xx
xx
xx
xx

sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss
sssss

T
T
T
T
T
T
T
T
T
T

 (13)

1-D IDST Systolic
Array

1-D IDST Systolic
Array

Control
Logic

Trans
-pose
Mem.

10

BUPT

where we noted by)(ks as)2sin(αk and the sign
of the items in relation (9) is given by the following
matrix:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000000000
1101010111
0010001000
0010100010
0000001010
1101111111
0000101000
1111110111
1111011101
1101110101

SIGN

where:
• The first bit designates the sign before

the brackets
• The second bit denotes the sign inside

the brackets
where the “1” bit indicates the minus sign (the first
bit) and the subtraction operation (the second one)

III. THE LINEAR SYSTOLIC ARRAY
FOR 1-D IDST

Using the dependence-graph of equation (13) and the
dependence-graph based synthesis procedure [14] we
have obtained a linear systolic array. The hardware-
core of this array is presented in figure 2. The
function of the processing elements Pes is presented
in figure 2b. In order to deal with the sign differences
in equation (13) we have used the tag-control
technique presented in [15].
 Using the tag-control mechanism we can keep the
I/O channels at the two extreme ends of the linear
array, where the tag sequences tc controls the loading
of the input data into the array as shown in fig.2b.
Using this mechanism we can control the content of
the internal registers using only channels placed at
one of the two ends of the array.
 The pre-processing and post-processing stages
realize the appropriate reorder of the auxiliary input
and output sequences.

In the preprocessing stage we also compute the
auxiliary input sequence { }1,...,2,1:)(−= NiiYC

and { }1,...,2,1:)(−= NiiYS . In the post-
processing stage we also compute the auxiliary output
sequences }1,...,2,1:)({ −= NkkT and finally the
output sequence using the equations (11), (12)
respectively.

IV. PERFORMANCES AND COMPARISON

 The average computation time is (N-1)Tcycle. The
number of multipliers is (N-1)/2+1 and the number of
adders is (N-1)/2+2. Thus, low hardware and I/O costs
can be obtained. We can easily obtain a high
throughput using a two-level pipelining mechanism
with low hardware and I/O costs.
In [16] a time-recursive structure is proposed. As
compared with [16] the throughput is significantly
increased using a two-level pipelining. The structure
proposed in [16] did not allow a two-level pipelining
due to its recursive nature.
In [17] and [18] the throughput can be also
substantially increased using the two-level pipelining.
These structures do not allow two level pipelining due
to the data-path feedback.
As compared with [19] the throughput is also much
increased when using a two-level pipelining. This is
explained due to the presence of the feedback in
RACs.
The proposed structured has also a low I/O cost. As
compared with [20] the I/O cost is significantly lower.
The I/O cost can significantly limit the speed
performances due to so called I/O bottleneck.

V. CONCLUSION

In this paper a new VLSI architecture for the VLSI
implementation of 2-D inverse discrete sine transform
is presented. It has some appealing features as a low
I/O cost and high speed performances. It employs a
new VLSI algorithm that efficiently uses the
advantages of the circular correlation computational
structure as high degree of parallelism, small
computational complexity and local data
communications. The 2-D IDST VLSI architecture is
obtained using two linear systolic arrays connected in
a serial manner. The proposed VLSI architecture is
highly regular and modular and has local
interconnections. It has also a small number of I/O
channels placed at the two extreme ends of the array
with a reduced I/O bandwidth. Thus it is well suited
for a VLSI implementation.

REFERENCES

[1] N. Ahmad, T.Natarajan, and K.R. Rao, ”Discrete Cosine
transform,” IEEE Transactions on Computers, vol.C-23, pp.90-94,
1974.

[2] W. Pennebaker, J/ Michell. JPEG Still Image Data
Compression Standard. Van Nostrand Reinhold, USA, 1992.

[3] M.Kovac, N. Ranganathan, “JAGUAR: A Fully Pipelined
VLSI Architecture for JPEG Image Compression Standard,” Proc.
of IEEE, vol.83, No.2, 1995, pp.247-258.

[4] A. Madisseti, A. Wilson Jr., ”A 100 Mhz 2-D 8x8 DCT/IDCT
Processor for HDTV Applications,” IEEE Transaction on Circuits
and Systems for Video Technology, vol.5, no.2, pp. 158-165, Apr.
1995.

11

BUPT

[5] S. Uramoto, et al. , “A 100 Mhz 2-D discrete cosine transform
processor,” IEEE Solid-State Circuits, 1992, vol.27, No.4, pp.492-
498.

[6] M.T. Sun, T.C. Chen, and A.M. Gottlieb, “VLSI
Implementation of 16x16 discrete cosine transform,” IEEE Trans.
on Circuits and Systems, 1989, vol.36, no.4, pp.610-617.

[7] C. Wang, C. Chen, “High-Throughput VLSI Architectures for
the 1-D and 2-D Discrete Cosine Transform,” IEEE Transaction on
Circuits and Systems for Video Technology, vol.5, no.1, pp. 31-40,
Febr. 1995

[8] Y. Lee, T. Chen, I. Chen, M. Chen, C.Ku, ”A Cost-Effective
Architecture for 8x8 Two-Dimensional DCT/IDCT Using Direct
Method,” IEEE Transaction on Circuits and Systems for Video
Technology, vol.7, no.3, pp. 459-467, June 1997

[9] H.Lim, V.Piuri, E.E.Swartzlander, ”A Serial-Parallel
Architecture for Two-Dimensional Discrete Cosine and Inverse
Cosine Transforms,” IEEE Transactions on Computers,
vol.49,No.12, pp.1297-1309, Dec. 2000.

[10] S. Bique, “New characterizations of 2D Discrete Cosine
transform,” IEEE Trans. on Computers, vol.54, no.9, Sept. 2005.

[11] H.T. Kung, “Why systolic architectures?,” Computer
Magazine, 1982, vol.15, no.1, pp.37-45.

[12] C.M. Rader, “Discrete Fourier transform when the number of
data samples is prime,” Proc. IEEE, vol.56, pp.1107-1108, June
1968.

[13] J.I. Guo, C.M. Liu and C.W. Jen, “A New Array Architecture
for Prime-Length Discrete Cosine Transform,” IEEE Transactions
on Signal Processing, vol. SP-41,no.1, Jan. 1993.

[14] S.Y. Kung, VLSI Array Processors. NJ. Prentice Hall, 1988.

[15] C.W. Jen and H.Y. Hsu, “The design of systolic arrays with
tag input,” Proc. IEEE Int. Symp. on Circuits and Systems, 1988.

[16] J. F. Yang and C-P. Fang, "Compact recursive structures for
discrete cosine transform," IEEE Trans. on Circuits and Systems-
II, vol. 47, pp. 314-321, Apr. 2000.

[17] W. H. Fang and M. L. Wu, "An efficient unified systolic
architecture for the computation of discrete trigonometric
transforms," in Proc. IEEE Symp. on Circuits and Systems, vol. 3,
1997, pp. 2092-2095.

[18] W. H. Fang and M-L. Wu, "Unified fully-pipelined
implementations of one- and two-dimensional real discrete
trigonometric transforms," IEICE Trans. on Fund. Electron.
Commun. Comput. Sci., vol. E82-A, no. 10, pp. 2219-2230, Oct.
1999.

[19] J. Guo, C. Chen, and C-W. Jen, "Unified array architecture for
DCT/DST and their inverses," Electron. Letters, vol. 31, no. 21, pp.
1811-1812, 1995.

[20] S.B.Pan and R-H. Park, "Unified systolic arrays for
computation of DCT/DST/DHT," IEEE Trans. on Circuits and
Systems for Video Technology, vol. 7, no. 2, pp. 413-419, April
1997.

12

BUPT

Fig.2. (a) The VLSI array architecture of the hardware-core of 1D-IDST
 (b) The function of the processing elements PEs

00
01
10
00
10
11
10
01
11
01
*
*
*

Yc(2)+Yc(9)
Yc(4)+Yc(7)
Yc(8)+Yc(3)
Yc(5)+Yc(6)
Yc(10)+Yc(1)
 0
 0
 0
 0
 0

Yc(2)-Yc(9)
Yc(4)-Yc(7)
Yc(8)-Yc(3)
Yc(5)-Yc(6)
Yc(10)-Yc(1)
 0
 0
 0
 0
 0

s(4)
s(8)
s(5)
s(10)
s(9)
s(4)
s(8)
s(5)
s(10)
s(9)

0

T’(1)
T’(6)
T’(3)
T’(7)
T’(9)
T’(10)
T’(5)
T’(8)
T’(4)
T’(2)

00
11
00
00
00
11
00
11
11
11

0
0
0
1
1
0
1
0
0
0
0

00
01
00
10
00
11
10
11
01
11
*
*

00
11
00
10
10
11
00
11
01
01
*
*
*
*

Pe1 Pe2

Pe3 Pe4 Pe5

0
0
0
0
1
0
0
0
0
0

tc

y

c
xe2

xe1

sign

tc’

y’

c’
xe2

’

xe1
’

xi2

xi1 xi2
’

y+xi1*c

y+xe1*c

 0

 1

sign
tc 00 01 10 11

y+xi2*c

 y+xe2*c

y-xi1*c

y-xe1*c

y-xi2*c

y-xe2*c

xe1
’ <= xe1 ; xe2

’ <= xe2 ;
 tc’

 <= tc ; c’ <=c ;

if tc =1 then
 xi1

’ <= xe1; xi2
’ <= xe2 ;

else
 xi1

’ <= xi1 ; xi2
’ <= xi2 ;

end

13

BUPT

