
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 2, 2008

FPGA-based Discrete Wavelet Using Distributed
Arithmetic

Gavrincea Ciprian George 1, Tisan Alin2

1 North University of Baia Mare, Electronic and Computer Engineering Department, V. Babes 62A, Maramures, e-mail gcg@ubm.ro
2 North University of Baia Mare, Electronic and Computer Engineering Department, V. Babes 62A, Maramures, e-mail

atisan@ubm.ro

Abstract – This paper presents theoretical and practical
aspects in conjunction with hardware implementation of
wavelet transform using distributed arithmetic.
Implementing the multiplier unit using distributed logic,
the designer can save hardware resource. The solution
presented in this paper is using MatLab-Simulink
environment to implement the algorithm in FPGAs.
Keywords: FPGA, wavelet, distributed arithmetic

I. INTRODUCTION

Wavelet analysis algorithms demands a lot of inner
products computation. The key element for inner
product computation is the multiplier unit. A method
of hardware implementation of multiplier unit using
distributed arithmetic is presented in this paper.
Nowadays, companies are putting a big value on time
to market interval. To help researchers and engineers
to achieve better time to market results, Xilinx had
developed Simulink Matlab toolbox. With the help of
this toolbox, any engineer can develop VHDL
(VHSIC hardware description language) code for
FPGAs (Field Programmable Gate Array) using
Matlab knowledge instead of VHDL design
knowledge. The hardware solution presented in this
paper take advantage of the Simulink toolbox
features.
During the last several years the wavelet transform
(WT) has emerged as an important signal processing
research tool. Wavelet transform theory as it relates to
filter banks was refined by several researchers in the
late 1980s and early 1990s, including Mallat (1989),
Daubeehies (1992), Vetterli and Herley (1992), and
Vaidyanathan (1993). Though work on wavelet theory
has been extensive, research into wavelet transform
applications is still in its infancy. Of particular interest
is the use of the wavelet transform for the analysis of
transient signals, since it is seen as an improvement
over the traditionally used short-time Fourier
transform (STFT). This is based on the fact that by
using different scales of the analyzing wavelet, the
wavelet transform is able to locate in.

II. WAVELET TRANSFORM

The basic idea underlying wavelet analysis consists of
expressing a signal as a linear combination of a
particular set of functions obtained by shifting and
dilating one single function called a mother wavelet.
Several different mother wavelets have been studied
in Daubechies (1988) and Meyer (1989). The
decomposition of the signal into the basis of wavelet
functions implies the computation of the inner
products between the signal and the basis functions,
leading to a set of coefficients called wavelet
coefficients. The signal can consequently be
reconstructed as a linear combination of the basis
functions weighted by the wavelet coefficients. In
order to obtain an accurate reconstruction of the
signal, a sufficient number of coefficients have to be
computed.
A fundamental property of the wavelet transform
(WT) is that the time resolution and frequency
resolution vary in the time- frequency plane. The
continuous wavelet transform allows a variable
coverage of the time-frequency plane. The transform
is defined as:

 () ()∫ ⎟
⎠
⎞

⎜
⎝
⎛ −Ψ= dt

a
ttx

a
aCWTx

ττ *1, (1)

where a is called the scaling factor, τ is the translation
parameter, and Ψ is the window function or
wavelet.[2]

A. Discrete wavelet transform

Though the CWT is useful for the mathematical
derivation of wavelet transform theorems and
properties, in computational applications (where
signals and filters are discrete), it is the discrete
wavelet transform (DTWT) that is used.
Discrete wavelet transform can be implemented as a
set of filter banks comprising a high-pass and a low-
pass filters, each followed by down sampling by two.
The low-pass filtered and decimated output is

256

BUPT

recursively passed through similar filter banks to add
the dimension of varying resolution at every stage.
This is mathematically expressed:

 ()
() ()
() ()⎪⎩

⎪
⎨
⎧

−=
−=

=
∑
∑

kngnxa
knhnxd

DWDT j
jkj

j
jkj

nx 2
2

*
,

*
, (2)

The coefficients aj,k and dj,k refer to the approximation
and detail components in the signal, respectively. The
functions h(n) and g(n) in this equation represent the
coefficients of the high-pass and the low-pass
filters.[2]

Fig. 1. Wavelet analysis concept.

III. DISTRIBUTED ARITHMETIC

Distributed arithmetic is a bit level rearrangement of a
multiply accumulate to hide the multiplications. It is
a powerful technique for reducing the size of a
parallel hardware multiply-accumulate that is well
suited to FPGA designs. The distributed arithmetic
approach is an inherently serial process, but the
computation of each bit can be performed in parallel
to obtain more performance if necessary [6].
Using the scaling accumulator multiplier, we can
construct a multiple product term function in a
relatively small space if we are willing to accept a
serial input. In this case, we feed four parallel scaling
accumulators with unique serialized data. Each
multiplies that data by a possibly unique constant, and
the resulting products are summed in an adder tree as
shown in figure 2.

Fig. 2

If we consider that the scaling accumulator multiplier
is really just a sum of vectors, then we can rearrange
the circuit. The adder tree combines the 1 bit partial
products before they are accumulated by the scaling
accumulator. All we have done is rearranged the order
in which the 1xN partial products are summed. Now
instead of individually accumulating each partial
product and then summing the results, we postpone
the accumulate function until after we’ve summed all
the 1xN partials at a particular bit time. This simple
rearrangement of the order of the adds has effectively
replaced N multiplies followed by an N input add
with a series of N input adds followed by a multiply.
This arithmetic manipulation directly eliminates N-1
Adders in an N product term multiply-accumulate
function. For larger numbers of product terms, the
savings becomes significant.

Fig. 3

Further hardware savings are available when the
coefficients Cn are constants. If that is true, then the
adder tree shown above becomes a boolean logic
function of the 4 serial inputs. The combined 1xN
products and adder tree is reduced to a four input look
up table. The sixteen entries in the table are sums of
the constant coefficients for all the possible serial
input combinations.

Table 1
Address Data

0000 0

0001 C1

0010 C2

…

1110 C4+C3+C2

1111 C4+C3+C2+C1

Most often, we have more than 4 product terms to
accumulate. Increasing the size of the LUT might
look attractive until you consider that the LUT size
grows exponentially. Considering the construction of
the logic we stuffed into the LUT, it becomes obvious

Shfit Reg

Scaling Acum

C1
A

Shfit Reg

Scaling Acum

C2
B

+

Shfit Reg

Scaling Acum

C3
C

Shfit Reg

Scaling Acum

C4
D

+

+
AC1+BC2+
CC3+DC4

Shfit Reg

Scaling Acum

C1
A

Shfit Reg

C2
B

Shfit Reg

C3
C

Shfit Reg

C4
D

+

+

+
AC1+BC2

+CC3+DC
4

257

BUPT

that we can combine the results from the LUTs in an
adder tree. The area of the circuit grows by roughly
2n-1 using adder trees to expand it rather than the 2n
growth experienced by increasing LUT size. For
FPGAs, the most efficient use of the logic occurs
when we use the natural LUT size (usually a 4-LUT,
although and 8-LUT would make sense if we were
using an 8 input block RAM) for the LUTs and then
add the outputs of the LUTs together in an adder tree.

IV. HARDWARE IMPLEMENTATION

The wavelet transform processes a signal by
decomposing it into successive approximation and
detail signals. The approximation signal is re-sampled
at each stage, and the detailed coefficients are kept.
For decomposition into J scales, the transform
coefficients consist of J scales of detailed coefficients
and the Jth scale approximation coefficient. The
process of signal decomposition using wavelet
transform is called wavelet analysis.
Figure 4 illustrates a 4 scale wavelet analysis circuit.
On each stage, input data is passed through a low pass
filter and a high pass filter. The output of the low pass
filter provides approximation signal, while the output
of the high pass filter provides detailed signal.
Because output of each filter has the same number of
sample as the original signal, detailed and
approximation signals are decimated by 2.

Fig. 4. 4 scale wavelet analysis.

Perfect reconstruction filters are used to perform
analysis and synthesis of the signal. Filter coefficients
can be obtained from Matlab environment. For this
study we use a four level decomposition using
Daubechies 4 wavelet. FIR filters are implemented
using a dual ram memory for storing filter coefficients
and data. The solution for the hardware
implementation of the FIR filter, using distributed
arithmetic is illustrated in figure 5.

Fig. 5. FIR using distributed arithmetic

The main blocks for implementation of FIR filter
consist in a ROM memory for storing filter
coefficients, a scaling multiplier, and 4 parallel to
serial registers. The parallel to serial register are
replacing the shifting registers presented in the
previous section. The adder tree is replaced by a ROM
memory. The scaling accumulator is implemented
using an adder, a register and a shifting register.
Table 2 presents estimated resources needed to
implement a 4 scale wavelet filter, on XILINX
Spartan3E XC3S500E, using hardware solution
presented in [7]. In order to save hardware resources
is best to use hardware multiplier. Because FPGA
chips have a small number of hardware multipliers, a
careful management of this type of resources is
required.

Table 2

 Resources
Spartan3

HW
multipliers

% Spartan3 %

Slice 2372 51 4340 93,2
FFs 3616 38,8 7008 75,2

Block RAM 16 16
LUT 2104 22,6 6640 71,3

Multiplier 16/20 80 0 0

We can observe that by using built-in hardware
multiplier in our implementation we can save around
40% of hardware resources. But the number of built-
in hardware multiplier is small and only some FPGA
circuit has them. Another way of reducing the number
of hardware resources is by using distributed
arithmetic.
Table 3 presents estimated resources needed to
implement a 4 scale wavelet filter, using the
distributed arithmetic method presented above, on
XILINX Spartan3E XC3S500E. The amount of
hardware resources used for this implementation is
with 25% less compare with the previous case, and
without using built in multipliers. If we compare with
the built in hardware multiplier implementation we
can notice that the hardware multiplier have better
results. If we are using an FPGA version that doesn’t
have built in multipliers or if we want to use the
hardware multiplier for another application than using
distributed arithmetic it is a good solution for saving
hardware resources.

Table 3

 Resources
Spartan3

HW
multipliers

%

Slice 3168 68,03
FFs 5520 59,1

Block RAM - -
LUT 2688 28,8

Multiplier 0/20 -

258

BUPT

V. CONCLUSION

This paper presents a hardware solution for
implementing wavelet analysis algorithm using a
reduce number of hardware resources. The reduction
on the amount of hardware resources is obtain by
using distributed arithmetic for implementation of FIR
filters used in each level of wavelet decomposition.
By using this approach we save hardware resources
but the cost is timing performance. This is because
distributed arithmetic solution is bit serial in nature.
A bit serial structure processes the data one bit at a
time. The advantage is that all of the bits pass through
the same logic, resulting in a huge reduction in the
required hardware. Typically, a bit serial design
requires only about 1/nth of the hardware needed for
the equivalent n-bit parallel design. The price of this
logic reduction is that the serial hardware takes n
clock cycles to execute. The method presented in this
paper could be a solution for application where time
budget it is relaxed and which require a better
hardware economy.
Design of current DSP applications using state-of-the
art multi-million gates devices requires a broad
foundation of the engineering skills ranging from
knowledge of hardware-efficient DSP algorithms to
CAD design tools. The requirement of short time-to-
market, however, requires replacing the traditional
HDL based designs by a MatLab/Simulink based
design flow. This not only allows MatLab users to
design FPGAs but also to by-pass the hardware design
engineer leading to a significant reduction in
development time.
Simulink design flow for FPGAs is an interesting
alternative both for a University lab as well as for the
professional developers in industry. The design flow
allows a software developer to quickly explore FPGA
design options in terms of size and speed and to check
if the resulting design fulfills the design constrains.

REFERENCES

[1] D. Moshou, I Hostens, G Papaioannou, H Ramon, “Wavelets
and self-organising maps in electromyogram analysis”, ESIT 2000,
14-15 September 2000, Aachen, Germany
[2] C. S. Burrus, R. A. Gopinath, Introduction to Wavelets and
Wavelet Transforms, Prentice Hall Inc.,Upper Saddle River, New
Jersey, 1998.
[3] Yousef M. Hawwar_, Ali M. Reza_, Robert D. Turney,
„Filtering (denoising) in the wavlet transform domain“,
[4] S.G. Mallat, “A theory for multiresolution signal
decomposition: The wavelet representation”, IEEE Trans.Pattern
Anal. Machine Intell., vol. 2, pp. 674-693, 1989.
[5] S. Masud and J.V. McCanny, “Rapid design of biorthogonal
wavelet transforms”, IEEE Proceedings of Circuits, Devices and
Systems, Volume: 147 Issue: 5, 2000, pp: 293 -296
[6] R. Andraka and A. Berkun, “FPGAs make a radar signal
processor on a chip a reality”, IEEE Proceedings of Asilomar
Conference on Signals,Systems and Computers, Monterey , 1999
[7] C. Gavrincea, A. Tisan, A. Buchman, St. Oniga, Survey of
wavelet based denoising filter design, Proceedings of the 30th
International Spring Seminar on Electronics Technology, Cluj
Napoca, Romania, May 9-13, 2007, ISBN 978-973-713-174-4, pag
72-74.

259

BUPT

