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Abstract – This paper presents theoretical and practical 
aspects in conjunction with hardware implementation of 
wavelet transform using distributed arithmetic. 
Implementing the multiplier unit using distributed logic, 
the designer can save hardware resource. The solution 
presented in this paper is using MatLab-Simulink 
environment to implement the algorithm in   FPGAs.  
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I. INTRODUCTION 
 

Wavelet analysis algorithms demands a lot of inner 
products computation. The key element for inner 
product computation is the multiplier unit. A method 
of hardware implementation of multiplier unit using 
distributed arithmetic is presented in this paper.   
Nowadays, companies are putting a big value on time 
to market interval. To help researchers and engineers 
to achieve better time to market results, Xilinx had 
developed Simulink  Matlab toolbox. With the help of 
this toolbox, any engineer can develop VHDL 
(VHSIC hardware description language) code for 
FPGAs (Field Programmable Gate Array) using 
Matlab knowledge instead of VHDL design 
knowledge. The hardware solution presented in this 
paper take advantage of the Simulink toolbox 
features.    
During the last several years the wavelet transform 
(WT) has emerged as an important signal processing 
research tool. Wavelet transform theory as it relates to 
filter banks was refined by several researchers in the 
late 1980s and early 1990s, including Mallat (1989), 
Daubeehies (1992), Vetterli and Herley (1992), and 
Vaidyanathan (1993). Though work on wavelet theory 
has been extensive, research into wavelet transform 
applications is still in its infancy. Of particular interest 
is the use of the wavelet transform for the analysis of 
transient signals, since it is seen as an improvement 
over the traditionally used short-time Fourier 
transform (STFT). This is based on the fact that by 
using different scales of the analyzing wavelet, the 
wavelet transform is able to locate in.  

II. WAVELET TRANSFORM 
 

The basic idea underlying wavelet analysis consists of 
expressing a signal as a linear combination of a 
particular set of functions obtained by shifting and 
dilating one single function called a mother wavelet. 
Several different mother wavelets have been studied 
in Daubechies (1988) and Meyer (1989). The 
decomposition of the signal into the basis of wavelet 
functions implies the computation of the inner 
products between the signal and the basis functions, 
leading to a set of coefficients called wavelet 
coefficients. The signal can consequently be 
reconstructed as a linear combination of the basis 
functions weighted by the wavelet coefficients. In 
order to obtain an accurate reconstruction of the 
signal, a sufficient number of coefficients have to be 
computed. 
A fundamental property of the wavelet transform 
(WT) is that the time resolution and frequency 
resolution vary in the time- frequency plane. The 
continuous wavelet transform allows a variable 
coverage of the time-frequency plane. The transform 
is defined as:  
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where a is called the scaling factor, τ is the translation 
parameter, and Ψ is the window function or 
wavelet.[2] 
 
A. Discrete wavelet transform  
 
Though the CWT is useful for the mathematical 
derivation of wavelet transform theorems and 
properties, in computational applications (where 
signals and filters are discrete), it is the discrete 
wavelet transform (DTWT) that is used. 
Discrete wavelet transform can be implemented as a 
set of filter banks comprising a high-pass and a low-
pass filters, each followed by down sampling by two. 
The low-pass filtered and decimated output is 
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recursively passed through similar filter banks to add 
the dimension of varying resolution at every stage. 
This is mathematically expressed: 
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The coefficients aj,k and dj,k refer to the approximation 
and detail components in the signal, respectively. The 
functions h(n) and g(n) in this equation represent the 
coefficients of the high-pass and the low-pass 
filters.[2] 

 
  

Fig. 1. Wavelet analysis concept. 
 
 

III. DISTRIBUTED ARITHMETIC 
 
 
Distributed arithmetic is a bit level rearrangement of a 
multiply accumulate to hide the multiplications.  It is 
a powerful technique for reducing the size of a 
parallel hardware multiply-accumulate that is well 
suited to FPGA designs. The distributed arithmetic 
approach is an inherently serial process, but the 
computation of each bit can be performed in parallel 
to obtain more performance if necessary [6]. 
Using the scaling accumulator multiplier, we can 
construct a multiple product term function in a 
relatively small space if we are willing to accept a 
serial input. In this case, we feed four parallel scaling 
accumulators with unique serialized data. Each 
multiplies that data by a possibly unique constant, and 
the resulting products are summed in an adder tree as 
shown in figure 2. 
 

 
 

Fig. 2 
 

If we consider that the scaling accumulator multiplier 
is really just a sum of vectors, then we can rearrange 
the circuit. The adder tree combines the 1 bit partial 
products before they are accumulated by the scaling 
accumulator. All we have done is rearranged the order 
in which the 1xN partial products are summed. Now 
instead of individually accumulating each partial 
product and then summing the results, we postpone 
the accumulate function until after we’ve summed all 
the 1xN partials at a particular bit time. This simple 
rearrangement of the order of the adds has effectively 
replaced N multiplies followed by an N input add 
with a series of N input adds followed by a multiply. 
This arithmetic manipulation directly eliminates N-1 
Adders in an N product term multiply-accumulate 
function. For larger numbers of product terms, the 
savings becomes significant. 
 

 
Fig. 3 

 
Further hardware savings are available when the 
coefficients Cn are constants. If that is true, then the 
adder tree shown above becomes a boolean logic 
function of the 4 serial inputs.  The combined 1xN 
products and adder tree is reduced to a four input look 
up table. The sixteen entries in the table are sums of 
the constant coefficients for all the possible serial 
input combinations. 
 
Table 1 
Address Data 

0000 0 

0001 C1 

0010 C2 

…  

1110 C4+C3+C2 

1111 C4+C3+C2+C1 

 
 
Most often, we have more than 4 product terms to 
accumulate. Increasing the size of the LUT might 
look attractive until you consider that the LUT size 
grows exponentially. Considering the construction of 
the logic we stuffed into the LUT, it becomes obvious 
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that we can combine the results from the LUTs in an 
adder tree. The area of the circuit grows by roughly 
2n-1 using adder trees to expand it rather than the 2n 
growth experienced by increasing LUT size. For 
FPGAs, the most efficient use of the logic occurs 
when we use the natural LUT size (usually a 4-LUT, 
although and 8-LUT would make sense if we were 
using an 8 input block RAM) for the LUTs and then 
add the outputs of the LUTs together in an adder tree. 

 
IV. HARDWARE IMPLEMENTATION  

 
The wavelet transform processes a signal by 
decomposing it into successive approximation and 
detail signals. The approximation signal is re-sampled 
at each stage, and the detailed coefficients are kept. 
For decomposition into J scales, the transform 
coefficients consist of J scales of detailed coefficients 
and the Jth scale approximation coefficient. The 
process of signal decomposition using wavelet 
transform is called wavelet analysis.  
Figure 4 illustrates a 4 scale wavelet analysis circuit. 
On each stage, input data is passed through a low pass 
filter and a high pass filter. The output of the low pass 
filter provides approximation signal, while the output 
of the high pass filter provides detailed signal. 
Because output of each filter has the same number of 
sample as the original signal, detailed and 
approximation signals are decimated by 2.  

 
Fig. 4. 4 scale wavelet analysis. 

Perfect reconstruction filters are used to perform 
analysis and synthesis of the signal. Filter coefficients 
can be obtained from Matlab environment. For this 
study we use a four level decomposition using 
Daubechies 4 wavelet. FIR filters are implemented 
using a dual ram memory for storing filter coefficients 
and data. The solution for the hardware 
implementation of the FIR filter, using distributed 
arithmetic is illustrated in figure 5. 
 

 
Fig. 5. FIR using distributed arithmetic 

The main blocks for implementation of FIR filter 
consist in a ROM memory for storing filter 
coefficients, a scaling multiplier, and 4 parallel to 
serial registers. The parallel to serial register are 
replacing the shifting registers presented in the 
previous section. The adder tree is replaced by a ROM 
memory. The scaling accumulator is implemented 
using an adder, a register and a shifting register.   
Table 2 presents estimated resources needed to 
implement a 4 scale wavelet filter, on XILINX 
Spartan3E XC3S500E, using hardware solution 
presented in [7]. In order to save hardware resources 
is best to use hardware multiplier. Because FPGA 
chips have a small number of hardware multipliers, a 
careful   management of this type of resources is 
required. 
 
Table 2 

  Resources 
Spartan3 

HW 
multipliers 

% Spartan3 % 

Slice 2372 51 4340 93,2
FFs 3616 38,8 7008 75,2

Block RAM 16  16  
LUT 2104 22,6 6640 71,3

Multiplier 16/20 80 0 0 
 
We can observe that by using built-in hardware 
multiplier in our implementation we can save around 
40% of hardware resources. But the number of built-
in hardware multiplier is small and only some FPGA 
circuit has them. Another way of reducing the number 
of hardware resources is by using distributed 
arithmetic.  
Table 3 presents estimated resources needed to 
implement a 4 scale wavelet filter, using the 
distributed arithmetic method presented above, on 
XILINX Spartan3E XC3S500E.  The amount of 
hardware resources used for this implementation is 
with 25% less compare with the previous case, and 
without using built in multipliers. If we compare with 
the built in hardware multiplier implementation we 
can notice that the hardware multiplier have better 
results. If we are using an FPGA version that doesn’t 
have built in multipliers or if we want to use the 
hardware multiplier for another application than using 
distributed arithmetic it is a good solution for saving 
hardware resources.    
 
Table 3 

  Resources 
Spartan3 

HW 
multipliers 

% 

Slice 3168 68,03 
FFs 5520 59,1 

Block RAM - - 
LUT 2688 28,8 

Multiplier 0/20 - 
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V. CONCLUSION  
 
This paper presents a hardware solution for 
implementing wavelet analysis algorithm using a 
reduce number of hardware resources. The reduction 
on the amount of hardware resources is obtain by 
using distributed arithmetic for implementation of FIR 
filters used in each level of wavelet decomposition. 
By using this approach we save hardware resources 
but the cost is timing performance. This is because 
distributed arithmetic solution is bit serial in nature.  
A bit serial structure processes the data one bit at a 
time. The advantage is that all of the bits pass through 
the same logic, resulting in a huge reduction in the 
required hardware. Typically, a bit serial design 
requires only about 1/nth of the hardware needed for 
the equivalent n-bit parallel design. The price of this 
logic reduction is that the serial hardware takes n 
clock cycles to execute. The method presented in this 
paper could be a solution for application where time 
budget it is relaxed and which require a better 
hardware economy. 
Design of current DSP applications using state-of-the 
art multi-million gates devices requires a broad 
foundation of the engineering skills ranging from 
knowledge of hardware-efficient DSP algorithms to 
CAD design tools. The requirement of short time-to-
market, however, requires replacing the traditional 
HDL based designs by a MatLab/Simulink based 
design flow. This not only allows MatLab users to 
design FPGAs but also to by-pass the hardware design 
engineer leading to a significant reduction in 
development time. 
Simulink design flow for FPGAs is an interesting 
alternative both for a University lab as well as for the 
professional developers in industry. The design flow 
allows a software developer to quickly explore FPGA 
design options in terms of size and speed and to check 
if the resulting design fulfills the design constrains. 
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