
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 1, 2006

SVM Classifier using LUT-based RAM on a Spartan 3
FPGA

Albert A. Fazakas1, Mihaela Cârlugea, Lelia Feştilă

1 Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei, Catedra de
Bazele Electronicii, str. Gh. Bariţiu Nr. 26-28, 400027 Cluj-Napoca, e-mail Albert.Fazakas@bel.utcluj.ro

Abstract – Support Vector Machines are widely used in
pattern recognition, being the newest achievements in
neural network structures. This paper presents an
implementation example of an SVM classification
function using a Spartan3 FPGA device. A Block Ram
based implementation is compared versus a distributed
LUT-based RAM one. Aspects regarding memory
geometry and instantiation are presented. The number
of required clock periods and the maximum clock
frequency is calculated and a speed comparison of the
implemented system with software running on a PC
targeting the same application is also made
Keywords: SVM, Block RAM, LUT-based RAM, FPGA

I. INTRODUCTION

Support Vector Machines (SVM) are considered to be
the newest achievements on neural network structures
[1]. In Chapter 2, the basic idea of the SVM is
presented and their advantages are highlighted.
Chapter 3 presents an application example for
classification of the Ibermatica database images. The
role of the classification function is to decide whether
a particular image is face- or non-face image. The
major advantage offered by an FPGA device, the
possibility to implement parallel structures is used in
the system implementation. An implementation
example of the kernel function using Block RAM
components follows. Chapter IV presents the
implemented system that is based on distributed RAM
cells also called LUT (LookUp Table) RAM cells, to
tackle the drawbacks that come with the Block RAM
based implementation. Approximations made in order
to reduce the data bus widths are also presented. The
total number of clock cycles required for the
classification function to perform its operations is
calculated and the maximum clock frequency is
determined. Finally, a comparison between the speed
of the system implemented on the FPGA and the
speed of a classification software running on a PC is
also presented.

II. SUPPORT VECTOR MACHINES

In the nineties, the neural networks knew a very
significant importance in the scientific and

engineering domains. Industrial products are offered
today on the market with a real success even if we do
not have the associated physical model for diagnosis.
It is necessary to consider the neural networks as a
manner of building an empirical model with what that
supposes of inaccuracy and risk for the application.
The theory of the statistical learning became more
interesting with new results in generalization and with
the proposal of the SVM model. The model is the
most recent proposition on neural network structures
[1]. This model is founded on the statistical learning
Theory. The Support Vector Machine model consists
of a transformation of the input vectors X in a space
of higher dimension Z through a nonlinear
transformation, selected a priori. It is in this new
space Z that we can build an optimal hyperplane [2].
For the particular case of pattern recognition, the
SVM make a distinction of two classes by finding a
decision surface constructed from certain points of the
entire learning database, called Support Vectors A
second important idea of Support Vector Machines is
the use of kernel functions. The kernel functions were
proposed to be able to build nonlinear algorithms
from linear algorithms by calculating the inner
product not in the input space but in the feature space.
By using kernels it can be taken into account the
statistics of greater order without a combinatorial
explosion of the complexity than it would have met
even for moderate values of examples and the
dimension of the kernel function. The most used
kernel functions are the polynomial, sigmoid (neural
network) and the Radial basis function.

II.1. The Support Vectors

Vapnik [2]. proposes a representation of a SVM in the
form of one hidden layer neural network whose
number of cells is equal to the number of "support
vectors", and not to the dimension of the space of the
internal representations, as we could have supposed it
initially. In this manner the number of neurons is
obtained in an automatic way with the resolution of a
quadratic problem. The support vectors are the input
vectors xi for which equality yi((w0xi+b0)=1 holds.
Concretely, they are the closest points to the optimal

178

BUPT

hyper plane. For all the other examples, there is thus a
factor α=0 that eliminates them from the solution. We
thus know that the decision function is calculated
from the examples that are on the margin, presented in
figure 1. In the non-linear case, it is enough to replace
the scalar products (x × xi) by kernels k(x, xi).

Fig. 1. The support vectors are the closest vectors to the optimal

hyperplane [1].

II.1. The Polynomial Kernel

There are three options for the selection of the kernel
function of the SVM method: Polynomial, RBF or
sigmoid Neural networks [1]. The Sigmoid Neural
network kernel function option was rejected because
of the difficulty of a possible hardware
implementation. Moreover in the literature the
performances obtained with this kernel function were
lower than those obtained with the two others.
The following is the general equation of the SVM
decision function for classification:

 i i i
Support Vectors

f(x,) = sign y K (x ,x)+bα α
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ (1)

Where:
yi ai=wi, are the networks weights,
Xi, are the support vectors of the solution,
b, is the threshold of the function, and
K(X,Xi).is the kernel function.
As it can be seen, the solution is the sign of the
addition, so this is the generalization function for two-
class’s classification. In our case, the kernel function
is then the polynomial function of degree d:

 T d

i iK (X, X) = (X · X +c) (2)

III. IMPLEMENTATION EXAMPLE

III.1. The classification function parameters

Our objective is to implement a classification function
for the image database provided by Ibermatica [3].
The database is composed of 8X10 pixel resolution 8-
bit grayscale images. The classification problem for
the SVM is to decide whether or not the image is
representing a human face. Figure 2. a) shows a
positive example and figure 2. b) a negative example
from the Ibermatica database training set.

a.) b)
Fig. 2. Example images from the Ibermatica image database a)

positive (face image) example b) negative (non-face image)
example

Training was done for the SVM on 112 images from

the image set. The SVM parameters were:
• Degree of the kernel function d=2;
• Constant c=1
• Threshold value b=1.5215772
• Number of support vectors: 17
• Feature index i.e. image size: 80

The implementation is done on a SPARTAN 3
XC3S200 device, due to its availability on the
Digilent S3 development boards.

III.2. Spartan-3 Block RAM implementation
considerations

According to the specifications above, the data size
required to store the image to be classified and the
support vectors is

 17 80 8 80 8 11520 bits = 11.25 Kbits× × + × = (3)

This amount of data can be easily fit into the
considered device [4]. Moreover, the Spartan-3 device
features twelve 18-Kbit dual-port RAM memories,
also called Block RAM (BRAM) memories. Results
that a single BRAM is sufficient to fit the amount of
data considered. However, in this case the whole data
is processed sequentially and the number of clock
cycles required to implement one kernel function is
80. This is multiplied by the number of support
vectors and some extra clocks are added for pipelining
purposes.
The required number of clock cycles can be
significantly reduced if the advantage of an FPGA
implementation, the possibility of parallel processing
is used wherever is possible.
Basically, the classification function operations
consist in a set of multiplication and summing-
accumulate, i.e. MAC operations. The embedded 18-
bit multipliers will be used for implementing the
kernel function. For the weighting operation, a
multiplier larger than of 18 bits will be needed due to
the increase of the data bus width as result of the
multiplication-summing procedure in the kernel
function. A number of 10 multipliers will be
considered to work in parallel for implementing the
kernel function. The number of ten was chosen
because the image size considered is dividable with

179

BUPT

10, in fact, most of the image sizes feature this
property, making the application easily adaptable to
different image sizes.
Therefore the values of the X image and the Xi
support vectors are distributed in ten RAM blocks;
each block basically stores eight pixels of the X image
and the corresponding 17X8=136 pixels of the Xi
support vectors. The RAM blocks can be configured
into various geometries [5]. For the specified
application, the geometry chosen for the BRAm-s is
of 1KX16 bits. The X pixels are stored in the upper
and the Xi pixels in the lower byte of the memory.
Basically only 136 locations are used in each memory
block from the available 1024. Assuming a number of
17 support vectors, the system configured in this way
supports an image size of 600 pixels, with any aspect
ratio.
Fig. 3 shows the block schematic of the kernel
function implemented with Block RAM components
and Table 1 shows an example for the placement of
the X() image data and the Xi() support vector data in
the BRAM-s, i.e. a memory map example. Obviously,
the data can be placed in various ways into the
memory until the placement is uniformly distributed
and the stored X() image data corresponds with the
Xi() support vector data stored at the same locations.
Each block memory contains eight pixels of the
analyzed image, repeated the number of support
vector times. Due to this redundancy the memory map
is inefficiently organized, however this placement of
the data insures one multiplication at each clock cycle,
therefore the kernel function is able to perform its
operations for one support vector in a total number of
8 clock cycles.

Table 1. BRAM memory map example
BRAM0 BRAM1 BRAM9 Addr.

[15:8] [7:0] [15:8] [7:0] [15:8] [7:0]
000 X(0) X1(0) X(8) X1(8) . X(72) X1(72)
001 X(1) X1(1) X(9) X1(9) . X(73) X1(73)

.
007 X(7) X1(7) X(15) X1(15) . X(79) X1(79)
008 X(0) X2(0) X(8) X2(8) . X(72) X2(72)
009 X(1) X2(1) X(9) X2(9) . X(73) X2(73)

.
00F X(7) X2(7) X(15) X2(15) . X(79) X2(79)

.
086 X(6) X17(6) X(14) X17(14) . X(78) X17(78)
087 X(7) X17(7) X(15) X17(15) . X(79) X17(79)
088 0 0 0 0 . 0 0

.

The summing and accumulating circuit performs the
unsigned sum of ten 8-bit numbers. Two-input 8-bit
adders were used on more levels to add all the ten
numbers, therefore the required number of the adders
is 5 on the first level, 2 on the second level and 1 on
the third and fourth levels. The multiplier outputs and
each summing level outputs are registered for pipeline
considerations. Results that the total number of
required clock cycles to perform the kernel function
operations, for all of the support vectors increases
with 6, becoming

 17 8 6 142 clock cycles× + = (4)

Because the image data has to be repeated in the
BRAM blocks, results that loading a new image into
the memory implies sweeping the whole used memory

Fig. 3. Block schematic of the kernel function implemented with Block RAM

 X

8 X

Xi 8 CLK

EN

ADDR(9:0)

1KX16 BRAM

16 16

 X

8 X

Xi 8 CLK

EN

ADDR(9:0)

1KX16 BRAM

16 16

 X

8 X

Xi 8 CLK

EN

ADDR(9:0)

1KX16 BRAM

16 16

………………………..
1

17
 X

Accumulate

23

Square

K(X,Xi)

10

Multiply

BRAM0

BRAM1

BRAM9

180

BUPT

address space, i.e. loading a new image would take a
minimum of 17X8=136 clock cycles, assuming that
the ten RAM blocks are loaded simultaneously.
Loading the BRAM memories with new data is eased
by the fact that the Xilinx Block RAM components
are true dual-port memories, allowing simultaneous
read and write from two different ports. The only
restriction is applied to the fact that the same memory
location cannot be accessed simultaneously from both
ports. The dual-port RAM facility allows loading the
new image on the second access port while the first
one is used for the kernel function operations. In order
to avoid address conflict, data loading starts with one
clock cycle earlier i.e. memory write is performed on
the current memory address-1. Taking into account
that the support vector data i.e. the lower byte in each
memory is not changing when a new image is loaded,
the lower byte is buffered and reloaded in the memory
with the new image data. The incoming image data is
also buffered and formatted in the remaining two
BRAM components. The image data loading system
is not shown in fig. 3. due to the lack of space.
Taking into account that the kernel function multiplies
and accumulates unsigned data, the maximum
possible result from the MAC operations of the kernel
function i.e. the maximum number at the output of the
accumulator can be

 255 255 10 8 1 5,202,001⋅ ⋅ ⋅ + = (5)

The number above can be represented on 23 bits.
However, only the most significant 17 bits will be
taken into account as the result of the kernel function,
to be able to use the remaining embedded multiplier
that accepts up to 18-bit signed or 17-bit unsigned

operands. It means that the kernel function is scaled
with

()22 TT

ii
i 5

X · X +1X · X +1
K (X, X) =

10242
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 (6)

Other scaling operations will result from the
weighting and summing operations that follow the
kernel function in the classifier implementation.

IV. LUT-BASED RAM IMPLEMENTATION

IV.1. Distributed memory considerations

Although the BRAM-based implementation offers
operation at a high-speed by reducing the number of
the clock cycles required to calculate the kernel
function result, it suffers from significant drawbacks.
First, the incoming image data has to be buffered and
formatted to be distributed across the BRAM
components. The data formatting and RAM loading
circuit takes significant resources from the FPGA.
Second, the SVM classifier based on BRAM-s cannot
be implemented in an embedded system together with
the Xilinx proprietary MicroBlaze or PowerPc soft
processor systems, because these systems use primary
the BRAM-s for processor data and code memory
purposes, making these components partially or
completely unavailable for custom design.
In order to overcome to the incoming data formatting
and distributing problem, a system with distributed
memory cells was considered, that can be
implemented by the Xilinx Distributed RAM (also
called LUT RAM) feature

Fig. 4. Block schematic of the SVM classification function implemented with LUT RAM blocks

10

8

. .

Multiply

1

17
 X

f(X,Xi)

Accumulate

Accumulate

square

Weights 9

23 44 47

b 34

35
 X

≥
result

Compare

...

...
 X

8

8

CLK CLK CLK

D Q D Q D Q

SX0

CLK CLK CLK

5
ADDR[4:0]

WEN0
A[4:0]
WEN
DI DO

A[4:0]
WEN
DI DO

A[4:0]
WEN
DI DO

SXI0

DX0

DXI0

...

...
 X

8

8

CLK CLK CLK

D Q D Q D Q

SX1

CLK CLK CLK

5
ADDR[4:0]

WEN1
A[4:0]
WEN
DI DO

A[4:0]
WEN
DI DO

A[4:0]
WEN
DI DO

SXI1

DX1

DXI1

...

...
 X

8

8

CLK CLK CLK

D Q D Q D Q

SX9

CLK CLK CLK

5
ADDR[4:0]

WEN9
A[4:0]
WEN
DI DO

A[4:0]
WEN
DI DO

A[4:0]
WEN
DI DO

SXI9

DX9

DXI9

23

D Q D Q

CLK

ADDR[4:0]
WEN

A[4:0]
WEN
DI DODWI

CLK

D Q

CLK

A[4:0]
WEN
DI DO

8-bit D register storing X
image data

32X8 bit LUT RAM storing
Xi support vector data

181

BUPT

The LUT memory cells are built on the Configurable
Logic Block (CLB) logic function generator circuits,
also called Lookup Tables. In the Spartan 3 FPGA
structure, one CLB consists of four slices from which
two of the slices contain two 4-bit lookup tables that
can be configured as dual-port or single-port RAM
memories. Therefore one CLB can have up to 32 bits
of dual-port memory or 64 bits of single-port
memory. Results that one 32X1 bit size distributed
RAM fits in a single CLB slice.
Figure 4 presents the block schematic of the
implemented SVM classifier function. The system is
an improved version of the SVM classifier presented
in [7], where D registers were considered to store both
the image and support vector data. Due to the fact that
in that case the number of the D registers used is too
large, taking most of the FPGA D flip-flops, the
support vector data is stored in the LUT RAM blocks
while the image data is stored in the adjacent D flip-
flops.
The left part of Fig. 4 until the squaring circuit
represents the implementation of the kernel function.
The white cells are representing the D registers
storing the X image data, while the gray cells the LUT
RAM blocks storing the Xi support vectors. The
implementation is similar to the one presented in Fig.
3 regarding the number of parallel multiplications and
the way the first accumulator circuit is organized.
Both the X input vector and the Xi support vector
memories are organized in a circular FIFO memory
matrix with a size of 10X8, resulting a number of
80X8 cells placed in the FPGA.
To store the Xi data, the distributed memory cells are
organized in 32X8 bit size, allowing storage of up to
32 support vectors. A specific LUT RAM cell stores
the data from the support vectors according to the
expression

 () ()I ADDR[4:0]MEM ADDR = X I (7)

where I is the index of the memory cell and ADDR
represents the 5 bit address of the memory. Therefore
the addresses of all the memory cells are connected
together, creating a multiple page memory, each page
containing one support vector.
Due to the circular structure of the X and Xi
memories, at every 8 clock periods the memory
content will be reloaded to its initial value and the
address is incremented. Correspondingly, the output
summing and accumulating circuit advances with one
clock.
The SX0...SX9 and SXI0…SXI9 selector signals
allow loading of new image and support vector data
through the DX0...DX9 and the DXI0…DXI9 data
lines, respectively. Formatting and loading a new
image data is significantly simpler comparing to the
BRAM implementation. For example, the
DX0…DX9 data lines can be connected together and
the SX0…9 selector lines decide which row will be
loaded with the new image data. In the case of using a

high-speed I/O peripheral, data can be loaded in
parallel in the ten rows when the last support vector
product is calculated. In the same way, a new support
vector data can be loaded into the distributed RAM
cells through the DXI0...9 data lines, controlled by
WEN0...9 write enable lines or from the SXI0…9
selector lines.
The ADDR lines also select the corresponding weight
of the support vector from the weight memory, built
as well on LUT RAM cells, organized in a 32X9 bit
format, with the following considerations: Initially the
weights were in floating point format. Due to the fact
that floating point operations would require too wide
data buses and considerably more computing time,
obviously were be transformed into fixed point
format. The smallest weight of the support vectors for
the application considered in this paper has the
absolute value of

 16 16 9.7740856e-014α⋅ =y (8)

Note that only several decimal places were shown.
The highest value of the weights, in absolute value, is

 7 7 16 162.006978e-011=205.3α α⋅ = ⋅ ⋅y y (9)

If 16 16y α⋅ is normalized i.e. scaled to 1, then all of
the weights can be represented on 9 bits with sign,
meaning that all of the weights will be scaled with

16 16

1
y α⋅

. In order to avoid an unattended change of

the classification function sign from equation (1),
results that the threshold b has to be also scaled.
Taking into account from relation (6) that the kernel
function is also scaled, equation (1) will become

16

i i i
0

1.023e+13f(x,) = sign y K (X ,X)+
1024i

bα α
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ (10)

Thus, the b threshold becomes 1.52026e+10. This
value can be represented on 34 bits, from there results
the bus width for the threshold b.
The weighting multiplier has the size of 35X9 bits,
where the 9 bits are signed, being wider than the 18
bit embedded multipliers, resulting that it has to be
implemented by the FPGA lookup table logic.

IV.1. Distributed memory implementation and speed
considerations

Xilinx ISE provides behavioral VHDL templates that
can be used to instruct the synthesis tool to extract
block RAM or distributed RAM from the code.
Although the block schematic in Fig. 4 can be easily
described in behavioral VHDL, it was found that by
describing the circular multiple-page memory from
Fig. 4 in behavioral, the XST (Xilinx Synthesis Tool)

182

BUPT

will extract D flip-flops for the memory cells together
with decoding logic rather than distributed RAM
cells. This behavior occurs due to the fact that the
synthesizer will understand to extract shift registers
on 8 bits that are basically implemented with flip-
flops.
Results that for implementing the kernel memory part
of the system in Fig. 4., a structural VHDL or
schematic approach has to be used. The distributed
RAM cells were built on RAM32X8S components in
the Xilinx ISE software. The RAM32X8S represents a
32X8 bit single-port distributed RAM. The X memory
cells were built on FD8CER components,
representing an 8-bit D register with count-enable and
asynchronous clear ports. The memory loading and
controlling state-machine and the multiply-
accumulate circuit were described in behavioral
VHDL.
Due to the similarity of the structures between the
BRAM and LUT-RAM implementations, the number
of clock periods required for all of the kernel function
operations is the same, i.e. 142. Four extra clock
periods are needed for the squaring and weighting-
accumulating operations. Results a total number of
146 clock periods for the classification function
operations.
The embedded multipliers are placed close to the
BRAM cells in the FPGA structure, resulting lower
propagation times for the BRAM implementation than
for the LUT-RAM one. However, the highest clock
frequency is rather limited by the propagation times of
the combinational arithmetic circuits, i.e. the
embedded multipliers and the unsigned adders.
The synthesis tool reported a maximum propagation
time of 4.828 ns, meaning a maximum clock
frequency of 207.1 MHz. For safety purposes, half of
this frequency was used. Note that the squaring and
the weighting multipliers, and the final accumulator
have to operate at only every eight kernel memory
cock periods, allowing operations at lower frequency.
A quarter of the kernel memory frequency was
chosen, i.e. 25MHz. In this case, without taking into
account the time needed for I/O operation, i.e. data
download and memory load, the total time will be

1 1142 4 1.58

100 25
T S

MHz MHz
µ= ⋅ + ⋅ = (11)

Due to the introduction of pipelining in the kernel
function operations, the time was improved versus
[7]. Comparing to the expression (11), the time spend
for classification of 442 images on a Pentium IV, 1.2
GHZ PC, without taking into account the time for I/O
operations, was 0.02 seconds, resulting 45.2µS per
image. Obviously, for larger images the time spent for
the classification function implemented on the FPGA
board increases due to the window sweeping
technique that has to be used.

Data downloading was made through the serial
interface of the S3 board. An USB connection with
the PC is under development.

V. CONCLUSIONS

In this paper an example of implementation for an

SVM classification function on a Spartan 3 XS3S200
FPGA device was presented. The example is made for
the Ibermatica 8X10 pixel face image database. The
proposed system takes the advantage of parallel
circuits offered by an FPGA implementation.

Two approaches were considered to implement the
kernel function, the first one based on Block RAM
memory components included in the Xilinx Spartan
devices, and the second one based on distributed i.e.
LUT RAM memory cells. Although the Block RAM
implementation is more compact and simpler, the
memory content loading can represent a difficult
operation. On the other hand, the BRAM based
implementation cannot be made if the SVM classifier
is intended to be included in an embedded system
with MicroBlaze or PowerPc soft processors that use
the Block RAM as primary processor memory. The
solution to these problems is offered by the distributed
RAM implementation, where data loading can be
easily done.

Using the parallel data processing feature offered
by the FPGA devices, the required number of clock
periods reduces drastically. To keep the maximum
clock frequency at a high level, pipelining was used
for the arithmetic operation implementations. The
implemented system was performing the operations
more than ten times faster than a similar software
application running on a PC, with the same SVM and
the same images.

In the case of larger images, a window sweeping
technique has to be used that increases the
computation time. Using a higher density FPGA
device, the number of parallel circuits can be further
increased to compensate the increase of the execution
time.

REFERENCES

[1]. A. Reyna-Rojas, D. Dragomirescu, D. Houzet, D. Esteve,
“Implementation of the SVM Generalization Function on FPGA”,
International Signal Processing Conference (ISPC), Dallas (US),
March 2003
[2]. Vapnik V. “Statistical. Learning Theory” A Wiley-Interscience
Publication, pp. 421, 1998.
[3]. Ibermatica S.A web site,. http://www.ibermatica.es/ibermatica
[4] Xilinx inc, “Spartan-3 FPGA family; complete datasheet”,
DS099 January 17, 2005
[5]. Xilinx, inc, “Using Block RAM in Spartan-3 Generation
FPGAs”, Xilinx Application Bulettin XAPP463 (v2.0) March 1,
2005
[6]. Xilinx, inc, Using Look-Up Tables as Distributed RAM in
Spartan-3 Generation FPGAs”, Xilinx Application Bulettin
XAPP464 (v2.0) March 1, 2005
[7]. Albert Fazakas, Mihaela Gordan, Lelia Feştilă, Laura Kovacs,
“Considerations Regarding Implementation of SVM Classification
Functions on FPGA”, SIITME 2005 International Symposium for
Design and Technology of Electronic Packaging, 22-25 September
2005, Cluj-Napoca, Romania, ISBN 973-713-063-4, pp. 164-167
[8]. Xilinx, Inc. “Using Embedded Multipliers in Spartan-3
FPGAs”, Xilinx Application Bulettin, XAPP467 (v1.1) May 13,
2003

183

BUPT

