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Abstract – Support Vector Machines are widely used in 
pattern recognition, being the newest achievements in 
neural network structures. This paper presents an 
implementation example of an SVM classification 
function using a Spartan3 FPGA device. A Block Ram 
based implementation is compared versus a distributed 
LUT-based RAM one. Aspects regarding memory 
geometry and instantiation are presented. The number 
of required clock periods and the maximum clock 
frequency is calculated and a speed comparison of the 
implemented system with software running on a PC 
targeting the same application is also made 
Keywords: SVM, Block RAM, LUT-based RAM, FPGA 
 

I. INTRODUCTION 
 

Support Vector Machines (SVM) are considered to be 
the newest achievements on neural network structures 
[1]. In Chapter 2, the basic idea of the SVM is 
presented and their advantages are highlighted. 
Chapter 3 presents an application example for 
classification of the Ibermatica database images. The 
role of the classification function is to decide whether 
a particular image is face- or non-face image. The 
major advantage offered by an FPGA device, the 
possibility to implement parallel structures is used in 
the system implementation. An implementation 
example of the kernel function using Block RAM 
components follows. Chapter IV presents the 
implemented system that is based on distributed RAM 
cells also called LUT (LookUp Table) RAM cells, to 
tackle the drawbacks that come with the Block RAM 
based implementation. Approximations made in order 
to reduce the data bus widths are also presented. The 
total number of clock cycles required for the 
classification function to perform its operations is 
calculated and the maximum clock frequency is 
determined. Finally, a comparison between the speed 
of the system implemented on the FPGA and the 
speed of a classification software running on a PC is 
also presented.  
  

II. SUPPORT VECTOR MACHINES 
 

In the nineties, the neural networks knew a very 
significant importance in the scientific and 

engineering domains. Industrial products are offered 
today on the market with a real success even if we do 
not have the associated physical model for diagnosis. 
It is necessary to consider the neural networks as a 
manner of building an empirical model with what that 
supposes of inaccuracy and risk for the application. 
The theory of the statistical learning became more 
interesting with new results in generalization and with 
the proposal of the SVM model. The model is the 
most recent proposition on neural network structures 
[1]. This model is founded on the statistical learning 
Theory. The Support Vector Machine model consists 
of a transformation of the input vectors X in a space 
of higher dimension Z through a nonlinear 
transformation, selected a priori. It is in this new 
space Z that we can build an optimal hyperplane [2]. 
For the particular case of pattern recognition, the 
SVM make a distinction of two classes by finding a 
decision surface constructed from certain points of the 
entire learning database, called Support Vectors A 
second important idea of Support Vector Machines is 
the use of kernel functions. The kernel functions were 
proposed to be able to build nonlinear algorithms 
from linear algorithms by calculating the inner 
product not in the input space but in the feature space. 
By using kernels it can be taken into account the 
statistics of greater order without a combinatorial 
explosion of the complexity than it would have met 
even for moderate values of examples and the 
dimension of the kernel function. The most used 
kernel functions are the polynomial, sigmoid (neural 
network) and the Radial basis function.  

 
II.1. The Support Vectors 
 
Vapnik [2]. proposes a representation of a SVM in the 
form of one hidden layer neural network whose 
number of cells is equal to the number of "support 
vectors", and not to the dimension of the space of the 
internal representations, as we could have supposed it 
initially. In this manner the number of neurons is 
obtained in an automatic way with the resolution of a 
quadratic problem. The support vectors are the input 
vectors xi for which equality yi((w0xi+b0)=1 holds. 
Concretely, they are the closest points to the optimal 
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hyper plane. For all the other examples, there is thus a 
factor α=0 that eliminates them from the solution. We 
thus know that the decision function is calculated 
from the examples that are on the margin, presented in 
figure 1. In the non-linear case, it is enough to replace 
the scalar products (x × xi) by kernels k(x, xi).  

 

 
Fig. 1. The support vectors are the closest vectors to the optimal 

hyperplane [1]. 

II.1. The Polynomial Kernel 

There are three options for the selection of the kernel 
function of the SVM method: Polynomial, RBF or 
sigmoid Neural networks [1]. The Sigmoid Neural 
network kernel function option was rejected because 
of the difficulty of a possible hardware 
implementation. Moreover in the literature the 
performances obtained with this kernel function were 
lower than those obtained with the two others.  
The following is the general equation of the SVM 
decision function for classification:  
 

 i i i
Support Vectors

f(x, ) = sign y K (x ,x)+bα α
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑   (1)  

Where: 
yi  ai=wi, are the networks weights, 
Xi, are the support vectors of the solution, 
b, is the threshold of the function, and 
K(X,Xi).is the kernel function. 
As it can be seen, the solution is the sign of the 
addition, so this is the generalization function for two-
class’s classification. In our case, the kernel function 
is then the polynomial function of degree d:  
 
 T d

i iK (X, X ) = ( X  · X  +c)  (2)  
 

III. IMPLEMENTATION EXAMPLE 
 

III.1. The classification function parameters 
 
Our objective is to implement a classification function 
for the image database provided by Ibermatica [3]. 
The database is composed of 8X10 pixel resolution 8-
bit grayscale images. The classification problem for 
the SVM is to decide whether or not the image is 
representing a human face. Figure 2. a) shows a 
positive example and figure 2. b) a negative example 
from the Ibermatica database training set.  

 

              
 

a.)                                                      b) 
Fig. 2. Example images from the Ibermatica image database a) 

positive (face image) example b) negative (non-face image) 
example 

 
Training was done for the SVM on 112 images from 

the image set. The SVM parameters were: 
• Degree of the kernel function d=2; 
• Constant c=1 
• Threshold value b=1.5215772 
• Number of support vectors: 17 
• Feature index i.e. image size: 80 

The implementation is done on a SPARTAN 3 
XC3S200 device, due to its availability on the 
Digilent S3 development boards.  

 
III.2. Spartan-3 Block RAM implementation 
considerations 
 
According to the specifications above, the data size 
required to store the image to be classified and the 
support vectors is 

 
 17 80 8 80 8 11520 bits = 11.25 Kbits× × + × =  (3)  

 
This amount of data can be easily fit into the 
considered device [4]. Moreover, the Spartan-3 device 
features twelve 18-Kbit dual-port RAM memories, 
also called Block RAM (BRAM) memories. Results 
that a single BRAM is sufficient to fit the amount of 
data considered. However, in this case the whole data 
is processed sequentially and the number of clock 
cycles required to implement one kernel function is 
80. This is multiplied by the number of support 
vectors and some extra clocks are added for pipelining 
purposes. 
The required number of clock cycles can be 
significantly reduced if the advantage of an FPGA 
implementation, the possibility of parallel processing 
is used wherever is possible. 
Basically, the classification function operations 
consist in a set of multiplication and summing-
accumulate, i.e. MAC operations. The embedded 18-
bit multipliers will be used for implementing the 
kernel function. For the weighting operation, a 
multiplier larger than of 18 bits will be needed due to 
the increase of the data bus width as result of the 
multiplication-summing procedure in the kernel 
function. A number of 10 multipliers will be 
considered to work in parallel for implementing the 
kernel function. The number of ten was chosen 
because the image size considered is dividable with 
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10, in fact, most of the image sizes feature this 
property, making the application easily adaptable to 
different image sizes. 
Therefore the values of the X image and the Xi 
support vectors are distributed in ten RAM blocks; 
each block basically stores eight pixels of the X image 
and the corresponding 17X8=136 pixels of the Xi 
support vectors. The RAM blocks can be configured 
into various geometries [5]. For the specified 
application, the geometry chosen for the BRAm-s is 
of 1KX16 bits. The X pixels are stored in the upper 
and the Xi pixels in the lower byte of the memory. 
Basically only 136 locations are used in each memory 
block from the available 1024. Assuming a number of 
17 support vectors, the system configured in this way 
supports an image size of 600 pixels, with any aspect 
ratio. 
Fig. 3 shows the block schematic of the kernel 
function implemented with Block RAM components 
and Table 1 shows an example for the placement of 
the X() image data and the Xi() support vector data in 
the BRAM-s, i.e. a memory map example. Obviously, 
the data can be placed in various ways into the 
memory until the placement is uniformly distributed 
and the stored X() image data corresponds with the 
Xi() support vector data stored at the same locations. 
Each block memory contains eight pixels of the 
analyzed image, repeated the number of support 
vector times. Due to this redundancy the memory map 
is inefficiently organized, however this placement of 
the data insures one multiplication at each clock cycle, 
therefore the kernel function is able to perform its 
operations for one support vector in a total number of 
8 clock cycles. 
 

Table 1. BRAM memory map example 
BRAM0 BRAM1  BRAM9 Addr.

[15:8] [7:0] [15:8] [7:0]  [15:8] [7:0] 
000 X(0) X1(0) X(8) X1(8) . X(72) X1(72) 
001 X(1) X1(1) X(9) X1(9) . X(73) X1(73) 

. . . . . . . . 
007 X(7) X1(7) X(15) X1(15) . X(79) X1(79) 
008 X(0) X2(0) X(8) X2(8) . X(72) X2(72) 
009 X(1) X2(1) X(9) X2(9) . X(73) X2(73) 

. . . . . . . . 
00F X(7) X2(7) X(15) X2(15) . X(79) X2(79) 

. . . . . . . . 
086 X(6) X17(6) X(14) X17(14) . X(78) X17(78)
087 X(7) X17(7) X(15) X17(15) . X(79) X17(79)
088 0 0 0 0 . 0 0 

. . . . . . . . 
 
The summing and accumulating circuit performs the 
unsigned sum of ten 8-bit numbers. Two-input 8-bit 
adders were used on more levels to add all the ten 
numbers, therefore the required number of the adders 
is 5 on the first level, 2 on the second level and 1 on 
the third and fourth levels. The multiplier outputs and 
each summing level outputs are registered for pipeline 
considerations. Results that the total number of 
required clock cycles to perform the kernel function 
operations, for all of the support vectors increases 
with 6, becoming  
 
 17 8 6 142 clock cycles× + =  (4)  
 
Because the image data has to be repeated in the 
BRAM blocks, results that loading a new image into 
the memory implies sweeping the whole used memory  

 
 

 
Fig. 3. Block schematic of the kernel function implemented with Block RAM  
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address space, i.e. loading a new image would take a 
minimum of 17X8=136 clock cycles, assuming that 
the ten RAM blocks are loaded simultaneously.  
Loading the BRAM memories with new data is eased 
by the fact that the Xilinx Block RAM components 
are true dual-port memories, allowing simultaneous 
read and write from two different ports. The only 
restriction is applied to the fact that the same memory 
location cannot be accessed simultaneously from both 
ports. The dual-port RAM facility allows loading the 
new image on the second access port while the first 
one is used for the kernel function operations. In order 
to avoid address conflict, data loading starts with one 
clock cycle earlier i.e. memory write is performed on 
the current memory address-1. Taking into account 
that the support vector data i.e. the lower byte in each 
memory is not changing when a new image is loaded, 
the lower byte is buffered and reloaded in the memory 
with the new image data. The incoming image data is 
also buffered and formatted in the remaining two 
BRAM components. The image data loading system 
is not shown in fig. 3. due to the lack of space. 
Taking into account that the kernel function multiplies 
and accumulates unsigned data, the maximum 
possible result from the MAC operations of the kernel 
function i.e. the maximum number at the output of the 
accumulator can be 
 
 255 255 10 8 1 5,202,001⋅ ⋅ ⋅ + =  (5)  

 
The number above can be represented on 23 bits. 
However, only the most significant 17 bits will be 
taken into account as the result of the kernel function, 
to be able to use the remaining embedded multiplier 
that accepts up to 18-bit signed or 17-bit unsigned 

operands. It means that the kernel function is scaled 
with 

 

 
( )22 TT

ii
i 5

X  · X  +1X  · X  +1
K (X, X ) = 

10242
⎛ ⎞

=⎜ ⎟
⎝ ⎠

 (6) 

 
Other scaling operations will result from the 
weighting and summing operations that follow the 
kernel function in the classifier implementation. 
 

IV. LUT-BASED RAM IMPLEMENTATION 
 

IV.1. Distributed memory considerations 
 

Although the BRAM-based implementation offers 
operation at a high-speed by reducing the number of 
the clock cycles required to calculate the kernel 
function result, it suffers from significant drawbacks.  
First, the incoming image data has to be buffered and 
formatted to be distributed across the BRAM 
components. The data formatting and RAM loading 
circuit takes significant resources from the FPGA. 
Second, the SVM classifier based on BRAM-s cannot 
be implemented in an embedded system together with 
the Xilinx proprietary MicroBlaze or PowerPc soft 
processor systems, because these systems use primary 
the BRAM-s for processor data and code memory 
purposes, making these components partially or 
completely unavailable for custom design. 
In order to overcome to the incoming data formatting 
and distributing problem, a system with distributed 
memory cells was considered, that can be 
implemented by the Xilinx Distributed RAM (also 
called LUT RAM) feature 
 

 

 
 

Fig. 4. Block schematic of the SVM classification function implemented with LUT RAM blocks 
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The LUT memory cells are built on the Configurable 
Logic Block (CLB) logic function generator circuits, 
also called Lookup Tables. In the Spartan 3 FPGA 
structure, one CLB consists of four slices from which 
two of the slices contain two 4-bit lookup tables that 
can be configured as dual-port or single-port RAM 
memories. Therefore one CLB can have up to 32 bits 
of dual-port memory or 64 bits of single-port 
memory. Results that one 32X1 bit size distributed 
RAM fits in a single CLB slice. 
Figure 4 presents the block schematic of the 
implemented SVM classifier function. The system is 
an improved version of the SVM classifier presented 
in [7], where D registers were considered to store both 
the image and support vector data. Due to the fact that 
in that case the number of the D registers used is too 
large, taking most of the FPGA D flip-flops, the 
support vector data is stored in the LUT RAM blocks 
while the image data is stored in the adjacent D flip-
flops. 
The left part of Fig. 4 until the squaring circuit 
represents the implementation of the kernel function. 
The white cells are representing the D registers 
storing the X image data, while the gray cells the LUT 
RAM blocks storing the Xi support vectors. The 
implementation is similar to the one presented in Fig. 
3 regarding the number of parallel multiplications and 
the way the first accumulator circuit is organized. 
Both the X input vector and the Xi support vector 
memories are organized in a circular FIFO memory 
matrix with a size of 10X8, resulting a number of 
80X8 cells placed in the FPGA.  
To store the Xi data, the distributed memory cells are 
organized in 32X8 bit size, allowing storage of up to 
32 support vectors. A specific LUT RAM cell stores 
the data from the support vectors according to the 
expression 
 
 ( ) ( )I ADDR[4:0]MEM ADDR = X I  (7) 
 
where I is the index of the memory cell and ADDR 
represents the 5 bit address of the memory. Therefore 
the addresses of all the memory cells are connected 
together, creating a multiple page memory, each page 
containing one support vector. 
Due to the circular structure of the X and Xi 
memories, at every 8 clock periods the memory 
content will be reloaded to its initial value and the 
address is incremented. Correspondingly, the output 
summing and accumulating circuit advances with one 
clock.  
The SX0...SX9 and SXI0…SXI9 selector signals 
allow loading of new image and support vector data 
through the DX0...DX9 and the DXI0…DXI9 data 
lines, respectively. Formatting and loading a new 
image data is significantly simpler comparing to the 
BRAM implementation. For example, the 
DX0…DX9 data lines can be connected together and 
the SX0…9 selector lines decide which row will be 
loaded with the new image data. In the case of using a 

high-speed I/O peripheral, data can be loaded in 
parallel in the ten rows when the last support vector 
product is calculated. In the same way, a new support 
vector data can be loaded into the distributed RAM 
cells through the DXI0...9 data lines, controlled by 
WEN0...9 write enable lines or from the SXI0…9 
selector lines. 
The ADDR lines also select the corresponding weight 
of the support vector from the weight memory, built 
as well on LUT RAM cells, organized in a 32X9 bit 
format, with the following considerations: Initially the 
weights were in floating point format. Due to the fact 
that floating point operations would require too wide 
data buses and considerably more computing time, 
obviously were be transformed into fixed point 
format. The smallest weight of the support vectors for 
the application considered in this paper has the 
absolute value of 
 
 16 16 9.7740856e-014α⋅ =y  (8) 

 
Note that only several decimal places were shown.  
The highest value of the weights, in absolute value, is 
 
 7 7 16 162.006978e-011=205.3α α⋅ = ⋅ ⋅y y  (9) 
 
If 16 16y α⋅ is normalized i.e. scaled to 1, then all of 
the weights can be represented on 9 bits with sign, 
meaning that all of the weights will be scaled with 

16 16

1
y α⋅

. In order to avoid an unattended change of 

the classification function sign from equation (1), 
results that the threshold b has to be also scaled. 
Taking into account from relation (6) that the kernel 
function is also scaled, equation (1) will become 
 

 
16

i i i
0

1.023e+13f(x, ) = sign y K (X ,X)+
1024i

bα α
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  (10) 

 
Thus, the b threshold becomes 1.52026e+10. This 
value can be represented on 34 bits, from there results 
the bus width for the threshold b. 
The weighting multiplier has the size of 35X9 bits, 
where the 9 bits are signed, being wider than the 18 
bit embedded multipliers, resulting that it has to be 
implemented by the FPGA lookup table logic. 
 
IV.1. Distributed memory implementation and speed 
considerations 
 
Xilinx ISE provides behavioral VHDL templates that 
can be used to instruct the synthesis tool to extract 
block RAM or distributed RAM from the code. 
Although the block schematic in Fig. 4 can be easily 
described in behavioral VHDL, it was found that by 
describing the circular multiple-page memory from 
Fig. 4 in behavioral, the XST (Xilinx Synthesis Tool) 
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will extract D flip-flops for the memory cells together 
with decoding logic rather than distributed RAM 
cells. This behavior occurs due to the fact that the 
synthesizer will understand to extract shift registers 
on 8 bits that are basically implemented with flip-
flops. 
Results that for implementing the kernel memory part 
of the system in Fig. 4., a structural VHDL or 
schematic approach has to be used. The distributed 
RAM cells were built on RAM32X8S components in 
the Xilinx ISE software. The RAM32X8S represents a 
32X8 bit single-port distributed RAM. The X memory 
cells were built on FD8CER components, 
representing an 8-bit D register with count-enable and 
asynchronous clear ports. The memory loading and 
controlling state-machine and the multiply-
accumulate circuit were described in behavioral 
VHDL. 
Due to the similarity of the structures between the 
BRAM and LUT-RAM implementations, the number 
of clock periods required for all of the kernel function 
operations is the same, i.e. 142. Four extra clock 
periods are needed for the squaring and weighting-
accumulating operations. Results a total number of 
146 clock periods for the classification function 
operations. 
The embedded multipliers are placed close to the 
BRAM cells in the FPGA structure, resulting lower 
propagation times for the BRAM implementation than 
for the LUT-RAM one. However, the highest clock 
frequency is rather limited by the propagation times of 
the combinational arithmetic circuits, i.e. the 
embedded multipliers and the unsigned adders. 
The synthesis tool reported a maximum propagation 
time of 4.828 ns, meaning a maximum clock 
frequency of 207.1 MHz. For safety purposes, half of 
this frequency was used. Note that the squaring and 
the weighting multipliers, and the final accumulator 
have to operate at only every eight kernel memory 
cock periods, allowing operations at lower frequency. 
A quarter of the kernel memory frequency was 
chosen, i.e. 25MHz. In this case, without taking into 
account the time needed for I/O operation, i.e. data 
download and memory load, the total time will be 
 

 
1 1142 4 1.58

100 25
T S

MHz MHz
µ= ⋅ + ⋅ =   (11) 

 
Due to the introduction of pipelining in the kernel 
function operations, the time was improved versus 
[7]. Comparing to the expression (11), the time spend 
for classification of 442 images on a Pentium IV, 1.2 
GHZ PC, without taking into account the time for I/O 
operations, was 0.02 seconds, resulting 45.2µS per 
image. Obviously, for larger images the time spent for 
the classification function implemented on the FPGA 
board increases due to the window sweeping 
technique that has to be used. 

Data downloading was made through the serial 
interface of the S3 board. An USB connection with 
the PC is under development.  

V. CONCLUSIONS 
 
In this paper an example of implementation for an 

SVM classification function on a Spartan 3 XS3S200 
FPGA device was presented. The example is made for 
the Ibermatica 8X10 pixel face image database. The 
proposed system takes the advantage of parallel 
circuits offered by an FPGA implementation. 

Two approaches were considered to implement the 
kernel function, the first one based on Block RAM 
memory components included in the Xilinx Spartan 
devices, and the second one based on distributed i.e. 
LUT RAM memory cells. Although the Block RAM 
implementation is more compact and simpler, the 
memory content loading can represent a difficult 
operation. On the other hand, the BRAM based 
implementation cannot be made if the SVM classifier 
is intended to be included in an embedded system 
with MicroBlaze or PowerPc soft processors that use 
the Block RAM as primary processor memory. The 
solution to these problems is offered by the distributed 
RAM implementation, where data loading can be 
easily done. 

Using the parallel data processing feature offered 
by the FPGA devices, the required number of clock 
periods reduces drastically. To keep the maximum 
clock frequency at a high level, pipelining was used 
for the arithmetic operation implementations. The 
implemented system was performing the operations 
more than ten times faster than a similar software 
application running on a PC, with the same SVM and 
the same images. 

In the case of larger images, a window sweeping 
technique has to be used that increases the 
computation time. Using a higher density FPGA 
device, the number of parallel circuits can be further 
increased to compensate the increase of the execution 
time. 
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