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Abstract – We propose a new method for image filtering 
and enhancement based on the use of partial differential 
equations (PDE)  framework and of image fusion 
techniques. The restoration process is defined iteratively 
as a succession of diffusion and fusion steps; in each step 
the degraded image is first independently processed 
using a directional diffusion PDE tuned to different sets 
of parameters and then the results are combined 
through fusion. Fusion takes place at an intermediate 
results level through a weighted averaging/selection 
fusion rule. An experimental setup involving both 
synthetic and real images is used to illustrate the 
increased efficiency of the method for noise filtering 
with small scale detail, edge and junction preservation. 
Keywords: diffusion, orientation, fusion, restoration. 
 

I. INTRODUCTION 
 

The use of partial derivatives equations (PDE) in 
image restoration witnessed and exponential growth 
in these past years. Their main advantages - increased 
precision due to their local or semi-local formulation, 
nonlinearity embedded naturally in the formulation of 
a PDE based filter, the strong anisotropic behavior, 
the coexistence of smoothing and enhancement 
processes acting in different directions, imposed this 
type of approaches as powerful alternatives to other 
image processing techniques for image restoration, 
enhancement or segmentation. The major 
contributions related to this research area are due to 
the works of Perona and Malik or Catté et al. on 
anisotropic diffusion filtering, Alvarez et al. on mean 
curvature motion like filters [1], Osher and Rudin on 
PDE shock filters [6], Weickert et. al. on tensor-
driven diffusion processes [18], [19] or Tshumperlé 
and Deriche in trace based formulations of PDE 
driven smoothing processes [15], [16]. A brief review 
of the domain is presented in Section II, for a more 
detailed description [9], [20] and the references 
therein can be consulted.  
The quality of the results obtained using a PDE filter 
is strongly influenced by the particular choice of its 
set of parameters and, for different choices, the output 
of the filter can be set to retain patterns and objects 
existing only at a given scale. We address this issue 

by proposing a method that uses fusion techniques 
performed at an intermediate results level for 
combining the results of PDE based filters in an 
iterative manner. The input image is processed for a 
pre-established number of iterations with a given PDE 
filter tuned to different sets of parameters - one for 
keeping only large scale patterns and a second one for 
the preservation of small scale details - then a fusion 
step is performed in the transform domain for 
injecting only pertinent information in both evolving 
images.  By modifying iteratively the initial values of 
the PDEs and using an appropriate fusion rule we 
design a new method with an increased efficiency in 
edge, junction and small scale details preservation, 
coupled with good noise filtering capability. We are 
developing our method using a fusion-diffusion 
framework that we previously proposed in [14].  
The paper is organized as follows: Section II is 
devoted to a brief review of the PDE based 
approaches for image filtering, Section III introduces 
our new method and Section IV includes experimental 
results for both synthetic, computer generated, and 
real images.  Concluding remarks and future work 
directions are given in the last section. 
 

II. DIFFUSION TECHNIQUES FOR IMAGE 
FILTERING AND ENHANCEMENT 

 
Classically anisotropic diffusion techniques are 
modeling the image filtering process through some 
divergence based  PDE that relays the time and spatial 
partial derivatives of a gray level intensity image 
U(x,y,t) [7]: 
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The diffusivity function g(.) controls an anisotropic 
smoothing process induced by the PDE. A typical 
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and it relates, for each pixel of the input image, the 
norm of the associated gradient vector with a 
diffusion threshold parameter K. Equation (1) can be 
also expressed in terms of a directional formulation 
that greatly eases its interpretation: 
 

              vvvuuu UcUc
t

U +=
∂
∂  

               )U(gcu ∇=                                      (3) 

              )U('gUUgcv ∇∇+∇=  

In (3) 
→
u and

→
v  are denoting unitary vectors oriented 

along the patterns directions and, respectively 
orthogonal to edges.  
Along with  the solution time t, the diffusion threshold 
K acts as a scale parameter; a particular choice for K 
sets the edges that will be kept or even enhanced in 
the output of the filter. The edge enhancement process 
is due to the negative value of the diffusion 

coefficient in the 
→
v direction corrresponding to 

gradient vector norms greater than K [10]; on the 
orthogonal direction only smoothing takes place since 
the diffusion coefficient is always positive [7], [3].     Meanwhile the anisotropic behavior of equation (1) is 
governed by a scalar diffusivity function, matrix like 
diffusion functions can be also used for a more 
efficient and true separation of the filter behavior 
along the diffusion directions. 
Matrix or tensor- driven diffusion is closely related to 
the work of Weickert in scale space analysis [18], 
[19]. The basic idea behind this class of filters is to 
steer the diffusion process along the eigenvectors of 
some diffusion matrix (a 2 x 2 square matrix for gray 
level images). A representative PDE filter for this 
type of approaches is the coherence-enhancing filter 
(CED) [18], [19]. Starting from the classical structure 
tensor [8]: 
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obtained by a point wise Gaussian convolution of the 
smoothed image derivatives, a diffusion tensor is built 
by using an eigenvector like decomposition: 
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The diffusion tensor possesses the same eigenvectors 

→→
ξη,   as the structure tensor.  The two vectors are 

robust estimates of the mean orientation of the 

structures (
→
ξ ) and of the orthogonal directions (

→
η ), 

computed at a semi-local scale ρ.   Strong anisotropic 
behavior (e.g. smoothing actions mainly only along 

edges) is achieved by modifying the eigenvalues of 
the structure tensor (λ1,2) with:  
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The constant α  is typically chosen equal to 0.001 
whereas f(µ ) is a function depending on a coherence 
measure µ, defined to be the difference between the 
eigenvalues of (4) (λ1, λ2). This filter is extremely 
efficient in processing unidirectional patterns; 
however it introduces strong topological 
modifications of the input image nearby high 
curvature regions (e.g. junctions and corners). 
This last aspect was addressed by the authors of [15] 
when they proposed a series of PDE based filters 
more suited for handling junctions and corners. Their 
initial formulation of a PDE based filter corresponds 
to the following equation: 
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Similarly to (1), the behavior of (7) can be more 
easily understood if it is put in terms of directional 
derivatives:           
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(7) can be used to some extent for limiting topological 
modifications of the input image;  for a more precise 
junction preservation is desired the equation was later 
supplemented by a curvature preserving term. Using 
the notation: 
 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+λ+λ
ξξ+

+λ+λ
ηη=

→→→→

yyxy

xyxx
p

T

p

T

UU
UU

H,T
21 1

1
1

1

2121

(9) 

 
the new formulation of this filter is [16]: 
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In (10) J stands for the Jacobian of a vector field 
defined by the product αaT with αa denoting 
elementary orientations spanning the space [0, π] 
[16]. As argued by the authors such a formulation 
inhibits the smoothing process nearby corners and 
junctions.  
Within the same framework of structure tensor 
steered diffusion we proposed in [10], [11] the 
following PDE: 

ηηηξξξ +=
∂
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The PDE  employs Perona Malik like functions for 
modulating the intensity of the diffusion processes 
along the directions computed by a structure tensor 
approach.  Consequently, in contrast to (8), the filter 
allows both smoothing and enhancement actions to 
take place along the structures directions and on the 
orthogonal ones. Negative diffusion coefficients (i.e. 
enhancement processes) are obtained whenever the 
absolute values of the directional derivatives Uξ and 
Uη are higher than the diffusion thresholds  Kξ, and Kη 
defined over the whole image domain Ω[11]: 
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  ξη α= KK  
 
with α, β∈ [0,1]. 
Similar to the K parameter of the Perona Malik filter, 
a particular choice of the diffusion thresholds sets the 
junctions and edges that will be kept in the output 
image. Meanwhile for efficiently filtering out noise 
these parameters must be set to have high values, for 
small scale detail and junction preservation the 
parameters must have lower values. An asymmetric 
version of the filter has been introduced in [12] and a 
regularized version has been also defined in a manner 
similar to [3] for reducing the sensitivity of the filter 
with respect to noise: 
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Uσ  denotes in (13) a pre-smoothed version of the 
input image with a Gaussian kernel of standard 
deviation σ. 
 

III. PROPOSED APPROACH 
 
We develop our new approach using the fusion-
diffusion framework we proposed in [13], [14]: 
 

   

Image 1 

Pyramid 
decomposition 1 

Image 2 

Pyramid 
decomposition 2 

Fusion rule 

Fused  
result 

Input 
image 

PDE filter  
Set 1 of parameters 

   PDE filter  
Set 2 of parameters 

…

FUSION 

RESTORATION 

 

RESTORATION 

PDE filter  
Set 1 of parameters 

   PDE filter  
Set 2 of parameters 

 Fig. 1. Proposed approach using a diffusion-fusion framework 
 
As the constituent diffusion filter we have choosen the 

 PDE corresponding to equation (13), tuned to  
different sets of parameters.  The choice is based on a 
previous analysis done in [10], but the method is 
general and can be applied to all the PDEs discussed 
in Section II.   
Essentially, we process the same input image 
independently with the same filter as illustrated in 
Fig.2. Two different sets of parameters are used on 
the upper and lower branch and the intermediate 
results are combined through   a   weighted averaging 
/maximum selection fusion rule. By deliberately 
setting two different choices of parameters for the 
same filter we design a method that will produce 
intermediate outputs with different characteristics. A 
set of parameters corresponding to a lower diffusion 
threshold will lead to results in which small scale 
details will be kept but, for noisy images, such a 
choice can also lead to a less efficient noise filtering 
capability. On the contrary, a set of parameters 
corresponding to high diffusion thresholds leads to 
results in which noise is smoothed out efficiently but 
small scale details like junctions can be lost. 
The image fusion framework allows us to combine 
these effects and we design our fusion rule to operate 
on a pyramid decomposition of Gaussian (Gk) and 
Laplacian levels (Lk) [2], [4] computed for 
intermediate time scales t : 
 

21kk ]G*w[G ↓−=                                      (14) 

 21kkk ]G[*w4GL ↑+−=  
 
In (14) ↓2 and ↑2  are denoting respectively the down 
and the up sampling operators with 2 and w is a 2D 
smoothing kernel operating on the intermediate 
results. 
For combining the two output images corresponding 
to a different set of parameters, we first express the 
pertinence of each result by a salience measure 
inspired from total variation minimization problems.  
Meanwhile for the Laplacian levels of decomposition 
(Lk) we define an energy like measure computed over 
a neighborhood W of the current pixel [13]: 
 
                               ∫=

W
kk dLL)L(E             (15) 

for the coarsest Gaussian level Gk+1 the salience 
measure is the total variation of the corresponding 
image computed over  W: 
 
                              ∫ ++ ∇=

W
kk dLG)G(TV 11          (16) 

When used in conjunction with edge and junction 
preserving filters such a measure does not penalize 
discontinuous solutions and is able to quantify both 
the edge and junction preserving properties of a PDE 
based smoothing/enhancement process and its noise 
filtering capability.  Such a behavior is obtained on 
the Gaussian domain by explicitly setting the salience 
measure as in equation (16); for the Laplacian domain 
the gradient operator is dropped in (15) since the 
variation  of   the   luminance function is quantified by  
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the Laplacian image itself. 
For analyzing the similarity between the results we 
employ a classical match measure defined as a 
normalized correlation; for the Laplacian images the 
measure is defined as: 
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with Lk1 and Lk2 denoting respectively the Laplacian 
images corresponding to the two output images at a 
given instant.  We employ a similar match measure 
for the Gaussian levels by replacing the salience (E) 
with the total variation in (17). 
The flowchart of the fusion rule for the Laplacian 
levels is shown in Fig.2 [14]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fusion step introduces an extra parameter: the 
selection/weighted averaging threshold γ. For all the 
experiments presented in the next section its value 
was set experimentally to 0.5.  
 

IV. EXPERIMENTAL RESULTS 

A. Synthetic images 
 
We first tested the efficiency of the proposed 
approach on computer generated synthetic images 
degraded by additive Gaussian noise (Fig.3 and 
Fig.4).   

 
Fig. 3. Synthetic image composed of oriented patterns 

The results shown in Fig.5 were computed using a 
unique orientation estimation step based on (4) with a 

7x7 pixels Gaussian kernel support window. The 
numerical version of the filter corresponds to the 
explicit discrete scheme described in [11]; the results 
were computed for the same number of iterations (n). 

 
Fig. 4. Synthetic image with additive Gaussian noise 

(PSNR=20.21dB) 

 
a) 

  
b) 

  
c) 

Fig. 5. Results corresponding to the noisy image in Fig.4; a) Image 
processed with (13) with the set of parameters: β=0.35, α=0.3, 
σ=0.75, n=90 iterations (PSNR=27.54 dB); b) Image processed 

with (13) with the set of parameters: β=0.95, α=0.3, σ=0.75, n=90 
(PSNR=26.92 dB, n=90 iterations; c) Image processed with the 

proposed approach using the sets of parameters from a) and b) with 
6 fusion steps performed  each 15 iterations (PSNR=29.05 dB) 

Lk1, Lk2 

Compute salience  (15) 
and match (17) 

M12>γ 

wmin=0 wmin=0.5-0.5 (1-M12)/(1- α) 

wmax=1-wmin 

Lkfused=wmax min(Lk1,Lk2)+wmin max(Lk1,Lk2) 

NO YES 

Fig. 2. Selection/weighted averaging fusion  for the 
Laplacian levels 
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For the result shown in Fig.5.a) (PSNR=27.74dB) the 
diffusion threshold was deliberately chosen to have a 
low value; in this case a PDE filter based on (13) 
effectively preserves edges but has a lower efficiency 
in noise filtering tasks. The situation changes for the 
result in Fig.5.b when the diffusion threshold is set to 
have a relative high value (95% of the histogram 
corresponding to the directional derivatives along the 
patterns).  The low frequency diagonal pattern is 
efficiently smoothed out but the filter introduces 
topological modifications by altering junction 
information; together with the loss of contrast, this 
aspect explains the lower PSNR value (26.92dB). The 
result from Fig. 5.c corresponds to the proposed 
fusion-diffusion scheme taking place by using the 
same filters with sets of parameters corresponding to 
the above two cases. Fusion was performed using 2 
decomposition levels and the best result corresponded 
to 6 fusion steps performed at each 15 diffusion steps. 
The filter succeeds in combining the information from 
the two constituent filters and produces less contrast 
modifications, coupled with better junction 
preservation properties. The  highest PSNR value is in 
concordance with the above remarks and with the 
visual aspect of the processed image. 
For the same input image we also show below 
comparative results obtained using filters (5)-(6), (8) 
and (10). For filters (5)-(6) and (8) we used a full 
search in the space of parameters for finding the result 
with the highest PSNR value. The result for filter (10) 
was produced using the authors own implementation 
[17].  
 

                
a) 

 
b) 

Fig. 6. Result corresponding to the noisy image in Fig.4; a) Image 
processed with (5) –(6) with the set of parameters: σ=0.5, ρ=1.5, 
n=17 iterations (PSNR=27.15 dB); b) Image processed with (8) 

with the parameters: σ=0.5, ρ=1.5, p1=1, p2=0.5  (PSNR=27.77 dB)  

The coherence-enhancing filter (5)-(6) introduces 
strong topological modifications to the input image 
and has to be stopped quickly and the result is inferior 
in terms of PSNR and of visual quality. 
 

 
c) 

Fig. 6. Result corresponding to the noisy image in Fig.4; c) Image 
processed with (10) with the set of parameters: p=0.3, a=0.7,dt=10, 

iter=3, sigma=1.5, alfa=1.0 (see [17] for an explanation of the 
parameters - PSNR=27.42 dB) 

 
Being designed to stop the smoothing process nearby 
high curvature regions, the filter (10) limits 
topological modifications of the input image when 
compared to the original formulation (8). However, 
some junctions get blurred due to the non stationarity 
of the input image.  
 

B. Real  images 
 
A first real image we will show comparative results 
on represents a fragment on a digitized old engraving 
and it is shown in Fig.7.a). In order to efficiently filter 
the background of the image, the diffusion threshold 
parameters have been set to relative high values 
(β=0.85, α=7.3). The result in Fig. 7.b) is computed 
with the filter (13) for a total of 60 iterations. Despite 
being able to smooth the background of the image, the 
filter also eliminates small-scale details.  

      
                                 a)      b) 

Fig. 7. Result for a real image; a) Result using (13) 
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                                 a)        b) 

 
Fig. 8. Result corresponding to a real image; a) Image processed 
with (10) with the set of parameters: p=0.7, a=0.5,dt=10, iter=50, 

sigma=2.0, alfa=1; b) Result using the proposed method 

The result from Fig.8.a) was obtained using the 
discrete filter implementation of equation (10) 
provided by the authors in [17]. The parameters were 
tuned in order to preserve most of the relevant objects 
in the image; the less efficient filtering nearby edges 
is due to the fact that (10) uses local contrast 
modulated smoothing and the smoothing process is 
strongly diminished in intensity for high contrast 
regions.  

Finally we present for the same image a result 
obtained using the proposed method. The first set of 
parameters is identical to the one used for producing 
the image in Fig.7.b.  For the second set of parameters 
we simply modified the diffusion threshold in the 
→
ξ directions to 50% of the value used for the first set 

(i.e β=0.42).  The number of fusion steps was 4 and 
each restoration step corresponded to 15 iterations. 
For the same observation scale (n=60 iterations) as the 
result in Fig. 7.b, the proposed method produces 
better visual results. This is due to the fact that at each 
fusion step the pertinent results corresponding either 
to the set of parameters with lower values either to the 
second one are injected in the initial values for the 
next diffusion step. 

V. REMARKS 
 
We proposed a new image restoration method based 
on the use of directional diffusion and fusion 
techniques.  Through application samples we showed 
that by using image fusion and appropriate fusion 
rules, the results of the same filter corresponding to 
different set of parameters can be coherently 
combined for producing better final results. The 
approach compares favorably with other approaches 
developed using the PDE framework with tensor 
structure based orientation estimation methods. 
The method can be generalized to any other PDE 
filter for increasing its robustness with respect to the  

choice of parameters or for combining different PDEs 
as in [13]. 
Future work will be devoted for analyzing the 
influence of using more evolved wavelet based fusion 
techniques.  
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