
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 2, 2008

Simulating a Load Balancing Implementation on Multiple
Default Routes via Different ISPs

Vâtca Dan Stefan, Mocofan Muguras1

1 Facultatea de Electronică şi Telecomunicaţii, Departamentul
Comunicaţii Bd. V. Pârvan Nr. 2, 300223 Timişoara, e-mail: muguras.mocofan@etc.upt.ro, dan@syneto.net

Abstract – This paper shows a method of implementing
and simulating a network in which traffic from an
internal network is balanced across two Internet Service
Providers to achieve higher service availability and also
provide failover in case of lack of service from one
provider. This method is very cost effective and also
demonstrates a way of utilizing unused backup Internet
connection lines.

Keywords: load balancing, failover, network simulation

I. INTRODUCTION

From the past couple of years companies rely more
and more on highly available broadband connections
to the Internet. This is because the majority of
businesses are either engaging in online commerce or
are using extensively the Internet for research. In this
highly connected world an always-on connection to
the world is a must.
A possible solution to satisfy this necessity is
employing the use of two or more different Internet
Service Providers. This way they can use one Internet
connection as primary, and the second one as a
backup line. Contracting and paying two ISPs for
connectivity will prompt the companies to search for a
solution to automatically switch all traffic to the
healthy provider in case one has failed, and also to use
both lines for regular traffic if both of them are
operating properly.
There exist both commercial and open solutions to
this problem. In this paper I will explain how to use
VMWare Fusion (www.vmware.com) to simulate a
scenario of this type and evaluate various an example
configuration.

II. IMPLEMENTATION SCENARIO

I will start by describing the rather simple network
layout of this fictitious company that has two service
providers called ISP1 and ISP2. Each provider has its
own router on a different network. In fig. 1 I depict
the layout of the network we are going to simulate.

Fig. 1 Network Layout Scenario

In the simulation I will use router software based on
Linux from a free router implementation called
Syneto. I chose this implementation firstly because I
had a great contribution to its architecture, and
secondly because it is very small (40MB for the
complete system).

III. VIRTUAL NETWORK

The scenario seems rather simple because the figure
above implies a lot of components that are not
actually depicted. To be able to properly simulate this
situation we have to lay down a more complex plan to
account for all the missing components.
In the simulation we will be able to use three kinds of
devices: switches, routers and network cables.
Switches are simulated by means of virtual network
interfaces called vmnet by the software we are using.
Each vmnet behaves like a layer 2 switch or hub that
we will use to virtually connect all the virtual
machines.
Routers and hosts will be simulated by virtual
machines – actually x86 machines – running Linux.
Finally, cables are – not so obviously – simulated by
connecting or disconnecting a virtual network

202

BUPT

interface card from a virtual switch. In Fig. 2 I am
extending the simple network above including all
necessary components for the simulation.

Fig. 2 Network detailed for simulation

The grayed out boxes represent virtual machines
running Linux. The boxes inside represent Network
Interface Cards (NICs), while the numbers inside the
boxes represent the interface number (e.g. 0 for eth0).
Grayed out NICs are disabled during simulation, but
they are used only during the virtual machine
configuration phase.
White boxes represent two virtual switches I used:
vmnet1 and vmnet8. I chose to use these two virtual
switches because they come preconfigured and on the
MacOS X platform there is no easy way to configure
additional virtual switches. On the VMWare Server,
which runs on both Windows and Linux,
configuration of up to 6 additional virtual switches is
done easily using the vmware-config.pl script.
After planning the virtual network layout we have to
create the virtual machines. Each virtual machine will
need: 1 virtual CPU, 64 MB of RAM memory,
depicted number of virtual network cards, one 64MB
virtual hard disk and one virtual CD-ROM drive used
to install the operating system.
After every virtual machine is installed started up, we
will configure each machine using the IP addresses
shown in Fig. 2. On Syneto machines configuration
may be done using either the HTTPS interface or
from the serial or video console using config
commands.
The balancer and the routers will also have configured
network address translation in order to avoid having
to worry about return routes.

I will show an example of configuration steps needed
for the balancer virtual machine.
1. First we will use the console to configure IP
addresses:
config addr edit eth0 62.231.110.65/26
config addr edit eth1 192.168.1.1/24
config addr edit eth2 172.17.0.1/24
2. Next we need to configure the two gateways and
balance traffic across them.
config gateway edit 192.168.1.2 eth1
config gateway add 172.17.0.2
3. Finally, all we have left to do is enable link failover
specifying a 2 second interval between link
verifications.
config gateway failover 2

We may now verify our gateway balancing and
failover configuration using config gateway show:
Default gateway [1]: 192.168.1.2 (eth1) (enabled)
weight 1 src 192.168.1.1
Default gateway [2]: 172.17.0.2 (eth2) (enabled)
weight 1 src 172.17.0.1
Failover: (link monitor) (every 2s)

The core operating system running in the virtual
machine is actually Linux. Syneto OS shields the
network administrator from the details required to
setup the route balancing and failover. While the
commands required to setup route balancing are
specifying little information, they are just enough for

203

BUPT

the configuration programs to setup the Linux kernel
to correctly route packets.

IV. HOW IT WORKS

To implement balancing and failover we will need to
solve three problems:

1. Routing packets back on the same interface
they were sent out from

2. Balancing traffic on the two network
interfaces

3. Monitoring route destination – in this case
the default route – for reach-ability via any
of the two interfaces

To correctly split traffic across the two network
interfaces, we have to enable two Linux kernel
options: IP: advanced router and IP: policy routing.
These options allow usage of multiple alternative
routing tables based on routing rules specified by the
administrator.

Using source network address translation (SNAT) can
solve the problem of packets returning on the same
network interface. In our virtual network setup we
will configure network address translation to change
the packet source on all core virtual machines:
Balancer VM and the two ISP Routers.

The ISP Routers will employ only one SNAT rule that
will rewrite the source of every packet exiting its
network interface connected to vmnet8 so that all
packets seem to have originated on the router itself.
This way the Internet clients will know to what router
to return packets. When the packets return, the Linux
router will use the connection-tracking table to
recreate correct response packets.

The SNAT rule will specify that any packet that is
supposed to go out thrugh the vmnet8 switch (i.e. eth2
Ethernet NIC in the case of the ISP routers) will have
the source rewritten using 10.0.0.1 or 10.0.0.2
respectively.
On the other hand, the Balancer VM will have to
configure two SNAT rules, one for every connection
to each ISP. But getting to the rules, let’s take a look
at how packets traverse the Linux kernel in Fig. 3.

Here we are interested in two processes:

1. Routing decision
2. Postrouting processing

The routing decision is responsible for balancing
routes by associating every pair (source, destination)
to one of the configured gateways. Specifying a route
weight configures how often a certain ISP (gateway)
is chosen. Once chosen a route is kept in place for a
predefined amount of time before getting replaced.
This means that the balancer does not have very good
performances for a small number of internal clients.
But as client number increases traffic will more
evenly be distributed.

After the routing process takes the decision to which
ISP to handle a certain connection, the packets will be
inspected and modified by the post-routing process.
This process is responsible for changing the source of
the packets to match the interface chosen by the
routing process.

Fig. 3 Linux kernel packet traversal

The config gateway add command will setup
route balancing by adding couple of routing rules
and their corresponding routing tables. These are
the routing rules automatically added:
0: from all lookup local
240: from all lookup main
241: from 192.168.1.0/24 lookup 241
242: from 172.17.0.0/24 lookup 242
243: from all lookup 243
32766: from all lookup main
32767: from all lookup 253

Routing rules 241 and 242 specify rules that
apply to the directly connected networks to the
provider. These are needed to enforce packets
originating from these networks not to be
balanced, but ramain local to te respective
networks. This way we avoid routing packets
destined to ISP1 via ISP2.

The 243 routing rule is actually the rule that
specifies the load balancing route. This is the
routing table contents:
$ ip route show table 243
default proto static
 nexthop via 192.168.1.2 dev eth1 weight 1
 nexthop via 172.17.0.2 dev eth2 weight 1

204

BUPT

V. FAILOVER

Setting up just the routes will only balance traffic on
the two network interfaces. The problem is that once
an ISP stops routing traffic correctly the Linux kernel
will keep using that gateway, and some connections
will be dropped.

Our solution will be to implement failover by writing
a daemon (or service) that will run on the Balancer
VM to monitor the “health” of the connections.
Defining “health” of the connection is the job of the
system administrator. He may choose to monitor the
link to its ISPs at more OSI layers:

1. At data link layer: verify network cards’ link
status

2. At network layer: verify connectivity at layer
3 using ICMP echo-request and echo-reply

3. At transport layer: attempt connections on
TCP or UDP on a certain port.

4. At application layer: monitor availability o of
a certain URL on a web server

On Syneto OS a Perl script implements failover by
verifying the destination specified by the
administrator. In our example we specified that the
failover daemon should monitor link status of the
connected network interfaces every 2 seconds. We
could as well specify an IP address like 10.0.0.3 (our
Internet Host) or even a TCP port on that host.

The route failover daemon is responsible of
maintaining in this situation the 243 routing table
adding gateways as they become available or
removing them when the failover probes show a
gateway as being unavailable.

VI. SIMULATION

Running the simulation means starting all 4 virtual
machines as previously configured and trying to
connect from the local host to the simulated Internet
Host. The only prerequisite of the local host is to have
either the default route through the Balancer VM or
just a static route to our simulated Internet – network
10.0.0.0/24.
Before starting the simulation, we have to disconnect
the virtual cables used to configure each virtual
machine (ports marked as gray in Fig. 2). This way
the local host can no longer access Internet Host
directly, but only via Balancer VM and one of the two
ISP routers.
For testing one may use console network connectivity
tests like ping or wget – tools usually available for
free can be used to test connectivity at layer 3 or 7
respectively.

Fig. 4 Failover monitor process flowchart

Now it is time to simulate failures by disconnecting
cables from one ISP, and watching what route packets
travel. Using the tcpdump network analysis tool, we
can observe packets coming from ISP1. If we
disconnect the virtual cable connecting to ISP1 and
connect only the cable leading to ISP2, we will be
able to observe packets changing origin to ISP2.

VII. CONCLUSION

This method can be used to verify the feasibility of
complex network scenarios as the one presented
without disrupting normal network operations.
Actually it provides a way to test complex network
scenarios without even requiring a network
connection.

REFERENCES

[1] Bourke, T., “Server Load Balancing”, O'Reilly & Associates,
2001.
[2] Hubert B., Linux Advanced Routing and Traffic Control
HOWTO, http://www.lartc.org, 2002.
[3] http://www.syneto.net/public/products/software_solutions/
[3] http://www.vmware.com/products/fusion/

205

BUPT

