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Abstract – This paper illustrates a new fractional tap 
length (FT) algorithm that improves the performance of 
the normalized least mean squared (NLMS) algorithms. 
The proposed algorithm, named NLMS-FT, is compared 
with an adaptive fractional tap length algorithm named 
NLMS-FT (adaptive length). The computational effort is 
similar for the proposed and adaptive tap length 
algorithms but the proposed algorithm has better 
performance in terms of tracking capabilities, speed of 
convergence and miss-adjustment. The proposed 
algorithm has the advantage that it is a less sensitive to 
its parameters (that is, it has fewer control variables to 
set). Therefore, the proposed algorithm is more robust 
than the adaptive tap length algorithm.  
 
Keywords: NLMS, Fractional tap length, average 
squared error. 
 

I. INTRODUCTION 
 

The least-mean-square (LMS) algorithm has been 
extensively used in many applications because of its 
simplicity and robustness [1], [2]. When applying the 
LMS algorithm, the tap length of the adaptive filter is 
generally fixed.  

However, in certain applications, the tap length of 
the optimal filter is unknown or even variable. When 
the tap length is under-modeled, the mean-square 
output error is likely to increase, as shown in the 
analysis in [3] and [4]; thus, a variable tap length 
algorithm is needed in such environments. 

Methods of searching for the optimal filter tap 
length have been proposed during recent years, and a 
summary of the work is given in [9] and [5]–[8]. The 
fractional tap length (FT) method is more robust and 
has lower computational complexity relative to other 
methods [9], but its performance can depend on the 
parameter choice, particularly when the channel 
coefficients are varying in time. Such sensitivity to 
parameter selection motivates a search for new 
approaches to variable tap length adaptive filtering. 

Numerous adaptive algorithms can be found in the 
literature with a common point for most of them: they 
may not work very reliably since they depend on 
several parameters that are not simple to tune in 

practice. A less sensitive adaptive algorithm is 
proposed. It is easy to control and gives good 
performances. 

On the other hand, a major goal of the method is to 
reduce the computational effort (e.g. the filter tap 
length) consider that most of channel coefficients are 
zero. 
 

II. THE  NLMS-FT ALGORITHM 
 

The fractional tap NLMS algorithm (NLMS-FT) is 
designed to find the optimal filter tap length. As in 
most approaches to derive algorithms for adaptive 
filters, this problem is transferred to the optimization 
of some criteria related to the tap length. 

For formulation convenience, we denote the steady 
state tap length of the FT algorithm as L; wL and xL(n) 
are the corresponding steady-state filter vector and 
input vector, respectively, and n denotes the time 
index. In addition, we define the segmented steady 
state error as eM(n) [9]: 
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where d(n) is the desired signal, 1≤ M≤ L, wM  and 
xM(n) are vectors consisting of the first M coefficients 
of the coefficients vector wL and the input vector 
xL(n), respectively. 

The mean square of this segmented steady-state 
error is }))({( 2neE MM =ε  

The underlying basis of the FT method is to find the 
minimum value of the error of that complies with [9] 
 

δεε ≤−∆− LL         (2) 
 
where ∆ is a positive integer, less than L, and δ is a 
small positive value determined by the system 
requirements. The minimum value of L that complies 
with (2) is then chosen as the optimum tap length. A 
detailed description of this criterion and another 
similar criterion can be found in [9]. 
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Gradient-based methods can be used to find L from 
equation (2). However, the tap length that will be used 
in the adaptive filter structure must be an integer, and 
this constrains the adaptation of the tap length. 
Different approaches have been applied to solve this 
problem [5]–[9]. In [9], the concept of “pseudo 
fractional tap length” denoted by lf(n) is used to make 
instantaneous tap length adaptation possible. As 
explained in [9], lf(n) is no longer constrained to 
integer values, and the true tap length remains 
unchanged until the “change” of the fractional tap 
length accumulates to some extent.  
Based on this approach, the FT algorithm can then be 

formulated as follows: 
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where Q[ ] is the floor operator that rounds down the 
embraced value to the nearest integer and β is a given 
threshold.  
Initially, the filter length L will be set to a maximum 

length Lmax.  
Although this FT method performs well under 

certain conditions (like white noise input or no 
coefficients changes of the FIR plant that generate the 
desired signal), its performance depends on the choice 
of the parameters.  
For example, if the input is not white noise (e.g. 

speech input), fixed parameters that achieve both fast 
convergence rate and small steady state mean square 
error (MSE) will be difficult to obtain. If the plant 
FIR coefficients are varying in time, the adaptive tap 
length algorithm will not adjust very quickly the filter 
coefficients. This means that the residual error will 
decrease slowly and the steady state error will be 
relatively high.   
 

III. THE PROPOSED ALGORITHM 
 

A modified FT algorithm is proposed in this 
section. The underlying basis of the modified FT 
method is to find the minimum value of the filter 
length, L, i.e. the average squared error is less than a 
given threshold, instead of finding the minimum value 
of L that satisfied equation (2). 
According with this idea, we consider a minimum 

filter length Lmin and a maximum filter length Lmax (the 
last one will be imposed by the computational time 
restrictions). The FT algorithm has the following steps 
performed at each input sample: 

1. Compute the filter output for the minimum 
length:   
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2. Update the filter output by adding a new tap 

k, as follows: 
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 where k = Lmin, …, Lmax. 
 

3. Compute the average squared error eavg(n) : 
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where M is chosen about 5 to 10. 
 

4. Compare the average squared error with a 
given threshold and stop computing the filter 
output if the average error is less than the 
threshold eT. If the condition k ≤ Lmax is 
fulfilled then go to step two, or else the 
computing of the filter output will be stopped 
at k=Lmax. 

 
The next section will show that the performance of 

proposed algorithm has a better tracking capability 
than the adaptive tap length algorithm. Nevertheless, 
the computational time for the proposed algorithm is 
greater than the computational time for the adaptive 
tap length algorithm. 
 

IV. THE MAIN RESULTS 
 
Our simulations consider the case of an adaptive 

echo canceller that implies one of the above presented 
algorithms. We consider that the echo path consists of 
a single major coefficient and all others coefficients 
are very small comparing with this one. This case 
corresponds to the acoustic echo.  
 The following assumptions have been made (table 

1): 
  

Parameter Value 
Lmax 100 
Lmin 20 
eT 10-5 
M 5 
 ∆ 4 
α 0.01 
γ 0.1 
β 5 

 
Table 1 Values of parameters used in simulations 
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We consider that the echo path will change as 
illustrated in the figure 1. 

 
Figure 1.  Echo path variation 

 
The input signal was generated as the output of the 

plant FIR with the coefficients illustrated in figure 1.  
The plant FIR excitation has a normal distribution 
noise. 
We computed the residual error for the classical 
NLMS adaptive algorithm, NLMS-FT adaptive 
algorithm, and NLMS-FT adaptive tap length 
algorithm. 
These learning curves are shown in the figures 2, 3 
and 4. 
From these figures, one can observe that the NLMS-

FT adaptive tap length algorithm exhibits a low 
tracking capability (after the second echo path change 
the residual error oscillates with a high value). 
In the NLMS-FT algorithm, the number of taps will 
be decreased. The second term in equation (3) is 
negative but maintains the residual error small 
enough. When the echo path is changed, the residual 
error will increase. The second term in equation (3) is 
positive and the number of taps will be increased. The 
residual error will be reduced, but this process is slow. 
The NLMS-FT algorithm tries to trade off between a 

relatively fast reducing of number of taps, when it 
converges, and the echo path tracking capability. 
 

 
Figure 2. Learning curve – NLMS algorithm 

 
Figure 3. Fractional tap (FT) length learning curve 

 
Figure 4. Fractional tap (FT) adaptive tap length 

learning curve 
 
These two requirements are contradictory and are 

difficult to set all the parameters α, β and γ to fulfill 
both of them. 
On contrast, the proposed algorithm (NLMS-FT 

adaptive tap) starts with a minimum value of the 
number of taps and increase it until the residual error 
is small enough. The number of taps is calculated at 
each sample interval so if the echo path is changed the 
algorithm can follow it quickly enough. 
 The computational effort will be increased comparing 
to NLMS-FT adaptive length tap algorithm but it 
remains lower than computational effort in NLMS 
algorithm.   
Figure 5 illustrated the average number of taps for 

NLMS-FT and NLMS-FT adaptive tap algorithms.   
The number of filter tap for classical NLMS algorithm 
is set to 100. 
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Figure 5. Fractional tap (FT) and fractional adaptive 

tap length computational effort 
 
In the figure 2, the residual error was obtained for a 

number of 100 taps.  
The table 2 indicates the computational effort for the 

above algorithms comparing with NLMS algorithm. 
 

Average 
number 
of taps 

NLMS-FT 
Algorithm 

NLMS-FT 
Algorithm 
- adaptive 
tap length 

NLMS 
Algorithm 

100 53700 51065 50500 
90 43750 41465 40950 
80 34800 32865 32400 
70 26850 25265 24850 
60 19900 18665 18300 
50 13950 13065 12750 
40 9000 8465 8200 
30 5050 4865 4650 

 
Table 2. Computational effort (number of processor 

cycles) 
The last column is only relevant to a comparison 
between all the three algorithms. The FT algorithms 
work with an average number of taps of about 30-35 
and the computational effort must be compared with 
the computational effort for NLMS algorithm for 100 
taps. One can observe that the computational effort 
decreases very much (about 20% of computational 
effort for NLMS) for a steady state of filter.    

 
V. CONCLUSIONS 

 
The paper presents a novel fractional tap length 

adaptive algorithm. This algorithm has better tracking 
capability with similar computational effort. On the 
other hand, the proposed algorithm is less sensitive to 
its parameters than other adaptive algorithms. 
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