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Pipeline Identification in a TDOA Experiment

Raul Ionell, Sabin Ionel®

Abstract - The time difference of arrival (TDOA) related
to single input/two output systems has many practical
applications. Using a kind of system identification applied
to a water pipeline, this paper proves that the supposed linear
relation between TDOA and the phase angle of the cross-
spectral power density of the output signals is valid only
in a limited frequency range. This conclusion shows the
importance of low frequency components in the measured
leak signals for TDOA estimation and leak localization.

The model proposed for system identification can be
utilized with the main advantage of taking the correlation
between the extraneous noise signals into account.
Keywords: Water pipelines, Leak signals, Identification,
TDOA, Cross-spectral power density

I. INTRODUCTION

The time difference of arrival (TDOA) estimation is
generally formulated as a single input/multiple output
problem [1]. Particularly, if only two signals are measured,
one talk about a single input/two output system. The
representation of such system can be seen in Fig. 1.
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Fig.1 Single input/two output system

The leak localization in water pipelines is often based on
the fundamental procedure of TDOA determination [7].

For H,(f)=1 and H,(f)=a-exp(-j24(7,).
the measured signals s, (t ) and S, (l‘ ) are given by

51(t) = w(t)+n,(t)

5,(0) = wle—7,)+, 1) .

The constants & and 7, represent the attenuation factor
and the time difference to be determined, respectively.
The extraneous noise terms 7, (l‘ ) and n, (t ) are
assumed to be uncorrelated with each other and with the
leak noise W(l‘) . Under these assumptions, one can show

that the cross-correlation and the cross-spectral power
density of the measured signals can be expressed using
the autocorrelation and the spectral power density of the

leak noise W(l‘ ) :
RslsZ(T) = .RWW(T _Tl); (2)

G (f) =a- exp( J277, ) ww (f) (3)

According to these relations, the time delay7,, i.e.
(TDOA) of
S (t)ands2 (t), can be estimated using either the

the time difference of arrival

cross-correlation function or the cross-spectral density
function where TDOA appears in the linear phase

angle [2], [3], [4] :

eslsZ(f): 2ﬂfrl (4)

The Measured Signals
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Fig.2 Experimental leak signals
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For example, a pair of leak generated signals, §, (l‘ )

and s, (t), each containing 51200 samples, measured

at a water pipeline, are presented in Fig.2. The
position of the maximal value of their cross-
correlation function, pictured in Fig.3, is an estimation
of the TDOA of these signals.

T T T f f f T
| | | | | | |
e
| | | | | | |
| | | | | | |
] — [ + -+ + [
| i | | |
| | ! |

[

|
5 — —— — ——

sl A H\ I N M ". ,
T ‘W |\Hﬂi‘l‘HH|“'|H
L :

f T
| |
Y I,
| |
| |
10 — == — == —
| |
| |
I |
1 I

o

Fig3 R, (T) cross-correlation function

However, the linear relation (4) between phase
angle @, ,(f) and TDOA 7, was obtaining under

simplifying assumptions related to model (1). If these
conditions are not fulfilled, the precision of time delay
estimation is affected, not only in the spectral power
representation but also in the equivalent method based
on the cross-correlation.

Using a kind of system identification, this paper

investigates the relation between phase angle 6, , (f)
and TDOA of the signals s, (l‘ ) ands, (t ) , in a particular

case of a water pipeline experimental setup.
II. PIPELINE IDENTIFICATION

One considers the pipeline model shown in Fig.4,
which differs from that represented in Fig.1.
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Fig.4 Single input/two output system with input signal
including the extraneous noise

Thus, the input signal

z(t) = w(t)+n(r) )

is the sum of the leak noise, W(t ) and the extraneous
input noise, n(t) The pipeline sections between the
leak and the sensors measuring the noise corrupted
signals $, (t) and s, (t) are modeled by the constant
parameter linear systems with frequency response
functions H  (f ) and H, ( f) or the corresponding
weighting functions 7, (t ) and h, (), respectively.
One cannot do a proper identification of the
transfer functions 1, ( f ) and H, ( f ) because the
input signal Z(l‘) is unknown [5]. However, the
measured signals §, (t)ands2 (t), are obtained by

convolution operations between Z(t ) and the weighting

functions /, (t ) and h, (1)
=[h(e)-2(c-7)dt, i=12. (6

We can try using several realizations of a possible
input noise Z(t ) in order to reverse equation (6) and
find A, (t ) by deconvolution. The problem is that

unlike convolution (abbreviation “conv”),
deconvolution (abbreviation “deconv”) has not a
unique result. The result 4 depends on a certain
remainder, R, according to the relation

[h,,R,]= deconv(s,z,) (7)
so that
s=conv(h,,z,)+R,. ®)

identical if the
Practically, the deconvolution

Equations (6) and (8) are
reminder R, = 0.
relation (7) was implemented using several hundreds
of input noise sequences Zz,, until a white noise

realization with mean zero and variance one was
found, assuring very small reminders for both output

signals s, (t ) and §, (t ) This sequence is represented in
Fig.5. The weighting sequences hl and hz, shown in
Fig.6, were obtained using in (7) the particular
= (. Only the first

50 samples from 512 values determined for the
weighting functions are represented in Fig.6.

sequence Zz, which assures R,

Now we can find an empirical formula for A,
and h,. So, by inspection, the weighting functions
appear to be a decaying cosine wave:

h(t)=—-C-e™" -cos(w-t+ ). )
Using a MATLAB computer program, the best-fit
parametersC, a,@ and @ were found. Thus, for
C,=68-10";

h,(t) the estimated values are:
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a, =1100 Hz; w, = 451220 rad/s; ¢, = —0,38 rad
while for h,(¢) one obtained: C, =18,9-10";
a, =1050 Hz; @, = 451210 rad/s; @, = —0,] rad.
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Fig.5 Input sequence
assuring very low deconvolution reminders
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Fig.6 The first 50 samples
of the weighting sequences /4, and £,

Weighting Functions h, and h,,

Fig.7 The first 100 values of the weighting functions
sampled with Fy = 2,25MHz

In Fig.6 the weighting functions are sampled with
F¢ =15kHz, corresponding to a sampling period

T, = 6,66666-107s Using the empirical formula
(9) one can represent the weighting functions sampled

with an arbitrary frequency. Thus, Fig.7 shows the
weighting functions sampled with Fg = 2,25MHz

ie. T, =0,044444-107s. Both functions /, and

h2 exhibit a pronounced oscillatory character.

III. FREQUENCY DOMAIN INTERPRETATIONS

In order to facilitate some interpretations, it is useful
to derive the Laplace transfer functions /1, (S) and

H, (S), corresponding to the weighting functions

h,(¢) and h,(¢). Thus, one can observe that the
time function (9) can be written as

ht)=—C-cosp-[e" -cos(a-1)|+ (10)
+C- sin¢-[e_“'t 'Sin(w'f)]~

Thereafter, using the Laplace transforms pairs [5]:

et w
e sin(w-t) & ————;
2
(s+a) +o
Ss+a

e " cos(w-t) & ————,
(s+a) +o

we obtain the Laplace transfer function

(-C-cosp)-s
Hls)=
() s*+2a-s+a’+w’
—a-C-cosp+w-C-sing
s+2a-s+a*+0’

(In

Frequency (rad/sec)

Fig.8 Bode plots for H, (S) and H, (S)

With particular values for the constants C', a ,@ and
@, the general expression (11) gives the transfer

functions H, (S) and H, (S) The Bode plots for
H, (S) and H, (S) are presented in Fig.8. The most
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remarkable feature revealed by the magnitude and
phase plots in Fig.8 is the resonance at a high
frequency (about 72 kHz). However, the high

frequency ranges (10* +10°rad/s), represented in
Fig.8, remain unexplored under normal working
conditions of the pipeline. Therefore we are rather
interested in the Bode plots at lower frequencies.
These are shown in Fig.9.

Fig.9 Bode plots for /1, (S) and [, (S),
at low frequencies
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Fig.10 The ratio &, , (f)/(27z . f), in linear (top)

and logarithmic (bottom) frequency scale

The magnitude plots in Fig.9, show quasi-constant
amplification at low frequencies (10° +10°rad/s)

and an increasing tendency of |H 5 (SX for the decade

(10> =10%rad/s). On the other side, the phase
difference between the two transfer functions
increases with frequency. According to (4), the phase

difference &, , ( f ) , i.e. the phase difference in Fig.9,
should be proportional to 277 - f = @. However, the
ratio 0, , (f)/(272' . f) represented in Fig.10 in
linear as well in logarithmic scale, shows a decreasing

tendency. But, in (4) this ratio is a constant, 7,, or the

TDOA to be measured. Fig.10 shows that (4) must be
generalized in the form

0..,(w)=F(w) At. (12)

In (12), AT =7, — 7, stands for the TDOA between

s, (t) and S, (t), while F (a)) is a nonlinear
frequency function. Only at low frequencies, the
approximation F’ (w) = @ is justified.

This analysis puts into evidence the importance
of low frequency components of the measured signals
in TDOA measuring experiments. Especially, in the
signal pre-processing step, when rejection of low
frequency components is used in order to assure that
the measured signals are stationary, the rejection
operation must restricted to the necessary minimum.
This recommendation is important if the TDOA is to
be determined from the position of the maximum of
the cross-correlation function. Alternatively, one can

think of determining the nonlinear function £ (a)) in

(12), using the identification procedure described in
this paper, in order to improve the TDOA
determination from the cross-spectral power density
of the measured leak signals.

The identification procedure used in this paper
refers to the block diagram shown in Fig.4. This
suggests a new model for the one input/two output
model of TDOA determination:

sl(z>=a1<f>-[w<f—f1)+”(’_r‘)]} )
5200 = (N)-[wle=,)+nle=7,)

Unlike (1), the proposed model (13) takes the
dependence of attenuation on frequency into account.
The new model also assures the extraneous noise
signals acting on the physical pipeline arrangement
are correlated. This is certainly a more realistic
assumption than the classical lack of correlation
related to model (1), especially when the geometrical
dimensions of the experimental arrangement are
small. However, the utilization of the proposed model
remains a task for future research.

4 Conclusion

The classical single input/two output model and
the associated simplifying assumptions lead to a linear
relation between TDOA and the phase angle of the
cross-spectral power density of the output signals.
Using a kind of system identification applied to a water
pipeline experimental setup, this paper proves that the
supposed linear relation is valid only in a limited
frequency range. Thus, the importance of low frequency
components in the leak signals in put into evidence.

The single input/two output model proposed for
system identification can be utilized as an alternative
to the classical one, with the advantage of describing
the correlation between the extraneous noise signals.
This assumption is more realistic, especially if the
geometrical dimensions of the experimental setup are
small.
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