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Abstract - The time difference of arrival (TDOA) related 
to single input/two output systems has many practical 
applications.  Using a kind of system identification applied 
to a water pipeline, this paper proves that the supposed linear 
relation between TDOA and the phase angle of the cross-
spectral power density of the output signals is valid only 
in a limited frequency range. This conclusion shows the 
importance of low frequency components in the measured 
leak signals for TDOA estimation and leak localization. 
The model proposed for system identification can be 
utilized with the main advantage of taking the correlation 
between the extraneous noise signals into account.   
Keywords: Water pipelines, Leak signals, Identification, 
TDOA, Cross-spectral power density 
 

I. INTRODUCTION 
 

The time difference of arrival (TDOA) estimation is 
generally formulated as a single input/multiple output 
problem [1]. Particularly, if only two signals are measured, 
one talk about a single input/two output system. The 
representation of such system can be seen in Fig.1.  

 
Fig.1 Single input/two output system 

 
The leak localization in water pipelines is often based on 
the fundamental procedure of TDOA determination [7]. 
For 1)(1 =fH  and )2exp()( 12 τπα fjfH −⋅= ,  

the measured signals ( )ts1 and ( )ts2  are given by 
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The constants α  and 1τ  represent the attenuation factor 
and the time difference to be determined, respectively. 
The extraneous noise terms ( )tn1  and ( )tn2  are 
assumed to be uncorrelated with each other and with the 
leak noise ( )tw . Under these assumptions, one can show 
that the cross-correlation and the cross-spectral power 
density of the measured signals can be expressed using 
the autocorrelation and the spectral power density of the 
leak noise ( )tw :  
 

( ) ( )121 ττατ −⋅= wwss RR ;                  (2)  
                            

( ) ( ) ( )fGfjfG wwss ⋅−⋅= 121 2exp τπα .      (3)  
    
According to these relations, the time delay 1τ , i.e.   
the time difference of arrival (TDOA) of 
( )ts1 and ( )ts2 , can be estimated using either the 

cross-correlation function or the cross-spectral density 
function  where TDOA appears in the linear phase 
angle [2], [3], [4] : 
 

( ) 121 2 τπθ ⋅⋅= ffss .                  (4)  
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Fig.2 Experimental leak signals 
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For example, a pair of leak generated signals, ( )ts1  

and ( )ts2 , each containing 51200 samples, measured 
at a water pipeline, are presented in Fig.2. The 
position of the maximal value of their cross-
correlation function, pictured in Fig.3, is an estimation 
of the TDOA of these signals. 
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Fig.3  ( )τ21ssR  cross-correlation function 

 
 However, the linear relation (4) between phase 
angle )(21 fssθ  and TDOA 1τ  was obtaining under 
simplifying assumptions related to model (1). If these 
conditions are not fulfilled, the precision of time delay 
estimation is affected, not only in the spectral power 
representation but also in the equivalent method based 
on the cross-correlation. 

 Using a kind of system identification, this paper 
investigates the relation between phase angle )(21 fssθ  

and TDOA of the signals ( )ts1 and ( )ts2 , in a particular 
case of a water pipeline experimental setup. 

 
 
II. PIPELINE IDENTIFICATION 

 
One considers the pipeline model shown in Fig.4, 
which differs from that represented in Fig.1. 

 
Fig.4 Single input/two output system with input signal 

including the extraneous noise 
 

Thus, the input signal 
 

( ) ( ) ( )tntwtz +=                       (5) 

is the sum of the leak noise, ( )tw  and the extraneous 

input noise, ( )tn . The pipeline sections between the 
leak and the sensors measuring the noise corrupted 
signals ( )ts1  and ( )ts2  are modeled by the constant 
parameter linear systems with frequency response 
functions ( )fH1  and ( )fH 2  or the corresponding 

weighting functions ( )th1  and ( )th2 , respectively. 
 One cannot do a proper identification of the 
transfer functions ( )fH1  and ( )fH 2  because the 

input signal ( )tz  is unknown [5]. However, the 

measured signals ( )ts1 and ( )ts2 , are obtained by 

convolution operations between ( )tz  and the weighting 

functions ( )th1  and ( )th2 : 

( ) ( ) ( ) 2,1,
0

=−⋅= ∫
∞

idttzhts ii ττ .          (6) 

We can try using several realizations of a possible 
input noise ( )tz  in order to reverse equation (6) and 

find ( )thi  by deconvolution.  The problem is that 
unlike convolution (abbreviation “conv”), 
deconvolution (abbreviation “deconv”) has not a 
unique result. The result h depends on a certain 
remainder, R, according to the relation 
 

( )kkk zsdeconvRh ,],[ =                (7) 
so that 

 kkk Rzhconvs += ),( .                 (8) 
 

Equations (6) and (8) are identical if the 
reminder 0=kR . Practically, the deconvolution 
relation (7) was implemented using several hundreds 
of input noise sequences kz , until a white noise 
realization with mean zero and variance one  was 
found, assuring very small reminders for both output 
signals ( )ts1  and ( )ts2 . This sequence is represented in 

Fig.5. The weighting sequences 1h  and 2h , shown in 
Fig.6, were obtained using in (7) the particular 
sequence kz  which assures 0≅kR . Only the first 
50 samples from 512 values determined for the 
weighting functions are represented in Fig.6. 
 Now we can find an empirical formula for 1h  

and 2h . So, by inspection, the weighting functions 
appear to be a decaying cosine wave: 
 

( ) )cos( ϕω +⋅⋅⋅−= ⋅− teCth ta .             (9) 
 

Using a MATLAB computer program, the best-fit 
parameters C , a ,ω  and ϕ  were found. Thus, for 

)(1 th  the estimated values are:   ;108,6 12
1 ⋅=C  
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11001 =a Hz; 4512201 =ω rad/s; 38,01 −=ϕ rad 

while for )(2 th  one obtained: ;109,18 12
2 ⋅=C  

10502 =a Hz; 4512102 =ω rad/s; 1,02 −=ϕ rad. 
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Fig.5 Input sequence 

assuring very low deconvolution reminders 
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Fig.6 The first 50 samples 

of the weighting sequences 1h  and 2h  
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Fig.7 The first 100 values of the weighting functions 

sampled with MHz25,2=SF  
 
In Fig.6 the weighting functions are sampled with 

kHz15=SF , corresponding to a sampling period 

s1066666,6 5−⋅≅ET .Using the empirical formula 
(9) one can represent the weighting functions sampled 

with an arbitrary frequency. Thus, Fig.7 shows the 
weighting functions sampled with MHz25,2=SF  

i.e. s100,044444 -5⋅≅ET . Both functions 1h  and 

2h  exhibit a pronounced oscillatory character. 
 
 
III. FREQUENCY DOMAIN INTERPRETATIONS 

 
In order to facilitate some interpretations, it is useful 
to derive the Laplace transfer functions ( )sH1  and 

( )sH 2 , corresponding to the weighting functions 

( )th1  and ( )th2 .  Thus, one can observe that the 
time function (9) can be written as  
 
( ) [ ]

[ ].)sin(sin
)cos(cos

teC
teCth

ta

ta

⋅⋅⋅⋅+

+⋅⋅⋅⋅−=
⋅−

⋅−
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   (10)   

       
Thereafter, using the Laplace transforms pairs [5]: 
 

( ) 22)sin(
ω

ωω
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we obtain the Laplace transfer function 
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Bode Diagram
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Fig.8 Bode plots for ( )sH1  and ( )sH 2  

 
With particular values for the constants C , a ,ω  and 
ϕ , the general expression (11) gives the transfer 

functions ( )sH1  and ( )sH 2 . The Bode plots for 

( )sH1  and ( )sH 2  are presented in Fig.8. The most 
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remarkable feature revealed by the magnitude and 
phase plots in Fig.8 is the resonance at a high 
frequency (about 72 kHz). However, the high 
frequency ranges ( 64 1010 ÷ rad/s), represented in 
Fig.8, remain unexplored under normal working 
conditions of the pipeline. Therefore we are rather 
interested in the Bode plots at lower frequencies. 
These are shown in Fig.9. 
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Fig.9 Bode plots for ( )sH1  and ( )sH 2 , 

at low frequencies 
 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
9

9.05

9.1

9.15

9.2

9.25
x 10

-4

D
el

ay
 (T

D
O

A
) [

s]

Circular frequency, ω [rad/s]

100 101 102 103 104
9

9.05

9.1

9.15

9.2

9.25
x 10

-4

D
el

ay
 (T

D
O

A
) [

s]

Circular frequency, ω [rad/s]

 
Fig.10 The ratio ( ) ( )ffss ⋅πθ 2/21 , in linear (top) 

and logarithmic (bottom) frequency scale 
 
 
The magnitude plots in Fig.9, show quasi-constant 
amplification at low frequencies ( 30 1010 ÷ rad/s) 
and an increasing tendency of ( )sH 2  for the decade 

( 43 1010 ÷ rad/s). On the other side, the phase 
difference between the two transfer functions 
increases with frequency. According to (4), the phase 
difference ( )fss 21θ , i.e. the phase difference in Fig.9, 

should be proportional to ωπ =⋅ f2 . However, the 

ratio ( ) ( )ffss ⋅πθ 2/21  represented in Fig.10 in 
linear as well in logarithmic scale, shows a decreasing 
tendency. But, in (4) this ratio is a constant, 1τ , or the 
TDOA to be measured. Fig.10 shows that (4) must be 
generalized in the form 

( ) ( ) τωωθ ∆⋅= Fss 21 .                  (12) 
 
In (12), 12 τττ −=∆ , stands for the TDOA between 

( )ts2  and ( )ts1 , while ( )ωF  is a nonlinear 
frequency function. Only at low frequencies, the 
approximation ( ) ωω ≅F  is justified.  
 This analysis puts into evidence the importance 
of low frequency components of the measured signals 
in TDOA measuring experiments. Especially, in the 
signal pre-processing step, when rejection of low 
frequency components is used in order to assure that 
the measured signals are stationary, the rejection 
operation must restricted to the necessary minimum. 
This recommendation is important if the TDOA is to 
be determined from the position of the maximum of 
the cross-correlation function. Alternatively, one can 
think of determining the nonlinear function ( )ωF  in 
(12), using the identification procedure described in 
this paper, in order to improve the TDOA 
determination from the cross-spectral power density 
of the measured leak signals.  
 The identification procedure used in this paper 
refers to the block diagram shown in Fig.4. This 
suggests a new model for the one input/two output 
model of TDOA determination: 
 

( ) ( ) ( )
( ) ( ) ( ) ⎭⎬

⎫
−+−⋅=
−+−⋅=

][)(
][)(

2222

1111

ττα
ττα

tntwfts
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      (13)    

                                  
Unlike (1), the proposed model (13) takes the 
dependence of attenuation on frequency into account. 
The new model also assures the extraneous noise 
signals acting on the physical pipeline arrangement 
are correlated. This is certainly a more realistic 
assumption than the classical lack of correlation 
related to model (1), especially when the geometrical 
dimensions of the experimental arrangement are 
small. However, the utilization of the proposed model 
remains a task for future research.  
 
 

4 Conclusion 
The classical single input/two output model and 

the associated simplifying assumptions lead to a linear 
relation between TDOA and the phase angle of the 
cross-spectral power density of the output signals. 
Using a kind of system identification applied to a water 
pipeline experimental setup, this paper proves that the 
supposed linear relation is valid only in a limited 
frequency range. Thus, the importance of low frequency 
components in the leak signals in put into evidence. 

The single input/two output model proposed for 
system identification can be utilized as an alternative 
to the classical one, with the advantage of describing 
the correlation between the extraneous noise signals. 
This assumption is more realistic, especially if the 
geometrical dimensions of the experimental setup are 
small. 
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