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Abstract – The discrete wavelet transform can be used 
to process continuous-time signals. To use it, the 
initialization errors must be minimized. This is the aim 
of this paper. The results are justified and are presented 
in a unitary manner. We give a strategy to accomplish 
this minimization. Some examples are presented. A 
superior bound of these errors is also presented. 
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I. INTRODUCTION 
 

A modern problem in signal processing theory is the 
analysis of non-stationary signals. The tools for this 
analysis are the time-frequency representations. One 
of the most important time-frequency representations 
is the Continuous Wavelet Transform (C.W.T), [1]. 
Given a non-stationary signal x(t), wavelet transform 
consists of computing coefficients that are inner 
products of the signal and a family of "wavelets". The 
wavelet corresponding to scale a and time-location b 
is: 
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where ψ (t) is the mother wavelets. The CWT of x(t) 
is: 

( ) ( ) ( )dtttx  = ba,CWT *
ba,
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Time t and time-scale parameters vary continuously. 
This transform can be discretized. If the time remains 
continuous but time-scale parameters (b,a) are 
sampled on a "dyadic" grid, then the wavelet series 
coefficients are obtained: 

( )2k,2CWT = C jj
xkj,   (1) 

Let Vj, j∈Z, be a multiresolution analysis of L2(R), 
[2], generated by the scaling function φ(t). Let xj(t), 
j≥0, be the projection of the finite energy signal x(t) 
on the space Vj. The signal xj (t), j>0, represents the 

approximation of resolution j of the signal x0(t). The 
coefficients of the development of xj(t) in the basis of 
Vj are: <x0(t),φj,n(t)>=bj,n. Computation of these 
coefficients are simplified due to the following 
recurrence relation: 

 hb = b *
p-2np1,-j

p
j,n ∑  

where:  
     ( ) ( ) >ϕϕ l-t,t< = h n1,l-2n       (2) 

 
[2]. The approximation of x0(t) by xj(t) is realized 
with the error ej(t)=x0(t)–xj(t). For every 

multiresolution analysis of L2(R), Vj, j∈Z, a 

correspondent orthogonal decomposition of L2(R), Wj  
j∈Z can be built. The error ej(t) is the projection of 
the signal x0(t) on the space Wj, j>0. It can be written: 
 

( ) ( ) )(0 te + tx =t x j
J

1=j
J ∑  

 
The coefficients cj,k = < x0(t),ψj,k(t)> can be 
computed with the following recurrence relation: 

  gb = c *
l-2nl1,-j

l
kj, ∑  

where: 
( ) ( )>l-t,t< = g n1,l-2n ϕψ   (3) 

 
[2]. So, using the coefficients b0,n of the signal x0(t), 
the xJ(t) and ej(t), j=1,...,J can be obtained. The 
transformation of the discrete signal b0,k in the 
sequence of signals: c1,k , c2,k , ...,cJ,k, , bJ,k is named 
Discrete Wavelet Transform (DWT). The main 
problem of this paper is to obtain the signal x0(t) (its 
coefficients b0,k) the projection of x(t) on the space 
V0, starting from a known signal x(t). This operation 
represents the initialization of the DWT. The signal 
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x0(t) can be exactly reconstructed after the application 
of the DWT and the inverse DWT to the sequence b0,k 
. Because this signal represents the projection of the 
signal x(t) on the space V0  it can be computed using a 
projection filter. This is the reason why, in the 
reconstruction phase, the signal x(t) can be generated 
using the signal x0(t) (that can be obtained after the 
application of the inverse DWT) and the inverse 
system corresponding to the projection filter.  
 
 II. THE INITIALIZATION PROBLEM 

 
For the use of an algorithm for the processing of a 
continuous-time signal, x(t), this signal must be 
sampled, obtaining the sequence [ ]nx . The 
initialization of the DWT consists in the computation 
of the sequence b0,k starting from  the sequence [ ]nx .  
The DWT is a very fast transformation. It is faster 
then the FFT. The problem is to find the impulse 
response of a discrete-time system, α[n], such that its 
response y[n], to the input signal x[n], to be a good 
approximation of the signal b0,n. This is a very 
interesting problem, pointed out in [3], [4], [6] and 
[7].  
 

II. 1 How to obtain the sequence b0,n starting 
from the signal x(t) ? 

 
The system in figure 1 transforms the signal x(t) into 
the sequence b0,n. 
The expression of the signal u (t), in figure 1, is: 

∫ ττ−ϕτ=ϕ∗=
∞

∞−
dtxttxtu vv )()()()()( **  

Sampling this signal we obtain: 

∑
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Figure 1. The transformation of the signal x(t) into the 
sequence b0,n . 

 

Hence the system in figure 1 transforms the signal x(t) 
into the sequence b0,k. 
 

II.2 The Computation of the Impulse 
Response α[n] 

The initialization problem is presented in figure 2. 
The condition to cancel the error e[n] is: 
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where Fd represents the Fourier transform in discrete-
time. So the expression of the impulse response α[n] 
is: 
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Shensa proposed this exact solution of the DWT 
initialization problem, too, without derivation, in [3], 
(relation (4.12.c)). Unfortunately this relation can not 
be applied when the expression of the signal x(t)  is 
unknown.  
The continuous in time convolution requested in (4) 
can not be computed with a computer. In the 
following, two particularizations of (4), more useful 
in practice, are presented.    
• Case I  
When the signal x(t) is band-limited, x(t)∈Bπ

2, the 
relation (4) becomes: 

[ ] [ ]nzna =α               (5) 
The Fourier transform of the signal z[n] is: 

[ ]{ } ( ){ }( ) [ ]( )|1tF =nzF =,-
*v

d Ωωππ ωωϕ  
where F represents the Fourier transform for 
continuous-time signals. This is so because the 
continuous-time signal with the Fourier transform 

F{ϕv*(t)}(ω) 1 [-π ,π ](ω) is a band-limited one, like 
x(t). This is the reason why their continuous 
convolution is also a member of the Bπ

2 space. But, 
for such signals, the Fourier transform in discrete-time 
is identical in the interval [-π,π] with their Fourier 
transform in continuous time.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The initialization problem. 
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Case II. To the hypothesis of case I is added the 

supplementary hypothesis that φv*(t)∈Bπ
2. In this 

case the relation (4) becomes (see the relation (5) and 
the case I): 

[ ] [ ]n = n *v
a ϕα                (6) 

 
So, the system whit the impulse response α[n] is 
equivalent with the system with impulse response 

φv*(t), on the base of the impulse invariance method, 
[5]. This approximation of the solution of the 
initialization problem, without derivation, is proposed 
in [6] (relation (15) for χ(t)= δ(t)) and in [7] (relation 
(14)).  
  

III. THE ESTIMATION OF THE 
APPROXIMATION ERROR 

 
At the beginning are presented some preliminary 
results. 
P1. The discrete-time signal obtained by uniform 
sampling with a unitary step of a finite energy 
signal has finite energy. 
P2 The convolution of two finite energy 
continuous-time signals is a new finite energy 
signal. 
 P3 The convolution of two finite energy discrete-time 
signals is a new finite energy discrete-time signal. 

Now, the approximation errors for the 
initialization methods in relation (5) and (6) can be 
estimated. The initialization error is: 

    

> 2]-[α*],[=<=P3
][α*][=][

> 2)-(φv),(<

== P2P1,| =))(φ *v*)((

 = ][   where][-][ = ][

lknakx
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=

=      (7) 

 
A superior bound of this error can be also estimated. 
Indeed: 
[ ] ( ) ( ) [ ] [ ] |>kn,kx|<+|>n,x|<|ne| l

*
aL

v 22 −ατ−ϕτ≤   (8) 
 
Because there is an isomorphism between the spaces 
Bπ

2 and l2 introduced by sampling, we can observe 
that the error e[n] is zero when the functions x(t) and 
ϕ(t) are elements of Bπ

2. A different strategy for the 
decreasing of the initialization error was considered in 
[4]. This strategy is based on adaptive filtering. Its 
advantage is the fact that the analytical expression of 
the corresponding scaling function is not requested. 
The disadvantage is the amount of computation 
requested by the adaptive filtering procedure. 
Unfortunately the authors of this article have not 
derived a superior bound for the initialization error 
obtained using their strategy. In the following we 

present some examples to compare the precision of 
different initialization methods. 
 

IV. SOME EXAMPLES 
 
A. Example 1 
Let: 

( ) ( )t sinc= tx.1 π  
 
Because this is a band-limited signal, the appropriate 
scaling function for the computation of its discrete 
wavelet transform is: 

( ) ( )t sinc= t.1 πϕ  

because this is also a band-limited signal. Using the 
relation (4) it can be written: 

[ ] [ ]n=n.1 δα  
Hence: 

( )nsinc=b. n0,1 π  
Using the relation (7), the initialization error can be 
computed. It is equal with zero at any moment. So the 
initialization procedure is exact in this case. 
For this example the other initialization methods 
(described in the relations (5) and (6)) are also exact. 
Unfortunately the scaling function chosen in this 
example has not a compact support. 
B. Example 2 
Let: 

)
10
11()

10
9()(2 −σ−−σ= tttx  

Tacking into account the waveform of this signal, the 
appropriate wavelet for its analysis, is the Haar 
wavelet. 
So: 

)1()()(2 −σ−σ=ϕ ttt  
Computing the convolution in (4) we obtain: 

]1[
10
1][

10
1)()*( *

22 −δ+δ=ϕ = nnttx nt
v  

But: 
]1[][2 −δ= nnx  

So, using (4) we obtain: 

]2[
10
1]1[

10
1][2 −δ+−δ=α nnn  

and: 

])3[]2[(
10
1][]*[ 22,02 −δ+−δ=α= nnnnxb n  

The initialization proposed in (4) is not exact because 
in this example the function ϕ(t) is not band-limited 
(the initialization error can be computed using the 
relation (7)) and the initialization proposed in (6) can 
not be applied because the function ϕ(t) can not be 
sampled (this is not a continuous function). 

V. CONCLUSION 
 
The use of DWT is a very elegant solution for the 
digital processing of a continuous-time signal. In this 
purpose it must be initialized. The initialization 
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problem was formulated 14 years ago, but its 
importance is highlighted by some new applications 
of the DWT, like for example the wavelet modulation, 
[8]. In this case the continuous-time signal obtained at 
the output of the communication channel must be 
demodulated using the DWT. So, the wavelet 
demodulation is an example of application of the 
DWT for the processing of continuous-time signals.  
The initial sequence b0,n represents the result of the 
convolution between the sampled version of the 
analyzed signal x[n] and an impulse response α[n]. 
The exact expression of this impulse response is 
presented in relation (4). 
Unfortunately is difficult to apply this solution in 
practice, because the convolution of two continuous-
time signals can not be exactly computed with 
numerical algorithms and because there are occasions 
when one or both expressions of the signal x(t) and of 
the scaling function are not known. This is the reason 
why approximations for the expression of the impulse 
response are presented too, in relation (5) and (6). The 
expression in relation (6) supposes the construction of 
the initialization filter with the aid of a method for the 
equivalence of a continuous- time with a discrete-time 
system. In fact the equivalence based on the 
invariance of the impulse response is used. Of course 
there are also other equivalence methods. So other 
initialization filters, similar to the one presented in 
relation (6) can be built using the equivalence method 
based on the approximation of a differential equation 
with an equation with finite differences or using the 
equivalence method based on the bilinear transform. 
A priori, the better one is that based on the bilinear 
transform. 
The expression of the impulse response α[n] depends 
on the scaling function ( )tϕ  that generates the 
specified space 0V . This is the reason why we have 
chosen in the examples presented the most 
appropriate scaling functions. Unfortunately there are 
some wavelet mothers with corresponding scaling 
functions without analytical expression (this is the 
case for the compact support wavelets introduced by 
Ingrid Daubechies in [2] for example). In this paper 
are estimated for the first time the errors occurring in 
the initialization process when the relation (5) and (6) 
are used in the two examples presented. A superior 
bound of these errors is also presented in relation (8). 
Unfortunatelly its practical use is limited due to the 
fact that in practice the expression of the continuous-
time signal and of the scaling function are not known.  
Any-way it can be used for calibration purposes.   
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