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Abstract – The paper presents a solution for 
transforming a fully synchronous socket based design 
into a GALS structure that eliminates the need for a 
global clock, thus reducing the power consumption. The 
solution presents a set of asynchronous wrappers that 
transforms the standards synchronous interface into an 
asynchronous one while provide a stoppable clocking 
solution to further reduce the consumed power. The 
solution was proved in simulation using a 
communication system with one master and multiple 
slaves. 
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I. INTRODUCTION 
 

The advance in microelectronic technology that 
follows Moor’s law offers the digital circuit designer 
the possibility to build bigger and more complex, but 
in the same time creates several challenges when large 
building large structures. One of these challenges is to 
distribute a global clock across the design with 
minimum skew without implying large design efforts 
and occupied area. A second problem arises from the 
increase of the power consumption since more and 
more transistors are integrated on the same area unit. 
This type of problem is reflected in the design efforts 
that must compensate for the unwanted effects (IR 
drop, hot electron, etc.) and in the suitability of the 
final product for mobile application where the 
consumption is a major concern. 
A possible solution to these problems is the hybrid 
synchronous-asynchronous circuits or GALS 
(globally asynchronous locally synchronous) circuits. 
There circuits were first introduced by Chapiro [1] 
and they advocate for a synchronous design stile for 
the modules while the interconnections between them 
are asynchronous communication channels as 
described in Fig. 1. This type of design brings the 
advantage of removing the global clock network and 
diminishing the clock network power consumption 
with up to 70% that accounts up to 20% from the total 
power consumption of a synchronous circuit [2]. An 
additional advantage of the GALS structures is that 
the modules are not constrained to work on the same 
clock frequency, each of them operating at different 
clock frequencies, thus creating the opportunity for 

designers to optimize the module for area and not for 
speed, when speed is not a concern. 
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Fig. 1. Asynchronous communications. 

 
II. ASYNCHRONOUS WRAPPERS 

 
Interconnecting synchronous modules with an 
asynchronous environment represents a problem since 
the asynchronous modules are not coupled to any 
timing grid, therefore a metastable behavior may 
occur on the synchronous module boundary flip-flops.  
The conventional approach to this problem is to use 
synchronizers that use double latching technique or 
FIFO synchronization. This approach although simple 
in implementation, introduces a communication delay 
and when a lot of signals are crossing the 
synchronous-asynchronous boundaries it becomes an 
unattractive solution. 
A different approach is to generate the synchronous 
module clock locally and be able to stretch the clock 
pulse to prevent metastability. Such approaches were 
described in [1] and [3] but they have their drawbacks 
and limitation and a new type of solution was 
introduced: asynchronous wrappers.  
An asynchronous wrapper embeds the synchronous 
module transforming the synchronous interface into 
an asynchronous one. It contains a local clock 
generator, usually ring a oscillator and asynchronous 
finite state machines (AFSM) for synchronous-
asynchronous transformation. A wrapper 
implementation with a modular approach designed 
with minimal latency that uses 4-phase bundled data 
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protocol was  proposed by Muttersbach in [4]. (Fig. 
2). 
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Fig. 2: Asynchronous wrapper. 

 
The input/output ports embed in the asynchronous 
wrapper are responsible for the data transfer integrity. 
They ensure the transfer is hazard free and no 
metastability appears during asynchronous-
synchronous boundary occurs, by stretching the 
locally generated clock such way to meet the setup-
hold requirements. 
Depending on the function mode of the synchronous 
module there are defined 2 families of asynchronous 
ports: 
• Demand-type ports. These family ports will keep 

the clock gated off until the asynchronous 
transfer is finished. This port is used when the 
synchronous module can not continue until the 
data requested is received. 

• Poll-type ports. These ports are used when the 
synchronous module can continue its normal 
functions (no clock gating) while the 
asynchronous port handles the data transfers. 

 
Both types of ports require an “enable” signal to be 
provided in order to start the asynchronous 
handshake. Additionally, input ports generate back to 
the synchronous module a signal indicating when a 
data transfer is in progress – transfActive, as 
described in Fig. 3. 
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Fig. 3: Input port structure. 

 
A. Asynchronous finite state machine 
 
In order to transmit the control signal as fast and 
efficient as possible the controllers need to be 
independent of the local clock signal. This is achieved 
by implementing them as asynchronous finite state 
machines (AFSM). The behavior of the AFSM is 
described using extended burst mode description 
([5]). From such a description using the 3D tools ([5]) 
one can obtain a hazard free two-level AND-OR 

implementation. The extended burst mode description 
of a poll type input AFSM is described in Fig. 4. The 
complete description of all AFSM for poll and 
demand type port can be found in [6] 
The extended burst mode is used to describe FSM that 
are sensible to signal changes not to their levels. To 
signalize a rising edge a ‘+’ is used while for a falling 
edge ‘-‘ is used. When a signal may have any 
transition or no transition in the current state and its 
transitions are verified subsequent states after it was 
introduced is called a direct don’t care and is 
described using ”*” after the signal name.  
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Fig. 4: Poll type input port controller AFSM. 
 
A similar asynchronous state machine is used to 
perform the synchronization of the “transfer active” 
signal generated by the input port from the 
asynchronous domain to the local synchronous 
domain. The synchronization is required in order to 
avoid the metastable state that might appear when 
sample the signal with the local clock. Also the 
synchronization machine is used to convert from a 
edge-based event signaling to level-based event 
signaling as described in Fig. 5. 
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Fig. 5: Transfer active synchronization AFSM (a) and 

corresponding wave forms (b). 
 
B. Local clock generator 
 
The local clock generator is obtained with a ring 
oscillator and is able to stretch the low level of the 
clock when a request is made. To implement this 
feature and avoid ant glitches in output clock a mutual 
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exclusion module is used. It arbitrates between the 
locally generated clock and the “clock stretch” request 
two and if both signals changes at once it “tosses a 
coin” to decide which signal to pass, but the outputs 
are guaranteed to be mutual exclusive. The mutual 
exclusive module is build at transistor level and has 
the structure described in Fig. 6. 
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Fig. 6: Local clock generator (a) and mutual exclusion element (b). 

Usually an asynchronous wrapper contains more than 
one port and each port must be able to control the 
local clock by stretching it. The clock generator 
implementation that allows multiple clock-stretch 
requests uses multiple mutual exclusion elements and 
a Muller C element to avoid any hazards on the output 
clock ([7]). 
 

III. PROPOSED SOLUTION 
 

Due to the large design effort complex projects often 
employ IP blocks that needs to be connected between 
them as easy as possible. To leverage the usage of 
pre-designed IP block standardized SoC busses and 
sockets (AMBA, CoreConnect, OCP, Wishbone, 
SilliconBlackplane, etc) are used. 
The solution presented in the paper aims to convert an 
existent implementation of a synchronous designs 
based on standard bus/sockets into a GALS design 
with minimum effort while reducing the overall 
power consumption. The specific topology that is 
targeted is a 1-to-many configuration with 1 master 
and several slaves. The conversion is accomplished by 
creating a library of specific components containing a 
set of modified asynchronous wrappers, based on the 
Muttersbach implementation and local clock 
generators. The library component is verified trough 
functional simulation. 
The designs targeted to be converted to GALS 
architecture are standard socket designs that contains 

one masters and several slave modules connected 
through a data switch structure like in Fig. 7. 
The conversion process from fully synchronous to 
GALS relies on adding the asynchronous wrappers to 
the original design and performing minor 
modifications modification the central data switch like 
described in Fig. 8. This is similar to encapsulate the 
original synchronous protocol intro an asynchronous 4 
phase bundled data protocol. 
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Fig. 7: Socked based designs. 

 
The solution introduces a “gasket” between the 
synchronous module and asynchronous wrapper that 
performs the conversion from synchronous protocol 
signals to asynchronous wrapper interface. This 
adapter module ensures a synchronous protocol 
independent implementation for the asynchronous 
wrapper and do not require any modification of the 
synchronous module to generate any specific signals 
required by the wrapper. One can build various sets of 
“gasket” modules, one for each synchronous socket 
protocol employed in a specific design. 
The original synchronous design transformed into a 
GALS design with the additional modules is 
presented in Fig. 8 
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Fig. 8: GALS socked based design. 

The central switch that allows 1-to-many 
communication is the only module that is being 
regenerated from scratch. This is a very simple 
operation since the entire switch is based on a 1-to-2 
split module that distributes the incoming 4-pahse 
bundled data protocol to the two target modules. The 
module is completely combinatorial and performs the 
selection of the target module is based on the OCP 
address encapsulated in the asynchronous data bus. 
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The architecture of the entire switch is very scalable 
and can accommodate any number of target modules. 
The structure of the simple 1-to-2 split is presented in 
Fig. 9  
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Fig. 9: GALS socked based design. 

 
The entire solution is thought to be presented as a 
library component that is used as input in a automatic 
process of converting the synchronous standard bus 
modules to GALS modules. In particular, for OCP 
protocol such an automated solution is implemented 
through a Perl script that requires as input parameters 
the address and data width and the type of module to 
be translated (initiator or target). The output of the 
script is the modified top level where each 
synchronous module is replaced with its asynchronous 
one, the asynchronous wrappers build around the 
synchronous modules and the asynchronous centra 
switch. This automated solution, presented in Fig. 10 
targets the designs that have an internal architecture 
build around a central switch as described in Fig. 7. 
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Fig. 10: Automated conversion flow. 

IV. MODIFIED WRAPPERS 
 

The implementation of the AFSM proposed by 
Muttersbach does not exploit the possibility of gating 
off the local clock when there are no active 
transactions in process because there was no 
assumption of the synchronous module protocol. For a 
standard bus/socket protocol the idle periods are 
clearly defined and this can be used to further 
improve the power consumption by shutting off the 
local clock. 
 
A. Modified clock generator 
 
To be able to shut down the clock when there is no 
active transaction, the local clock generator has to 
incorporate an asynchronous state machine that 
arbitrates between the input port request of enabling 
the clock when a valid transaction is received and the 
output port request to shut down the clock when the 
response was sent. 
The modified clock generator structure is described in 
Fig. 11 while the AFSM extended burst mode 
description and the AND-OR implementation is 
described in Fig. 12. 
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Fig. 11: Local clock generator with clock gate option. 
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Fig. 12: Modified AFSM and its implementation. 
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B. “Gasket” modules 
 
For the validation of the proposed approach an OCP 
protocol was selected. The basic protocol interface 
consists of a master command, address and data lines 
and slave command accept, data and data response 
lines ([8]). The test case uses a basic interface and the 
sequential working mode (not in burst), that means 
that every command is acknowledged and response to 
before a new one can be issued. The “gasket” modules 
need to generate enable signals for the input and 
output ports based on the OCP interface signal values 
that are different for the OCP initiator and target 
modules.  
For initiator module the asynchronous port is 
activated when the OCP command is different from 
idle. The “port enable” signal is consumed by an 4-
pahse asynchronous circuit thus is active on both 
edges the “gasket” module has to toggle it every time 
a new transaction is issued. For situations when active 
transaction are interleaved with idle states on OCP 
bus a toggle flip flop is enough, but for cases when 
the transaction are continuous (no idle state) the 
synchronized version of “transfer active” signal needs 
to be used. The OCP initiator port gasket 
implementation that meets the requirement and the 
associated waveforms are described in Fig. 13. 
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Fig. 13: OCP initiator gasket implementation (a) and the 

corresponding waveforms (b). 
 
For target port the gasket module has a simple 
implementation since the port should be enable almost 
all the time except when the transfer is in progress. 
The implementation is presented in Fig. 14. 
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Fig. 14: OCP target gasket implementation. 

V. VALIDATION AND RESULTS 
 

As verification frame an OCP based design was 
selected that comprises one master (JTAG port) and 
two slave modules (register bank and an SPI 
controller). All the GALS specific modules (AFSM 
clock generators, mutual exclusion elements) and the 
gaskets are described in Verilog together with the rest 
of the test environment. 
The verification sequence contains interleaved access 
to all slave modules with JTAG clock running at 
different frequencies from 1 MHz to 100 MHz. The 
slave modules all had different frequencies: 

• SPI interface runs at 40 MHz 
• Register back runs at 100 MHz 

 
Besides the functional verification of the proposed 
solution the simulations process aims to determine an 
estimate of the power consumption improvement. 
Starting from the power consumption relation (1) one 
can obtain the consumed power ratio between the 
synchronous case and the GALS implementation as a 
ratio of the activity factors (α) of the two 
implementations. 
 
                     2

DDLclkdyn VCfP ⋅⋅⋅=α .                (1) 
 
The activity factor (α) is obtained as the weighted sum 
of the individual activity factors of the design 
modules where the coefficients are considered area 
module as percentage of the entire area as described 
in relation (2) 
 
                           ∑ ⋅= iiA αα (%) .                     (2) 
 
Computing the number of clock cycles the 
synchronous module would have used for a certain 
time interval and considering this as an activity factor 
equal to unity then by counting the clock cycles each 
GALS module is active and applying formula (3) one 
can compute the activity factor ratio. 
 

             
TotalTime

TnoCycle synchclkGALS
i

__ ⋅
=α .            (3) 

 
The comparison is performed in the best case (for 
asynchronous version) when transactions are issued at 
random moments and in worst case when transactions 
are issued in long continuous bursts with the latency 
of the transfer varying from no latency at all to 5 
cycles latency.  
To be able to compute the estimated power saving 
first the area occupied by each module has to be 
determined. For this, the synthesis is run on the 
synchronous design using a 90 nm standard cell 
library, the same library being used for asynchronous 
wrapper synthesis. 
The synthesis results are described in Table 1: 
Synchronous design module area. 
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Module Area (eq. gates) Area (%) 
JTAG controller 1100 17.6 
SPI controller 3000 48.4 
Register bank 2100 34 

 
Table 2 while the estimated power savings are 
presented in Table 2. 
Table 1: Synchronous design module area. 

Module Area (eq. gates) Area (%) 
JTAG controller 1100 17.6 
SPI controller 3000 48.4 
Register bank 2100 34 

 
Table 2. Estimated power savings 

Case Power reduction (%) 
Random transaction with 

no latency 
81 

Random transaction with 5 
cycles latency 

64 

Burst transaction with no 
latency 

76 

Burst transaction with 5 
cycles latency 

53 

 
The results reveal an impressive power savings 
compared to synchronous module, but this is the 
theoretical number since there the simulation models 
are not a very accurate one from the power 
consumption perspective. The additional power 
consumption incurred new 4-phase protocol lines 
were not considered. However the numbers reveals 
that serious power savings can be accomplished by 
using GALS architectures. 
A synthesis of the modules that do not contain 
asynchronous logic specific elements (Muller C 
element) was performed to determine the area of the 
asynchronous wrappers proposed. The results reveled 
that the area penalty incurred by the usage of the 
asynchronous wrappers is rather small approx 300 
equivalent gates for a wrapper. The complete details 
about modules occupied area computed for an OCP 
data bus and address bus width of 8 bits is presented 
in Table 3. The clock generators area depends on the 
number of the inverters from the ring oscillator. We 
considered a inverter string with 500 inverters to be 
able to generate frequencies low enough.  
 
Table 3: Asynchronous module area. 

Module Area (eq. gates) 
Gasket (initiator port) 15 
Gasket (target port) 9 

Asynchronous input port 31 
Asynchronous output port 21 
Clock generator (stretch) 250 
Clock generator (gate) 260 
Synchronizer for data 

transfer active flag 
8 
 

Basic splitter (1-to-2) 25 

 
By transforming the synchronous design that occupies 
6200 equivalent gates into a GALS design we obtain 
an area increase of 990 equivalent gates that is 16 % 
increase area where most of the additional occupied 
area (770 equivalent gates or 12.5 %) belongs to the 
local clock generators. 

VI. CONCLUSIONS AND FUTURE WORK 
 

The paper introduced a method of transforming a 
socket based fully synchronous design intro a GALS 
design with similar functionality with the advantage 
of reducing the power consumption by employing a 
new asynchronous wrapper able to stop the local 
clock between accesses. The proposed method relies 
on a pre-defined library of components that ensure an 
easy transition from synchronous to asynchronous 
protocols as well as a protocol independent 
implementation of the asynchronous wrappers 
through the usage of the “gasket” modules. 
The area penalty incurred by the usage of the 
asynchronous wrapper library appears because of the 
large inverter string used in the local clock generators. 
This area can be further reduced by a layout design of 
the inverter string. 
The proposed method and the Verilog component 
library created are an intermediate step toward an 
automated method of converting socket-based 
synchronous design intro and asynchronous one 
aiming to reduce the power consumption. 
However, the author recognizes that the power 
reduction estimation is based on the simulation only 
and this may not be accurate, and that mode accurate 
models (SPICE) need to be used. Also the comparison 
did not take into consideration the real throughput of 
the GALS implementation, a better metric being the 
dissipated energy per transmitted byte. This metrics 
can only be used when accurate power calculations 
are performed.  
The future investigations will focus on delivering 
accurate dissipated power estimation based on SPICE 
models and comparison on more adequate metrics. 
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