
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 53(67), Fascicola 1, 2008

Transforming synchronous standard socket designs to
GALS designs.

Razvan Jipa1

1 Facultatea de Electrotehnica, Departamentul Electronica si Calculatoare, Universitatea “Transilavnia” Brasov
Str. Politehnicii Nr 1, 500024 Brasov, e-mail jipa@vega.unitbv.ro

Abstract – The paper presents a solution for
transforming a fully synchronous socket based design
into a GALS structure that eliminates the need for a
global clock, thus reducing the power consumption. The
solution presents a set of asynchronous wrappers that
transforms the standards synchronous interface into an
asynchronous one while provide a stoppable clocking
solution to further reduce the consumed power. The
solution was proved in simulation using a
communication system with one master and multiple
slaves.
Keywords: OCP, GALS, asynchronous wrapper

I. INTRODUCTION

The advance in microelectronic technology that
follows Moor’s law offers the digital circuit designer
the possibility to build bigger and more complex, but
in the same time creates several challenges when large
building large structures. One of these challenges is to
distribute a global clock across the design with
minimum skew without implying large design efforts
and occupied area. A second problem arises from the
increase of the power consumption since more and
more transistors are integrated on the same area unit.
This type of problem is reflected in the design efforts
that must compensate for the unwanted effects (IR
drop, hot electron, etc.) and in the suitability of the
final product for mobile application where the
consumption is a major concern.
A possible solution to these problems is the hybrid
synchronous-asynchronous circuits or GALS
(globally asynchronous locally synchronous) circuits.
There circuits were first introduced by Chapiro [1]
and they advocate for a synchronous design stile for
the modules while the interconnections between them
are asynchronous communication channels as
described in Fig. 1. This type of design brings the
advantage of removing the global clock network and
diminishing the clock network power consumption
with up to 70% that accounts up to 20% from the total
power consumption of a synchronous circuit [2]. An
additional advantage of the GALS structures is that
the modules are not constrained to work on the same
clock frequency, each of them operating at different
clock frequencies, thus creating the opportunity for

designers to optimize the module for area and not for
speed, when speed is not a concern.

Synchronous
module

Asynchronous
module

Synchronous
module

Asynchronous data channel

Asynchronous
module

Fig. 1. Asynchronous communications.

II. ASYNCHRONOUS WRAPPERS

Interconnecting synchronous modules with an
asynchronous environment represents a problem since
the asynchronous modules are not coupled to any
timing grid, therefore a metastable behavior may
occur on the synchronous module boundary flip-flops.
The conventional approach to this problem is to use
synchronizers that use double latching technique or
FIFO synchronization. This approach although simple
in implementation, introduces a communication delay
and when a lot of signals are crossing the
synchronous-asynchronous boundaries it becomes an
unattractive solution.
A different approach is to generate the synchronous
module clock locally and be able to stretch the clock
pulse to prevent metastability. Such approaches were
described in [1] and [3] but they have their drawbacks
and limitation and a new type of solution was
introduced: asynchronous wrappers.
An asynchronous wrapper embeds the synchronous
module transforming the synchronous interface into
an asynchronous one. It contains a local clock
generator, usually ring a oscillator and asynchronous
finite state machines (AFSM) for synchronous-
asynchronous transformation. A wrapper
implementation with a modular approach designed
with minimal latency that uses 4-phase bundled data

47
BUPT

protocol was proposed by Muttersbach in [4]. (Fig.
2).

Locally
synchronous

module

Local clock
generator

Port
controller

Port
controller

Self-timed wrapper
Input port Output port

Fig. 2: Asynchronous wrapper.

The input/output ports embed in the asynchronous
wrapper are responsible for the data transfer integrity.
They ensure the transfer is hazard free and no
metastability appears during asynchronous-
synchronous boundary occurs, by stretching the
locally generated clock such way to meet the setup-
hold requirements.
Depending on the function mode of the synchronous
module there are defined 2 families of asynchronous
ports:
• Demand-type ports. These family ports will keep

the clock gated off until the asynchronous
transfer is finished. This port is used when the
synchronous module can not continue until the
data requested is received.

• Poll-type ports. These ports are used when the
synchronous module can continue its normal
functions (no clock gating) while the
asynchronous port handles the data transfers.

Both types of ports require an “enable” signal to be
provided in order to start the asynchronous
handshake. Additionally, input ports generate back to
the synchronous module a signal indicating when a
data transfer is in progress – transfActive, as
described in Fig. 3.

Demand/Pool
type AFSM

Rq

Ack

Gdata

portEn

transfActive

Fig. 3: Input port structure.

A. Asynchronous finite state machine

In order to transmit the control signal as fast and
efficient as possible the controllers need to be
independent of the local clock signal. This is achieved
by implementing them as asynchronous finite state
machines (AFSM). The behavior of the AFSM is
described using extended burst mode description
([5]). From such a description using the 3D tools ([5])
one can obtain a hazard free two-level AND-OR

implementation. The extended burst mode description
of a poll type input AFSM is described in Fig. 4. The
complete description of all AFSM for poll and
demand type port can be found in [6]
The extended burst mode is used to describe FSM that
are sensible to signal changes not to their levels. To
signalize a rising edge a ‘+’ is used while for a falling
edge ‘-‘ is used. When a signal may have any
transition or no transition in the current state and its
transitions are verified subsequent states after it was
introduced is called a direct don’t care and is
described using ”*” after the signal name.

0 21

Rq+ portEn+ /
Rqclk+

Ackclk+ /
Ack+ transfAct+

3

Rq- /
Rqclk-

4

Ackclk-/
Ack-

5 6

7

Ackclk-/
Ack-

Rq+ portEn- /
Rqclk+

Ackclk+ /
Ack+ transfAct-

Rq- /
Rqclk-

Fig. 4: Poll type input port controller AFSM.

A similar asynchronous state machine is used to
perform the synchronization of the “transfer active”
signal generated by the input port from the
asynchronous domain to the local synchronous
domain. The synchronization is required in order to
avoid the metastable state that might appear when
sample the signal with the local clock. Also the
synchronization machine is used to convert from a
edge-based event signaling to level-based event
signaling as described in Fig. 5.

0

2 1
localClk+/

6

transfAsynch+/
transfSynch+

4 5

3

localClk-/
transfSynch-

transfAsynch-/
transfSynch+

localClk+/

localClk-/
transfSynch-

localClk-/

localClk+/
7

localClk+/

localClk-/

a)

localClk

transfAsync
h

transfSynch

b)
Fig. 5: Transfer active synchronization AFSM (a) and

corresponding wave forms (b).

B. Local clock generator

The local clock generator is obtained with a ring
oscillator and is able to stretch the low level of the
clock when a request is made. To implement this
feature and avoid ant glitches in output clock a mutual

48
BUPT

exclusion module is used. It arbitrates between the
locally generated clock and the “clock stretch” request
two and if both signals changes at once it “tosses a
coin” to decide which signal to pass, but the outputs
are guaranteed to be mutual exclusive. The mutual
exclusive module is build at transistor level and has
the structure described in Fig. 6.

…

a)

ME1

Rq clk_in

clk_out Ack

b)

Rq1 Ack1

ME2

Rq2 Ack2

MEn

Rqn Ackn

…

C lclk

Fig. 6: Local clock generator (a) and mutual exclusion element (b).

Usually an asynchronous wrapper contains more than
one port and each port must be able to control the
local clock by stretching it. The clock generator
implementation that allows multiple clock-stretch
requests uses multiple mutual exclusion elements and
a Muller C element to avoid any hazards on the output
clock ([7]).

III. PROPOSED SOLUTION

Due to the large design effort complex projects often
employ IP blocks that needs to be connected between
them as easy as possible. To leverage the usage of
pre-designed IP block standardized SoC busses and
sockets (AMBA, CoreConnect, OCP, Wishbone,
SilliconBlackplane, etc) are used.
The solution presented in the paper aims to convert an
existent implementation of a synchronous designs
based on standard bus/sockets into a GALS design
with minimum effort while reducing the overall
power consumption. The specific topology that is
targeted is a 1-to-many configuration with 1 master
and several slaves. The conversion is accomplished by
creating a library of specific components containing a
set of modified asynchronous wrappers, based on the
Muttersbach implementation and local clock
generators. The library component is verified trough
functional simulation.
The designs targeted to be converted to GALS
architecture are standard socket designs that contains

one masters and several slave modules connected
through a data switch structure like in Fig. 7.
The conversion process from fully synchronous to
GALS relies on adding the asynchronous wrappers to
the original design and performing minor
modifications modification the central data switch like
described in Fig. 8. This is similar to encapsulate the
original synchronous protocol intro an asynchronous 4
phase bundled data protocol.

Synch
module

Socket protocol

Synch
module

Synch
module

…
Synch
data

switch

Fig. 7: Socked based designs.

The solution introduces a “gasket” between the
synchronous module and asynchronous wrapper that
performs the conversion from synchronous protocol
signals to asynchronous wrapper interface. This
adapter module ensures a synchronous protocol
independent implementation for the asynchronous
wrapper and do not require any modification of the
synchronous module to generate any specific signals
required by the wrapper. One can build various sets of
“gasket” modules, one for each synchronous socket
protocol employed in a specific design.
The original synchronous design transformed into a
GALS design with the additional modules is
presented in Fig. 8

G
a
s
k
e
t

Asynch
wrapper

Synch
module

Socket protocol

Asynch
wrapper

G
a
s
k
e
t

Synch
module

Asynch
wrapper

G
a
s
k
e
t

Synch
module

…
Asynch

data
switch

Fig. 8: GALS socked based design.

The central switch that allows 1-to-many
communication is the only module that is being
regenerated from scratch. This is a very simple
operation since the entire switch is based on a 1-to-2
split module that distributes the incoming 4-pahse
bundled data protocol to the two target modules. The
module is completely combinatorial and performs the
selection of the target module is based on the OCP
address encapsulated in the asynchronous data bus.

49
BUPT

The architecture of the entire switch is very scalable
and can accommodate any number of target modules.
The structure of the simple 1-to-2 split is presented in
Fig. 9

 tp1RqIn

tp2RqIn

tp1AckIn

tp1AckIn

tp1RqOut

tp2RqOut
ipRqOut

ipAckIn

ipRqIn

ipAckOut

tp1AckOut

tp1AckOut

tp1DataOut

tp1DataOut
ipDataOut

tp1DataIn

tp2DataIn
ipDataIn

ipDataIn[OCPADDR_MSB]

Fig. 9: GALS socked based design.

The entire solution is thought to be presented as a
library component that is used as input in a automatic
process of converting the synchronous standard bus
modules to GALS modules. In particular, for OCP
protocol such an automated solution is implemented
through a Perl script that requires as input parameters
the address and data width and the type of module to
be translated (initiator or target). The output of the
script is the modified top level where each
synchronous module is replaced with its asynchronous
one, the asynchronous wrappers build around the
synchronous modules and the asynchronous centra
switch. This automated solution, presented in Fig. 10
targets the designs that have an internal architecture
build around a central switch as described in Fig. 7.

Top level of the
OCP based design

GALS module
library

Perl script
automates the

conversion

List with
modules
name and
OCP data

and
address

bus width

Converted top
level of GALS
based design

Asynchronous
central switch

Asynchronous
wrappers containing

synchronous modules
Fig. 10: Automated conversion flow.

IV. MODIFIED WRAPPERS

The implementation of the AFSM proposed by
Muttersbach does not exploit the possibility of gating
off the local clock when there are no active
transactions in process because there was no
assumption of the synchronous module protocol. For a
standard bus/socket protocol the idle periods are
clearly defined and this can be used to further
improve the power consumption by shutting off the
local clock.

A. Modified clock generator

To be able to shut down the clock when there is no
active transaction, the local clock generator has to
incorporate an asynchronous state machine that
arbitrates between the input port request of enabling
the clock when a valid transaction is received and the
output port request to shut down the clock when the
response was sent.
The modified clock generator structure is described in
Fig. 11 while the AFSM extended burst mode
description and the AND-OR implementation is
described in Fig. 12.

Clock gate
AFSM

Rq1

Ack1

Rq1

Ack1

…

clkEn localClk

Fig. 11: Local clock generator with clock gate option.

0

2

1
Rq1+ / clkEn+

3

locakClk+/
Ack1+

4

Rq1-/
Ack1-

Rq2- localClk-/
Ack2+ clkEn-

Rq2-/
Ack2-

Ack1 Ack2 clkEn

reset ni
localClk

Rq1
Rq2

Fig. 12: Modified AFSM and its implementation.

50
BUPT

B. “Gasket” modules

For the validation of the proposed approach an OCP
protocol was selected. The basic protocol interface
consists of a master command, address and data lines
and slave command accept, data and data response
lines ([8]). The test case uses a basic interface and the
sequential working mode (not in burst), that means
that every command is acknowledged and response to
before a new one can be issued. The “gasket” modules
need to generate enable signals for the input and
output ports based on the OCP interface signal values
that are different for the OCP initiator and target
modules.
For initiator module the asynchronous port is
activated when the OCP command is different from
idle. The “port enable” signal is consumed by an 4-
pahse asynchronous circuit thus is active on both
edges the “gasket” module has to toggle it every time
a new transaction is issued. For situations when active
transaction are interleaved with idle states on OCP
bus a toggle flip flop is enough, but for cases when
the transaction are continuous (no idle state) the
synchronized version of “transfer active” signal needs
to be used. The OCP initiator port gasket
implementation that meets the requirement and the
associated waveforms are described in Fig. 13.

OCP Read /Write

localClk

OCP cmd

transfSynch

portOutEn

T
Q

D Q

OCP cmd[0]

OCP cmd[1]

transfActive

localClk
a)

b)

Out port en
In port en

Fig. 13: OCP initiator gasket implementation (a) and the

corresponding waveforms (b).

For target port the gasket module has a simple
implementation since the port should be enable almost
all the time except when the transfer is in progress.
The implementation is presented in Fig. 14.

T
Q

OCP cmd accept

localClk
reset_n

Out port en

In port en

Fig. 14: OCP target gasket implementation.

V. VALIDATION AND RESULTS

As verification frame an OCP based design was
selected that comprises one master (JTAG port) and
two slave modules (register bank and an SPI
controller). All the GALS specific modules (AFSM
clock generators, mutual exclusion elements) and the
gaskets are described in Verilog together with the rest
of the test environment.
The verification sequence contains interleaved access
to all slave modules with JTAG clock running at
different frequencies from 1 MHz to 100 MHz. The
slave modules all had different frequencies:

• SPI interface runs at 40 MHz
• Register back runs at 100 MHz

Besides the functional verification of the proposed
solution the simulations process aims to determine an
estimate of the power consumption improvement.
Starting from the power consumption relation (1) one
can obtain the consumed power ratio between the
synchronous case and the GALS implementation as a
ratio of the activity factors (α) of the two
implementations.

 2

DDLclkdyn VCfP ⋅⋅⋅=α . (1)

The activity factor (α) is obtained as the weighted sum
of the individual activity factors of the design
modules where the coefficients are considered area
module as percentage of the entire area as described
in relation (2)

 ∑ ⋅= iiA αα (%) . (2)

Computing the number of clock cycles the
synchronous module would have used for a certain
time interval and considering this as an activity factor
equal to unity then by counting the clock cycles each
GALS module is active and applying formula (3) one
can compute the activity factor ratio.

TotalTime

TnoCycle synchclkGALS
i

__ ⋅
=α . (3)

The comparison is performed in the best case (for
asynchronous version) when transactions are issued at
random moments and in worst case when transactions
are issued in long continuous bursts with the latency
of the transfer varying from no latency at all to 5
cycles latency.
To be able to compute the estimated power saving
first the area occupied by each module has to be
determined. For this, the synthesis is run on the
synchronous design using a 90 nm standard cell
library, the same library being used for asynchronous
wrapper synthesis.
The synthesis results are described in Table 1:
Synchronous design module area.

51
BUPT

Module Area (eq. gates) Area (%)
JTAG controller 1100 17.6
SPI controller 3000 48.4
Register bank 2100 34

Table 2 while the estimated power savings are
presented in Table 2.
Table 1: Synchronous design module area.

Module Area (eq. gates) Area (%)
JTAG controller 1100 17.6
SPI controller 3000 48.4
Register bank 2100 34

Table 2. Estimated power savings

Case Power reduction (%)
Random transaction with

no latency
81

Random transaction with 5
cycles latency

64

Burst transaction with no
latency

76

Burst transaction with 5
cycles latency

53

The results reveal an impressive power savings
compared to synchronous module, but this is the
theoretical number since there the simulation models
are not a very accurate one from the power
consumption perspective. The additional power
consumption incurred new 4-phase protocol lines
were not considered. However the numbers reveals
that serious power savings can be accomplished by
using GALS architectures.
A synthesis of the modules that do not contain
asynchronous logic specific elements (Muller C
element) was performed to determine the area of the
asynchronous wrappers proposed. The results reveled
that the area penalty incurred by the usage of the
asynchronous wrappers is rather small approx 300
equivalent gates for a wrapper. The complete details
about modules occupied area computed for an OCP
data bus and address bus width of 8 bits is presented
in Table 3. The clock generators area depends on the
number of the inverters from the ring oscillator. We
considered a inverter string with 500 inverters to be
able to generate frequencies low enough.

Table 3: Asynchronous module area.

Module Area (eq. gates)
Gasket (initiator port) 15
Gasket (target port) 9

Asynchronous input port 31
Asynchronous output port 21
Clock generator (stretch) 250
Clock generator (gate) 260
Synchronizer for data

transfer active flag
8

Basic splitter (1-to-2) 25

By transforming the synchronous design that occupies
6200 equivalent gates into a GALS design we obtain
an area increase of 990 equivalent gates that is 16 %
increase area where most of the additional occupied
area (770 equivalent gates or 12.5 %) belongs to the
local clock generators.

VI. CONCLUSIONS AND FUTURE WORK

The paper introduced a method of transforming a
socket based fully synchronous design intro a GALS
design with similar functionality with the advantage
of reducing the power consumption by employing a
new asynchronous wrapper able to stop the local
clock between accesses. The proposed method relies
on a pre-defined library of components that ensure an
easy transition from synchronous to asynchronous
protocols as well as a protocol independent
implementation of the asynchronous wrappers
through the usage of the “gasket” modules.
The area penalty incurred by the usage of the
asynchronous wrapper library appears because of the
large inverter string used in the local clock generators.
This area can be further reduced by a layout design of
the inverter string.
The proposed method and the Verilog component
library created are an intermediate step toward an
automated method of converting socket-based
synchronous design intro and asynchronous one
aiming to reduce the power consumption.
However, the author recognizes that the power
reduction estimation is based on the simulation only
and this may not be accurate, and that mode accurate
models (SPICE) need to be used. Also the comparison
did not take into consideration the real throughput of
the GALS implementation, a better metric being the
dissipated energy per transmitted byte. This metrics
can only be used when accurate power calculations
are performed.
The future investigations will focus on delivering
accurate dissipated power estimation based on SPICE
models and comparison on more adequate metrics.

REFERENCES

[1] D. Chapiro. “Globally-Asynchronous Locally-Synchronous
Systems”. PhD Thesis, Stanford University, Report No. STAN-CS-
84-1026, Oct. 1984.
[2] A. Hemani et al., “Lowering power consumption in clock by
using globally asynchronouslocally synchronous design style”,
Design Automation Conference, 1999. Proceedings. 36th Volume ,
Issue , 1999 Page(s):873 – 878
[3] K. Y. Yun, R. P. Donohue. “Pausible clocking: A first step
toward heterogeneous systems”. In Proc. International Conf.
Computer Design (ICCD), Oct. 1996.
[4] J. Muttersbach, T. Villiger, W. Fichtner, “Practical design of
globally-asynchronous locally-synchronous systems”, Advanced
Research in Asynchronous Circuits and Systems, 2000. (ASYNC
2000) Proceedings. Sixth International Symposium on 2-6 April
2000 Page(s):52 - 59
[5] K. Y. Yun, D. L. Dill. “Automatic synthesis of extended burst-
mode circuits: Part I and II”,. IEEE Transactions on Computer-
Aided Design, 18(2):101–132, Feb. 1999.

52
BUPT

[6] A.R. Ravi “Globally-Asynchronous, Locally-Synchronous
Wrapper Configurations for Point-to-Point and Multi-Point Data
Communication” MSc Thesis, University of Central Florida, 2004
[7] T. Villiger, H. Kaeslin, F. K. Gurkaynak, S. Oetiker, W.
Fichtner: "Self-Timed Ring for Globally-Asynchronous Locally-
Synchronous Systems", Proceedings of the 9th IEEE International
Symposium on Asynchronous Circuits and Systems, Vancouver,
BC, Canada, pp. 141-150 , May 12-16 2003.
[8] ***, “Open Core Protocol Specification”, Version 1.2. Sonics
Inc. (www.sonics.com) 2000

53
BUPT

