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Abstract – In this paper a three-point interpolated 
discrete Fourier transform (IpDFT) method for 
estimating with high accuracy the frequency of a 
multifrequency signal component is presented. The 
performance of the proposed method has been analyzed 
by means of computer simulations for a multifrequency 
signal without noise and with quantization noise as well. 
Index terms: frequency  estimation, interpolated DFT 
method, Hann window. 
 
 

I. INTRODUCTION 
 

In a real case the coherent frequency relationship 
between all the frequencies contained in a 
multifrequency signal and the sampling frequency are 
not meet, leading to the well-known leakage 
phenomena. The way used to reduce this problem is 
called ‘windowing’ and a frequency-domain method 
often used for estimating the frequency of a 
multifrequency signal component under noncoherent 
sampling is the interpolated DFT (IpDFT) method 
[1]-[4]. This method provides very accurate frequency 
estimates. The IpDFT method with Hann window 
leads to very accurate estimates because permits to 
estimate the frequency of a multifrequency signal 
component by analytical formula [2]. In this paper a 
three-point IpDFT method for estimating with high 
accuracy the frequency of a multifrequency signal 
component is proposed. The performance of the 
proposed method is analyzed by means of computer 
simulations for a multifrequency signal without noise 
and with quantization noise, respectively.  
 
 

II. FREQUENCY ESTIMATION  
 

Let us consider a multifrequency signal sampled at fs 
frequency: 
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where K is the number of frequency components, Ak, 
fk and ϕk are respectively the amplitude, frequency 
and phase of the kth component of the multifrequency 
signal, A0 is the offset of the multifrequency signal 
and M is the number of samples acquired. The 
Discrete-Time Fourier Transform (DTFT) of xw(m) = 
x(m)⋅w(m) is given by 
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where λ represents the normalized frequency 
expressed in bin. 
 After some calculus Xw(λ) becomes 
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where W(λ) is the DTFT of the window and λk =fk/f0, 
in which f0 = fs/M. 

If W(λ) exhibits sidelobes with negligible level and 
if the minimum distance between spectral lines is 
more larger than MLBW (MainLobeBandWidth) 
expressed in bin, then for  λ ≅ λk we have 
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 Since the frequencies fk and fs does not fulfill the 
coherent frequency relationship we have 
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where λk = lk + δk, in which lk is the number of the 
recorded kth component cycles (lk is an integer) and δk 
 is the fractional part of the recorded of the kth 
component cycles, -0.5 ≤ δk < 0.5. 
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Thus, from (4) and (5) it follows 
 

( ) ( )kkkw WAlX δ+=− 15.01  (6a) 

 
( ) ( )kkkw WAlX δ−= 5.0  (6b) 

 
( ) ( )kkkw WAlX δ−=+ 15.01  (6c) 

 
with the observation that the maximum in the discrete 
spectrum computed by DFT corresponding to the kth 
component is located at lkf0.  

The windows employed in the proposed method is 
the Hann window, defined by  
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For M >>1, the DTFT of the window w(m) can 

be approximated by 
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 Denoting by αk the rapport 
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 From the expression (6) the rapport αk is given 
by 
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 Based on the expression (8) after some calculus 
the rapport αk becomes 
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 The above equation has two solutions 
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 Since the first solution is higher than 2 then the 
only possibility is 
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 Based on the relationship (5) the frequency fk is 
given by 
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III. COMPUTER SIMULATION  
 

The effectiveness of the proposed method is 
analyzed by means of computer simulation. First the 
analysis is made in the case of a multifrequency signal 
without noise. The signal used in this case in 
simulation is 
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(15) 

 
in which A0 = 0.1, A1 = 2, A2 = 0.5, A3 = 0.07, A4 = 0.1, 
ϕ1 = 0.4 rad, ϕ2 = 0.8 rad, ϕ3 = 1.2 rad, ϕ4 = 1 rad,     
l1 = 5, l2 =47, l3 = 103, l4 =205 and M = 1024. Also,  
δ1 = δ2 = δ3 = δ4 = δ. δ varies in the range (-0.5, 0.5) 
with an increment of 0.04. 
 Fig. 1 presents the modulus of the absolute error 
of the δk, k =1, 2, 3, 4, estimates obtained by the 
proposed method and by IpDFT method [2] as a 
function of δ.  
 

(a) 

(b) 
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(c) 

(d) 
 

Fig. 1. The modulus of the absolute errors of the  
δk estimates obtained by the proposed method  (‘o’) 

and by IpDFT method (‘x’) as a function of δ. 
 

From Fig. 1 it is clearly evident that the three-
point IpDFT method leads to more accurate δk 
estimates than the IpDFT method. 

In practice the multifrequency signal is affected 
by quantization noise due to the digitizing process. 
From this reason the effectiveness of the proposed 
method has been analysed by simulation in the case 
when the multifrequency signal (15) is corrupted by 
quantization noise. Suppose that the signal (15) is 
applied to an ideal acquisition system with an n-bit 
analog-to-digital converter (ADC). Thus, the signal 
(15) is affected only by the quantization noise of the 
ADC. The ADC resolution, n, varies in the range     
[6, 24] bits with an increment of 2 bits. The ADC full-
scale range is equal to FSR = 5. It is assumed that the 
quantization noise is uniformly distributed and the 
quantization errors from sample to sample are 
statistically independent. It used δ1 = 0.1, δ2 = -0.4,   
δ3 = 0.3 and δ4 = -0.25. For each n value 5000 runs 
are used. 

Fig. 2 shows the modulus of the bias of the δk 
estimates as a function of n. δk are estimated by the 
proposed method and by IpDFT method [2]. 

 
 
 

 
(a) 

(b) 

 
(c) 

 
(d) 
 

Fig. 2. The modulus of the bias of the δk estimates as a 
function of ADC resolution. δk are estimated by the 
proposed method (‘o’) and by IpDFT method (‘x’). 
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From Fig. 2 it can be observed that for the first 
three components the proposed method provides more 
accurate δk estimates than the IpDFT method. When lk 
becomes relatively large the results obtained by both 
methods are relatively close due to the fact that the 
systematic errors of the δk estimates become more 
closely to the quantization noise (the case of the 
fourth component). When the systematic errors 
become smaller than the quantization noise then the 
results obtained by the proposed method practically 
becomes the same with the ones obtained by IpDFT 
method.   

Due to the quantization error the standard 
deviation of the δk estimates obtained by IpDFT 
method is computed by [5, eq. (22)]. After some 
calculus this is given by 

 
• if  -0.5 ≤ δk < 0 
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• if  0 ≤ δk < 0.5 
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where: σq is the quantization noise standard deviation 
( ( )122/ n

q FSR=σ ); 
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Fig. 3 shows the rapport between the standard 
deviation of the δk estimates obtained by the three-
point IpDFT and IpDFTmethods and the one given by 
(16) as a function of the ADC resolution. 
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Fig. 3. The rapport between the standard deviation of 
the δk estimates obtained by three-point IpDFT and 

IpDFTmethods and the one given by (16) as a 
function of the ADC resolution. 

 
 
From Fig. 3 it follows that the standard deviation 

of the δk estimates obtained by IpDFT method are 
very closely to the theoretical ones given by (16).  
 With the exception of the first component, it can 
be observed that the standard deviations of the δk 
estimates obtained by the proposed method are 
somewhat higher than the ones obtained by IpDFT 
method. 
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IV. CONCLUSION 
 
 In this paper a three-point IpDFT method for 
estimating with high accuracy the frequency of a 
multifrequency signal component is presented. This 
method uses the Hann window. Analytical formula for 
estimating the frequency of a multifrequency signal 
component by the proposed method is derived.  
 In the presence of quantization noise for not 
large lk values the proposed three-point IpDFT 
method provides more accurate δk estimates than the 
IpDFT method. When the systematic errors of δk 
estimates obtained by the three-point IpDFT method 
becomes smaller than the quantization errors then the 
results obtained by both methods are very closely.   

Also, it has been shown that the standard 
deviations of the δk estimates obtained by the 
proposed three-point IpDFT method are somewhat 
higher than the ones obtained by IpDFT method. 
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