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Abstract – This paper presents a way to determine the best 
modeling algorithms for working with signals generated by 
water pipe leaks. Three methods of parametric modeling are 
presented in this paper: auto-regressive modeling AR, moving 
average MA modeling and auto-regressive – moving average 
ARMA modeling. From these methods, the auto-regressinve 
modeling is the best one for analysing signal sequences from 
water pipe leaks. A special MATLAB Toolbox was used in 
order to work with the signals and the parametric models. 
The name of the Toolbox is ARMASA. Several programs were 
written in order to work with ARMASA functions and with 
the leak signals.   The influence of signal length and number 
of estimation coefficients, are studied in order to show which 
parametric modeling method works best with signals 
generated by pipe leaks. The conclusion is that for these type 
of  signals, the AR autoregressive model is the optimal 
solution. With the help of the obtained spectral distribution 
values, we can further analyze the signals in order to find with 
precision the position of the leaks. After the exact choice of a 
parametric modeling algorithm, in ths case the AR model, we 
are able to see the benefits of this choice when dealing with 
spectral analisys. Signal whitening can be used in order to 
improve the quality of the Cross Correlation Function (CCF).  
Keywords - parametric modeling, water pipes, leak detection,  
leak location,  MATLAB,  ARMASA Toolbox, Cross 
Correlation Function, signal whitening. 

 
I.  INTRODUCTION 

 
The flow of water trough a pipe generates specific 

auditive (noise) signals. If  the pipe has leakage points or 
other faults, then we face problems of liquid loss. These 
problems must be solved, by locating with precision, the 
position of the leaks. The possition of the leak, must be 
found with the highest accuracy. When dealing with pipes 
that are very long (measuring kilometers), the leaks must 
be located with an error of a few meters (less than 5 
meters).  

The analysis of data sequences (noise signals from pipe 
leaks)  by means of parametric modeling is a modern 
alternative which can be used in this domain. With the help 
of improved software applications and hardware 
possibilities, we are allowed to use applications based on 
parametric modeling (which involve lots of calculations) 
and to continuously monitor time varying processes.  

As mentioned in literature, the use of non-parametric 
methods of signal processing is more suitable   for 
periodical signals. When dealing with random signals 
(signals from water pipe leaks), the  use of non-parametric 
methods is considered “quick and dirty” [3].  

A more accurate approach would be the use of 
parametric methods. We are interested in determining the 
spectral distribution of the signals and also the ease and the 
calculus volume which is involved. Furthermore, we are 
interested in having a program that works with the signals 
in an automatic way. One should be able to determine the 
spectral distribution of the signals, with the help of 
automated parametric modeling methods (automated 
application),  without much knowledge about signal 
processing techniques.  

ARMASA is a collection of MATLAB programs that 
helps the user perform signal processing algorithms in an 
automated manner. Some of the offered  features involve 
automatic spectral analysis. 

The use of parametric modeling methods (AR, MA, 
ARMA) can turn the application for signal analysis into an 
automated program. 

After determining which method is best for analyzing   
the signals generated by water leaks, we can proceed with 
the calculation of the CCF.  

 
II.  THE INSTALLATION 

 
An experimental pipes installation is presented in the 

following image. With the help of this installation, leak 
signals were acquired and analyzed.    

Piezoelectric sensors are placed on both sides of the 
simulated Leak A. The purpose of the sensors is to 
simultaneously acquire pairs of signals generated when 
water comes out of the pipe trough the simulated leak. 
When the faucet is opened, water came out of the pipe. 
Noise signals are sent from the simulated leak to the 
sensors trough the pipe material (metal or PVC) and trough 
the liquid that flows inside the pipe.  

The sensors were placed, at about the same distances, on 
a straight part of the pipe in order to avoid possible 
perturbations which appear at pipe elbows.      
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Fig.1. Experimental Pipe Installation. 

 
III.  SIGNALS CHARACTERISTICS 

 
Several pairs of signals were acquired for different water 

debits trough the leak. It is expected that when dealing with 
small leaks (small leak debits), the spectral power 
distribution of the signals should cover higher frequencies. 
For larger leaks and larger debits, the spectral distribution  
should cover lower frequencies.  

The signals were amplified and then transmitted to a data 
acquisition board for analog to digital conversion. The 
sampling frequency at which the signals were acquired was 
Fs =25 kHz. Each signal file contains 16384 samples. The 
sampling period is Ts = 40 µs. Each signal sequence lasts 
0.665 seconds.   

An important aspect deals with the turbulent or laminar 
(non-turbulent) flow of the water trough the pipe. For the 
same experimental conditions, without any changes to the 
installation, different sounds could be heard. The 
conclusion was that in some cases, the laminar or normal 
flow of water is replaced with a turbulent flow.  

The following tables, show the recorded laminar and 
turbulent signals, for different water debits. 

 
Signal Pair Leak Debit 

Fa2 0,4  l/min 
Fa3 0,7  l/min 
Fa4 1,1  l/min 
Fa5 1,2  l/min 
Fa6 1,46  l/min 
Fa8 3  l/min 

Fa11 4,36  l/min 
Fa12 7,74  l/min 
Fa13 9,6  l/min 
Fa14 10,4  l/min 
Fa15 13,3  l/min 
Fa16 16  l/min 
Table 1. “Leak” Signal Pairs – laminar flow. 

 
Signal Pair Leak Debit 

Fa8tur 3  l/min 
Fa10t 3,88  l/min 

Fa10tur 3,88  l/min 
Table 2. “Leak” Signal Pairs – turbulent flow. 

 

It is also important to look at the power of these signals. 
We should be able to see that for turbulent flows, the power 
of the acquired signals is higher than the power for laminar 
flow, at the same leak debits. The following tables show 
the power of the signals, in Wµ , for different leak debits. 

 
Leak Debit Power - Signal 0 Power - Signal 1 

0,4  l/min 4.9715e+003 5.0098e+003 
0,7  l/min 6.2775e+003 6.7602e+003 
1,1  l/min 3.2664e+004 3.1136e+004 
1,2  l/min 4.4374e+004 3.8689e+004 

1,46  l/min 2.2698e+004 2.2709e+004 
3  l/min 2.6108e+004 2.2136e+004 

4,36  l/min 8.3687e+004 6.5207e+004 
7,74  l/min 2.3702e+005 1.6604e+005 
9,6  l/min 2.7193e+005 2.3001e+005 

10,4  l/min 1.5093e+005 1.9958e+005 
13,3  l/min 6.4635e+004 1.0561e+005 
16  l/min 1.0812e+004 2.0568e+004 

Table 3. “Leak” Signals Powers – laminar flow. 
 

Leak Debit Power - Signal 0 Power - Signal 1 
3  l/min 4.0533e+005 2.5927e+005 

3,88  l/min 2.3010e+005 1.6098e+005 
3,88  l/min 3.9009e+005 2.8840e+005 

Table 4. “Leak” Signals Powers – Turbulent flow 
 

The following image shows a pair of such signals for 0.7 
l/min debit, laminar flow –(Fa3). 
 

 
Fig.2. Leak Signals – 0.7 l/min. debit. 

 
From the following image, one can see that the powers of 

the signals acquired for laminar flow, seem to follow a 
parabolic distribution depending on the debit. For turbulent 
flow, the powers of the signals are above this parabolic 
distribution. 

 

 
Fig.3. Powers and Debits dependency. 
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IV. PARAMETRIC MODELING ALGORITHMS 

 

The parametric modeling process is based on the 
following idea.  If we have a set of data (a set of signal 
values), we can characterize that set with the help of a 
linear filter which has a white noise as input. In order to do 
that, we have to determine the power of the white noise 
signal and the parameters that characterize the filter. The 
use of such models is highly recommended for dealing with 
random signals. For periodic sequences, the use of 
periodograms is prefered. 

From this analisys, the appropriate model that 
characterizes the data set can be selected. Three such 
models will be presented and for each of them, several tests 
will be made in order to determine which model is best for 
characterizing the acquired leak signals. 

The transfer function, H(z), of the linear filter is 
presented in relation (1). 
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The output of the linear filter is represented by X(z). This 

is the resulting signal characterization. The white noise 
input is represented by U(z).  

The first model is the auto-regressive or recursive model 
(AR). The value of the present sample, is determined from 
the past samples values of the sequence. The transfer 
function of the model is presented in relation (2). 
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The order of the model is p. As one can see, the 
numerator is 1, so n is 0. As an example, we can determine 
the AR model for p = 1. The relation (1), becomes: 
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The present sample value, depends on the white noise 

input and on the value of a prior sample. 
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In order to determine the value of a sample, which 
depends on the values of p other prior samples and the 
white noise, one can write the following relation. 
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As it will turn out, this kind of model is most appropriate 
for dealing with signals coming from leaks in pipe systems. 

The next model is the moving average model (MA). The 
denominator from the filter transfer function is 1. This 
transfer function is presented in relation (6) and the relation 
for determining one sample in relation (7). 
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The last model, which in a combination of the ones 

presented above, is the auto regressive – moving average 
model (ARMA).  The transfer function for this case is 
presented in relation (8) and the equation for a specific 
sample is presented in relation (9). 
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The main concern is to determine the spectral density of 
the signals, if we know the power of the white noise and 
the transfer function model for the filter. We can calculate 
the spectral density of the signal with the following 
relation. The power of the white noise is represented by 

2
Uσ  and the transfer function of the filter is represented by 

)(mod Ωjel eH . 
2mod2 |)(|)( ΩΩ = jel

U
j

x eHeS σ                                (10) 
 

As an example, for an AR model, where p = 1, we can 
write the following transfer function. 
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In this function, Ω= jez .  The spectral density relation 
can be written as follows. 
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V. AUTOMATED SPECTRAL ANALISYS 

 
The ARMASA Toolbox, is a collection of programs that 

can be used with MATLAB, in order to implement 
applications that deal with parametric modeling and 
spectral density estimation.  

The quality of spectral estimation by means of AR 
models mainly depends on the length of the input sequence 
and on the algorithm used to make the estimation (Burg or 
Yule-Walker). 

ARMASA uses the Burg method in order to calculate the 
estimation coefficients.  
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The Burg method decreseases the prediction error for the 

estimation. For a system of  order r, the error at iteration k 
can be expressed by the following relation. 
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This means that to the determined value for one sample, 
we will add a linear combination of r past values of the 
sequence. Despite the fact that past values of the sequence 
are included in the calculus, the name of the error is ”the 
forward prediction error”. 

Another type of error which can be defined for this r 
order system, involves the adding between a past sample 
x[k-r] and a linear combination of r future values of the 
sequence. This can be defined as the ”backward prediction 
error”. 
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The idea of the Burg method is to minimize the sum of 
these errors which appear during the estimation process.     
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The Burg method is recommended for sets of reduced 
length. Signals with low frequencies are well aproximated 
by this method.                         
 

VI.  EXPERIMENTAL RESULTS 
 

The execution of the ARMASA functions involves a 
number of steps and a high volume of operations. For a 
given signal, the program calculates all models (AR, MA, 
ARMA) and then makes other operations in order to 
determine which of them is most suitable.  If one knows 
that for example, the AR model is the most appropriate for 
certain types of signals, then some parts of the calculus 
(dealing with MA and ARMA models) 
can be skipped. 

In the following table, there is presented the execution 
time of the ARMASEL program, as a function of sequence 
length and model order. The purpose of the application was 
to calculate the power spectrum of the input sequence. The 
values of the execution time are to be considered 
orientative. The calculus depends on the configuration of 
the PC which runs the program. The length of the input 
sequence is between [2000 - 12000] samples and the order 
of the model is set between [10 - 70] coefficients.  
 
  N 
p 

2000 4000 6000 8000 10000 12000 

70 5.906 7.969 9.078 11.125 12.609 13.812 
60 4.703 6.437 7.547 9.500 10.687 11.938 
50 3.750 5.203 6.031 7.829 9.063 10.157 
40 2.891 4.109 4.922 6.422 7.500 8.516 
30 2.172 3.109 3.922 5.140 6.156 7.125 
20 1.500 2.157 2.719 3.906 4.813 5.672 
10 0.891 1.360 1.781 2.797 3.532 4.281 
Table 5. ARMASA execution time as a function of sequence length and 

model order. 

If we increase the input signal length, the influence on 
the execution time is not so accentuated. However, an 
increase in the model order can be quite costly.  

As we can notice, for only 70 coefficients, the execution 
time of the program increases. If we want to improve the 
execution time of the calculus, we need to reduce the 
number of operations by working with only one preferred 
model, in our case, the AR model.  
 

  
Fig.4. Execution Time as function of 

Signal Length and Model Order. 
 

In order to determine which model (AR, MA or ARMA) 
is most suitable for working with signals coming from 
leaks, we can use automatic estimation on different 
intervals (same length) of the same signal and on intervals 
of different length of the signal. 

As example, for one pair of signals (Fa2, 0.4 l/min/debit, 
laminar flow), we can start from the beginning of the 
sequences and increase the signal length which we analyze. 
In the following table, there are presented values of 
estimation for the signal acquired by Sensor 0. The same 
results are valid for the signal acquired by Sensor 1. As we 
can see, the AR model is most suitable. 

 
Length Model AR Err. MA Err. ARMA Err. 

2000 AR 885.0388 1.0768e+003 904.5822 

4000 AR 861.1347 1.0799e+003 879.8599 

6000 AR 805.8118 1.3258e+003 828.0465 

8000 AR 748.3188 1.2333e+003 776.3164 

10000 AR 728.1539 1.1962e+003 757.8679 

12000 AR 699.6100 1.1444e+003 727.7679 

14000 AR 692.5061 1.0967e+003 719.7552 

16000 AR 687.3806 1.0700e+003 715.7700 

Table 6. Best model for different Signal Lengths, signal from Sensor 0,  
laminar flow, 0.4 l/min debit. 

 

Model AR Err. MA Err. ARMA Err. 
MA 1.9424e+005 1.9364e+005 1.9367e+005 

AR 7.5067e+004 7.7144e+004 7.7179e+004 

MA 2.0527e+005 2.0395e+005 2.0530e+005 

Table 7. Best model for different Signals  
from Sensor 0,  turbulent flow. 

 
For signals acquired during turbulent flow, very small 

errors appear between the different estimation models. As a 
convention, we can also choose the AR model for their 
estimation. 
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The next images will show the error of the estimated 

model, for different signals. The horizontal axis, shows the 
order of the model, which ranges from [0 - 900]. 

 

 
Fig.5. Error of Estimated Models, 
Cfa8tur, Sensor 0, turbulent flow. 

 

  
Fig.6. Error of Estimated Models, 
Cfa10tur, Sensor 0, turbulent flow. 

 

Signal Model AR Err. MA Err. ARMA Err. 
Cfa2 AR 687.3806 1.0700e+003 715.7700 
Cfa3 AR 1.5481e+003 2.1861e+003 1.5968e+003 
Cfa4 AR 6.3400e+003 6.7141e+003 6.5560e+003 
Cfa5 AR 8.4678e+003 9.9478e+003 8.8443e+003 
Cfa6 AR 5.7112e+003 6.0511e+003 5.9434e+003 
Cfa8 AR 6.9877e+003 7.2932e+003 7.2278e+003 

Cfa11 AR 2.7309e+004 2.9361e+004 2.8732e+004 
Cfa12 AR 7.4015e+004 7.6119e+004 7.6967e+004 
Cfa13 AR 9.8799e+004 1.0315e+005 1.0259e+005 
Cfa14 AR 3.7673e+004 4.0309e+004 3.9162e+004 
Cfa15 AR 1.4800e+004 1.5467e+004 1.5323e+004 
Cfa16 AR 1.7206e+003 1.7900e+003 1.7596e+003 

Table 8. Best model for different Signals  
from Sensor 0,  laminar flow. 

 
The conclusion which comes out of these experiments, 

shows that when dealing with signals which come from 
pipe leaks, the AR model seems to be the best for 
determining the spectral distribution.  

The fact that the AR model is suitable for  parametric 
modeling of  signals generated by water leak can be useful 
when dealing with signal whitening.  

We will choose a pair of signals and determine their 
spectral distribution. The CCF will be calculated before 
and after the process of whitening in order to see which 
calculation proves clearer and smoother.  

The pair Fa3, are signals acquired at 0.7 l/min leak debit 
and were presented in Fig.2. The power distribution for the 
two signals is showed in the following images. These 
calculations were done before the process of whitening. 
 

 
Fig.7. Signal from Sensor 0 – Power Distribution. 

 

 
Fig.8. Signal from Sensor 1 – Power Distribution. 

 
The calculation of the biased CCF between the two 

signals, before whitening, is presented in the following 
image. We are only concerned with the values around the 
maximum of the CCF. We need to determine how well the 
maximum stands out from the other values. The image will 
show the CCF for 200 points around the maximum value, 
in both directions. The time delay is not of concern at the 
moment, but as one can see it indicates that there is little 
difference in the placement of the sensors. 

The maximum value is surrounded by other peaks which 
in some cases can be a source of error when estimating the 
time delay. 

 
Fig.9. CCF before whitening. 

 

The process of whitening involves the use of inverse 
filtering. The parametric AR modeling will be used for this 
purpose with the help of the Arburg Matlab function. We 
have used only 60 coefficients for the whitening process.  
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The higher the number of coefficients, the more changes 
occur in the spectral distribution of the signals. 

The following images present the spectral distribution of 
the signals, after the whitening process.   

As one can see there are differences, which appear 
because of the whitening process. The number of 
coefficients which needs to be used can be another topic of 
study. However, with a small number of coefficients, the 
changes should not be as obvious. 

The CCF calculation reveals the fact that the process of 
whitening helps. Increasing the number of coefficients, 
increases the quality with which the maximum values 
stands out. 

 

 
Fig.10. Signal from Sensor 0 –  

Power Distribution after whitening. 
 
 

 
Fig.11. Signal from Sensor 1 –  

Power Distribution after whitening. 
 

 
Fig.12. CCF after whitening. 

VII.  CONCLUSIONS 
 

The process of spectral analysis is an important step in 
the process of leak detection. The idea of automated 
spectral analysis means that before implementing such an 
application, we must establish which methods are most 
suitable for this purpose. When dealing with random 
signals, the classical periodogram method of analysis is 
considered “quick and dirty”. Parametric methods are more 
suitable. 

The length of the signals, but mainly the order of the 
model have an influence on the performances of the 
application.  All unnecessary calculations should be 
eliminated from the application, as the increase in the 
model order significantly rises the execution time of the 
application. 

The preferred model for analyzing this type of signals is 
the auto regressive (AR) model. 

The process of whitening influences the spectral 
distribution of the signals. The CCF were calculated before 
and after the process of whitening in order to see which 
calculation proves clearer and smoother. It was shown that 
in the case of using the whitening process, the maximum 
value of the CCF was emphasized. This fact is important 
when we deal with establishing the position of the 
maximum value. This position is important for showing the 
time delay between two signals. 
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