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Abstract - This paper presents an overview of the 
complex behaviour of the switching power converters. 
The power electronics circuits, due to their nonlinearity, 
exhibits a variety of complex behaviour, such as: sudden 
change of operating regime, subharmonic and chaotic 
operation, etc. This behaviour can occur when some 
parameters of the circuit are varied. 
Keywords: switching power converters, nonlinear 
behaviour, chaos 
 

I. INTRODUCTION 
 

Power electronics circuits can be described as 
piecewise-switched circuits, which assume different 
topologies at different times. Toggling between these 
topologies is done in a cyclic manner. The result is 
nonlinear time-varying operation. 

Power electronics circuits, being nonlinear, exhibit 
a variety of complex behaviour such as sudden change 
of operating regime, chaotic operation, occasional 
instability (depending on the circuit parameters), 
intermittent subharmonic or chaotic operation, etc. 

Both the circuit topology and the control method 
determine the dynamical behaviour of a power 
electronics circuit. Chaos is a common phenomenon 
in power converters when they are operated under 
feedback control. Chaotic systems are sensitively 
dependent on the initial conditions, which makes 
long-term prediction of their behaviour impossible. 

In analysing power electronics circuits much effort 
has been spent in developing linear models of dc-dc 
converters. One of the most popular of these models is 
the state-space averaging. Although it has many 
advantages, it is approximate [1]. Also, it doesn’t 
predict some instabilities in the circuit, such as the 
subharmonic instability associated with the current-
mode control [2]. 

An overview of the nonlinear behaviour in 
dynamic systems (“chaos theory”), the switching 
power converters models and their application for 
nonlinear behaviour analysis, and some techniques 
used for the study of nonlinear and chaotic behaviour 
are presented in Section II.  The nonlinear behaviour 
in various switching power converters is examined in 

Section III. Some conclusions are presented in Section 
IV.  
 

II. METHODS OF STUDYING NONLINEAR 
BEHAVIOUR IN SWITCHING POWER 

CONVERTERS 
 

A. Nonlinear behaviour in dynamic systems 
 
Even simple systems can behave in a chaotic fashion. 
The main cause of this behaviour has been identified 
as nonlinearity.  

Chaos is a particular qualitative behaviour of 
nonlinear systems, which is characterized by an 
aperiodic and apparently random trajectory [4]. 

The behaviour of the dynamical systems varies as a 
function of time. A dynamical system can be 
described by the following equation: 

 

),),(()( ttxf
dt

tdx µ=           (1) 

 
where x is the state variables vector, and µ is the 
parameters vector. If  f  depends on time, the system is 
called non-autonomous, and if f doesn’t depend on 
time, the system is called autonomous.  

The solution of the system is known as the 
trajectory. The equilibrium solution to which the 
system converges is called an attracting equilibrium 
solution (attractor). A dynamical system can have 
multiple equilibrium solutions, depending on the 
system parameters. When a parameter is varied, the 
behaviour of the system can suddenly change. This 
phenomenon is called bifurcation.  Some commonly 
observed bifurcations are  [2], [5]: 

- saddle-node bifurcation – it is characterized by 
a sudden loss of a stable equilibrium solution, 
when a parameter goes beyond a critical value; 

- transcritical bifurcation – it is characterized 
by an exchange of stability status between two 
equilibrium solutions; 

- supercritical pitchfork bifurcation – the stable 
equilibrium solution splits into two stable 
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equilibrium solutions, at a critical parameter 
value; 

- subcritical pitchfork bifurcation – it is 
characterized by a sudden explosion of a stable 
equilibrium solution as a parameter goes 
beyond a critical value; 

- period-doubling bifurcation – it is 
characterized by a sudden doubling of the 
period of a stable periodic orbit when a certain 
parameter is varied; this doubling of the period 
may continue to occur when the parameter is 
varied in the same direction; 

- Hopf bifurcation – it is characterized by a 
sudden expansion of a stable fixed point to a 
stable limit cycle; 

- border collision – it is an abrupt change in 
behaviour when a parameter is varied across 
the boundary of two structurally different 
systems. In switching converters it is a result 
of a change of topological sequence. 

 
B. Switching power converters modelling 
 
The nonlinear and time-varying operation of the 
switching power converters demands nonlinear 
methods for analysis.  

The switching power converters modelling has two 
basic approaches: averaging approach and discrete-
time approach.  

Suppose the switching converter toggles between N 
circuit topologies, di being the fraction of the period in 
which the circuit stays in the i-th topology, Ai and Bi 
the system matrices, Vg the input voltage and Ts the 
switching period. Obviously, 121 =+++ Nddd L . 
The state equations for the system are the following: 
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The averaging approach [6] removes the time-

varying dependence from the original time-varying 
model.  

 The averaged model is the weighted average of all 
the state equations, written for all possible circuit 
topologies. The typical form of the averaged model is 
the following: 
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The control law is given as a set of equations 

defining di. The general form of this set of equations 
is: 
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The averaging approach is widely used and well 
known, and it is relative easy to derive the continuous 
averaged equation. Usually, the validity of averaged 
models is restricted to the low-frequency range, up to 
an order of magnitude below the switching frequency. 
For this reason, averaged models become inadequate 
when the aim is to explore nonlinear phenomena that 
may appear across a wide spectrum of frequencies. 
Nevertheless, averaging techniques can be useful to 
analyze low-frequency bifurcation phenomena. 

Another modelling approach is the discrete-time  
iterative approach. Its aim is to derive an iterative 
function that expresses the state variables at one 
sampling instant in terms of those at an earlier 
sampling instant: 

 
),,(1 gnn Vdxfx =+      (5) 

 
where xn is the state vector at t = nTs, d is the vector 
of the duty cycles: d = [d1 d2 … dN]T. Eqn (5), the 
discrete-time state equation, assumes that the 
sampling period is equal to the switching period. 
Therefore, the model can be used up to the switching 
frequency. Since most power electronics circuits are 
non-autonomous systems driven by fixed-period clock 
signals, the study of the dynamics can be effectively 
carried out using appropriate discrete-time maps. The 
disadvantage of  the model is that the derivation of the 
iterative map is more complicated compared to the 
continuous-time averaged equation. 
 
C. Analysis of standard bifurcations  
 

The analysis begins with the system model. 
If the averaged model is used, first the set of 

continuous averaged state equations are derived.  
Then, the eigenvalues (characteristic multipliers) of 
the Jacobian, J(XQ) and are found, using the following 
equation: 

 
0)](det[ =− QXJIλ            (6) 

 
The next step is to identify the condition for the 

eigenvalue(s) to move across the imaginary axis in the 
complex plane (as for instance, a pair of complex 
eigenvalues moving across the imaginary axis implies 
a Hopf bifurcation). 

If the discrete time approach is used, first is 
derived the discrete-time state equation (also called 
iterative map, iterative function or Poincaré map). 
Next, the Jacobian, J(XQ) is examined to find 
eigenvalues. Then,  the condition for the eigenvalue(s) 
to move out the unit circle in the complex plane is 
identified. 

The discrete-time and averaged models treat the 
duty cycle as an input. In practice, the duty cycle is 
controlled through some feedback mechanisms. Thus, 
to complete the model, we need to state the control 
law. For instance, in the usual pulse-width modulation 
control, a control signal (deriving from the state 
variables) and a ramp signal are compared, their 
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intersection defining the switching instant. Thus, the 
control law can be: 

 
))(()( sconsramp dTxvdTV =         (7) 

   
where Vramp(t) is a ramp voltage and vcon is the control 
signal. From this equation, we can find d for each 
switching period. For the voltage-mode control, 
considering a proportional feedback, the control law  
is the following:  
 

( )( )refon VvDHd −−= κ           (8) 
 

where D is the steady-state duty cycle, κ is the small-
signal feedback gain, Vref is the reference output 
voltage, and H limits the range of the duty cycle 
between 0 and 1: 
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For the current-mode control, the control law is given 
by: 
 

))(( reforefref VtvIi −−= κ         (10) 
 

where Iref is the steady-state reference current. 
 
D. Techniques for studying nonlinear and chaotic 

behaviour 
 

Poincaré sections – are graphical representations of 
the behaviour of a high-order system. They are planes 
that intersects the trajectory of the system. If the 
Poincaré section contains a finite number of points, 
the steady-state operation is periodic. If the Poincaré 
section contains a closed loop, the operation is quasi-
periodic. If the Poincaré section is irregular, the 
operation is chaotic.  

Bifurcation diagrams – are graphical 
representations of the behaviour exhibited by a system 
when some parameters are varied.  

Lyapunov exponents – they measure the 
exponential convergence or divergence of 
neighbouring orbits of a dynamical system. 
Considering two trajectories that initially are 
separated by a distance 0ε , if this distance increases 
or decreases exponentially in time, it can be expressed 
as: 

 
tet λεε 0)( =        (11) 

 
If λ > 0, the two trajectories diverge exponentially in 
time and the behaviour of the system is chaotic.  
 
III. NONLINEAR BEHAVIOUR IN SWITCHING 

POWER CONVERTERS 
 

Switching power converters, due to their 
nonlinearity exhibits a variety of complex and chaotic 

behaviour.  The behaviour of a dc-dc converter is 
greatly influenced by the operating mode and the 
control technique. Most dc-dc converters are designed 
to deliver a regulated output voltage. The control of 
dc-dc converters usually takes on two approaches: 
voltage feedback control (voltage-mode control) and 
current-programmed control (current-mode control).  

In voltage feedback control, the output voltage is 
compared with a reference to generate a control signal 
which drives the pulse-width modulator.  

For current-programmed control, an inner current 
loop is used in addition to the voltage feedback loop, 
to force the peak inductor current to follow a 
reference signal which is derived from the output 
voltage feedback loop.   

From what has been reported so far in the  
literature, the following observations regarding the 
nonlinear behaviour of the switching power 
converters can be made: 

- converters under fixed-frequency current-
mode control generally lose stability via a 
period-doubling type of bifurcation; 

- in switching power converters border collision 
can occur due to a change of operating mode 
or due to saturating nonlinearity– caused by 
the inherent limitation of the range of some 
control parameters (as for instance, as a result 
of saturating the duty cycle [2]); 

- voltage-mode controlled BUCK converters 
typically exhibit period-doubling bifurcations 
[12, 13], whereas BOOST converters typically 
exhibit Hopf bifurcation [10, 14]; 

- period-doubling is common in BUCK or 
BOOST converters operating in Discontinuous 
Inductor Current Mode (DICM) [15, 16] and 
current-mode controlled converters [11, 17]. 

Further on, we analyse the nonlinear behaviour of 
some switching power systems. 

 
A. BUCK converter, voltage-mode control, CCM 

operation 
 
For the BUCK converter, shown in Fig. 1, the state-
equations when the converter is operating in 
Continuous Conduction Mode (CCM), are the 
following: 
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where x is the state vector [vo  iL]T,  d is the duty cycle. 
 
 
 
 
 
 
 
 
  
 By solving the state equations, the discrete-time 
equation can be obtained: 

Fig. 1. The BUCK converter. 
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where: 
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The approximate expressions for f(x,d),determined in 
[2] are given by:  
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where ,CRC =τ  RLL /=τ . 

For voltage-mode controlled BUCK converter, 
operating in CCM [2], in order to investigate the 
bifurcation phenomena, the following parameters are 
used: Vg = 22-33V, L = 20mH, fs = 2.5kHz, R = 22Ω, 
C = 47µF, Vref = 11V. 

In Fig. 2, 3, 4 are presented the output voltage and 
inductor current waveforms and the phase portraits in 
various operating regimes: fundamental periodic 
operation (period-1), period-2 subharmonic operation 
and chaos, as a result of the border collision, obtained 
by computer simulation, using CASPOC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
B. BUCK converter, voltage-mode control, DICM 

operation 
 
In a similar way to CCM, the state equation for 

DICM can be derived:      
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For voltage-mode controlled BUCK converter, 

operating in DICM, in order to investigate the 
bifurcation phenomena, the following component 
values are used: Vg = 33V, L = 194µH, fs = 3kHz, R = 
12.5Ω, C = 222µF, Vref = 25V, D = 0.47. Assuming 
that in the neighbourhood of the steady-state the duty 

Fig. 2. (a) Fundamental waveforms (simulation results) for 
BUCK converter operating in CCM, Vg=23V; (b) phase 

portrait. 

Fig. 3. (a) Period-2 subharmonic waveforms (simulation 
results) for BUCK converter operating in CCM, Vg=28V; 

(b) phase portrait. 

Fig. 4. (a) Chaotic operation waveforms (simulation results) 
for BUCK converter operating in CCM, Vg=33V; (b) phase 

portrait. 
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cycle does not saturate, the characteristic multiplier 
can be computed from Eqn. (21): 
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The system is fundamentally stable if 1<λ . The 

critical value of the small-signal feedback gain, κ, can 
be found by setting the characteristic multiplier to -1: 
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For the studied circuit, κc=0.115. 
In Fig. 5 and 6 are presented the waveforms and 

the phase portraits in two operating regimes: 
fundamental periodic operation (period-1) and chaos, 
obtained by computer simulation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 7 the analytical iterative map, given by Eqn.  

(21) is used to show the bifurcations of the converter. 
It can be observed that the system looses stability by 
period-doubling, and becomes chaotic when κ 
becomes larger that about 0.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The voltage-mode controlled BOOST converter, 

operating in DICM presents the same nonlinear 
behaviour [15]. 
 
C. BUCK converter, current-mode control 
  

In this case, the control law is given by Eqn. (10). 
For current-mode controlled BUCK converter, in 
order to investigate the bifurcation phenomena, the 
following parameters are used: Vg = 5V, L = 2mH, fs 
= 10kHz, R = 40Ω, C = 34µF, Vref = 1.89V, Iref = 
0.2185A. In Fig. 8, 9, 10 are presented: the inductor 
current waveforms and the phase portraits in various 
operating regimes: fundamental periodic operation, 
period-2 subharmonic operation and chaos, obtained 
by computer simulation. 

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. (a) Fundamental waveforms (simulation results) for 
BUCK converter operating in DICM ,κ=0.1;  

(b) phase portrait. 

Fig. 6. (a) Chaotic operation waveforms (simulation 
results) for BUCK converter operating in DICM, κ=0.185; 

(b) phase portrait. 

Fig. 7. Bifurcation diagram of the voltage-mode controlled 
BUCK converter operating in DICM. 

Fig. 8. (a) Fundamental waveform (simulation results) for 
current-mode controlled BUCK converter, κ=0.15;  (b) 

phase portrait. 

Fig. 9. (a) Period-2 subharmonic waveform (simulation 
results) for current-mode BUCK converter , κ=0.35;  

(b) phase portrait. 

Fig. 10. (a) Chaos operation waveform (simulation results) 
for current-mode BUCK converter , κ=1.15;  

(b) phase portrait. 
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It can be observed that the circuit goes through 1-
period operation, 2-period operation, and eventually 
exhibits chaos. A similar behaviour can be observed 
at the BOOST converter [2], [11]. 
 
D. ĆUK converter, Discontinuous Capacitor 

Voltage Mode (DCVM) operation, voltage-mode 
control 

 
In this paper, the ĆUK converter (Fig. 11), 

operating in DCVM is studied. In order to investigate 
the occurence of the Hopf bifurcation, the following 
parameters are used: Vg = 15V, L1=L2 = 2.4mH, R = 
10Ω, C1=56.8µF C2 = 47µF, fs=20kHz.  

 
 

 
 

 
 
 
 
The control law is given by (8). For this circuit 

parameters it is found that the critical value of the 
feedback gain, κ ,  is 0.816. 

Computer simulations of the circuits show the 
bifurcation from fixed point (Fig. 12,a), through limit 
cycle (Fig. 12,b) and eventually to chaos (Fig. 12,c). 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In [2], [10] the Hopf bifurcation in the free-
running ĆUK converter, operating in CCM, the boost 
converter with PWM voltage-mode control, and 
parallel boost converters is studied.  
 

IV. CONCLUSIONS 
 
The power electronics circuits, due to their 
nonlinearity, exhibits a variety of complex behaviour, 
such as: sudden change of operating regime, 
subharmonic and chaotic operation, etc. This 
behaviour can occur when some parameters of the 
circuit are varied. There are two reasons for studying 
nonlinear dynamics in the context of power 

electronics: to understand better the nonlinear 
behaviour of the power converters, and thereby avoid 
undesirable effects, or to deliberately use these 
effects, as shown in [19]. 

The nonlinear behaviour of some switching power 
converters is analysed in this paper. 
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Fig. 11. The ĆUK converter. 

a b 

c 

Fig. 12. The 3-d plots of the local trajectory for the DCVM 
ĆUK converter: a- the stable local trajectory for κ=0.1; b- the 

limit cycle (κ=0.816); c-chaotic orbit (κ=10). 
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