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Abstract – Integration of linear track movements in the 
robot control is a significant part of the accuracy 
improvement process of modern robotics. For this, the 
linear track profile has to be analysed for getting a 
continous description of its inaccuracies for correcting 
the robot’s end effector position for arbitrary points. 
This analysis bases in the first step on a discrete 
measurement of the linear track in special sampling 
points. In the second step an interpolation between the 
sampling points is done. In this article some of the 
possible interpolation methods for creating a continous 
description of the linear track were tested. 
Keywords: industrial robot, accuracy, 7th axis, linear 
track, interpolation 
 

I. INTRODUCTION 
 

Modern robotics today deals with a great number of 
different applications. A great number of special 
functions or tasks are done by industrial robots. The 
field of using industrial robots ranges from picking or 
placing very small parts for electrical layouts to the 
painting or welding of jumbo jets. In each one of this 
varying types the demands on the robot are different 
and depending on single aspects like accuracy, time 
consumption or the costs.  
One important fact is that in the past few years the 
demands of modern robotics have increased due to the 
ever growing demand for flexible automation. 
Flexible automation today expects highly accurate 
robotic systems. In this meaning not only the robot, 
but the complete system consisting of robot and its 
peripherals have to fulfill the extensive requirements. 
But against this demand for highly accurate robotic 
systems the requested flexibility in the used systems is 
increasing rapidly.  
One example of the situation discussed in this 
document is the demand for manipulating very large 
workpieces which even the workspace for a huge 
robot is too small. To extend the workspace the robot 
is placed on a linear track, even called 7th axis, to 
move the robot linear in one determined direction. 
Using this extension practically any workpieces can 
be handled by robots suitable for the application 

without the necessity of using large robots which have 
a sufficient workspace.  
On the one hand the usage of the linear tracks gives 
the opportunity to extend the robot’s workspace, but 
on the other hand there is an additional error 
component in the robotic system which must not only 
be analysed but in the best case compensated.  
The following document deals with a special task of 
analyzing of linear tracks for industrial robots. 
Dependent on an earlier article [15] there exists a 
method for a highly accurate integration of track 
profiles on the robot control. This is partly based on 

the interpolation of one, in single sampling positions 
measured, three-dimensional track profile to get a 
continous description of the linear track. For this the 

robot’s base frame is identified at several equidistant 
positions by measuring 10 different points with an 
external measurement system (Leica Laser Tracker 

Fig. 1. Identifying of the robots base via 10 
measured points 

Fig. 2. Continous description of the linear track
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LTD800), figure 1 illustrates this situation. After 
identifying the single track coordinate systems an 
interpolation between the sampling points creates a 
continous description of the track profile (figure 2).  
Based on this interpolation further steps for the 
calculation of the correction values are done so that 
the error of the interpolation has an effect on the 
accuracy of the whole integration method.  
The identification of the best interpolation method for 
getting the continous description of the track file is 
the basic topic of this document. Based on this, an 
experimental attempt was selected in which first a 
simulated interpolation on some test data was done 
using MATLAB. The next step was the creation of a 
test built up for measuring the real track profile. After 
getting the real measurement data, three different 
interpolation methods were tested and the dependent 
deviations calculated.  
  

II. TESTED INTERPOLATION METHODS 
 

For the interpolation of the 3-dimensional movement, 
each direction was seperately interpolated. Three 
different interpolation methods for the interpolation 
between the sampling points in one direction of the 
linear track were tested. The basic idea of all three 
methods was to find a continous function g(x) which 
approximates a given tabulated function f(x) so that 
 
 
 
The interpolation function g(x) is equal to the 
tabulated function  f(x) in the N given tabulated points 
xi: 
 
 
 
A. Polynomial interpolation 

 
Basing on the Weierstrass Theorem the task of the 
polynomial interpolation is to find a polynom pn(x) of 
degree N which agrees with a function f(x) given 
through N tabulated values, so 
 
 
 
 
There are different methods for calculating this pn(x), 
such as Lagrange, Newton, Bessel, Stirling or many 
others. These methods are well-known in the literature 
and for the purposes of calculating one polynomial 
interpolation for pn(x) the least squares method was 
used in this paper.  
 
B. Trigonometric interpolation 

 
The second tested interpolation method is the trigono-
metric interpolation. Based on the Fast Fourier Trans-
formation the interpolating function tn(x) which 
interpolates the function  f(x) given in tabulated and 

equidistant sampling points (xi, fi) consist of an 
addition of trigonometric components: 
 

 
The coefficients of the trigonometric function tn(x) are 
calculated by the FFT-algorithm. 
 
C. Cubic spline interpolation 
 
Using this interpolation method, not one function with 
a large polynomial order, but several functions with 
degree of 3 are used to interpolate the given tabulated 
function f(x). Between every two sampling points a 
different smooth and also smooth in the first derivate 
spline-function is defined: 
 

 
The concatenation of the spline-functions gives the 
interpolating function.   
 

III. INTERPOLATION TEST ON NON-REAL 
MEASUREMENT DATA 

 
The first step of the interpolation analysis was a 
simulation on artificial measurement data with 
MATLAB. For this a special MATLAB batch file was  
programmed, which created different interpolations 
on  
a given set of values for the measurement function 
f(x). The 3-dimensional movement of the robot’s TCP 
was interpolated seperately for each axis x, y and z. 
After the successful simulation the real measurement 
data can be given into the system.  
As can be seen, in the programmed MATLAB file the 
three different interpolation methods polynomial, 
trigonometric and cubic spline interpolation are used 
to create prediction how the different methods behave 
during interpolation.   

Figure 4 shows the results of the three interpolations 
with test values of 28 sampling positions. The diffe-
rences between the single values caused by a 
simulated inaccuracy are 1 mm.  

Fig. 4. Simulated interpolation 
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IV. MEASUREMENT OF THE REAL TRACK 
MOTION 

 
A. Measurement device 

 
The used measurement system for the needed 
measurement tasks like scanning the track motion, 
determining the particular track coordinate systems or 
identifying of the robots accuracy is represented by a 
Leica Laser Tracker LTD800 (figure 5). With this 
measurement device it is possible to do touchless 
measurements of 3-dimensional points in a range up 
to 80 meters. The measurement uncertainty of a 
coordinate is given by 10 µm + 5 µm/m (the accuracy 
is dependent on the measurement distance) with a 
possible maximum measurement rate of 3000 points 
per second. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using the world's most accurate absolute distance 
meter for getting the distance between laser track and 
measuring point (25 µm within 40m) and two built-in 
precision encoders for horizontal and vertical angle 
measurements, it is a highly accurate measurement 
system and common in measurement tasks for aircraft 
and automobile industries. 
 
B. Robot accuracy 

 
For proving the measurements for identification of the 
linear track profile, the accuracy of the robot was 
tested dependent on an european standard (DIN EN 
ISO 9283). In this case interesting values were the 
positional accuracy (APp) and the repeating accuracy 
(RPl), to show that the robot can be used as a rigid 
device when moving with its repeating accuracy. As 
described in the standard, the positional accuracy is 
calculated by: 

 
 
 
 
 
 
 
 

where zyx ,,  are the mean values of the coordinates 
form 30 different movements to one programmed 
point pc (xc,yc,zc). The repeating accuracy then is: 
 
 
 
 

 
 
 
 
 
 
where xj,yj,zj are the coordinates of one measured 
point and Sl is the standard deviation. Figure 6 depicts 
the positional and repeating accuracy of the used 
robot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Leica laser tracker LTD800 
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Fig. 7. Measurement at 28 sampling points 

)(ξip

C. Measurement system 
 
For analysing the track profile the robot can be used 
as a rigid device because of its high repeating 
accuracy. To get the sampling points for the 
interpolation, the robot was measured at 28 different 
equidistant linear track positions in one programmed 
control point (figure 7).  
 
 
 
 
 
 
 
 
So the robot did not move but only the linear track 
caused potential positional errors. Figure 8 gives an 
overview about the whole measurement system setup. 
To compare the interpolating function with real 

measurement data, the robot was not only measured in 
the discrete sampling points, but also a quasi-
continous scan of the robots TCP during a linear track 
movement was done. It is quasi-continous because the 
measurement rate was set to 1000 measurements per 
second, therefore the leftover discretisation error can 
be neglected.  
 

V. ERROR CALCULATION BETWEEN REAL 
MOVEMENT AND INTERPOLATION 

 
Comparing the interpolation functions with the real 
measured values the corresponding error between 
them decides the quality of the used interpolation 
method. To get this error the difference derror between 
every measurement value pi of the quasi-continous 
scan and the corresponding value of the interpolation 
function fipo(xi) is calculated by: 
 

 
 
 
where           is the x,y or z-coordinate of one measu-
rement value of the quasi-continous scan. Figure 9 
shows the robots TCP movement represented by the 
measured sampling points and the three different 

corresponding interpolation methods. The polynomial 
interpolation (solid line) confirms the results of 
section III. A swinging and non-exact interpolation is 
caused by a polynomial of a high order. In difference 
to this, the trigonometric interpolation (dashed line) 

and the cubic spline interpolation (dotted line) present 
a better approximation behaviour to the real TCP 
movement.  
Figure 10 shows the differences derror,i between  inter-
polation function and a continous measurement of the 
robot’s TCP movement. Depending on the maximums 
of the error functions shown in figure 10, the cubic 
spline interpolation is the most accurate of the tested 
interpolation methods. 

)()( ,, iipoiierror xfpd ξξ −=

Fig. 8. Build up of the measurement system 

Fig. 9. Interpolation functions and robot 
movement scan 

Fig. 10. Deviation between interpolation and 
real robot movement 
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VI. CONCLUSIONS 
 

Regarding to the lowest difference between the inter-
polation function and real TCP movement, the cubic 
spline interpolation was chosen to create the 
continous description of the track motion. Even the 
simple construction of the particular spline functions 
from one sampling point to another offers an efficient 
implementation in the robot control for further steps 
in the integration of track motions in the motion 
control of industrial robots.  
The interpolation of the sampling points on the linear 
track is an important step in the achieving of highly 
accurate robotic systems. The quasi-continous scan of 
the robot’s TCP position during a movement along the 
linear track could awake the impression, that due to 
this exact measurement of the TCP, no interpolation is 
needed. But it gives only information for one robot 
joint configuration. To get a general predicion about 
arbitrary robot positions, e.g. for correcting robot 
programs the base frame positions of the robot have to 
be interpolated. For this, the calculated base frame 
coordinates, given through the measurement of the 
robot in 10 different points on one linear track 
position are taken as sampling points for the 
interpolation and not the measured points. For 
comparing the results for this interpolation test it was 
neccessary to have one robot position and not the 
robot base interpolated. 
A further step in this project will be the analysing of 
three-dimensional interpolation methods to avoid 
inaccuracies caused by the disjunction of the 3-dimen-
sional movement to 3x1-dimensional movements.  
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