Seria ELECTRONICĂ și TELECOMUNICATII
 TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 1, 2006

New Control for Charge Pump Buck Converter

Alexandru Lazar ${ }^{1}$, Mihail Florea ${ }^{1}$, Dimitrie Alexa ${ }^{1}$, Luminita Camelia Lazar ${ }^{2}$, Georgian Alexandru Lazar ${ }^{1}$

Abstract

The paper proposes a new voltage control methodology for the "Charge Pump Buck Converter". During each commutation, the converter pumps a defined charge to the load circuit. The original circuit was improved and is able to control the output current both through the switching frequency and through the amount of electrical charge which is delivered to the load during each commutation. The control through the charge is very efficient for low rates between output voltage and input voltage. The main equations that can be used for the converter's design are also presented in the paper.

Keywords: dc/dc power converter

I. INTRODUCTION

The circuit presented in this paper tries to respond to present dc/dc converters' demands: high reliability, fast transient response and small values for the passive L-C components involved both in the converter topology and in the dc output filter's circuit. The circuit presented in Fig. 1 assures high reliability and a less power switcher's stress due to zero current switch (ZCS) for all turn off commutations. The output frequency of the output current pulses is two times greater than the devices' switching freque variation.

II. OPERATION PRINCIPLES AND OPERATION

The circuit scheme of the proposed converter is shown in Fig.1. The circuit is composed by switches $\mathrm{S}_{1} \div \mathrm{S}_{4}$ and capacitor C , which is equivalent to a controlled switch, the equal inductances $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}$ and the switches S_{5} and S_{6} used as controlled turn on diodes. One time the switches S1 and S3 are turned on and the switches S_{2} and S_{4} are turned off and the input current i_{i} (Fig.1) flows through inductance L_{1}. When the voltage across S_{5} riches a defined value ($u_{S 5}=U_{X} \geq 0$), the S_{5} is turn on and the current $i_{L 1}$ is transferred through device S_{5}. The other time the switches S_{2} and S_{4} are turned on and the switches S_{1} and S_{3} are turned off and the input current i_{i} flows through inductance L_{2}. Device S_{6} will assure the current flows through inductance L_{2} in the same
conditions as device S_{5}. During the commutation process, the voltage across capacitor C varies between the limits $\pm\left(U_{i}+U_{X}\right)$ where U_{X} represents the positive voltage across S_{5} or S_{6} that determines the turn on command of these devices and U_{i} is the input dc voltage.

Figure 1. Proposed circuit topology
With respect to the shape of the inductance current $i_{L 1}$ and $i_{\text {L1 }}$, two conduction modes can be performed:

- Discontinuous operation mode, when the current through the inductor L_{1} or L_{2} has zero value intervals.
- Continuous operation mode, when the current through the inductor L_{1} or L_{2} has no zero value intervals.

III. DISCONTINUOUS MODE OPERATION

Discontinuous operation mode is described in Fig.2. There are six stages. The voltage across the capacitor C , the currents $\mathrm{i}_{\mathrm{S} 1}=\mathrm{i}_{\mathrm{S} 3}$, the voltage $\mathrm{u}_{\mathrm{S} 5}$ and the current $i_{\mathrm{S} 5}$ are plotted with continue line the current $\mathrm{i}_{\mathrm{L} 2}$ and the voltage u_{56} are plotted with dot line.

D.1. The First stage

The First stage $\left[t \in\left(\mathrm{t}_{0 \mathrm{~d} 1} ; \mathrm{t}_{1 \mathrm{~d} 1}\right)\right]$ starts at $\mathrm{t}_{0 \mathrm{~d} 1}$ when S_{1} and S_{3} are soft (ZCS - zero current switch) turned on. The voltage across capacitor C at point $\mathrm{t}_{0 \mathrm{~d} 1}$ is $-\left(U_{i}+U_{X}\right)$. In this stage, the resonant $\mathrm{L}_{1}-\mathrm{C}$ circuit

[^0]assures a resonant charge of the capacitor C , from $-\left(U_{i}+U_{X}\right)$ to $+\left(U_{i}+U_{X}\right)$. For this stage the input current $i_{i}(t)$ is equal to inductance current $i_{L 1}(t)$ (Fig.2). The equivalent circuit for this stage is plotted in Fig.3. The equations which describe the behaviour of the circuit are:

Fig. 2. Discontinuous mode circuit operation

$$
\begin{equation*}
U_{i}=u_{C}(t)+u_{L 1}(t)+U_{0} \tag{1}
\end{equation*}
$$

We suppose that the input voltage U_{i} and the output voltage U_{0} have constant DC values.
The relations (2) are also available.
$u_{L 1}(t)=L_{1} \frac{d i_{L 1}(t)}{d t} \quad u_{C}(t)=\frac{1}{C} \int i_{L 1}(t)$

Fig. 3. Equivalent circuit for stage 1
Relations (2) are inserted in equation (1) and equation (3) might found out:

$$
\begin{equation*}
\frac{d^{2} i_{L 1}(t)}{d t}+\omega_{0}^{2} i_{L 1}(t)=0 \quad \text { where } \quad \omega_{0}^{2}=\frac{1}{L_{1} C} \tag{3}
\end{equation*}
$$

At the point $\mathrm{t}_{0 \mathrm{~d} 1}=0$ the values of the current through the inductance and voltage across capacitor C are:

$$
i_{L}\left(t_{0 d 1}=0\right)=0 \text { and } u_{C}\left(t_{0 d 1}=0\right)=-\left(U_{i}+U_{X}\right)
$$

From equation (1) the voltage across inductance, at point $\mathrm{t}_{\mathrm{dd} 1}$ is :

$$
\begin{equation*}
u_{L}\left(t_{0 d 1}=0\right)=U_{i}-u_{C}\left(t_{0 d 1}\right)-U_{0}=2 U_{i}+U_{X}-U_{0} \tag{5}
\end{equation*}
$$

Solving equation (3) according to the initial conditions (4) and (5), the main circuit's electric parameters may be found out:

$$
\begin{align*}
& i_{L}(t)=C \omega_{0}\left(2 U_{i}+U_{X}-U_{0}\right) \sin \omega_{0} t \\
& u_{C}(t)=U_{i}-U_{0}-\left(2 U_{i}+U_{X}-U_{0}\right) \cos \omega_{0} t \tag{6}\\
& u_{L}(t)=\left(2 U_{i}+U_{X}-U_{0}\right) \cos \omega_{0} t
\end{align*}
$$

$$
\begin{equation*}
u_{S 5}(t)=-U_{0}-\left(2 U_{i}+U_{X}-U_{0}\right) \cos \omega_{0} t \tag{7}
\end{equation*}
$$

At the point $\mathrm{t}_{0 \mathrm{~d} 1}=0$, the voltage across switch S_{5} is $-\left(2 U_{i}+U_{X}\right)$ and represents the maximum reverse voltage of this device. At the point $\mathrm{t}_{1 \mathrm{~d} 1}$, the voltage across switch S_{5} is $U_{X} \geq 0$, and S_{5} is turn on. The point $t_{1 d 1}$ can be found out from equation (7):

$$
\begin{equation*}
t_{1 d 1}=\frac{1}{\omega_{0}} \arccos \left(-\frac{U_{0}+U_{X}}{2 U_{i}+U_{X}-U_{0}}\right) \tag{8}
\end{equation*}
$$

At the point $\mathrm{t}_{1 \mathrm{~d} 1}$ the voltage across capacitor C has a maximum value of:

$$
\begin{equation*}
u_{C}\left(t_{1 d 1}\right)=U_{i}+U_{X} \tag{9}
\end{equation*}
$$

The capacitor C must be a bipolar one with a breakdown voltage larger than $\left(U_{i}+U_{X}\right)$.
The maximum current $\mathrm{I}_{\mathrm{LMd}}$ through the inductance is performed when $\omega_{0} \mathrm{t}=0.5 . \pi$ (from equation 6).
At point $\mathrm{t}_{1 \mathrm{~d} 1}$ the current $\mathrm{I}_{1 \mathrm{~d} 1}$ through the inductance L_{1} may be found out from equations (6) and (8).

$$
\begin{gather*}
I_{L M d}=i_{L 1}\left(\frac{\pi}{2 \omega_{0}}\right)=C \omega_{0}\left(2 U_{i}+U_{X}-U_{0}\right) \tag{10}\\
I_{1 d 1}=i_{L 1}\left(t_{1 d 1}\right)=2 C \omega_{0} \sqrt{U_{i}^{2}+U_{i} U_{X}-U_{i} U_{0}-U_{0} U_{X}} \tag{11}
\end{gather*}
$$

In case $U_{X}=0, \mathrm{~S}_{5}$ is soft turn on, and it behaves as a diode.

D.2. The Second stage

The Second stage [$\left.t \in\left(\mathrm{t}_{1 \mathrm{~d} 1} ; \mathrm{t}_{2 \mathrm{~d} 1}\right)\right]$ starts at point $\mathrm{t}_{1 \mathrm{~d} 1}$ when the voltage across capacitor C is $\left(U_{i}+U_{X}\right)$, switch S_{5} turns on and the currents through S_{1} and S_{3} becomes zero. During this stage the devices S_{1} and S_{3} may be soft (ZCS) turned off before point $\mathrm{t}_{2 \mathrm{~d} 1}$. The currents $i_{L 1}(t)$ and $i_{S 5}(t)$ are equal and linearly decrease to zero in the time interval $\mathrm{t}_{1 \mathrm{~d} 1} \div \mathrm{t}_{2 \mathrm{~d} 1}$. The equivalent circuit for this stage is presented in Fig. 4.

Figure 4. Equivalent circuit for stage 2
The equations that describe the behaviour of the circuit are:

$$
\begin{align*}
& u_{L 1}(t)=L_{1} \frac{d i_{L 1}(t)}{d t} \quad t \in\left[t_{l d l}, t_{2 d I}\right] \tag{12}\\
& u_{L 1}(t)+U_{0}=0
\end{align*}
$$

Solving the equation (12) according to the restriction presented in relation (11), the current variation through inductance L, may be found out:

The voltage across switch S_{5} (Fig. 1.), is:

$$
\begin{gather*}
i_{L}(t)=-\frac{U_{0}}{L_{1}}\left(t-t_{1 d 1}\right)+2 C \omega_{0} \sqrt{U_{i}^{2}+U_{i} U_{X}-U_{i} U_{0}-U_{0} U_{X}} \\
t \in\left[t_{1 d 1}, t_{2 d 1}\right] \tag{13}
\end{gather*}
$$

From the equation (13), the point $\mathrm{t}_{2 \mathrm{~d} 1}$ when the current $\mathrm{i}_{\mathrm{L} 1}(\mathrm{t})$ becomes zero, may be found out:

$$
\begin{equation*}
t_{2 d 1}=t_{1 d 1}+\frac{2}{\omega_{0} U_{0}} \sqrt{U_{i}^{2}+U_{i} U_{X}-U_{i} U_{0}-U_{0} U_{X}} \tag{14}
\end{equation*}
$$

D.3. The Third stage

The third stage $\left[t \in\left(\mathrm{t}_{2 \mathrm{~d} 1} ; \mathrm{t}_{3 \mathrm{~d} 1}\right)\right]$ is characterized by zero current values for all semiconductor devices. In this stage the load is fed by the energy stored in the output capacitor C_{0}, and by the current which flows through L_{2}. The next three stages are associated to the contribution of the current $i_{L 2}$ to the output current i_{T}, (Fig.1).

D.4. The Fourth stage

The fourth stage $\left[\mathrm{t} \in\left(\mathrm{t}_{\mathrm{od} 2} ; \mathrm{t}_{1 \mathrm{~d} 2}\right)\right]$ starts at $\mathrm{t}_{0 \mathrm{~d} 2}$ when S_{2} and S_{4} (Fig.1) are soft (ZCS - zero current switch) turned on. In this stage, the resonant L_{2} - C circuit assures a resonant charge of the capacitor C , from $+\left(U_{i}+U_{X}\right)$ to $-\left(U_{i}+U_{X}\right)$. For this stage the input current $i_{i}(t)$ is equal to inductance current $i_{L 2}(t)$. Due to this fact, the equivalent circuit from Fig. 3 is valid, but the capacitor C is connected in a reversed position. All the equations presented till now are valid with the correction (15).

$$
\begin{align*}
& u_{C}(t) \rightarrow-u_{C}(t) \\
& L_{1} \rightarrow L_{2} \\
& i_{L 1}(t) \rightarrow i_{L 2}(t) \tag{15}\\
& t_{0 d 1} \rightarrow t_{0 d 2}=0.5 \cdot\left(t_{0 d 1}+t_{3 d 1}\right) \\
& t_{n d 1} \rightarrow t_{n d 2} \quad \text { were } n=1 ; 2 ; 3 ;
\end{align*}
$$

The currents behaviour is similar to those described in the first stage. At the point $\mathrm{t}_{1 \mathrm{~d} 2}$ the voltage across capacitor C is $-\left(U_{i}+U_{X}\right)$ (see Fig. 1 and Fig,2). The devices S_{2} and S_{4} naturally turn off because the current flow is transferred to device S_{6}.

D.5. The Fifth stage

In this stage $\left[t \in\left(\mathrm{t}_{1 \mathrm{~d} 2} ; \mathrm{t}_{2 \mathrm{~d} 2}\right)\right]$ the current through the inductance L_{2} (Fig.1, 2 and 3) linearly decreases to zero. The equations (12), (13), (14) and the equivalent circuit plotted in Fig. 4 are also valid. The turn off command for the devices S_{2} and S_{4} (Fig.1) may be performed in this stage too.

D.6. The Sixth stage

This stage is similar to the third stage (Fig.2). The currents through the inductance L_{2} and through the switch S_{6} are zero, and the load is fed by the energy stored in the output capacitor C_{0} and by the current $\mathrm{i}_{\mathrm{L} 1}(\mathrm{t})$.

IV. ENRGETIC EVALUATION

During the first and the fourth stage, the input source U_{i}, delivers to the circuit a charge quantity equal to:
$\Delta Q=\int_{t_{0 d 1}}^{t_{1 d 1}} i_{L 1}(t) d t=C\left[u_{C}\left(t_{1 d 1}\right)-u_{C}\left(t_{0 d 1}\right)\right]=2 C\left(U_{i}+U_{X}\right)$
That means that for each turn on operation, the input source U_{i}, delivers to the circuit a quantity of energy ΔW, equal to:

$$
\begin{equation*}
\Delta W=\int_{t_{0 d 1}}^{t_{\text {td1 }}} U_{i} \cdot i_{L 1}(t) d t=U_{i} \cdot \Delta Q=2 C U_{i}\left(U_{i}+U_{X}\right) \tag{17}
\end{equation*}
$$

The power absorbed from the input source is:

$$
\begin{equation*}
P_{i}=\Delta W f=2 f C U_{i}\left(U_{i}+U_{X}\right) \tag{18}
\end{equation*}
$$

where f is the frequency of 'switch on' signals, equal to the frequency of current pulses of the output current $i_{T}(t)$. This frequency is two times greater than devices $\mathrm{S}_{1} \div \mathrm{S}_{6}$ switching frequency.

$$
\begin{equation*}
f=\frac{1}{T}=\frac{1}{t_{0 d 2}-t_{0 d 1}}=\frac{2}{t_{3 d 1}-t_{0 d 1}} \tag{19}
\end{equation*}
$$

If we consider no loses in the circuit, the output power P_{0} is equal to the input power P_{i}.

$$
\begin{equation*}
P_{0}=P_{i} \Leftrightarrow U_{0} I_{0}=2 f C U_{i}\left(U_{i}+U_{X}\right) \tag{20}
\end{equation*}
$$

If it is imposed a fix dc output voltage, the control of the average output current I_{0}, may be done either through the switch frequency ' f ' (if devices S_{5} and S_{6} are turned on when the voltage across them riches a imposed value $U_{X} \geq 0$ eq.21), or through the voltage level, U_{X}, across devices S_{5} and S_{6}, that performs the turn on command of these devices (considering a constant switch operation-eq.22).

$$
\begin{gather*}
I_{0}=\frac{2 C U_{i}\left(U_{i}+U_{X}\right)}{U_{0}} \cdot f \tag{21}\\
I_{0}=\frac{2 C f U_{i}}{U_{0}} \cdot U_{X}+\frac{2 C f U_{i}^{2}}{U_{0}} \text { where } U_{X} \geq 0 \tag{22}
\end{gather*}
$$

The conclusion which results from equations 21 and 22 is that the control of the converter presented in Fig. 1 can be linearly done. Also it is possible to control the converter both through frequency and the voltage's value U_{X}. In this case a very good dynamical behaviour for the pulsed output current i_{T}, can be obtained.

V. CONTINOUS MODE OPERATION

For continuous mode operation, the switch frequency must be larger than f_{DM}, defined in the equation (23). In this case, the current through the inductances L_{1} and L_{2} will never have a zero value. The stages three and six from Fig.2, are not present any more.

$$
\begin{equation*}
f_{M D}=\frac{2}{t_{2 d 1}-t_{0 d 1}}=\frac{2}{t_{2 d 2}-t_{0 d 2}} \tag{23}
\end{equation*}
$$

The behaviour of the circuit can be described in four stages, only two of them being different (Fig.5). The pulsed output current, (Fig. 1), is the sum between the currents $i_{L 1}$ and $i_{L 2}$.
The first stage $\left[t \in\left(\mathrm{t}_{\mathrm{cc} 1} ; \mathrm{t}_{\mathrm{cc} 1}\right)\right]$ may be defined almost identically like in the discontinuous mode operation. The equivalent circuit is also the same (Fig. 3) and the
equations which described the circuit behaviour are similar to equations (1), (2) and (3).
The initial conditions are different. These are:
$i_{L 1}\left(t_{0 c 1}\right)=I_{L 0} \quad$ and $\quad u_{C}\left(t_{0 c 1}\right)=-\left(U_{i}+U_{X}\right)$
According to these initial values, the relations of the main circuit's electric parameters may be found out:

$$
\begin{align*}
& i_{L 1}(t)=C \omega_{0}\left(2 U_{i}+U_{X}-U_{0}\right) \sin \omega_{0} t+I_{L 0} \cos \omega_{0} t \\
& u_{L 1}(t)=\left(2 U_{i}-U_{0}\right) \cos \omega_{0} t-\omega_{0} L I_{L 0} \sin \omega_{0} t \tag{25}\\
& u_{C}(t)=U_{i}-U_{0}-u_{L 1}(t)
\end{align*}
$$

where $\mathrm{I}_{\mathrm{L} 0}$ represents the initial (or minimal) value of the current through the inductance L_{1} or L_{2} (equation 24).

Fig. 5. Continuous mode circuit operation
At the point $\mathrm{t}_{1 \mathrm{cl} 1}$ the voltage across S_{5} and the voltage across the capacitor C becomes equal to U_{X} and $+\left(U_{i}+U_{X}\right)$, respectively. According to equations (25), the equation (26) might be written: $\omega_{0} L I_{L 0} \sin \omega_{0} t_{1 c}-\left(2 U_{i}+U_{X}-U_{0}\right) \cos \omega_{0} t_{1 c}=U_{0}+U_{X}(26)$
Also, at the point $t_{1 c 1}$, the current through the inductance L_{1}, will be :
$I_{1 c}=C \omega_{0}\left(2 U_{i}+U_{X}-U_{0}\right) \sin \omega_{0} t_{1 c}+I_{L 0} \cos \omega_{0} t_{1 c}$
The second stage $\left[\mathrm{t} \in\left(\mathrm{t}_{1 \mathrm{cl}} ; \mathrm{t}_{2 \mathrm{cl}}\right)\right]$ starts at the point $t_{1 c 1}$, when the current through the devices S_{1} and S_{3} is transferred through the switch S_{5}. At the point $t_{2 c 1}$ a new turn on commutation of the devices S_{1} and S_{3} is performed. The point $\mathrm{t}_{2 \mathrm{cl}}$ is given by the equation:

$$
\begin{equation*}
t_{2 c 1}=t_{0 c 1}+2 T=0+2 T=2 T \tag{28}
\end{equation*}
$$

where $(\mathrm{T})^{-1}$ is the circuit output current (i_{T}) pulses frequency. The current through the inductance L, has a similar equation as in the discontinuous mode operation:

$$
\begin{equation*}
i_{L 1}(t)=-\frac{U_{0}}{L_{1}}\left(t-t_{1 c}\right)+I_{1 c 1} \quad t \in\left[t_{1 c 1}, t_{2 c 1}\right] \tag{29}
\end{equation*}
$$

At the point $\mathrm{t}_{2 \mathrm{cl}}$ the current through inductance L_{1} will have again the value $\mathrm{I}_{\mathrm{L} 0}$. Combining (28) with (29), results:

$$
\begin{equation*}
I_{L 0}=I_{1 c}-\frac{U_{0}}{L_{1}}\left(2 T-t_{1 c}\right) \tag{30}
\end{equation*}
$$

From equations (26), (27) and (30), the values of $\mathrm{t}_{\mathrm{lcl}}$ and $\mathrm{I}_{\mathrm{L} 0}$ may be found out.

The stages tree and four are similar to the stages one and two. In this case the current flows through $\mathrm{S}_{2}, \mathrm{~S}_{4}$, L_{2} and S_{6}. The position of the point $\mathrm{t}_{0 \mathrm{cc} 2}$ is:

$$
\begin{equation*}
t_{0 c 2}=0.5 \cdot\left(t_{0 c 1}+t_{2 c 1}\right) \tag{31}
\end{equation*}
$$

In the continuous operation mode, the relations $(20 \div 22)$ are preserved, so both control methodologies methodology may be used to assure the needed average output current I_{0}.
Continuous mode of operation is recommendable due to the less output current pulse ripple.

VI. CONCLUSIONS

The circuit presented in this paper has the following advantages comparing to the conventional buck circuit:

- The output current depends on the circuit switch frequency, on the value of capacitor C and on a dc control voltage (which control in fact the voltage variation across the capacitor C). Because the dc output voltage is controlled only by the converter's output current, a very small ratio between output voltage U_{0} and input voltage U_{i} may be achieved. These small rates are difficult to be assured by the standard Buck converter at a high frequency.
- Using both control modes (frequency and voltage) a very good dynamic of the output current may be obtained.
- The circuit assures turn off soft commutations for all the devices, and the output current frequency is two times greater than the switching frequency for each device. The devices involved in the circuit may be selected only according to their turn on capabilities. For high power operation, fast thyristors may be used.
- The possibility to design and select the inductances L_{1} and L_{2} in relation to capacitor C , gives the designer the opportunity to select a lesser value for the inductances than in the case of standard Buck converter for the same performances.
The circuit can be used for both high power and small power as well.

REFERENCES

[1] A. Lazar, M. Florea, D. Alexa and Lumminita-Camelia Lazar, "Charge Pump Buck Converter",The ETC'04 Symposium, Timisoara, Romania oct. 2004
[2] Robert W. Erickson; Dragan Maksimovic. "Fundamentals of Power Electronics", Kluwer academic Publishers 2001
[3] Haci Bondur, A. Faruk Bakan : "An Improved ZCT-PWM DC-DC Converter for High-Power and Frequency Applications," IEEE Trans. On Industrial Electronics, vol.51, no.1, Feb.2004, pg.89-95
[4] Ned Mohan, Tore M. Undeland, William P. Robbins: "Power Electronics", John wiley\&Sons, Inc
[5] Nicola Femia, Giovanni Spagnuolo, Massimo Vitelli : "Steady-State Analysis of Hard and Soft Switching DC-to-DC Regulators;" IEEE Trans. On Power Electronics, vol. 18, no.1, Jan. 2003, pg.51-64.

[^0]: ${ }^{1}$ Facultatea de Electronică şi Telecomunicații, Iasi,
 B-dul Carol I, Nr. 11, IASI - 700506; e-mail: alazar@etc.tuiasi.ro
 ${ }^{2}$ Institutul de Informatică Teoretică Iaşi
 B-dul Carol I nr. 8, 700505, Iaşi,

