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Abstract – Based on an algorithm for frequent pattern 
recognition, this paper presents the implementation of a 
software application and its respective results in 
analyzing real-time telecommunication alarm logs. The 
software application was developed in OMNeT++ 
(Objective Modular Network Testbed in C++) 
simulation environment using ACE (Adaptive 
Communication Environment) toolkit. Different 
working scenarios are presented in order to simulate 
extensions of the frequent pattern recognition algorithm: 
the introduction of time-constraints between alarms and 
the construction of a Petri net whose transitions are 
labeled by recognized frequent patterns of alarms. 
Keywords: pattern recognition, OMNeT++ simulation 
environment, ACE toolkit. 
 

I. INTRODUCTION 
 

The volume of information transported by 
telecommunication networks increases and also the 
number of specific alarms in telecommunication 
networks increases. Therefore it became necessary to 
study different alarm correlation techniques in order 
to guarantee that all alarms are treated accordingly to 
the telecommunication networks supervision policy 
[3]. One of the alarm correlation techniques is to use 
data-mining into alarm logs to search for possible 
patterns (chronological sequences of alarms, also 
called chronicles) that repeat themselves with a 
certain frequency and therefore may indicate a 
correlation between the respective alarms. Frequent 
pattern recognition (chronicle recognition [4]) is used 
to determine possible alarm correlations but does not 
determine the relevance of these alarms. It is in the 
scope of work of the network operator or of the 
expert-system for network supervision to further 
analyze alarm correlations and to establish relevance 
for the recognized patterns. 
For the purpose of analyzing real-time alarm logs, 
such as telecommunication alarm logs, we developed 
the theoretical aspects for a frequent pattern 
recognition algorithm, presented in a previous paper 
[8], and now we present the practical aspects 
following a software application that implements the 
given algorithm and its extensions. We also present in 
this paper different working simulation scenarios that 

were used for the purpose of assessing some 
performance aspects of the algorithm [7] and of its 
extensions by the introduction of time-constraints [2], 
and Petri net analysis [1]. 
To implement the software application we used the 
OMNeT++ (Objective Modular Network Testbed in 
C++) simulation environment [10], previously 
presented in paper [9]. For the real-time 
communication modules we used ACE (Adaptive 
Communication Environment) toolkit [5], [6], [11]. 
ACE is an open-source software of approximately 
135.000 SLOC (Source Lines Of Code). 
 

II. SIMULATION ENVIRONMENT 
 
In the field of telecommunication network analysis 
there are different simulation environments with 
specific facilities for addressing different simulation 
needs. For example, commercial simulation 
environments such as COMNET, OPNET, 
Hyperformix Workbench, Mesquite CSIM and 
Simscript address industrial simulation needs, while 
academic simulation environments such as Smurph, 
NetSim++, OMNeT++ address laboratory and non-
commercial needs. For our analysis we have chosen 
the open-source distribution of OMNeT++ (latest 
binary 3.2p1 released on January 2006), which is well 
supported and documented on the respective 
community web site [10]. We mention though that 
since last year OMNeT++ community offers also a 
commercial version (called OMNEST) which 
addresses industrial simulation needs. OMNeT++ is a 
simulation environment based on object-oriented 
technology and adapted for discrete event systems.  
The main advantages of OMNeT++ are the following: 
• It is not necessary to study new specific 

programming languages for simulation, since it 
integrates C++ programming code, 

• It offers a complete GUI (Graphical User 
Interface) to implement and supervise processes 
and verify software functionality, 

• Simulation is platform-independent and portable 
on various operating systems, including win32-
based and unix-based distributions, 
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• Structures can be quickly modified using multiple 
parameterization facilities, without code impact, 

• Predefined classes and libraries are under 
continuous development and improvement in 
open-source software development. 

Examples of simulations already implemented in 
OMNeT++ include queuing systems, communication 
protocols and other discrete event dynamic systems 
simulations (INET Framework, Mobility Framework, 
IPv6Suite etc.).  
OMNeT++ offers a modular architecture where 
components are developed in C++ programming 
language and then assembled into higher level 
components using NED (Network Description 
Language). NED is implemented as part of the 
simulation environment and contains many 
programming facilities and graphical definitions for 
implementing network topology and parameterization 
of processes. 
The main components of OMNeT++ are the 
following: 
• Central simulation library, 
• NED language compiler (nedc), 
• GUI for network topology (GNED), 
• Simulation interface (Tkenv), 
• Command-line interface for simulation execution 

(Cmdenv), 
• Graphical application for simulation results 

(Plove), 
• Supporting toolkits for simulation development. 
The modules can be dynamically modified during a 
simulation in order to take into consideration the 
evolution of the network topology. 
The modules can have an arbitrary number of 
connections that are developed based on input-output 
ports. The usage of input-output ports allows further 
reusability of modules in more complex connections. 
The input ports detect the presence of messages and 
following the validation of some execution conditions 
other messages are presented at the output ports.  
In our simulation, messages that are transported in the 
network are in fact alarms or alarm patterns that will 
be transiting the application as tokens. 
 

III. APPLICATION DESIGN 
 
The general architecture of the software application 
for analyzing telecommunication alarm logs consists 
of the following specialized modules: 
• Collector module – with the purpose of reading 

alarm logs using a specific collector interface 
with the network elements, 

• Pattern Recognition module – with the purpose 
of generating candidate patterns, calculating 
pattern frequency and retaining frequent patterns, 

• Pattern Analysis module – to analyze collected 
and generated data in order to consolidate results. 

Frequent patterns of alarms that are discovered in the 
recognition process are presented individually to the 
operator to further analyze alarm correlation. 

Fig. 1 presents the general architecture of the software 
application for frequent pattern recognition: 
 

 
 
The detailed architecture of the software application 
contains the functional components and sub-modules. 
Our functional implementation of the pattern 
recognition process is presented in Fig. 2: 

 
 
Breakpoints are represented in Fig. 2 by the means of 
the ⊗  symbol and will be used in determining the 
different simulation scenarios, which will be detailed 
in the next paragraph. 
A brief description of the modules and their 
functionality is necessary in order to understand the 
simulation scenarios we will later use. 
The Collector module is located at the entry point of 
the application and has the main role of mediation and 
flow dispatcher between the network elements and the 
Pattern Recognition module. The software 
implementation of the Collector module can be 
distributed in alarm concentrator units or centralized 
in a network supervision unit. In our OMNeT++ 
implementation we centralized alarm collection in a 
central unit. The internal architecture of the Collector 
module uses the ACE toolkit as a library of platform-
independent adaptive communication functions. ACE 
toolkit has the advantage of being portable on 
different operating systems, contributing to the overall 
portability of the software application. Different 
network supervision systems are based on different 
operating systems and therefore using a common 
library is important for reusability aspects. 
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Alarm data is collected by pull transfer mode which is 
a synchronized extraction of data block piloted by the 
Collector module. Generally the communication 
protocol between network elements and Collector 
module is constructor dependent. Our simulation uses 
FTP (File Transfer Protocol) to retrieve buffered 
alarm logs. Flow dispatcher further adapts and 
negotiates alarm blocks transfer through the upper 
level of the application. Alarm messages are 
transmitted and consumed by the software modules 
under the form of tokens. 
Pattern Recognition module realizes the algorithm in 
its initial description: based on some assembly 
techniques it generates candidate patterns and then 
applies a formula for frequency calculation and retain 
only the frequent patterns to be presented to the 
operator and/or to the Pattern Analysis module. 
Different assembly techniques may be used to 
determine patterns, depending on the prerequisite 
relations between alarms.  
Serial assembly may be used if there is no ordering 
between alarms, neither by priority nor by 
chronology. This generates sequences of unordered 
alarms. For example, a sequence of alarms (a,b,c) 
serial assembled with a repeating alarm b results in 
the sequence (a,b,c,b). 
Parallel assembly takes into consideration a certain 
priority between alarms, dictated by network 
supervision policy. This generates sequences of 
ordered alarms. For example, a sequence of alarms 
(a,b,c) parallel assembled with a repeating alarm b 
results in the sequence (a,b,b,c). This presumes that 
network supervision policy considered that a alarm 
has priority over b alarm, and b alarm has priority 
over c alarm. 
Once the candidate patterns are generated, the 
frequent pattern recognition algorithm calculates the 
occurrence frequency of the candidate pattern using 
expression (1): 
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where p is the candidate pattern (included in the L 
alarm log) and ai is the generic term for alarm 
occurrences included in this pattern (i being the alarm 
index in the pattern). 
The algorithm then selects and retains only frequent 
patterns ( f ≥ fmin ) to be further analyzed.  
To explain the pattern recognition algorithm, we 
consider the alarm log given by expression (2): 
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This considered alarm log L(a,b,c) contains 
occurrences of alarms a, b and c (observe that at a 
certain time alarms b and c occur simultaneously, 

which is represented by a superposition of those 
alarms). 
At each step, the algorithm generates candidate 
patterns of superior order, starting from the 
elementary order (see Fig. 3 and Fig. 4). Then there is 
a frequency calculation based on expression (1). To 
explain the expression (1), we may calculate the 
occurrence frequency for pattern (a,c,c) in the alarm 
log L given by expression (2): 
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Serial assembly over L alarm log with a given 
minimal frequency fmin=2 has the following results, 
represented in Fig. 3: 
 

 
 
Given the same alarm log and frequency, parallel 
assembly results in the following frequent patterns, 
represented in Fig. 4: 
 

 
 
The results of the frequent pattern recognition 
algorithm presented previously in Fig. 3 and Fig. 4 
are based on simple hypothesis regarding assembly 
techniques and do not take into consideration 
temporal constraints between alarms. Therefore, the 
first major extension of the algorithm consists in 
defining and using temporal constraints in the pattern 
recognition process. 
Temporal constraints between alarms are introduces 
by the following notions: given an alarm log that 
contains alarms a and b, the temporal constraint 
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between a and b is the superior limit of the temporal 
distance between a and b with respect to their 
occurrences in the pattern. For example, if we 
consider the occurrence [(a,ta)(b,tb)] the temporal 
distance would be T(a,b)=tb-ta. 
We define a temporal constraint parameter c(T) that is 
the ratio between a and b occurrences that verify 
expression T over the total number of a and b 
occurrences in the pattern: 
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Following the introduction of the temporal constraints 
and the parameter in expression (4), we construct the 
temporal constraint procedure as follows: 
 
Procedure Tconstraint ));(,,( min Tcba  

/* Temporal constraint calculations */ 

Input  

[ ]{ }nitbtap i
b

i
aab ..1),,)(,( ==  /* pattern */ 

 )(min Tc  /* given minimal constraint */ 
Output  

)(TC  /* constr. set verifying )(min Tc */ 

{  
/* Initialize constraint set */ 

;)( NULLTC =  

/* Initialize constraint set space */ 

{ };..1 nittS i
a

i
b =−=  

/* Calculate temporal constant k */ 

 [ ];)(min nTck ⋅=  

/* Sorting temporal space */ 

Sorting { };...1 nxxS ≤≤=  

/* Composing and verifying )(min Tc  */ 

For +++−≤= iknii ;1;1  

    For ++≤−+= jnjkij ;;1  

          { };,)()( ji xxTCTC ∪=  

/* Return constraint set */ 

Return )(TC ; 

} 
 
The introduction of the temporal constraint procedure 
in the Pattern Recognition module further refines the 
recognized patterns. A situation where temporal 
constrains show their necessity is if the alarm log 
contains occurrences of a pattern in a relatively closed 
time frame and then also contains the same pattern 
detected with a very large time frame. To speed up the 
algorithm we define a minimal time frame during 
which patterns may be recognized and so we will not 

need to memorize a pattern once it was already 
recognized. This scenario will constitute one of the 
performance tests of the algorithm; detailed results are 
presented in the following paragraph. 
Once frequent patterns are recognized we want to 
perform a first analysis of these patterns, related 
essentially to finding consequent patterns or patterns 
that include each other. One of the possible 
approaches for this analysis is the construction of a 
Petri net which transitions are labeled with the 
previously recognized frequent patterns, and then we 
want to analyze the marking situations in this Petri 
net. Mixing pattern recognition with Petri net 
assembly is a first step toward Pattern Analysis and it 
provides important information about the recognized 
patterns. 
One of the main advantages of the Pattern Analysis 
module is that it operates almost independently from 
the Pattern Recognition module. Almost 
independently because it takes inputs from the 
recognition algorithm during the assembly of the Petri 
net and then helps operate on the recognition 
algorithm. Petri net simply provides results of the 
eventually consequent patterns and therefore 
simplifies some calculations of higher level candidate 
patterns during the algorithm. The theoretical bases of 
mixing Petri net assembly and pattern recognition are 
detailed in [7].  
 

IV. PERFORMANCE RESULTS 
 

With the previous considerations, we constitute a list 
of scenarios activating or deactivating functional sub-
modules of the software application. 
The first scenario (further referred as Scenario 1), 
consists of a simple execution of the pattern 
recognition algorithm, without temporal constraint 
procedure and without activating Pattern Analysis 
module. This provides primary results that can be 
compared with next scenarios. 
The second scenario we use (further referred as 
Scenario 2), consist of the activation of temporal 
constraint procedure during the pattern recognition 
algorithm. Referring to Fig. 2, Scenario 2 is obtained 
by activating the ⊗  symbol between the Candidate 
Generator procedure and the Temporal Constraint 
procedure. As we expected, the introduction of the 
algorithm does filtrate some patterns that are 
recognized rather late with respect to a given time 
frame. This leads to better performance of the overall 
software application. 
The third scenario (noted Scenario 3), activates the 
independent module of Petri net assembly and 
analyses possible inconsistencies between the 
recognized frequent patterns. Therefore some frequent 
patterns will not be presented to the operator since 
they are included in other frequent patterns. Referring 
to Fig. 2, Scenario 3 is obtained by activating the two 
⊗  symbols that connect the Pattern Analysis module 
to the software application. As expected, this scenario 
leads to better performance of the pattern recognition. 
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All scenarios were simulated over the same input 
alarm log, in order to preserve the possible 
comparative arguments between the scenarios. 
Considering a recorder telecommunication alarm log 
of 3000 occurrences of 25 types of alarms, we start by 
executing simulations at given minimal frequencies. 
For example, we chose 25, 50, 100, 250 and 500 as 
minimal frequencies for our calculations.  
For each considered frequency we then execute the 
simulation and memorize or calculate following data: 
• Frequent alarms, 
• Generated candidate patterns, 
• Frequent patterns, 
• Simulation execution time. 
For example, Table 1 contains results for the 
simulation execution of Scenario 1: 
 
Table 1 

Patterns 
Frequency 

Frequent 
Alarms 

Candidate 
Patterns 

Frequent 
Patterns 

25 24 5817 366 

50 17 4905 108 

100 9 2892 28 

250 3 838 11 

500 1 78 0 

 
As expected, by increasing the frequency we obtain 
less frequent patterns and frequent patterns results are 
refined by the simulation scenarios. 
The synthesis graph showing frequent patterns 
evolution in relation to given minimal frequencies is 
presented in Fig. 5: 
 

 
 
Simulation time decreases by increasing minimal 
patterns frequency, which is explained by the fact that 
fewer candidate patterns are generated and calculated 
as they do not verify minimal frequency condition. At 
the extreme cases, if the desired patterns frequency is 
too high then the algorithm may stop at the first step 
of calculating single alarm frequencies. Vice-versa, by 
selecting a low frequency more and more candidate 
patterns verifies the minimum frequency and therefore 
the calculations become time-consuming and the 
simulation time increases. 
Concerning the simulation scenarios’ execution time, 
we collected the following data that is presented in 
Table 2: 
 

Table 2 
Patterns 

Frequency 
Scenario

1 
Scenario 

2 
Scenario 

3 
25 13:27 12:51 11:34 

50 03:10 02:50 02:29 

100 00:44 00:42 00:35 

250 00:28 00:25 00:22 

500 00:04 00:04 00:03 

 
The synthesis graph showing simulation scenarios 
execution time in relation to given minimal 
frequencies are presented in Fig. 6: 
 

 
 
Some comments of the performance results are 
necessary before concluding on the overall software 
application. First we notice that the implementation of 
the algorithm’s extensions is improving the simulation 
time and also improving the quality of the solution 
(less frequent patterns are recognized but the relative 
relevance of these frequent patterns is greater, either 
because a time frame for the recognition process was 
defined or because inconsistent patterns were 
eliminated from the final solution). 
Performance improvements presented above 
demonstrate the refinement of the final solution by the 
means of eliminating some intermediate solutions to 
reach a better final solution to be presented to the 
network operator. 
Further simulations on different alarms logs produced 
equivalent results, depending on the topology of the 
alarm logs. For example, the recognition algorithm 
produces faster final solutions when applied over a 
simpler alarm log with fewer occurrences of alarms. 
On the contrary, when applied over a more complex 
alarm log that contains more occurrences of alarms, 
the recognition algorithm takes longer to produce both 
intermediate (candidate patterns) and final (frequent 
patterns) solutions. 
Another aspect of these performance results is that it 
proves that the recognition algorithm itself can be 
extended with the help of theoretical contributions 
and mixing other data analysis techniques to the 
recognition process. Theoretical improvements 
include the consideration of a certain time frame 
limitation when recognizing patterns. This is 
expressed mathematically by the introduction of time 
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constraints between alarms and the physical 
application of these constraints is to filter out late 
occurrences of alarms in the considered alarm log. 
Data analysis techniques that may help obtain a better 
final solution include the Petri net assembly. As 
demonstrated in our software application 
implementation, a dedicated module that constructs 
Petri net and then provides a short analysis of the 
resulting topologies increases the performance of the 
overall application. 
It is important to mention that only some preliminary 
analysis was done with the help of the Petri net 
assembly, only for the purpose of demonstrating the 
possible application of this method for the scope of 
pattern recognition. Based on this support we may 
consider other methods for the scope of obtaining a 
better final solution of the presented algorithm. 
 

V. CONCLUSIONS 
 
The main outcome of the software application 
developed for frequent pattern recognition in alarm 
logs is that it proved a feasible implementation of the 
theoretical aspects of the recognition algorithm and 
some of its extensions. 
Using generic project management techniques we 
developed the software application to support various 
possible simulation scenarios for the purpose of 
demonstrating value-added possible extensions of the 
recognition algorithm. 
Beside the performance aspects presented in the 
previous paragraph, there are some interesting results 
about the frequent patterns themselves. For example, 
in a real-time situation analysis, we managed to detect 
a pattern that was not taken into consideration by the 
network operators, since it was collateral to the 
telecommunication network supervision policy: it was 
detected that an auxiliary power supply interruption 
caused a sequence of alarms, starting from an over-
heating alarm and leading to a pattern of 
telecommunication-related alarms. The explanation 
was simple: the auxiliary power supply connected the 
cooling system and therefore its interruption caused 
cooling system malfunction and finally lead to 
telecommunication equipment alarms. Generally this 
kind of sequences of alarms demonstrates the interest 
in pattern recognition for the telecommunication 
alarm logs: it proves that some of the recognized 
pattern may be useful in network maintenance and 
supervision.  
The most important factor in the analysis of frequent 
patterns is to focus on the initial alarm in the sequence 
of alarms. In most cases, the initial alarm represents 
the primary cause of the defect that is being signalized 
to the network operator. However, in real-time 
telecommunication systems, alarms do not always 
appear to the supervision network in the order in 
which they were produces in the network. This is 
caused mainly by alarm propagation delays that occur 
in telecommunication networks. 

One of the possible solutions to the problem of 
considering propagation delays is to register original 
occurrence time in the alarm logs (and to sort the 
alarm log in the chronological order of appearance) or 
to accept larger time slots which will induce the 
possibility of alarms that appear to be simultaneous in 
the mathematical representation prior to the 
application of the pattern recognition algorithm. 
Experts in telecommunication network supervision 
systems that consulted our software application 
concluded that frequent pattern recognition is useful 
in networks supervision and has potential towards 
further development of expert-systems applied to this 
field of expertise. Also, it was observed that the 
pattern recognition algorithm and its proposed 
extensions are theoretically applicable to other fields 
of expertise such as electrical energy network 
supervision or other event correlation systems 
analysis. 
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