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Abstract – A novel diffusion filter for low-level image 
processing is proposed. Analyzing the drawbacks of 
Gaussian convolution based regularization of partial 
derivatives equations, we propose an alternate method 
that employs anisotropic diffusion techniques to pre-
smooth an image. The new technique is developed within 
the framework of previously proposed directional 
diffusion processes. Through a statistical interpretation 
we prove that the new filter produces consistently better 
results than the original version, especially when dealing 
with oriented textures having different spatial 
frequencies. Application samples are also provided in 
the final part of the paper. 
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I. DIFFUSION FILTERS FOR IMAGE 
SMOOTHING AND ENHANCEMENT 

 
In recent years a lot of research was done for 
proposing various diffusion based image filtering and 
enhancement techniques. The simplest diffusion 
equation is the isotropic filter that relies on the 
classical heat equation to smooth an image. Let 
U(x,y,t) denote the gray level of a pixel of coordinates 
(x,y) at some instant t. The partial derivatives equation 
(PDE) that drives the diffusion process is: 
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 (1) is usually solved by iterative means and, as time 
advances, smoothed versions of the original image 

),()0,,( 0 yxUyxU =  are produced.  As pointed out 
by Koenderink [4], the solution of the isotropic 

diffusion equation at time 
2

2σ=t  is equivalent with 

a convolution between the original image and a 
Gaussian kernel of standard deviation σ : 
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Perona   and   Malik   were   the   firsts   to   consider 
anisotropic behavior for diffusion processes. They 
proposed in [5] an anisotropic diffusion equation that 
is driven by a non constant diffusivity c(|∇U(x,y,t)|). 
c(.) plays the role  of  an  edge  detector that penalizes 
the intensity of the   smoothing   process   in   regions  
where gradient norms |∇ U| are large (e.g. edges):        
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The behavior of their anisotropic diffusion equation:  
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can be more easily understood if its directional 
interpretation [6] is considered: 
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For the type of diffusivity functions proposed by 
Perona and Malik, in the edge directions -
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have a smoothing action (g(.)>0) , whereas in the 
direction of gradient vectors - ),(

U
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smoothing can take place (g’(.)>0) or, for gradient 
norms greater than the diffusion threshold K, the 
equation can behave like an inverse diffusion filter 
that enhances edges (g’(.)<0). 
The results obtained by the authors are impressive, 
edges are kept better and noise is eliminated. 
Even if edge enhancement is desired in the original 
model, Catte et al. pointed out [1] that negative 
diffusion coefficients can make the diffusion equation 
instable. They also argued the fact that if noise is 
important, edge enhancement can amplify also the 
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noise level to theoretically unbounded levels. The 
solution proposed by Catte et. al consists in pre-
smoothing the image prior to the estimation of the 
diffusivities: 
 
                ))((|)),,((| UGgtyxUc ∗∇=∇ σ         (6) 
 
The benefit of the Gaussian convolution is twofold: 
from a practical point of view influence of noise is 
diminished and, from a theoretical point of view, the 
diffusion equation becomes well posed and admits a 
unique solution. The same idea is encountered in 
more elaborate diffusion filters that were proposed 
since: the edge [8] or coherence enhancing diffusion 
[9] filters proposed by Weickert, the flow coherence 
diffusion filter we proposed in [7] etc. 
   

II. PROPOSED METHOD 
 

Addressing specific problems appearing when 
filtering, restoring or enhancing images composed of 
oriented patterns, we proposed in [6] an efficient 
method for low level processing of this type of 
images. The PDE model for our filter was: 
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where 
→
ξ  denotes the eigenvector corresponding to 

the smallest eigenvalue of the gradient autocorrelation 
matrix: 
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→
ξ  points to a direction orthogonal to the mean 
direction of the gradient vectors  and its orientation 
(θ) represents the mean orientation of a structure 
passing through the pixel under study. As shown 
theoretically in [3], orientation estimation using (8) is 
highly robust against additive Gaussian like noise. 
When additive noise is considered, provided that the 
orientation of the underlying oriented textures can be 
correctly estimated, the values of the directional 
derivatives Uξ are depending only on the noise level and not 
on the local signal to noise ratio. Local maxima of ξU  are 

characterizing abrupt orientation changes (e.g. corners and 
junctions) whereas on region like areas ξU  depends only 

on the noise level. The directional interpretation of.(7): 
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shows that, in each pixel, the equation acts as a one-
dimensional  diffusion process that smoothes (cξ>0) 
oriented  patterns with energy independent speed and 

can enhance corners and junctions for negative 
diffusion coefficients (cξ<0). The above discussion 
and described behavior of our filter are of course valid 
only if noise has low values. Only under this 
assumption maxima of ξU  can be directly associated to 

corners and junctions.  
For dealing with images composed both of regions 
and oriented textures we proposed also a 2D version 
for our filter: 

 
  ])([])([ ηη

η
ξξ

ξ

ηξ
UUgUUg

t
U

∂
∂+

∂
∂=

∂
∂     (10) 

 

In (10) 
→
η  denotes the eigenvector associated to the 

biggest eigenvalue of (8) i.e. the mean direction of the 
gradient vectors. In contrast to (7) the new equation 
allows smoothing of regions like areas and is capable 
of enhancing edges. (10) is essentially a superposition 
of 1D diffusion processes that, unlike divergence 
equations as (4), allows a complete control of its 
behavior. Different thresholds can be chosen on the 
two directions, different functions can be employed 

for 
→
η  and 

→
ξ  etc.  

Influence of heavy tailored noise on the results 
obtained by diffusion processes can be diminished 
using Gaussian convolution (or equivalently an 
isotropic diffusion) in a pre-processing step.  This was 
the solution we employed in [6] when proposing a 
regularized version for the equation: 
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Convolution with a Gaussian kernel is essentially a 
low pass filter and when embedding it in anisotropic 
diffusion processes some precautions have to be 
taken. Larger kernel sizes are efficiently filtering out 
spurious noise (Fig.1), but on the same time they are 
eliminating objects with spatial dimensions inferior to 
the standard deviation of the associated Gaussian 
function.  Another drawback of Gaussian convolution 
is the fact that it produces inherent edge displacement 
(Fig.2) and, due to the edge enhancing term, a 
diffusion model based on (11) could produce artifacts 
such as false edges that can be further enhanced as 
time advances. If diffusion thresholds are chosen to 
have large values, by diminishing the gradient norms, 
Gaussian convolution forbids any edge enhancement 
process. 
 

   
a) b) 

Fig.1 Isotropic diffusion a) Original image b) Smoothed image 
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           Fig.3 Edge displacement due to Gaussian convolution 
 
For avoiding the above-mentioned effects we propose 
a method that employs a different pre-smoothing 
technique, based on a Perona and Malik filter. By 
denoting the solution of (4) at some instant t with  
UPM, t we consider the following evolution equation: 
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Since an anisotropic diffusion process outperforms an 
isotropic one, we expect better results when filtering 
an image with the modified equation (12).  
However, the influence of the two extra parameters 
for the Perona and Malik process – the scale t and the 
threshold K – is still to be discussed.  
We showed in [6], [7] that our original filter produced 
better results than classical filters. We found 
experimentally out that the optimal results were 
obtained for limited sizes of the Gaussian kernel: σ = 
0.75÷1.  The pre-smoothing scale t for (12) can be 
thus chosen according to Koenderink’s observation: t 
= σ2/2. When implementing diffusion equations with 
explicit discrete schemes, a time step dt =0.2 satisfies 
the stability constraints for the 2D case; this leads to a 
number of about 5 iterations that will introduce the 
same amount of smoothing but in an anisotropic way.  
The choice of the threshold K can also influence 
strongly the results. An undesired effect that might 
appear in the so-called staircase effect, well 
documented for the anisotropic diffusion equation 
[11]. For particular choices of K, due to edge 
enhancement term, some contours might get irregular 
when processing the image with (4) (Fig.3). 
 

  
   a)      b) 

Fig.3 Anisotropic diffusion. a) Original image                                 
b) Irregular contours (staircase effect) 

 
For the diffusion function (4) the effect appears only 
for gradient norms inferior to K3  [11] and, thus, it 
can be avoided for sufficiently large K’s. Following 
the technique indicated by Perona and Malik we 
choose to set K equal to some percentage (60 % in all 

our experiments) of the integral value of the gradient 
norms histogram [5].    
 

III. EXPERIMENTAL RESULTS 
 

PDE based models have a large number of parameters 
and comparisons   between   them are   not   always 
straightforward.  A   particular   choice of parameters 
may suit well an image and could be less optimal for 
others.  For solving this problem we took an 
experimental approach to solve this problem: we 
considered 15 randomly generated images, composed 
of oriented patterns, affected by Gaussian white 
noises and, for a given method and for each image, we 
searched for a best filtered result by allowing all 
parameters to vary. To quantify objectively the results 
we used the classical PSNR measure. Results from 
[10] are indicating that a 0.5dB improvement in terms 
of PSNR should be visible on the processed images. 
As processing methods we consider the new approach 
(12), its previous version (11) and the classical Perona 
and Malik filter (PM). The nature of the image we are 
interested in is shown on Fig.4. 
 

  
    a)       b) 

Fig.4 Image composed of oriented patterns a) Noise free image     
b) Degraded image (PSNR=15dB) 

 
The noise levels and the PSNR’s corresponding to the 
best filtered results for each considered method are 
shown on Table 1. 
 
Table 1 PSNR values obtained for the 15 images 
under study 

Best filtered results - [dB] Image  Noise 
levels 
[dB]

PM Original [6] Proposed 
1 16.66 25,3617 30,4611 30,8752
2 14.07 21,6275 24,7432 25,234
3 14.67 24,2511 25,8878 26,1256
4 15.60 23,6651 26,7267 26,9073
5 15.16 24,4292 26,3235 26,53745
6 13.68 24,4584 25,3846 26,0875
7 15.00 25,2881 27,8959 28,852
8 14.95 24,2299 26,3201 27,2197
9 14.64 26,1899 27,689 28,256
10 14.39 23,8604 26,0956 26,6131
11 14.85 24,6417 27,0079 27,5345
12 16.10 24,5689 26,4134 26,93394
13 13.27 22,0977 25,0166 25,485
14 16.65 26,2491 27,4969 28,0894
15 14.14 25,5648 25,7799 26,7116

 
Both our filters are outperforming the classical 
anisotropic diffusion equation. In terms of relative 
performances between our approaches, we obtain 
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systematically better results with the new filter. 
Quantitatively, the improvements in terms of PSNR 
are ranging from 0.18dB (for the fourth image) to 
0.95 dB (for the seventh image). The following 
PSNR’s are obtained for the set of images: 24.43dB 
for the Perona and Malik filter, 26.61dB for the 
original approach and 27.16dB for the new equation. 
In terms of visual results, we are showing bellow the 
best filtered images corresponding to both our 
methods. 

 
a)  

 
                           b) 

Fig.5 Best filtered results for the image from Fig.4.                         
a) Result obtained using (11): PSNR=27.89dB;  
b) Result obtained using (12): PSNR=28.85dB 

  
The improvement of almost 1dB is clearly visible and 
can be explained theoretically. The high frequency 
region placed on the bottom left hand side of the 
image strongly limits the Gaussian kernel’s size. 
Consequently, on lower frequency regions Gaussian 
of the image pre-smoothing is unable to diminish the 
noise influence and, besides corners and junctions, 
local maxima of directional derivatives are appearing 
also on the oriented part of the image. Anisotropic 
diffusion based pre-smoothing does not suffer from 
the above mentioned effects and better results are 
obtained.  
A question that may arise is related to the variability 
of the results from Table 1. A non-parametric two-
way rank analysis of variance (ANOVA) [2] (Table 2) 
allows us to isolate the two sources of variability: the 
nature of the images and the different behavior of 
each method. 
As the results from Table 2 are showing, more than  
93 % of the variability between the obtained results is  
due to both the choice of the processing method and 
to the nature of the images. The two-way ANOVA 
allows us to isolate and investigate only the method 

effect. The extremely low probability (p=4.9*10-13) 
associated to a Fisher-Snédécour test (F) allows us to 
conclude that the processing method has a very 
significant influence over the quality of the processed 
result.  
 
Table 2 Two way non-parametric ANOVA [2] 

Source 
of 

variance 

Sum of 
squares 

Degrees 
of 

freedom 

Mean 
square
s 

    F    P 

Total 7890.00 44 172.5   
Between 
images 

3076.00 14 219.7   

Between 
methods 

 
3917.73 

 
2 

 
1959 

 
91,99 4.9*10-13 

Residual 596.27 28 21.30   
We are also interested in building a hierarchy for the 
analyzed methods. The mean ranks, computed for 
each method over the 45 measurements, are: 10.06 for 
the Perona and Malik filter, 27.2 for our original 
method and 31.73 for the improved one. The three 
ranks can be compared using a classical Student-
Newman-Keuls post-hoc test (SNK)[2]. Its critical 
values, computed for a 5% risk, are: 3.45 for 
comparing two consecutive ranks and 4.16 for 
comparing two values spanning three ranks. Using the 
SNK test we can that conclude that the new method is 
better that the original one and that both our methods 
are significantly better than the original anisotropic 
diffusion equation. 
Some results obtained for a real gray scale image are 
shown in Fig.6. Starting from the original image (Fig. 
6.a), containing both oriented patterns and region like 
areas, we first processed it with the improved filter 
(Fig. 6.c). We then considered the filtered result as an 
original noise free image and searched for the choice 
of parameters for the original version that produces 
the closest result in terms of PSNR (Fig. 6.b). 
 

 
a) 

 
b) 

 
c) 

 Fig.6 Results for a real image. a) Original image                            
b) Result obtained using (11) c) Result obtained using (12) 
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A different effect is observable. The Gaussian 
regularization employed by our original formulation 
smoothes edges of the processed image and leads to a 
slightly blurred result. The new formulation does not 
suffer from this effect since edges are kept better 
when using anisotropic diffusion pre-smoothing. The 
filtered result is not blurred and background is also 
more efficiently filtered.  
A third experiment deals with a color image shown in 
Fig.7.  The degradations are much more severe than 
for the image in Fig.6. and they are consisting in 
moiré effects and blocking artifacts, dues to the 
insufficient resolution of the scanning device and to 
the presence of high frequency details.  
 

 
Fig.7 Color image 

 
For processing the image we implemented a 
straightforward extension of the algorithm presented 
in section II. The image is first decomposed on the 
constituent red, green and blue channels; each channel 
is then processed with the same set of parameters and 
the filtered results are then recomposed. 
In Fig. 8, Fig. 9.a and Fig. 9.c we are presenting 
respectively the original red channel image and the 
filtered results corresponding to both our approaches. 
We used the same approach for establishing the 
parameters: first we computed a result with the 
proposed method that we judged the best and then we 
searched for those parameters of the Gaussian 
formulation of our filter that are producing the closest 
results in terms of PSNR values. 

 
Fig.8 Green channel of the image in Fig. 7 

 
Once again the new approach proves to be more 
efficient than its Gaussian formulation. Even if edges 

are more regular when preprocessing with the 
Gaussian filter, the anisotropic diffusion formulation 
allows true edge enhancing and efficient background 
restoration. 

 
a) 

 
b) 

Fig.9 Results for the green channel a) Original image                           
Result obtained using (11) c) Result obtained using (12) 

a) 

b) 
Fig.10 Results for a color image a) Result obtained using (11) b) 

Result obtained using (12) 
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The combined effect of processing all the color channels is 
illustrated in Fig.10. The same behavior is observable; the 
anisotropic diffusion based preprocessing allows a better 
restoration of both regions like areas and of important edges 
in the image.  

 
IV. CONCLUSIONS 

 
We proposed a technique that employs anisotropic 
pre-smoothing of an image prior to the estimation of 
the diffusivity function of outer diffusion processes.   
Considering this technique in the framework of 
directional diffusion we showed that better results can 
be obtained when compared to classical Gaussian 
regularization. The described technique can be 
employed to any diffusion equation that requires a 
pre-smoothing step.  
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