
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 51(65), Fascicola 1, 2006

A Generic Building Block for Hebbian Neural Network
with On-Chip Learning

Alin Tisan1, Ciprian Gavrincea2, Ştefan Oniga3

1Universitatea de Nord din Baia Mare, Facultatea de Inginerie, Departamentul de Electrotehnică,
 Str. V. Babeş, nr. 62A 430083 Baia Mare, e-mail atisan@ubm.ro
2 Universitatea de Nord din Baia Mare, Facultatea de Inginerie, Departamentul de Electrotehnică,
 Str. V. Babeş, nr. 62A 430083 Baia Mare, e-mail gcg@ubm.ro
3 Universitatea de Nord din Baia Mare, Facultatea de Inginerie, Departamentul de Electrotehnică,
 Str. V. Babeş, nr. 62A 430083 Baia Mare, e-mail onigas@ubm.ro

Abstract – In this paper, we present a digital hardware
implementation of an artificial neuron on-chip
unsupervised trained with Hebbian rule. The main
characteristics of this solution are on-chip learning
algorithm implementation and high reconfiguration
capability and operation under real time constraints.
Keywords: fpga, learning on-chip, ANN

I. INTRODUCTION

In respond to highly parallelism, modularity and
dynamic adaptation, the artificial neural network
(ANN) become the most explored data processing
algorithms. In addition to this the digital hardware
implementation of ANNs in reconfigurable computing
architectures like FPGAs circuits, become the easiest
and fastest way to reconfigure in order to adapt the
weights and topologies of an ANN.
 In this paper we present an extendable digital
architecture for the implementation of a Hebbian
neural network using field programmable gate arrays
(FPGAs) and we propose a design methodology that
allows the system designer to concentrate on a high
level functional specification. For this reason we
developed a new library Simulink blocksets
constituted by Simulink Xilinx blocks and VHD
blocks. With these new created blocks, the designer
will be able to develop the entire neural network by
parameterize the ANN topologies as number of
neurons and layers.
 The implementation goal is achieved using the
Mathworks’ Simulink environment for functional
specification and System Generation to generate the
VHD code according to the characteristics of the
chosen FPGA device.

The design methodology is not new; there have
been recent

II. HEBBIAN NEURAL NETWORK

The Hebbian neural network is a multilevel
model of perception and learning, in which the ‘units

of thought’ were encoded by ‘cell assemblies’, each
defined by activity reverberating in a set of closed
neural pathways The essence of the Hebb synapse is
to increase coupling between coactive cells so that
they could be linked in growing assemblies. Denoting
the neurons by ni and nj and the weight that connect
the nj and ni by wij and if neuron ni receives positive
input xj while producing a positive output yi, the
hebbian rule states that for some learning rate η > 0:

 ,: ijijij www ∆+= (1)
where the increase in the weight connecting nj and ni
can be given by:

 ,: jiij xyw η=∆ (2)
Here

 ()
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠
∑
N

ij ij
i=1

y = f net f bw x (3)

where f(net) is defined by the discontinuous threshold
activation function sgn(net):

 1 if 0
sgn()

1 if 0
net

net
net
≥⎧

= ⎨− <⎩
 (4)

 Of all the learning rules, Hebbian learning is
probably the best known. It established the foundation
upon which many other learning rules are based. For
this reason, we developed this learning rule first.
Hebb proposed a principle, not an algorithm, so there
are some additional details that must be provided in
order to make this computable:

- It is implicitly assumed that all weights wij
have been initialized (e.g. to some small
random values) prior to the start of the learning
process.

- The parameter η must be specified precisely (it
is typically given as a constant, but it could be
a variable).

5

BUPT

- There must be some type of normalization
associated with the increase of the weight or
else wij can become infinite;

- Positive inputs tend to excite the neuron while
negative inputs tend to inhibit the neuron.

III. BLOCKSET NEURAL NETWORK DESIGN

In order to learn on-chip, the Mc Culloc - Pitts

neuron model, i.e. each of the input vector
components xi is multiplied with the corresponding
weight wij, and these products are summed up yielding
the net linear output, upon which the threshold
activation function is applied to obtain the activation
which is either 1 or −1, was modified to make the
calculate the weights according to a certain learning
rule and to update the new weights into a weight
memory block, figure 1.

Fig.1. Block level representation of the neuron with on-chip

learning

The parallelism adopted is a node parallelism one
and requires one multiplier per neuron, therefore all
neurons will work in parallel. If data inputs are
memorized in a single memory block, the weights
storage will be private for each neuron because all the
neurons have to access their correspondent weight
memories at the same time.

The proposed model of the neuron is constituted
by two major blocks: a control logic bloc and a
processing block.

The control logic block will manage the control
signal of the processing bloc in order to initialize and
command the processing components.

The processing block is design to calculate the
neural output, the weights according to learning rule
adopted, in this case the Hebbian rule, and to update
these weights.

A. Control logic block

The control logic block is described in VHDL
code and is incorporated into design by a black box
HDL, figure 2.

The role of this bloc is to load from Mathlab
workspace the following variables: the number of
vectors used for training and the number of bits used
for data representation.

Fig. 2. Blockset architecture of neuron

Depending on these variables, the control logic

block will configure the size of the RAMs used for
data and weights storage and will manage the enable
signals of the processing elements of the processing
block in order to run the processing block in a
propagation phase or in a training phase, figure 3..

Fig.3. Block level representation of the neuron with on-chip

learning

The enabling algorithm of processing elements
depends on the number of input neurons, the size of
the block memories that storage the data or weights
vectors and the delays introduced by the different
processing or storage elements.

B. Processing Block

The processing block is the main block of the

design. It incorporates both the artificial neuron and
the logic for on-chip learning algorithm.

The structure of the artificial neuron consist in two
memory blocks, one for data samples and one for
weight coefficients, and one MAC unit, figure 4.

The logic for the learning algorithm requires a
MAC unit too, but in order to save hardware resources
we decide to use the MAC unit of the artificial neuron
for the implementation of the learning algorithm. To

6

BUPT

achieve this, the design requires a number of
multiplexer blocks and special control logic.

Fig. 4. Architecture of the processing block.

Artificial neuron with on-chip learning has two

modes of operation: propagation mode on which the
design acts as a regular artificial neuron and learning
mode. On learning mode there are two stages: on the
first stage an output of the artificial neuron is
calculated based on the data provided by training
vector and on the second stage weight coefficients are
recalculated based on Hebbian learning rule.

By using one MAC unit it saves hardware resources
but execution time slightly increases. This happens
only on the learning mode and doesn’t affect the
propagation mode. For an artificial neural network
time constrains are important only on propagation
mode of operation, and having a longer learning
period doesn’t affect the performance of the artificial
neural network.

IV. HARDAWARE IMPLEMENTATION

The design is implemented into Digilab 2E (D2SB)

development board featuring the Xilinx Spartan 2E
XC2S200EPQ208-6 FPGA. This chip has 2352 slices
(control unit which includes two 4-inputs look-up
tables (LUT) and two flip-flops) and 14 block RAMs.
The resources usage of a single neuron were estimated
by ISE Xilinx and by Simulink Resource Estimator
Block and are shown in fig. 5 and fig. 6

The differences between these two estimators come
up because of different way of resource usage
calculation of the logic blocks implementation in
FPGA

Fig. 5. The resource estimation by ISE Xilinx of a single

neuron

Fig. 6. The resource estimation by Simulink Resource

Estimator of a single neuron

Because Spartan 2E doesn’t have implemented
dedicated MAC units, we designed a multiply and
accumulate structure with Xilinx blocks of Simulink
Xilinx Blockset library, figure 7.

Fig. 7. MAC structure designed with Xilinx blocks

7

BUPT

Fig. 8. Waveforms of a neuron in training phase

Because, multiplication block use the largest

resources, 12 slices, and in order to implement the
three multiplications needed to calculate the updated
weights and the neuron output with one multiplication
and accumulation block is necessary to add three
more multiplexers block to select the right signal to
add or to multiply.

The total delay is gave by the number of training
vectors plus 3 other cycles (1 for RAM, two for the
multiplier) for neuron output calculation and 2 x
number of training vectors plus 12 cycles to calculate
the new weights and to update the weight RAM.

The total number of cycles needed to calculate
and update the weights is presented in fig. 8.The
waveforms confirm the calculation algorithm, for a
given number of training vectors, of total delay for a
neuron in training phase and propagation phase

V. CONCLUSION

We have presented hardware architecture of

artificial neuron with on-chip learning controlled by a
generic control unit described in VHDL code. This
method uses minimal hardware resources for
implementation of this kind of artificial neuron. The
main advantage of this solution is highly modularity
and versatility in neural network designing.

In order to design and to implement the neuron
we used the Mathworks’ Simulink environment for
functional specification, System Generation to
generate the VHD code according to the
characteristics of the chosen FPGA device and ISE
Xilinx to simulate the design at different stages of
implementation and to generate the bit file.

The neuron designed is a generic module and can
be used to design neural networks that have the
following features:

- the training is on-line;
- the learning is on-chip;
- all weights have been initialized prior to the

start of the learning process;

- the learning parameter must be specified
precisely;

- there must be some type of normalization
associated with the increase of the weight or
else wij can become infinite;

- positive inputs will tend to excite the neuron
while negative inputs will tend to inhibit the
neuron;

- the initialization of the data and weigh RAMs
must be done through m file from Matlab
environment.

These results will be used to design other
learning rules starting from a Hebbian one, and also to
make the ANN design more modularized so that its
size can be modified as randomly increased or
decreased of the neuron number in order to find out
that ANN which fits to a specific application. In this
way the FPGA hardware implementation makes ANN
more convenient to be carrying, modularized and
reconfigurable.

REFERENCES

[1] E. Fiesler, R Beale, “Handbook of neural network”, Oxford
University Press, 1997.
[2] A. Singh, “Design & Implementation of Neural Hardware”.
University School of Information Technology, GGS Indraprastha
University, Delhi http://www.geocities. com /aps_ipu/papers/
synopsis.pdf, 2005.
[3] A., Bernatzki, W, Eppler, “Interpretation of Neural Networks
for Classification Tasks.” Proceedings of EUFIT 1996, Aachen,
Germany, http://fuzzy.fzk.de/eppler /postscript/eufit.ps.2005
[4] A. Savran, S. Unsal. Hardware Implementation of a
Feedforward Neural Network using FPGAs. International
Conference on Electrical and Electronics Engineering. Bursa,
December 2003.
[5] Yihua Liao. Neural Networks in Hardware: A Survey.
Department of Computer Science, University of California, Davis.
[6] J. Zhu, P. Sutton. FPGA Implementations of Neural Networks –
a Survey of a Decade of Progress. Proceedings of 13th International
Conference on Field Programmable Logic and Applications (FPL
2003), Lisbon, Sep 2003.
[7] S. Oniga, Hand Gesture Recognition System Using Artificial
Neural Networks implemented in FPGA, PhD Thesis, 2006.

8

BUPT

