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Abstract – In this paper, we present a digital hardware 
implementation of an artificial neuron on-chip 
unsupervised trained with Hebbian rule. The main 
characteristics of this solution are on-chip learning 
algorithm implementation and high reconfiguration 
capability and operation under real time constraints.  
Keywords: fpga, learning on-chip, ANN 
 

I. INTRODUCTION 
 

In respond to highly parallelism, modularity and 
dynamic adaptation, the artificial neural network 
(ANN) become the most explored data processing 
algorithms. In addition to this the digital hardware 
implementation of ANNs in reconfigurable computing 
architectures like FPGAs circuits, become the easiest 
and fastest way to reconfigure in order to adapt the 
weights and topologies of an ANN. 
 In this paper we present an extendable digital 
architecture for the implementation of a Hebbian 
neural network using field programmable gate arrays 
(FPGAs) and we propose a design methodology that 
allows the system designer to concentrate on a high 
level functional specification. For this reason we 
developed a new library Simulink blocksets 
constituted by Simulink Xilinx blocks and VHD 
blocks. With these new created blocks, the designer 
will be able to develop the entire neural network by 
parameterize the ANN topologies as number of 
neurons and layers. 
 The implementation goal is achieved using the 
Mathworks’ Simulink environment for functional 
specification and System Generation to generate the 
VHD code according to the characteristics of the 
chosen FPGA device. 

The design methodology is not new; there have 
been recent 
  

II. HEBBIAN NEURAL NETWORK 
 

The Hebbian neural network is a multilevel 
model of perception and learning, in which the ‘units 

of thought’ were encoded by ‘cell assemblies’, each 
defined by activity reverberating in a set of closed 
neural pathways The essence of the Hebb synapse is 
to increase coupling between coactive cells so that 
they could be linked in growing assemblies. Denoting 
the neurons by ni and nj and the weight that connect 
the nj and ni by wij and if neuron ni receives positive 
input xj while producing a positive output yi, the 
hebbian rule states that for some learning rate η > 0:  
 
  ,: ijijij www ∆+=   (1) 
where the increase in the weight connecting nj and ni 
can be given by: 
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where f(net) is defined by the discontinuous threshold 
activation function sgn(net): 
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 Of all the learning rules, Hebbian learning is 
probably the best known. It established the foundation 
upon which many other learning rules are based. For 
this reason, we developed this learning rule first. 
Hebb proposed a principle, not an algorithm, so there 
are some additional details that must be provided in 
order to make this computable: 

- It is implicitly assumed that all weights wij 
have been initialized (e.g. to some small 
random values) prior to the start of the learning 
process. 

- The parameter η must be specified precisely (it 
is typically given as a constant, but it could be 
a variable). 
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- There must be some type of normalization 
associated with the increase of the weight or 
else wij can become infinite;  

- Positive inputs tend to excite the neuron while 
negative inputs tend to inhibit the neuron. 

 
III. BLOCKSET NEURAL NETWORK DESIGN 

 
In order to learn on-chip, the Mc Culloc - Pitts 

neuron model, i.e. each of the input vector 
components xi is multiplied with the corresponding 
weight wij, and these products are summed up yielding 
the net linear output, upon which the threshold 
activation function is applied to obtain the activation 
which is either 1 or −1, was modified to make the 
calculate the weights according to a certain learning 
rule and to update the new weights into a weight 
memory block, figure 1. 

 
Fig.1. Block level representation of the neuron with on-chip 

learning 
 

The parallelism adopted is a node parallelism one 
and requires one multiplier per neuron, therefore all 
neurons will work in parallel. If data inputs are 
memorized in a single memory block, the weights 
storage will be private for each neuron because all the 
neurons have to access their correspondent weight 
memories at the same time. 

The proposed model of the neuron is constituted 
by two major blocks: a control logic bloc and a 
processing block. 

The control logic block will manage the control 
signal of the processing bloc in order to initialize and 
command the processing components. 

The processing block is design to calculate the 
neural output, the weights according to learning rule 
adopted, in this case the Hebbian rule, and to update 
these weights. 

A. Control logic block 
 

The control logic block is described in VHDL 
code and is incorporated into design by a black box 
HDL, figure 2. 

The role of this bloc is to load from Mathlab 
workspace the following variables: the number of 
vectors used for training and the number of bits used 
for data representation. 

 

 
Fig. 2. Blockset architecture of neuron 

 
Depending on these variables, the control logic 

block will configure the size of the RAMs used for 
data and weights storage and will manage the enable 
signals of the processing elements of the processing 
block in order to run the processing block in a 
propagation phase or in a training phase, figure 3.. 

 
Fig.3. Block level representation of the neuron with on-chip 

learning 
 

The enabling algorithm of processing elements 
depends on the number of input neurons, the size of 
the block memories that storage the data or weights 
vectors and the delays introduced by the different 
processing or storage elements. 

 
B. Processing Block 

 
The processing block is the main block of the 

design. It incorporates both the artificial neuron and 
the logic for on-chip learning algorithm. 

The structure of the artificial neuron consist in two 
memory blocks, one for data samples and one for 
weight coefficients, and one MAC unit, figure 4.  

The logic for the learning algorithm requires a 
MAC unit too, but in order to save hardware resources 
we decide to use the MAC unit of the artificial neuron 
for the implementation of the learning algorithm.  To 
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achieve this, the design requires a number of 
multiplexer blocks and special control logic.  

 

 
Fig. 4.  Architecture of the processing block. 

 
Artificial neuron with on-chip learning has two 

modes of operation: propagation mode on which the 
design acts as a regular artificial neuron and learning 
mode. On learning mode there are two stages: on the 
first stage an output of the artificial neuron is 
calculated based on the data provided by training 
vector and on the second stage weight coefficients are 
recalculated based on Hebbian learning rule. 

By using one MAC unit it saves hardware resources 
but execution time slightly increases. This happens 
only on the learning mode and doesn’t affect the 
propagation mode. For an artificial neural network 
time constrains are important only on propagation 
mode of operation, and having a longer learning 
period doesn’t affect the performance of the artificial 
neural network. 

 
 

IV. HARDAWARE IMPLEMENTATION 
 
The design is implemented into Digilab 2E (D2SB) 

development board featuring the Xilinx Spartan 2E 
XC2S200EPQ208-6 FPGA. This chip has 2352 slices 
(control unit which includes two 4-inputs look-up 
tables (LUT) and two flip-flops) and 14 block RAMs. 
The resources usage of a single neuron were estimated 
by ISE Xilinx and by Simulink Resource Estimator 
Block and are shown in fig. 5 and fig. 6 

The differences between these two estimators come 
up because of different way of resource usage 
calculation of the logic blocks implementation in 
FPGA 

 

 
Fig. 5. The resource estimation by ISE Xilinx of a single 

neuron 
 

 
Fig. 6. The resource estimation by Simulink Resource 

Estimator of a single neuron 
 
 

Because Spartan 2E doesn’t have implemented 
dedicated MAC units, we designed a multiply and 
accumulate structure with Xilinx blocks of Simulink 
Xilinx Blockset library, figure 7. 

 
Fig. 7. MAC structure designed with Xilinx blocks 
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Fig. 8. Waveforms of a neuron in training phase 

 
Because, multiplication block use the largest 

resources, 12 slices, and in order to implement the 
three multiplications needed to calculate the updated 
weights and the neuron output with one multiplication 
and accumulation block is necessary to add three 
more multiplexers block to select the right signal to 
add or to multiply. 

The total delay is gave by the number of training 
vectors plus 3 other cycles (1 for RAM, two for the 
multiplier) for neuron output calculation and 2 x 
number of training vectors plus 12 cycles to calculate 
the new weights and to update the weight RAM. 

The total number of cycles needed to calculate 
and update the weights is presented in fig. 8.The 
waveforms confirm the calculation algorithm, for a 
given number of training vectors, of total delay for a 
neuron in training phase and propagation phase  

 
V. CONCLUSION 

 
We have presented hardware architecture of 

artificial neuron with on-chip learning controlled by a 
generic control unit described in VHDL code. This 
method uses minimal hardware resources for 
implementation of this kind of artificial neuron. The 
main advantage of this solution is highly modularity 
and versatility in neural network designing. 

In order to design and to implement the neuron 
we used the Mathworks’ Simulink environment for 
functional specification, System Generation to 
generate the VHD code according to the 
characteristics of the chosen FPGA device and ISE 
Xilinx to simulate the design at different stages of 
implementation and to generate the bit file. 

The neuron designed is a generic module and can 
be used to design neural networks that have the 
following features: 

- the training  is on-line; 
- the learning is on-chip; 
- all weights have been initialized prior to the 

start of the learning process; 

- the learning parameter  must be specified 
precisely; 

- there must be some type of normalization 
associated with the increase of the weight or 
else wij can become infinite;  

- positive inputs will tend to excite the neuron 
while negative inputs will tend to inhibit the 
neuron; 

- the initialization of the data and weigh RAMs 
must be done through m file from Matlab 
environment. 

These results will be used to design other 
learning rules starting from a Hebbian one, and also to 
make the ANN design more modularized so that its 
size can be modified as randomly increased or 
decreased of the neuron number in order to find out 
that ANN which fits to a specific application. In this 
way the FPGA hardware implementation makes ANN 
more convenient to be carrying, modularized and 
reconfigurable. 
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