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Abstract - This paper describes an algorithm to determine the
robot tool transformation and tool center point (TCP) for con-
tactless measurement systems. Valid types of sensors are those
who provide metric information about one or multiple points
within the sensors coordinate system. The reference objects
are geometrical primitives (planes, spheres). The algorithm
starts with estimated values for the tool transformation and
the reference object definition and optimizes them in an itera-
tive process. The optimisation result is tested for convergence
with a simulation.
Keywords: sensor, robot tool transformation, TCP, tool center
point, optimisation, Jacobian matrix

I. INTRODUCTION

In most applications with industrial robots it is common to
have sensor systems with one or more sensors. The infor-
mation gathered with a sensor system is mostly used for
robot guidance or for quality assurance. If a sensor is part
of the robot tool it is recommendable to identify its tool
transformation and the origin of the sensor coordinate sys-
tem, the tool center point (TCP). The tool transformation
describes the transformation from the robot flange coordi-
nate system to the tool coordinate system thus in this case
the sensor coordinate system. There are some reasons for
the determination of the tool transformation:

1. With a known tool transformation the robot can be
moved in respect of the tool coordinate system and
the tool center point. This makes teaching of robot
programs much easier.

2. If the sensor has to be replaced due to a sensor mal-
function it cannot be guaranteed that the replacement
sensor can be mounted at exactly the same position the
defect sensor was. If the robot programs were teached
in respect of the tool coordinate system, the new tool
transformation has to be determined and the problem
is solved. Otherwise all robot programs have to be
modified to fit to the new sensor position. Under nor-
mal circumstances this is a very time consuming and
therefore expensive task.

3. With a known tool transformation the information
provided by the sensor can referred to the base co-
ordinate for each robot pose. This means the local
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sensor information becomes global information. In a
multisensor system it may be a requirement to have a
common reference for all sensor information.

The robot manufacturers provide software tools imple-
mented in the robot control system to determine the tool
transformation for common robot tools like grippers or
welding tools. In the classical 4-point method (see e.g. [1],
page 33ff) the TCP of the tool is moved to a fixed reference
point from four different directions. The translative
component of the tool transformation can be calculated
together with an error estimation basing on four different
positions and orientations of the robot flange. For most
applications the knowledge of the translative component
of the tool transformation is sufficient. But the rotational
component of the tool transformation can be identified
with similar methods. Either the robot has to be moved
along the coordinate axes of the tool coordinate system or
the tool coordinate system has to be aligned to the axes of
the base coordinate system of the robot in a special way.

But these methods are not satisfactory to determine a
sensors tool transformation. Sensors do not have a certain
physical point as their TCP. The TCP lies somewhere
in the measurement range of the sensor. It is difficult
to use one of the methods described above to move the
sensors TCP to the reference point even with the usage of
software tools to display the current sensor information.
The usage of special devices mounted at the sensor to
mark the sensors TCP with a physical point may make the
determination of the tool transformation easier but there
is still a problem of the low accuracy of these methods.
Mainly the determination of the rotational component of
the tool transformation is quite inaccurate. The accuracy
requirements for the TCP transformation may vary from
application to application. But in most use cases the
sensors TCP transformation has to be known in all six
degrees of freedom with an accuracy that is not much
lower than most inaccurate system component (sensor or
robot).

This paper describes a method to optimize a given esti-
mated TCP transformation determined by CAD data or by
the methods provided by the robot manufactures. The al-
gorithm is iterative and is based on sensitivity matrices and
Jacobian matrices. A similar approach is described in [2].
This solution uses simple reference objects and free se-
lectable robot poses too, uses similar error functions, but
the optimisation is based on statistical methods (Bayesian
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search algorithms).

II. SYSTEM STRUCTURE

The total systems structure is shown in Figure 1. The sen-
sor is attached to the end-effector of the robot. The sensor
is a device that provides information about the position
of a number of points within its field of view based on its
sensor coordinate system. A simple example for a sensor
would be a laser distance sensor which determines the
position of a single point in its coordinate system (e.g.
by triangulation or by time-of-flight). Other examples for
sensor systems are laser stripe sensors (position of multiple
points along a laser line), 3D cameras (position of multiple
points of a matrix) or other intelligent camera systems.
Important condition is that the sensor is calibrated and
provides metric information. The sensor has a reference
object within its field of view. The reference object is the
representation of a geometrical primitive like a plane or a
sphere. The position of the reference object is defined in
the robots base coordinate system. Estimated values for
the tool transformation and the reference object definition
are known.

Base

Sensor

Flange

Reference Object

Figure 1: Basic System Structure

III. ERROR FUNCTION

First objective before optimizing the estimated values is the
definition of an error function that allows the evaluation of
a given tool transformation for the current robot pose. As
defined above the sensor provides information about the
position of a number ofm points within its sensor coordi-
nate system:

Sensorp j with j ∈ {1, . . . ,m} (1)

These points have to be transformed into the base coordi-
nate system in which the reference object is defined. This
is the necessary transformation:

BaseT Sensor=
BaseT Flange·

FlangeT Sensor (2)

And this transforms all points into the base coordinate sys-
tem:

Basep j = (BaseT Sensor)
−1 · Sensorp j (3)

Using an optimal reference object definition and an
optimal tool transformation, all pointsBasep j measured by

the sensor should be points of the reference object. But
because of the inaccuracy of the estimated values there is
a certain deviation. The sum of the deviation for every
single point is a good error function. The error function is
called “E”.

If for example the reference object is a plane and the sensor
a laser stripe sensor, the error function can be expressed as
followed. The plane can be defined in the Hessian normal
form:

n · x − d = 0 with |n| = 1 (4)
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it is possible to reduce one more degree of freedom in the
plane description:

nz =
√

1 − n2

x − n2

y (6)

The plane definition is now dependent from three factors:
from nx, ny andd. The error function can be defined as the
average distance of the distances of all points to the plane:

E =
1

m

m
∑

j=1

∣

∣n · Basep j − d
∣

∣ ( (7)

Figure 2 shows the laser stripe sensor points transformed
into the base coordinate system and their distances to the
plane as reference object.

Figure 2: Laser Stripe Sensor Points

IV. OPTIMIZATION

The optimisation process is an iterative process that opti-
mizes the tool transformation and (as a byproduct) the def-
inition of the reference object. The number of factors to be
optimized are up to six for the tool transformation (x, y, z,
α, β, γ) and for the reference object definition usually three
(plane or sphere with known radius), in totalo factors. May

F = (F1, . . . , Fo) (8)

be a vector that contains all factors that should be optimized
within the optimisation process and

f = (f1, . . . , fo) (9)
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current values for the optimisation factors (initially thees-
timated ones). Because of the high number of factors to
optimize one single robot pose is not a sufficient base for
the optimisation process. The base is a set ofl different
robot poses which have to vary in all degrees of freedom to
provide enough information about the system structure:

BaseT i Flange with i ∈ {1 . . . l} (10)

and a fixed set ofm sensor points for each of thel poses:

Sensorp i,j with i ∈ {1 . . . l} andj ∈ {1 . . . m} (11)

Because the error function depends on the robot pose and a
vector of optimisation values the error function becomes:

E = E(i, F ) with i ∈ {1 . . . l} (12)

For a given vector of optimisation factorsf the error vector
e is defined as

e = (e1, . . . , el) with ei = E(i, f) (13)

The sensitivity matrixS describes how the result of the er-
ror function for a certain robot pose depends on a change
of the optimisation factors in the near of the current opti-
misation factors f:

si,k =

(

∂E(i, F )

∂Fk

)

f

(14)

One single matrix element ofS can be calculated by a sim-
ple difference quotient:

si,k =
1

2δk

· [E(i, (f1, . . . , fk + δk, . . . , fo))−

E(i, (f1, . . . , fk − δk, . . . , fo))] (15)

The Jacobian matrixJ is the inverse of the sensitivity ma-
trix and describes how the optimisation factors depend on a
change of the result of the error function for a certain robot
pose near the current optimisation factors f:

jk,i =

(

∂Fk

∂E(i, F )

)

f

(16)

BecauseS is rarely a square matrix,J is calculated using
the Moore-Penrose matrix inverse ofS (see [3]):

J = S+ =
(

ST · S
)

−1

· ST (17)

If a vector of optimisation factorsf is available and the cor-
responding error vectore and the Jacobian matrixJ have
been determined, the improved vector of factorsf ′ is cal-
culated by:

f ′ = f −
(

J · e
)

(18)

The complete optimisation algorithm is now:

1. Start with an initial vector of estimated optimisation
factorsf and with an fixed set of robot poses and sen-
sor values.

2. Calculate error vectore for f

3. Calculate Jacobian matrixJ for f

4. Calculate new optimisation factorsf ′

5. Stop if distance betweenf andf ′ is small enough

6. Setf = f ′ and continue at step 2.

An alternative stop criterion would be a check if the current
error vectore is small enough.

V. SIMULATION

To check the usability of the algorithm and the convergence
behavior of the optimisation a simulation in MATLAB
(see [4]) has been implemented. Part of the simulation is a
module for the kinematics of an industrial robot. Mounted
at the robots hand is a simulated laser stripe sensor with
a plane as reference object in his field of view. The error
function has been implemented as shown above (see (7)).
With this simulation it is possible to test different robot
poses with a correctly defined tool transformation and
reference object (E = 0) and with slightly wrong tool
transformations and reference objects (E 6= 0).

The simulated sensor provides position information about
10 points in its coordinate system, base of the optimisation
are 20 robot poses. The factors to optimize are 9 in total:

F = (x, y, z, α, β, γ, nx, ny, d) (19)

The sensitivity matrix is:



















∂E(1, F )
∂x

∂E(1, F )
∂y

· · ·
∂E(1, F )

∂d
∂E(2, F )

∂x
∂E(2, F )

∂y
· · ·

∂E(2, F )
∂d

...
...

...
∂E(20, F )

∂x
∂E(20, F )

∂y
· · ·

∂E(20, F )
∂d



















(20)

And this is the Jacobian matrix:
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(21)

Table 1 shows an optimisation process of eight steps. The
first row shows the deviation of the tool transformation
from the correct tool transformation in all degrees of free-
dom. The other rows show the progress of the optimisa-
tion process. After eight steps the size of the deviation is
smaller than the repeat accuracy of an common industrial
robot. The values fornx, ny andd are skipped. Figure 3
and Figure 4 display the deviations over the optimisation
steps.

Simulations with different random start deviations from op-
timal tool transformation have shown that a distance up to
10mm for x, y andz, a distance of5◦ for α, β andγ and a
distance of0.1mm for nx, ny andd lead to certain conver-
gence to the optimal transformation: the global minimum.
If the deviation raises up to15mm, 7.5◦ and0.2mm it is
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x y z α β γ

-6.983 -3.958 -2.433 3.537 0.936 3.600
-2.780 -2.798 -0.435 1.256 0.966 3.538
-0.042 -0.275 -0.025 0.026 0.123 3.541
0.068 -0.202 -0.096 -0.036 0.046 1.750
0.047 -0.093 -0.057 -0.026 0.018 0.870
0.039 -0.051 -0.030 -0.020 0.008 0.432
0.045 -0.029 -0.025 -0.019 0.004 0.212
0.030 -0.020 -0.016 -0.012 0.002 0.105
0.021 -0.009 -0.025 -0.007 0.001 0.053

Table 1: Simulation Result
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Figure 3: Simulation Result: Translation

not guaranteed that the optimisation process finds the op-
timal values. Result is a local minimum or a divergence.
The convergence behavior shows that there is some slight
overshooting. For speeding up the optimisation this can be
compensated by introducing an attenuation factorλ ≤ 1
applied when calculating the correction:

f ′ = f − λ ·
(

J · e
)

(22)

The attenuation factor can be fixed or dynamically adapted.

The robot poses have to be chosen carefully. The set of
robot poses has to contain variations for all degrees of
freedom of the robot position to ensure a well-conditioned
sensitivity matrix. In case of an ill-conditioned sensitivity
matrix the Jacobian matrix can not be determined and the
optimisation fails.

An additional note about the accuracy of the tool transfor-
mation that is result of the optimisation: the resulting tool
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Figure 4: Simulation Result: Rotation

transformation is an artificial entity that has no physical
counterpart. The result depends on the selected robot
poses and the chosen workspace where the robot poses
are located. It depends on the all errors of the robot and
the sensor system. It is the transformation that solves the
given problem in an optimal way. If choosing different
work spaces the resulting tool transformation varies.

VI. MODIFICATION

If the sensor is not attached to the robot tool but fixed in
the robot cell and its important to know the sensors posi-
tion in respect of the robot its possible to use the algorithm
from above with a slight modification. Figure 5 shows the
changed system structure. Attached to the robots tool is
the reference object which is defined in the robots flange
coordinate system. This transforms all sensor points to the
robots flange coordinate system:

Flangep j = (BaseT Flange)
−1 · BaseT Sensor·

Sensorp j (23)

From here the solution is the same as for the base problem.
The definition of the reference object in the flange coordi-
nate system and the transformation from base to sensor are
the factors to be optimized.

Reference
Object

Base

Flange

Sensor

Figure 5: Modified System Structure

VII. CONCLUSION

This paper has demonstrated a method to determine a sen-
sors tool transformation, a problem that occurs in practical
industrial applications with robots. The method is based on
an optimisation using Jacobian matrices. The convergence
quality of the algorithm has been confirmed with a software
simulation.
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