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1. Introduction 
 
 
 
 

The Distributed Computing is the Information Technology (IT) domain which 

researches and implements solutions applicable for distributed systems, as they are 

defined in [1]: “a distributed system is a collection of independent computers that 

appear to the users of the system as a single computer”. Regarding independent 

computers, we try to use all their computing resources, such as their CPU cores and 

Graphic Processing Units (GPUs). In this way a greater computational power is used 

and it becomes possible to deal with large amounts of data. 

In our days, as the computing requirements are more and more demanding, 

Distributed Computing started to be used more and more often. Associated with the 

fact that after a certain performance level the hardware becomes very expensive, 

the alternative to associate many computing resources to solve in parallel the same 

task is very attractive and economically feasible.  

The actual microprocessors have an upper frequency range around 4-5 GHz and 

8-16 cores. Top commodity PC motherboards support around 8 microprocessors. 

Above these values special technologies are needed, for example liquid cooling for 

CPU. From these values, if the computing requirements are much higher, the only 

solution is to use multiple computers or supercomputers formed by using many 

interconnected processing units. 

Among the domains or applications types which require a large amount of 

processing power, we can enumerate the fallowing ones: 

 graphic rendering – for complex scenes, with many objects and effects, 

for which it is required as much photorealism as possible, the computation 

involved can be very large. For example, the 3D animated movie “The 

Croods”, required from its producer DreamWorks around 80 million 

compute hours to render and 250TB data storage capacity to make [2]. It 

can be easily seen that this amount of computation is well beyond the 

possibilities of a single computer. For such tasks, DreamWorks uses 

computing resources providers like Cerelink. In 2010, the cloud provided 

by Cerelink had a theoretical peak speed of 172 teraflops (peak theoretical 

speed) from its Altix ICE 8200 cluster, with 133 teraflops sustained 

operation. The ICE 8200 consists of 1,792 nodes (14,336 cores) of quad 

Xeon 3.0 GHz processors housed in 28 racks [3]. 

 biochemical simulation – when the simulation needs to achieve a great 

precision, it requires taking into account many chemical, biological and 
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physical laws. To integrate all these, the computations are very expansive. 

Maybe the most well known project in this area is folding@home, which 

uses a volunteer network [4] to compute folding data for proteins. In 

September 2013, there were over 266,000 computers involved in this 

project [5]. An interesting aspect of this project is the fact that even if the 

computations are very demanding, the core algorithms used for them are 

quite simple. This allowed their implementation as Graphics Processing 

Units (GPU) kernels.  

 earth sciences, such as weather prediction and seismology – these 

sciences use very complex systems with a lot of variables interacting each 

other according to computationally intensive formulas. To provide real-

time predictions, a huge amount of processing power is needed. For 

example, the US National Center for Atmospheric Research (NCAR) uses 

several datacenters and one of them, located at Wyoming Supercomputing 

Center, houses the IBM Yellowstone supercomputer, with a processing 

power of 1.5 petaflop [6].  

The folding@home project is only one of the many projects using the same 

model. There are also some other notable projects using the same model [7], as 

listed in Table 1.1. 

 

Project Domain Users Hosts 

LHC@home 

SixTrack 

Accelerator Physics based at 

CERN 

115,937 301,786 

SETI@home Search for Extraterrestrial 

Intelligence 

1,425,304 3,476,481 

ABC@home Finding abc-triples for the ABC 

conjecture 

77,414 143,561 

Climate Prediction Climate simulation and 

prediction 

269,829 555,184 

 

Table 1.1 – Distributed computing projects 

 

Regarding the access speed to its components and its management facilities, a 

distributed infrastructure can be classified into the following categories [8][9]: 
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 massively parallel processing systems (MPP) – tightly coupled 

computers. Most of the supercomputers are MPP. Because of the involved 

hardware and interconnections, in many cases these can be seen as a 

single multiprocessor computer. 

 clusters, clouds, computers/servers farms – independent computers 

usually in the same space, sharing only a high-speed network connection, 

usually without other shared or bridging hardware which can be seen in 

MPP. The computers within a cloud can be remotely managed and they 

possibly have virtualization software [10][11]. 

 grids – independent computers located in different geographical areas, 

communicating through network [10][12]. These computers can have very 

different hardware, operating systems and software, usually without 

virtualization or remote management software. WAN networks and the 

Internet are part of this category. 

When clouds are targeted, the fact that their installed operating system and 

software can be easily controlled and tailored to specific needs eases considerably 

the development of such applications. In the same time abstraction frameworks 

such as Apache Hadoop can be installed and configured to automate many 

distributed computing tasks. 

The most complex task is to address computer grids, because of their 

heterogeneous nature and because the online time of the computers in most cases 

cannot be predicted [13]. If platforms like Java or .NET are not used to create an 

abstract level over the hardware, operating system and the installed software, the 

programmer will need to write application variants for specific operating systems 

and available hardware. In the same time, the network management and error 

handling must be more thoroughly implemented in order to take into account 

frequent situations such as computers joining or leaving the grid. Another issue 

which needs to be addressed when programming for grid is the fact that the 

available computers can have very different computation capabilities and the tasks 

scheduler must find a way to use all these computers in an optimal way. 

In the context of the above classification, heterogeneous resources means 

different computing resources, such as CPU, remote computers and GPU, different 

operating systems and different hardware. Using Java frameworks the operating 

systems and hardware can be abstracted and also projects such as folding@home 

already use GPU for computations, but only in a limited way, for numerical intensive 

algorithms. 

Another possible classification regarding the physical computing resources takes 

into account their computation capabilities. In this case, the targets can be: 
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 systems with independent microprocessors, capable to run any 

algorithm – this is the case of the computer systems. Any algorithm can 

be implemented for them and this kind of resources can be used to 

execute the most complex algorithms involving complex data structures, 

recurrence and dynamic memory allocation. 

 systems with dependent computing units, tailored for specific tasks 

– this is the case of the General Purpose Graphics Processing Units 

(GPGPU or GPU in this work), which can have thousands of computing 

units but with more restrictions than the microprocessors. These systems 

can ensure a very high computation throughput, much higher than using 

microprocessors, but for now only some tasks are suitable for them [14]. 

Because of their computation power, the GPUs started to be used in many 

supercomputer architectures, such as the Titan supercomputer, made from 

18,688 CPUs paired with an equal number of GPUs. It was able to achieve 

17.59 petaflops, being the most powerful supercomputer in November 

2012 [15]. 

The above examples are large and very large scale applications. There are many 

other cases, at a lower scale, where distributed computing can improve a process, 

especially by saving a lot of time. For example a firm with 10 computers mainly 

used for office work (so the CPUs are loaded under 5-10%), can create with them a 

distributed system for the cases when intensive computations are needed on one 

computer. In this case the workload can be deployed as background tasks with 

lower priority (in order not to interfere with the normal usage) on the other 

computers and it can be computed in a distributed manner. Depending on the 

required network traffic and the parallel structure of the application, its computation 

time can be greatly improved, without disturbing or putting on hold other activities. 

This leads to a much more efficient usage of the existent resources and in some 

cases can even allow undertaking tasks which would not be feasible without 

distributed processing. 

Taking into account the above considerations, it is obvious that for computation 

or data intensive applications, distributed computing is a big advantage and it is 

very important for them to have such capabilities. Unfortunately, the actual tools 

(programming languages, libraries, protocols) are not easy to use by programmers 

to implement reliable and powerful distributed computing support in applications 

[16]. The mainstream programming languages have only a limited support for 

distributed computing and in most cases to write such an application involves using 

a lot of different libraries and configuration tools. The debugging process is also 

harder for a distributed application. The processes of an application can be 

implemented in a sequential or in a parallel way. Concurrent programs that employ 

message passing are called distributed programs, because the processes can be 

distributed across the processors of a distributed-memory architecture [17]. We 

consider the following cases: 
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 sequential – all the tasks are computed one after another. Even if in some 

cases an event driven model is employed, there are no two simultaneous 

computations. The sequential applications are the easiest to understand 

and code, they have the most extensive support from the actual 

programming tools and they tend to be very reliable. Their biggest 

drawback is the poor utilization of the available computing resources. Even 

if the compiler can make some optimizations such as automatic 

parallelization or vectorization, suitable for CPUs with multiple cores or 

with Single Instruction Multiple Data (SIMD) capabilities, these 

optimizations are made only in some very limited cases and most of the 

program execution is made in a strict sequential way, so mainly the 

application cannot use the advantages provided by the multicore or SIMD 

capable CPUs. 

 multithreaded – some tasks are performed simultaneously, using the 

available CPU cores, or other local CPUs, in the cases of motherboards with 

multiple CPUs. The multithreaded applications succeed to fully use the local 

computer resources but they come with added complexity. New problems 

such as synchronization and simultaneous access to resources need to be 

solved and these are sometimes quite hard to model and implement. The 

debugging process is also much harder for multithreaded applications and 

in many cases to write a reliable multithreaded application can require 

several times the time used to write the same application in a sequential 

manner. The drawback of such applications is that they cannot use remote 

resources, such as other computers from the same local network. 

 distributed – some tasks are performed simultaneously, both on the local 

machine and on the available remote computers. The distributed 

applications fully use both the local and the remote computing resources 

for the price of even more added complexity from the multithreaded case. 

New issues such as network management, serialization/deserialization, 

deployment, remote invocation and computing resources management 

need to be addressed. For distributed applications there is only little or 

inexistent support from the actual development environments. The testing 

of such applications needs to be done more thoroughly, because there are 

more interconnected modules, each one with its own requirements, which 

creates more possible failure points.  

From the above considerations, developing distributed applications is a much 

harder task than developing sequential or even multithreaded applications. Most 

mainstream languages do not have support for distributed computing at the 

language level, but this support is only provided through third party libraries and 

tools. Taking into account that to write distributed applications is more and more 

necessary, new models, concepts, libraries and tools need to be researched and 

developed to address the distributed computing issues.  
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In this thesis, we will concentrate on proposing, implementing and testing new 

models, frameworks and tools in order to make the distributed applications easier to 

be developed. The proposed solutions need to fulfill important criteria, such as: 

 reliability – the presented solution must not only work, but it needs to 

ensure data and computations integrity. If a computation or part of it 

cannot be done, it must be reported as so. The application needs to 

recover well from a wide range of unexpected conditions and errors and all 

these must be done as much as possible in a dynamic or even real-time 

manner [18], in order to address the continuous changing conditions 

existent in a distributed environment 

 abstraction – all the computing resources, such as local CPUs, remote 

computers and GPUs must be handled in an uniform way, without explicitly 

resorting at the application level to specific functions calls or settings for 

each platform. Standard and well implemented distributed computing 

tasks, such as code and data serialization/deserialization, code 

deployment, remote invocation and others must be handled by the system 

and libraries themselves and not by the application programmer. The 

programmer must concentrate mostly on the implementation of the high 

level application logic [19]. 

 simplicity – the proposed solutions must be simple and familiar to many 

programmers. In order to achieve this, the models need to have only a few 

but powerful concepts and they need to express well the application logic. 

This report is structured in three main modules: 

 motivation, objectives and main concepts – in these sections we 

motivate the thesis research by outlining some insufficiently developed 

areas in the field, and we provide an overview of the distributed computing 

domain, with a discussion of the most used concepts. 

 the distributed computing model and a possible Java 

implementation – in these sections we explain our model, and we 

highlight its advantages and use case. It is also presented a Java 

framework which implements the model as a library, making it available 

for any Java programs. 

 algorithms for tasks distribution on GPU – in these sections we propose 

two algorithms which enable the GPU use as a computing resource. The 

first algorithm can be used when the application modules are not suitable 

to run entirely on GPU. The second algorithm can be used when an entire 

application module can be run on GPU. It automatically translates the Java 

bytecode to OpenCL and runs it on GPU

BUPT



2. Thesis motivation, objectives and structure 
 
 

2.1 Motivation 

 

 Taking into account the current status of the distributed computing domain, 
there are some insufficient researched or developed areas. Due to this fact, even if 
there is a growing need for the complex applications to distribute computation tasks 
on more computing resources, developing distributed applications is a complex task, 
with many pitfalls, the testing process is hard and even with all these, not all the 
computing resources are fully used. We highlight several areas which we identified 

as being insufficient researched and developed and our motivation is to enhance 
them, both from a theoretical and a practical point of view. In this way, we want to 
make them more powerful, easier to be used and capable to handle a much wider 
area of tasks, in an abstract way from the point of view of the distributed computing 
aspects. 

 Current models widely used in distributed computing are taken from other 
programming languages. For example, the MapReduce model is taken from the 
functional languages, such as the map and reduce primitives from Lisp [20]. It has 
a solid theoretical foundation and it can be used to express powerful abstractions, 
but the model current implementation for distributed computing has several 
drawbacks: 

 it is implemented only by using frameworks and does not have a 
language level support – this makes its usage harder, due to the fact that 
many standard actions, which should be automatically solved from the 
compiling phase (if there were language level support), are left for the 
programmer to implement. For example framework calls for initializing the 

scheduler or for results synchronization must be explicitly made. 
Some languages, such as Scala, have a language level support for 

distributed computing, but these primitives model an Actors based 
computing model. These primitives can be used to implement a MapReduce 
model, but in this case in fact a library is developed and the programmer 
will use library calls and not the language primitives [21]. 

 it needs to be extended with specific distributed computing concepts 
- the functional languages from which this model was taken were mainly 
sequential languages. Several shortcomings of these primitives are present: 

o they do not have synchronization constructs – initially such 
languages did not need synchronization constructs for concurrent 
data access or for results ordering 
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o these primitives are not designed to work with asynchronous calls – 

they were meant to be blocking calls, due to the sequential 
character of the languages 

o their strict implementation results in a lack of efficiency, which 
sometimes can be very serious – originally these primitives were 

designed to work with data stored in local memory, so the access 

speed to all data was the same. In a distributed computation there 
are most of the times at least two types of data: global constant 
data, which is the same for all computations and it does not change 
and invocation specific data, which is particular to each 
invocation. These primitives do not have constructs to differentiate 
between the two types of data, so the developer must manually 

specify how the application data must be handled (especially in 
order to decrease the network traffic), which adds more complexity 
to the application. 

 Due to the above shortcomings, new models and concepts need to be 

researched and developed, in order to make them more suitable for distributed 
computing. These models must be general, simple, they need to ensure a high 
computational performance and the concepts must be familiar to the application 
domain. 

 Due to the increasing need for complex computations or large data 

processing, many programming languages start to offer parallel or distributed 
execution features. These features are implemented at the core language level or as 
libraries. Examples are the concurrency APIs (Application Programming Interface) 
for Java (java.util.concurrent) or the Task Parallel Library for .NET Framework. 
These APIs can be extended with 3rd party libraries such as GridGain [22]. This 
thesis extends concepts and features from these APIs with new aspects such as the 

integration of the Graphic Processing Units (GPUs) and other elements which are 
made available by the proposed model. 

GPUs are increasingly a valuable computing resource. For algorithms which 
are massively parallel, a GPU can offer appreciable speedups, in many cases 
reducing the execution time many times. In bioinformatics, with highly optimized 

libraries, GPU finely tuned algorithms can provide speedups of up to 1000x [23]. 
AMD Radeon Fury X [24] with 4096 cores, 8.6 TFLOPS FP32, 4GB HBM memory and 
NVIDIA GeForce GTX Titan X [25] with 3072 cores, 7 TFLOPS FP32 and 12GB 
memory are two 2015 top consumer GPUs. These are optimized especially for FP32 
computing. Their FP64 performance is lower (GeForce GTX Titan X has 0.2 TFLOPS 
FP64). An Intel Xeon X7560 CPU is capable of 72.51 GFLOPS FP64 [26]. From this 

data, the GPUs are important resources. They can enhance greatly specific classes 
of applications. If the algorithm is massively parallel and FP32 operations are 
enough, one GPU may provide a performance comparable with several desktop 
CPUs. 

 Considering the above considerations, many researchers try to employ the 

GPU advantages and develop new algorithms and libraries capable to use the GPU 

computational power. Two main technologies are leaders: OpenCL and NVIDIA 

CUDA. We will develop on the OpenCL approaches, as it is vendor neutral, open 
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standard and supported by many major vendors. Many discussed aspects also apply 

to CUDA, underlining that the structure of different GPUs has common elements, 

and OpenCL and CUDA are layers of abstraction over that physical structure.  

 In order to achieve their impressive number of cores, the GPUs must impose 

some limitations in other areas. Some of the GPUs tradeoffs are listed in the 

following paragraphs. 

 A first tradeoff is that a GPU core does not have its own instructions fetching 

and decoding unit but many cores are grouped in workgroups which run the same 

algorithm. In this respect a GPU core is more like an Arithmetic and Logic Unit (ALU) 

of a CPU core, than a full CPU core. The algorithms which require mostly arithmetic 

operations without execution branches are especially suitable to use a Single 

Instruction Multiple Data (SIMD) model [27], because in this case many ALU can 

work in parallel on the same instruction but on different data. This ensures a high 

computation throughput. Because such algorithms can be useful in multiple areas, 

many CPUs also include some forms of SIMD execution: on Intel/AMD the MMX, 

SSE, AVX instruction sets, on ARM the Neon extensions, etc. On GPU an entire 

workgroup execution is controlled by a single Computing Unit (CU), which 

implements the instructions fetching, decoding and other synchronization aspects. If 

a conditional branching makes different cores inside the workgroup to choose 

different execution paths, the CU will put some of them in a waiting state until the 

execution will resume at the same instruction, sometimes only after other cores 

finished their jobs. This phenomenon is named branch divergence [28]. GPU cores 

[29][30] are simpler than CPUs, which use optimizations such as out-of-order 

speculative execution. The speculative execution is mainly precluded because a 

single CU coordinates many GPU cores by using them to run the same instruction on 

different data, so it cannot simultaneously try different branching paths on all its 

cores. CPUs generally have a greater clock frequency than GPUs, so a CPU core has 

the same throughput as several GPU cores. 

 Another GPU tradeoff is that it does not have a stack. The OpenCL compiler 

is required to inline all the functions code in one kernel (the code to be run on a 

GPU core), so it eliminates all the functions calls. This limits the applicability of GPU 

use only to non-recursive algorithms. This is one of the reasons why many modern 

researches try to find optimized non-recursive variants [31][32] to recursive 

algorithms. A simple approach would be to eliminate the recursion by simulating the 

stack using suitable data structures, but this brings new questions regarding how to 

partition the limited GPU memory between many stacks and the global heap space. 

If we consider separate stacks for each core, in order to eliminate the 

synchronization overhead between cores, a GPU with 4096 cores would need 1 GB 

memory only to provide a 256 KB stack to each core. A simulated stack also 

eliminates the compiler possibility to make some optimizations, for example to 

eliminate some variables, because the programmer explicitly allocates space in the 

simulated stack for all the used variables. 
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 Regarding the GPU access to the host computer operating system (OS) or 

devices, a tradeoff is that a program executed on GPU does not have access to 

them. It cannot make OS calls in order use the disks or the network. This aspect 

limits the use of GPUs only to certain segments (without I/O operations) of an 

application. 

 Until OpenCL 2.0 (which at this moment is implemented only for some 

GPUs) the GPUs had a different memory space than the CPU. This tradeoff has its 

roots in the history of GPUs, when they were only very specialized peripheral 

devices, without general computing abilities. Different memory spaces makes 

difficult to share complex data structures which involved pointers. These structures 

needed to be serialized with the pointers converted to other representations such as 

indexes or identifiers, transferred to GPU and deserialized. In some cases this 

process is repeated when the data is transferred back to CPU. These aspects 

complicate the algorithm and reduce the potential speedup obtained from the GPU 

execution. In the same time memory transfers between CPU and GPU must be made 

over an expansion bus (PCIe) and this process can be much slower than the access 

to regular memory. OpenCL does not have mechanisms for dynamic memory 

allocation (malloc/free) so these must be implemented by taking into account 

factors such as the high possible concurrency (thousands of cores) on accessing 

shared resources (the heap memory). A memory allocator which is not optimized for 

massive concurrency would become a performance bottleneck by keeping all the 

memory allocation requests on hold while it processes one request. Without dynamic 

memory allocation even simple algorithms such as working with variable sized data 

would need to consume much more memory, by preallocating suitable buffer spaces 

for all the possible cases. 

 Since the GPU general computing power vastly increased, it would be 
important to use this power even for more complex algorithms, not only for the 
mostly numerical ones. It can be seen from the above factors that to design 
algorithms suitable to run on GPUs is not an easy task. This usage is even 
impossible when I/O operations are required. In situations with complex code flows 

and data structures it is possible that the GPU execution does not bring significant 

speedups. It is therefore desirable to use a mixed approach CPU/GPU execution and 
to run the different parts of the application on the most suitable device. Our 
research improves on this direction with a new algorithm suitable for cooperative 
CPU/GPU computing even for complex cases such as GPU suitable sequences 
embedded in multithreaded algorithms run on CPU. 

 Due to the above limitations, it is not easy to integrate the GPU for general 
purpose programming tasks, especially when complex algorithms are needed. New 
ways to use the GPU in an application must be found. These new modalities must 
make available computation on GPU for complex algorithms and must ensure an 
optimal usage of the vast parallel processing power of the GPU. In the same time, 
the GPU or CPU cores selection and usage must be as much as possible hidden from 

the programmer, so he can access all computational resources in a uniform and 

abstract way. 
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 Another research direction is to automate as much as possible the GPU use 

from a high level language such as Java, by automatically handling tasks such as 
OpenCL kernel code generation from Java bytecode, data 
serialization/deserialization and synchronization. These tasks can be formalized in a 
general way and implemented as algorithms. For example the translation from Java 
bytecode to OpenCL (which is a dialect of C) can be formalized by using the 
compilers theory. In section 7 we present some of the current approaches in these 

directions and our own contribution. 

 

 

2.2 Objectives 

 

 The main objectives of this thesis are to research and develop a MapReduce 
inspired model and frameworks capable to distribute the computational tasks in an 

abstract manner over the main existing computation resources (CPUs, network 
computers, GPUs). In these frameworks we strive to automate many of the unique 
and complex requirements of the distributed computed domain. In this way many 

distributed programming tasks are handled automatically and the programmer can 
concentrate on the application logic. 

 First we introduce a new high level model capable to use in a uniform way 
the computing resources and in the same time automatically handle the distributed 
computing aspects such as network management, code deployment, 
serialization/deserialization, remote invocation, invocations scheduler. This model 
should satisfy the following conditions: 

 it needs to be general, in order to be applicable to as many as possible 
types of applications. We target especially the computations which can be 
split in mainly independent processes, such as graphic rendering of 
multiple frames or data mining on large collections. 

 it needs to be simple and use only a few concepts, so the developers could 
have a quick learning rate and in the same time they could master the 
tools they use 

 it needs to ensure a high computational performance, due to the fact 

that the distributed computing is used to solve problems requiring vast 
amounts of computation power, so any optimization or any limitation can 
be magnified in good or in worse hundreds or thousands of times 

 it needs to be applicable to the application domain in a natural way, 

so the developers will not need to use different stratagems in order to 
adapt the application algorithm to the proposed concepts and workflow 

 Second we create a framework which provides the means to use this model. 
This framework should address the following requirements: 
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 all the low level tasks such as resource discovery, remote invocation, 

serialization/deserialization, load balancing and error recovery should be 
handled by the framework in an abstract manner, so the developer 
can concentrate on the application logic. If the developer needs fine tuning 
of the above aspects, he should have access to their settings in order to 
tailor them to his specific needs. 

 the framework should use all the available computing resources, 
such as local CPU cores, network computers and GPUs. The employment of 
these resources must be done in a generic way, so the programmer 
should not develop different implementations for different computing 
resources. The framework may provide a way to evaluate the performance 
of the available computing resources and use them accordingly, for 

example the local GPUs and CPU cores and if these are occupied, the 
remote resources. 

 the interface should be simple and it should use only a restricted set 
of concepts. In this way the framework will be easy to be learned and 

applied by developers. 

 the framework should use when possible well established, industry 
standard libraries and tools. Taking into account the fact that there are 

many low-level libraries, well developed and optimized over the years and 
which are open source, their integration in a high level framework would 

be a big advantage. This integration would lead to a significant decrease of 
the required development time, ensuring in the same time the usage of 
production ready solutions [33]. For example industry standard 
serialization or networking libraries can be employed. 

 all the framework components must work in a decoupled manner, in 
order to be able to use different settings on a specific level, without 
affecting other levels. For example, if the available network imposes 
restrictions on using TCP non-standard ports, the framework should be 
capable to use a different transport protocol, for example HTTP. 

 the framework should also provide a remote component 

(server/service provider) which will be installed on the remote 
computers. This server will be the destination of the deployment of the 
application into network and through it the data flow, resources 
management and the remote invocations will take place. This server needs 
to be able to do the following actions: 

o respond to regular queries about its version or available resources 
o receive the code destined to run remotely 
o receive the global and invocation data 
o instantiate the code needed to run the invocation and use it to run 

the computation 

o return the results or the error codes to the main application 
 

 In this framework we integrate first the computation on local CPU cores and 

on the network computers. In a second step we address the integration of the GPUs 
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when these are used as a general purpose computing resource. For each 

computation resource we present the status of the field and our original 
contributions. In some cases we developed multiple approaches, in order to address 
different applications requirements. Each approach was also implemented in a 
proposed framework and we tested it on different scenarios. The practical results 
are given and discussed.  

 

 

2.3 Structure 

 

 In this thesis, after the introduction, motivation and objectives, section 3 
(Distributed computing concepts and requirements) reviews some important 
concepts for the current research. Different aspects such as network management, 
code deployment, remote invocation, invocation scheduler and the remote server 

are discussed with some of their more important options. 

 Section 4 (Application level execution model) details the proposed 

computation model. The original MapReduce model is first analyzed in the context of 
a distributed computation and its shortcomings for this kind of computations are 
identified. After that we introduce our model by means of an example. The model is 

later formalized and theoretically analyzed. In the end we present an 
implementation of our model using a virtual machine developed for it and we 
discuss the practical results. 

 In section 5 (Application components distributed computing framework) we 

implemented our model as a Java framework (client library and remote server), so it 
can be used by regular Java applications, without requiring language level 
constructs. The library was designed to be flexible and generic, so it abstracts many 
aspects such as computing resources or data destinations. We discuss the 
implementation and analyze the practical results obtained by using the framework 
from a test application. 

 In section 6 (Algorithm for hybrid execution on both CPU and GPU) we 
propose a novel algorithm for the cases where the computation is too complex to be 
executed only on GPU, for example it has calls to the functions of the operating 
system. In this case, by using a combination of threads and fibers, we succeed to 
split the computation in parts suitable for CPU and for GPU and execute them in an 

efficient manner. The algorithm is especially efficient in the cases where there are 
multiple threads and each one can have GPU accelerated segments. We provide a 
C++ test application and we discuss the practical results. 

 In section 7 (Java bytecode runtime translation to OpenCL and GPU 
execution) we propose a new algorithm and its implementation as a Java library, 

capable to translate parts of the containing Java application bytecode to OpenCL and 
run the resulted code on GPU. Beside the use of the reference types, the algorithm 

is capable to translate some advanced Java constructs such as exceptions and 
memory allocation, for which there is no OpenCL support. The library implements 
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our proposed model and it abstracts the computing resources, so the same code can 

run both and CPU and on GPU without any modification. We tested our library and 
we discuss the practical results. We also make a comparison with the Aparapi 
library, both as features and as performance. 

 In section 8 (Conclusions) we present the conclusions of our research, 

emphasizing our novel contributions. 
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3. Distributed computing concepts and 
requirements 

 
 

 
 In this section we discuss some distributed computing aspects, 
relevant to our research. These aspects can be found in most of the 

distributed computing applications. A direction of our research was to 
identify among them common patterns which in most of the cases can 
be abstracted, so the programmer can focus more on the application 
logic. In this respect, our proposed model and algorithms try to 
automate as much as possible the tasks involved by these concepts and 
requirements. 

When compared with sequential or even with multithreaded 

applications, the distributed applications have several new requirements, 
such as network management or serialization. A distributed computing 
framework must address these requirements. In the following sections 
they will be explained specifically in correlation with their role in 

distributed computing. In our thesis we are concerned especially with 
the presentation and the application layer of the Open Systems 

Interconnection (OSI) layers [1]. 
 
 

3.1 Network management 

 
 

 The network management (services discovery, communication, 

security) is very important for the distributed applications because the 
network is the main mean to distribute the tasks and retrieve the 
results. There are several issues regarding the network, such as: 

 

3.1.1 Servers or services providers discovery 

 
 A distributed application is formed from components which run 

on different hardware. These components need to cooperate so they 

need to connect in some way to other computers in order to use them. 

The components can be installed on the available hardware in several 

ways: 

 on each computer the entire application package is installed 
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 a component which acts as a specific service provider is 

installed. It is used to handle requests, compute them and 

return the results 

 a component which acts as a generic server that can be used to 

receive data and if necessary application components is 

installed. It instantiates these components, passes the data to 

them for computation and retrieves the results 

In any of these cases, the application must have a way to detect the 

remote available computers (the ones which can act as servers or 

service providers). This detection is named resource discovery 

[34][35][36] and it can be done in several ways: 

 using broadcast messages – the application sends query 

messages to all the computers from the registered networks to 

check which ones of them are available for computations. The 

networks to be searched can be obtained from a simple 

configuration file, which holds a list of hosts and networks. This 

is a truly distributed approach, but it can be quite slow to 

broadcast queries on large networks and it also creates more 

network traffic. 

 using resources index servers – the remote computers 

register themselves on an index server [37]. When large or 

hierarchical networks are concerned, several machines can act 

as index servers in a hierarchical topology. The application will 

query the servers for the registered remote computers and it 

will get their list. This approach makes the resource discovery 

simple and quick, but it can create a centralized point of failure 

if something happens with the index server or with the 

communication with it. These shortcomings can be alleviated if 

redundant index servers are kept, better in different segments 

of the network. 

For either method naming services (DNS, RMI registry) can be used 

to obtain the resources network address from the application specific 

resources description. After the available remote computers are found, 

subsequent queries are made in order to obtain their computing power, 

availability and current load. All these factors are important for the tasks 

scheduler, in order to make as good as possible decisions regarding 

where to send the computing tasks. 
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Especially for grid computing, the resource discovery must be a 
continuous process, due to the fact that in any moment a remote 

computer can join or can leave the network [38]. 
 

3.1.2 Data and code communication 

 
To send data and code over the network [39][40], well defined 

communication protocols must be employed. These protocols must 

address some factors such as: 

 all data and code must have standard sizes and 

definitions, for example the int type to have 4 bytes and the 

floating point numbers to be encoded in IEEE 754 format. If 

compression schemes such as variable-sized integers [40] are 

used, these schemes must also ensure platform neutrality. 

 when structures are sent, the members order (and 

padding or separators, if any) must be well defined 

 before data is sent over the network, it must be encoded 

in an architecture neutral form, for example in little endian 

or big endian formats. The process of encoding data in an 

architecture neutral form as called serialization. The process 

of decoding data from the architecture neutral form to a 

specific computer and application format is called 

deserialization. The process of serialization/deserialization is 

especially important for heterogeneous networks, in which 

CPUs with different endianness and data sizes can be found. 

 The above aspects are included in the data and code encoding 

formats [41]. When the required bytes themselves are sent, respecting 

the architecture neutral form, we have a binary format. Binary formats 

ensure fast encoding/decoding and do not introduce much overhead. For 

some applications, a disadvantage is that they are not human readable, 

so they cannot be easily inspected. In the same time the binary formats 

are very tightly connected with the application internal structures, which 

make these formats to change quite often when new application 

versions are released. 

 Sometimes the data and code are encoded in standardized, well-

known, human readable formats, such as XML or JSON. These formats 

care named text formats. They require more time for 
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encoding/decoding than the binary formats and in the same time they 

tend to be larger, which can be an issue when the data needs to be sent 

over the network. The main advantages of the text formats are that 

there are human readable, so they can be easily inspected, especially 

for debugging purposes and they can interoperate easier with other 

tools or services [42]. 

 To reduce the network traffic, the serialized data can also be 

compressed. This is efficient especially for text formats and for 

communications over Wide Area Networks (WAN). When binary data is 

sent and this data is not well compressible (for example already 

compressed multimedia formats), or when the communication is made 

over fast local networks, the compression can slow the network 

communication. 

 There are several ways to send serialized data over the network: 
 

 using TCP/IP or other low-level network protocols – this 

method ensures faster speeds because of a lower overhead 

and it also offers more customizations. Its drawback is that 

some firewalls or internet providers block the access to non-

standard network ports so these computers will not be able to 

be used. 

 using high level protocols, such as http – this method has a 
bigger overhead than the first one, but it has the advantage 

that it can use standard ports and accepted formats for data 
packets, so it can be used over many firewalls and with many 
internet providers. 

3.1.3 Security 

 
 When a computer sends data over the network, or when it 

receives data from the network, some security aspects must be 

observed [43][44][45][46]. There are several issues and we can cite the 

following ones: 

 when sensitive data is sent over the network, it must be 

encrypted or Virtual Private Networks (VPN) must be 

employed. Data encryption can be made at the application 

level, using custom encryption systems, or standard encrypted 

communication protocols such as SSL can be used. 

 some remote services or servers can be made available 

only for certain users or hosts. In this case the 
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communication between application and the remote resources 

must include authentication mechanisms or host identifying 

steps. These mechanisms can employ for example 

user/password authentication or electronic signatures. The 

authentication can also differentiate the user type, when 

different services are offered to different users categories [47]. 

 logging for the communication history must be employed 
for all the cases when important data is used or 
sensitive computations are performed. In case of later 
problems, divergences or disagreements, these logs can be 
used to assert the real history of the events and in the same 

time they can help to recover from some situations [48] 

 

 

3.2 Code deployment 

 
 In most of the cases a distributed application needs to send 

components or all of it to the remote computers [49].  This process is 

called deployment and it can be done in several ways: 

 manual – the network administrator or the application owner 

manually installs the remote parts of the application on the 

remote computers. For volunteer networks, the computers 

owners install themselves the remote parts of the application 

on their computers. This is the most tedious and time 

consuming way of deployment. Its main advantage is that for 

heterogeneous networks, a human can manually optimize the 

application settings for each computer [50]. 

 made by the application itself - the applications can have the 

ability to replicate themselves over the network, when suitable 

computers are found. The remote computers must have a 

receiver application which can receive and manage (install, 

run, update, uninstall) the distributed application. This 

deployment method is faster and easier, but it requires from 

the application developer himself to implement inside the 

application the code necessary for replication [51]. 

 made by the distributed framework in which the 
application is run – this method is suitable especially for 
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cloud computing, where specialized frameworks are installed 

on all computers and all the network is carefully setup for 
distributed computing [52]. In this case the application 
developer must provide into the application some standard 
entry points for the framework used, or to provide some 
configuration files. The framework will connect to the provided 
entry points, or will load the configuration files and it will 
deploy the necessary parts of the application. For example a 

Java framework can specify that the distributed modules of an 
application must implement a certain interface. The framework 
will scan all the classes for this interface, load the ones which 
implement it and using this interface collect enough 
information to know what to deploy. This deployment method 
is very reliable, because it uses industry standard frameworks 

which operate in carefully set networks. It is also quite easy to 
use, because the developer must implement only some small 
interfaces and the deployment work will be handled by the 
framework. The drawback for this method is that in most of the 
cases the framework imposes some special software 
requirements for the remote computers, effectively making 
them dedicated for distributed computing. This approach 

cannot be used for volunteer networks, or when the remote 

computers are mainly used for other jobs, not for distributed 
computing. 

 
 In any of the above cases, some more aspects need to be 

addressed: 

 handling of the newer application versions – when new 

versions of the application are available, these must be 

deployed to replace the old ones. Especially on grid networks it 

is possible that the update process will not affect all the 

computers with the old application version installed, for 

example because they are offline at the update time. In this 

case, some computers will run the new application version and 

others the old version. To solve such cases, all communication 

protocols must have a version identifier and a remote 

computer will take part into the computation only if it can 

handle the current version of the protocol. Else, it can request 

the main application to send updates [53]. 

 code caching – in order to decrease the network traffic and the 

remote startup time, the remote computers can maintain 

between sessions a cache of the applications sent to them. 

Every cached code must have a method to be compared with 

the actual code which needs to be run. For example, a hash 
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can be computed for the cached code and when the new code 

is about to be sent, it will be transmitted only if on the remote 

computer is no cached code with the same hash [54]. 

 the management of the deployed application – besides 
deployment and remote storage, the remote computers must 

handle other tasks related to the deployed applications, such 
as their removal. This can be done manually (by the computer 
owner), at external requests or automatically, according with 
some setup, for example after a period of time or after a 
number of computations. 

 

3.3 Remote invocation 

 
 The remote invocation is the process to invoke remote code, 

possibly passing input arguments and retrieving computation results 

[55]. In order to start the remote computations, the required data must 

be sent. This data can be categorized in two parts: 

 global data – it is the same for all computations and it is 

constant until the end of their life time. This data can be sent 

only once to each remote computer. 

 invocation specific data – it is specific for each invocation and 

must be sent separately for every computation. 

 For example, a graphic renderer can have some static, 

unchangeable data for the scenes background. As this data (which can 

be quite big) will never change, it can be sent only once to each remote 

computer. The characters and effects instead need to change through 

the frames, so their parameters will be different for each remote 

invocation and they need to be sent updated for each computation. 

 If we make an analogy with a sequential application, the 

distributed global data corresponds to global or dynamically allocated 

constant data and the invocation specific data corresponds to the 

parameters of the functions calls. The functions calls (the distributed 

remote invocations) can return a result, especially in an asynchronous 

way [56]. This result must be returned to the main application over the 

network. If an error or exception is generated on the remote execution, 

it must also be made known to the application. 
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 In many cases, a remote invocation is performed using the 

following steps [51]: 

 the call arguments and the code for the function needed to 

process them are encoded in an architecture neutral way and 

are packaged in an invocation data package [57]. In the case 

of remote methods calls, it is also encoded the remote object 

identifier to which belongs the computation. 

 the invocation data package is sent to the remote computer 

  the invocations server on the remote computer unpacks the 

invocation data and decodes it to its own platform format 

 the requested function for computation is found using the 

function code and if necessary (for methods) also the 

computation object, using its identifier 

 the data is passed to the function and it is computed 

 the results are collected, encoded in an architecture neutral way 

and are sent back the main application. A special field is also 

appended to return the status of the computation, i.e. if it was 

successful or an exception occurred. In the last case, the 

returned data will contain the exception code or description. 

 back at the main application, the returned data package is 

unpacked and decoded to the architecture own format and 

passed as result for the invocation. If an exception was sent as 

return, it is transformed in a native exception and thrown.  

 As a difference from the applications running only on the local 
host, in the case of the remote invocations, network errors can also 

appear. These must be handled and they are treated in a different 
manner than the returned erroneous computations results (such as 

exceptions), which belong to the application logic itself [58]. Mainly the 

network errors occur due to the following factors: 
 

 network communication errors – the network link between 

the main application host and one or more of the remote 

computers is broken and the communication is cut off. 

 the remote computers leave the network – for example 

they are shutdown or the remote server is stopped on them 
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 In these cases, different approaches can be used [59], for 

example a two phase computation retry. First, the network errors must 
be detected, for example by using timeouts or ping signals to detect 
broken communication. Second, if an error is detected, the application 
can retry to send the invocation data package to it and if this also does 

not succeed, that host will be removed from the available computation 
resources and the invocation will be sent to another host. When the 
resource discovery is performed as a continuous process (important 

especially for grid networks), if the removed server is detected again 
online, it can be re-added to the available resources. 
 
 

 3.4 Invocations scheduler 

 
 In distributed computation, the main application has a central 

role of scheduler for all the other remote computations [60]. It sends 

the required global data, starts invocations and receives the results. In 

order to do that, the main application has to follow some principles. 

 To be able to act like a scheduler, all the invocations must be 

run asynchronously [50][61]. Else, the application will need to wait for 

their completion, one by one. In the asynchronous case, the invocation 

data is put in a waiting list and it is sent to the remote computers as 

they become available. This execution model is much like using worker 

threads in multitasking applications and in fact it requires worker 

threads for its own implementation. 

 When a remote resource becomes available [62][63], one 

invocation data is taken from the waiting list and is sent to it. After 

computation, the results are returned to the main application thread. In 

case of network failures, the scheduler can try to resend the invocation 

data to the same remote computer or to other available computers.  

 For grid or volunteer networks, two new problems arise: 

 the remote computers can join or leave the network any 

time – this situation is much  more frequent than in the cloud 

computing, where a computer is going off only in case of 

malfunctioning or revisions/upgrades. To solve this problem, 

the invocation scheduler must work closely with the resource 
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discovery system, in order to have the updated network 

situation. 

 the remote computers have very different hardware and 

software installed – this situation is very different from the 

cloud computing case, where the hardware is quite the same, 

the installed software in most cases is exactly the same for the 

entire cloud and all these aspects are tightly controlled by the 

network administrators. When dealing with different hardware 

and software, the main application must deploy correspondent 

variants for the existent remote components, for example it 

can have two different modules, one for computers running 

Linux and one for computers running MS Windows. In the 

same time, if one module is optimized for specific instruction 

sets (such as SSE or AVX), another module is needed to run on 

older hardware, which does not have these instruction sets. If 

the application is coded in Java or .Net, there will be no 

difference related to the remote hardware or software (besides 

the installed Java or .Net version) so only one module is 

needed for all situations. 

 In the situations when different hardware is used [64], or when 

the remote server is allowed to use only a percent of the host computing 

power, an advanced scheduler can evaluate the computational 

capabilities of each remote computer and assign different tasks to them, 

in such a way that they are used optimally, from the point of view of the 

total computation time [65][66][67]. 

 When all the invocations are distributed to the remote 
computers and there are still unused remote computers, the scheduler 
can send the same invocation to more computers, with the hope that 
one of them will finish it sooner. This optimization can be very effective 

on heterogeneous networks, where different hardware can have very 
different computational capabilities. In this case, if another resource 
finished earlier, a special message can be send to the servers which are 
still computing the invocation, to tell them to cancel that particular 
computation. 
 
 

3.5 The remote server 

 
 On the remote computers special software must be installed, in 

order to give access to the resources of that computer. In some cases 

the application itself can run in two modes, for performing the required 
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computations or as a server, but in most of the cases the server is 

another piece of software. 

 The server has several tasks to do [4][51]: 

 respond to general queries – in a distributed computing 

communication protocol there can be many queries, such as 

for retrieving the type and version of the server, its computing 

capabilities, security policies or its current load. 

 receive the deployed code of the remote applications – 

this code can be stored or cached for future usage and it must 

be kept in such way that it can be uniquely addressed by the 

application which sent it 

 receive the global and invocations data packages – this 

data must be unpacked and converted into the host native 

format 

 run the invocations – to run an invocation, the server must 

load the code necessary for that invocation (the target function 

and all its dependencies) and run it with the invocation data. In 

the case of a method, an object must be instantiated or 

retrieved if the required instance already exists. 

 get the computations results and package them for 

sending over network – when the computation is done, its 

result must be retrieved. If an exception occurs, it is also 

converted to a special data package  

 send the results back to the main application – the results 

are sent back to the application. In case of network errors, the 

sending process can be repeated several times. 

 free the resources allocated for a specific application 

when that application ends – the global data and code 

related to that application are freed from memory. The servers 

with caching facilities have specific options regarding the cache 

size, the disk and memory size used for cache. In this cache 

especially the application code can be stored, due to the fact 

that it changes only at relatively long periods of time and in 

most of the cases an application will be run many times. 
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 In the case of grid or volunteer networks special usage policies 

must be provided [68]. In these cases the server needs to run according 

to the host owner preferences, such as: 

 the remote applications will run only when the CPU or memory 

are free over some percent, situation defined as host in idle 

state. 

 the remote applications will run as low priority threads and they 

cannot use resources (CPU, memory, disk space, network 

bandwidth) over a certain, user defined threshold 

 the user can at any time stop, pause or resume the remote 

computations 

 the remote applications must be isolated from the local data, 

such as the user personal files or settings, in order to maintain 

his privacy 

All the above usage policies must be met in order not to disturb 

the user work and privacy. In this way the user will be in complete 
control of the usage of his computer. Due to this fact he can accept 
more easily to contribute with computing resources to the grid, because 
he can finely tune his contribution and in the same time he can be sure 
that his privacy will be ensured. 

 
 

3.6 Conclusions 

 
 In this section we discussed some common distributed 

computing concepts and requirements. They can be found in most of the 
distributed computing applications, so it is important if they can be 

automated. Even if they are implemented as libraries (for example Java 
RMI), the use of these libraries add its own complexity to the coding 

effort and to the application maintenance. 
As we will show in the next sections, our research proves that in 

many cases, especially when the application can be coded in a Divide et 
Impera manner, these requirements imposed by a distributed 
computation can be to a greater extent automated and abstracted from 
the programmer. An added benefit is a more uniform handling of 

different computing resources such as CPU, remote computers or GPU. 
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4. Application level execution model 
 

 

 In this section we present our novel distributed computing 

model. It is based on the well-known MapReduce model. First we 

analyze the current MapReduce model we and discuss it in the context 

of the distributed applications, in order to identify its shortcomings for 

this use case. Next we introduce our model by means of an example. 

After that we discuss in depth the concepts our model, their interactions 

and we present a theoretical analysis of its performance. We also 

provide an implementation of our model as a virtual machine and we 

discuss the practical results. 

One of the most known computation models for distributed 

computing is MapReduce. It has a solid theoretical foundation and it 

was mainly used in functional programming languages such as Lisp [20]. 

With the advent of the first order functions and closures in many 

mainstream languages, primitives equivalent with map and reduce are 

now also available in standard libraries for Java or C#. We quote how 

this model handles a computation [20]: 

“The computation takes a set of input key/value pairs, and produces a 

set of output key/value pairs. The user of the MapReduce library 

expresses the computation as two functions: Map and Reduce. 

Map, written by the user, takes an input pair and produces a set of 

intermediate key/value pairs. The MapReduce library groups together 

all intermediate values associated with the same intermediate key and 

passes them to the Reduce function. 

The Reduce function, also written by the user, accepts an intermediate 

key and a set of values for that key. It merges together these values to 

form a possibly smaller set of values. Typically just zero or one output 

value is produced per Reduce invocation. The intermediate values are 
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supplied to the user’s reduce function via an iterator. This allows us to 

handle lists of values that are too large to fit in memory.” 

 For our purposes we propose a MapReduce model. In the map 

phase the computation is split in independent units and each unit is 

computed separately.  If we consider the computation of a single unit as 

a function f:X->Y, where X,Y are any simple or compound types, we can 

write: 

R={ f(xi) | xi∈J }, J⊂X, R⊂Y 

 J – the collection of jobs to be computed  

 R – the collection of results, each element being the result of the 

same computation f applied to one element of J 

 If an ordering is required (the (key,value) pairs from the orginial 

description), the X and Y can also include the required keys besides 

values. Our model makes this original requirement optional, because not 

any MapReduce computation requires keys. For example, an application 

which only counts the total number of words on multiple texts does not 

need keys to identify the source text for that partial count. 

 With the above notations we can write: R=map(f,J). 

Traditionally a map phase is applied in a sequential way (in Lisp, OCaml, 

JavaScript, etc). In more recent libraries (such as Task Parallel for C#) 

the map phase can be applied in parallel. 

 In the reduce phase the independent results of the map phase 

are combined into a final result. If we consider g as a combining function 

and Z is the type of the final result, we can write: 

g:Yn->Z, n=|R| 

 The above is the most generic form of the reduce function which 

can apply any combination from the result collection R. In practice 

simpler forms are used, for example by iterating R together with an 

initial value (an accumulator) and successively applying g to the current 

element of R and to the accumulator. The result will be the new 

accumulator (the fold family of functions from OCaml). In this case, the 

reduce function can take the form: 

g:(Z,{Y})->Z 
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where the first argument of g is the accumulator of the partial results 

and the second argument is the list of the partial results computed in 

the map phase (the R collection). If g does not need a specific order to 

reduce the partial results, these can be passed directly to g, without 

putting them first in the R collection. 

 

4.1 The original MapReduce shortcomings 

when a distributed computation is involved 

 

 The original implementations of MapReduce are found in 

functional languages such as Lisp. These languages were used mainly to 

express sequential computations and only later concurrent versions such 

as Multilisp were designed [69]. In a sequential computation some 

assumptions are (implicitly) made: 

 Assumption 1 – because of the sequential model, all the 

computations were done synchronously and the results are 

available immediately on computation function return. From this 

moment the results can be safely used. 

 Assumption 2 – in most of the cases all the involved data 

resides in the same memory so any part of it can be roughly 

accessed in the same way and requiring about the same access 

time (taking into account the cache memory and the disk swap). 

 Assumption 3 – aside of the computation errors and 

sometimes resources (memory or stack) exhaustion, there are 

no other sources of errors beside hardware failure, in which case 

in most of the times all the computation is aborted. 

 Assumption 4 – because of the sequential execution and also 

because of the predominant immutable nature of the data 

involved, there were no problems of concurrent access to 

resources (data racing) so in the map phase it was safe to apply 

the computation function without any data synchronization. In a 

sequential computation, a problem which may arise from a map 

function with side effects is when a specific order must be 

ensured on the map function calls. In this case, if the specific 
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order is not ensured, the side effects can change the 

computation result. 

 In a concurrent execution model and even more in a distributed 

computing model, the above assumptions are not necessary true. 

Because of them the original MapReduce model cannot be directly 

applied in distributed computing. We need to define new semantics and 

operations to be able to create a computation model for distributed 

computing applications, in the same time trying to keep as much as 

possible from the original MapReduce model, which was proved during 

time to be a successful computation model. 

 In the following sections we will discuss each assumption and we 

will analyze its requirements from a distributed computing point of view.  

 Assumption 1 – all the computations are done 

synchronously and the results are available immediately on 

computation function return. In a concurrent model, the 

computations are mainly done asynchronously and they can be available 

at any later time, during the program execution [70]. There are mainly 

two methods to deal with asynchronous operations: 

 The main program or the operating system inspects from time to 

time the availability of the results. In this method some CPU 

cycles are lost due to necessary verifications. 

 The main program enters in a wait state and the computation 

function notifies the program when the result is ready. In this 

method the CPU is better used because it does not consume 

cycles during the wait of the main program thread. 

 We use in our model the second method because it uses better 

the CPU. In this way, while waiting for a result from an asynchronous 

call, the CPU can be used for other tasks. The final step of the 

computation must be a synchronization step, in order to be sure that all 

results have arrived and they were processed. 

 Another important aspect regarding the synchronization phase is 

the fact that not all algorithms require a full synchronization of all 

results of the map phase before the reduce phase. For example if each 

of the jobs provides data to be written in a separate file, these files can 

be written immediately on data arrival without needing to wait for other 

results (the reduce phase is not needed). In these cases standard 
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synchronization functions such as “join” or “wait” must be carefully 

used, in order not to introduce not-needed waiting points. 

 Assumption 2 – the involved data resides in the same 

memory so any part of it can be roughly accessed in the same 

way and it requires about the same access time. In a distributed 

computing environment it is possible that parts of the application and 

associated data to run on different computers (which requires network 

traffic) or on different devices such as GPU (which requires traffic 

through the peripheral interfaces). Because any such traffic is much 

slower than the main memory access, it is very important to divide the 

data involved in computation in more categories, in order to optimize its 

usage. 

 In our model we consider two types of distributed data involved 

in computation: 

 global immutable (static) data – this data is common to all 

distributed jobs and it remains the same during the 

computation. Because of this, if we need to run some jobs on a 

remote computer, it is enough to send this data only once to 

that computer and all jobs will use the same instance. This 

optimization can be quite important for the network traffic 

because there are applications in which this data is very large or 

there are many jobs and if we send this data with each job, the 

network traffic would be considerably increased. For example, 

let’s consider an application which renders a movie. There are 

many components such as textures, background or non-

modifiable elements which are all immutable data and its size 

can be quite big. In the same time there are a lot of jobs, for 

example to render a 2h movie at 30 FPS, 216000 jobs are 

needed, one for each frame.  

 job specific data – this data is specific to each job and it needs 

to be sent separately for each job. For the above example, we 

can consider job specific data changeable positions, 

deformations or colors change, any aspects which change from 

frame to frame. Sometimes parts of this data can be further 

optimized by considering them immutable data if in more jobs 

these parts are not changed. In this case we can consider 

clusters of jobs organized in such way that the amount of 

immutable data is maximized inside such a cluster. 
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 Assumption 3 – if the algorithm runs correctly, aside of 

memory/stack exhaustion there are no other errors. In a 

distributed computing environment even if the algorithm runs correctly 

(without errors such as accessing null or dangling pointers) there are a 

lot of new sources of errors. Most of these new errors are related to 

network communication or to the availability of the remote computers, 

especially on the case of heterogeneous networks. These errors are so 

frequent that they should be handled gracefully by the application, 

without aborting the entire computation. Assuming that the algorithm 

runs correctly and the results are valid, the above errors have mostly 

the effect of dropping the results of some computations. These errors 

can be handled by setting timeouts and/or sending query messages 

(pings) to the remote computers to test their status. If the timeout is 

reached the remote computation is considered lost. The main problem is 

the determination of the timeout time, because there are several factors 

involved: 

 for heterogeneous networks, the computers can have very 

different computing capabilities and local workload factor. In this 

case even a timeout time is computed by testing the time 

needed for one machine to complete a job, this time may not 

suffice for other machines to end their computations. 

 even in the case of homogeneous networks, it is possible that 

different tasks have very different computations requirements. 

For example to render a scene with a lot of complex objects and 

effects can take orders of magnitudes longer than to render an 

almost empty scene. 

The recovery from such errors involves especially creating a new job 

with the arguments of the lost computation. If there are enough 

computing resources we can also assign a redundancy factor to each job 

and it will be run simultaneously on multiple computing resources. The 

first resource which sends back the results is “the winner“ and the other 

computations are aborted. Creating redundant (backup) tasks is also 

useful to speedup computations [20], by creating a competition between 

different computing resources. For lost computations it is also important 

to send to the remote computers (if they are still reachable) cancellation 

requests, in order to be as sure as possible that their resources are not 

still used for a computation considered lost. 

 Assumption 4 – during the map phase there is no need for 

synchronization for data access (no data races). In a concurrent 
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computing environment many algorithms have shared data so data 

access synchronization is needed. More than that, on a distributed 

computing environment, because different jobs can run on different 

machines, the shared (common) data will in fact be replicated on 

different places, so the data modifications will not be visible globally to 

all distributed jobs. The main solution to this problem is to keep the data 

on only one machine and when a job requires it, the necessary data will 

be locked, send to that specific job, used, send back and unlocked. This 

approach has several drawbacks, some of them quite important and 

because of these drawbacks many distributed computing models avoids 

using shared data and they use instead mechanisms such as pipes. 

Some of the drawbacks of using shared data are: 

 if network traffic is involved, the access time to data can be very 

large, especially for Wide Area Networks (WAN). 

 if many jobs needs the same data in the same time, its access 

will become a bottleneck and all these jobs will need to wait 

while only one job accesses the data 

 if the job which locked the data is lost, all the other jobs will 

wait for data unlocking for a time equal with the timeout time, 

which can be quite big. 

Because of these considerations we decided in our model to forbid 

completely shared mutable data (but it allows shared immutable data). 

In this way a programmer which uses our model will need to adopt a 

programming style similar to programming in functional languages, in 

which global variables are seen as highly undesirable. If this kind of data 

is still needed, a simple approach can be used: the shared data will be 

managed by a dedicated server/service which is also responsible for its 

synchronization. The accesses to this data server take place much like 

the accesses to an SQL server: data accesses are made mainly in small 

packages and are considered atomic (they can have rollbacks if 

necessary). The most important thing is to design the application from 

the beginning with the distributed environment in mind so the shared 

data will be as small as possible and its accesses needed only rarely. In 

this way the programmer is made aware that any access to shared 

mutable data can incur a high penalty (stopping other processes to 

access that data, network traffic) and he will design from the beginning 

the application as to minimize these bottlenecks. 
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 From the above considerations, these assumptions which are 

true in a sequential model do not hold on a concurrent or distributed 

environment. Our model tries to define clear semantics for all the 

aspects involved and to create a generic algorithm so it can be safely 

and efficiently used in distributed computing applications. 

4.2 A typical example of a distributed 

computing application 

 

 Ideally speaking, an abstract model at application level will hide 

from the programmer all tasks required for low level implementation. 

Also, it needs to fit into the existing frameworks and programming 

languages with minimal additions, so it can be implemented easily. The 

proposed model requires only three concepts and these are familiar to 

the OOP programming style. A programmer with an OOP background 

should feel comfortable in using them. We introduce the model with the 

help of an example. 

 To introduce our model, we implemented on a specific interval 

the Mandelbrot set, which is a well known algorithm. For this example 

we devised a C++ style language that highlights the specific code for 

the proposed model, as listed in Figure 4.1. 

 

unit MandelbrotRow{ 
   double  minX,maxX; 
   int     w,maxIters; 

   MandelbrotRow(double minX,double maxX,int w,int maxIters) 

   { 
      this->minX=minX; 
      his->maxX=maxX; 
      this->w=w; 
      this->maxIters=maxIters; 
   } 
   string     run(double yy) 

   { 
      int       pxl,iter; 
      stringstream  res; 
      double        xiter,yiter,x0,xtmp; 
      for(pxl=0;pxl<w;pxl++){ 
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         x0=minX+pxl*(maxX-minX)/w; 
         xiter=yiter=0; 
         iter=0; 
         while(xiter*xiter+yiter*yiter<2*2 && iter<maxIters){ 
            xtmp=xiter*xiter-yiter*yiter+x0; 

            yiter=2*xiter*yiter+yy; 
            xiter=xtmp; 

            iter++; 
            } 
         res<<iter%256<<" ";    //convert to grayscale 
         } 
      return res.str(); 

   } 
} 
 
#define PXWIDTH        1000 
#define PXHEIGHT      1000 
#define MAXITER  10000 

 
int     main() 
{ 

    int             idxLine; 
    double      lineY; 
    string        image[PXHEIGHT]; 
    double      minX=0.33072017, maxX=0.33925741; 

    double      minY=0.04369091, maxY=0.0522281593; 
    with( image ; MandelbrotRow(minX,maxX,PXWIDTH,MAXITER) ){ 
       for(idxLine=0;idxLine<PXHEIGHT;idxLine++){ 
          lineY=minY+idxLine*(maxY-minY)/PXHEIGHT; 
          run[idxLine](lineY); 
          } 
       } 

    ofstream     outFile("mdl.pgm"); 
    
outFile<<"P2"<<endl<<PXWIDTH<<","<<PXHEIGHT<<endl<<"255"

<<endl; 
    for(idxLine=0;idxLine<PXHEIGHT;idxLine=idxLine+1) 
       outFile<<image[idxLine]<<endl; 

} 

 
Fig 4.1 – A distributed computing application in a C++ style programming 

language 

 In the above code a grayscale Mandelbrot fractal is generated in 

a given interval and it is saved in a .pgm file. The result is given in 

Figure 4.2. 
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Fig 4.2 – The result generated by the code from Figure 4.1 

 We chose to compute each horizontal line as a separate job. 

There are three additions to the C++ language. These additions 

implement our model and they will be formalized later: 

 unit – similar to a class definition. A unit encapsulates a job and 

it is deployed to the computing resources. This construct is 

analogous to the map application from the MapReduce model, 

but at a higher abstraction level. By using OOP class/instance 

semantics, many unit instances can coexist without 

interference, each one keeping its own private state. In a 

functional model it would have been harder to isolate individual 

map states in a multithreaded or distributed environment. 

 with – creates a jobs scheduler and run all its associated tasks, 

such as jobs queuing, deployment, synchronization, error 

recovery, etc. It has two arguments: a destination and a unit 

constructor. Regarding the MapReduce model, with combines 

the phases of computation splitting (the creation of the 

individual map jobs) and combining (the Reduce phase).  

 run – adds a new job to the scheduler. It provides both a unique 

id for the job result (the indexed parameter) and the job specific 
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arguments. Because run is used inside a specific with 

construct, it has a better integration with it. In the original 

MapReduce model explicit result lists must be created and 

passed further to the Reduce function. run directly access the 

scheduler created by the with construct and in this way many 

MapReduce aspects such as the handling of the intermediate 

results can be automated. 

Using the above concepts, we can write MapReduce algorithms as in 

Table 4.1. 

Original MapReduce Our model 

// computes a single job 

function doOneJob(job){…} 
//add a new result to final 
function add(final,result){…} 
jobs = /*split goal into jobs*/; 
// computes individual results 
results=Map(jobs,doOneJob); 

// combine all results 

final=Reduce(results,add); 
 

// computes a single job, also 

providing initialization and 
encapsulation  
unit Worker{…} 
//combines all individual results 
class Destination{…} 
// handles all low-level tasks 

regarding network, error recovery, 

synchronisation  
with(Destination,Worker){ 
   while((job=/*create new job*/) 
              !=null){ 
     // run asynchronously the job 
     run[jobId](job);  
     } 

   } 
// if required, combine all results 

Table 4.1 – The original MapReduce and our model 

 In our former example, in the main program the “img” vector is 

used as the destination of the jobs results. Every job returns a string 

which is the .pgm encoding of its rendered line. The with construct 

creates a jobs scheduler using its first parameter “img” as destination 

and it specifies the unit used for jobs as its second argument. In this 

second argument we pass the global constant data as parameters to the 

unit constructor. These data are the same for all computations, so they 

can be sent only once to each computing resource. 

 Inside the with construct a new job is created using the run 

construct. The run construct takes first an auxiliary parameter (in our 

example “lineIdx”) which is used to specify how the job result will be put 

in destination and after that it takes as parameters all the job specific 
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data, in our example the line vertical coordinate. The job is created 

asynchronously and it is added to the scheduler. The scheduler will run 

it on an available resource, by instantiating a unit and calling its run 

method. There is no predefined syntax about how to run jobs inside a 

with construct. The needed run constructs can be split in as many as 

desired for, while, do…while, etc statements, according with the 

algorithm which provides data for the jobs calls. This aspect gives us an 

added flexibility above the current approaches which use preprocessor 

pragmas to parallelize a specific iteration. 

 At the end of the with construct an automatic synchronization 

point is added. The synchronization point ensures that all jobs will be 

finished before the control flow reaches the next statement. During the 

jobs execution, when a new result arrives it is considered according to 

the destination argument which was given to the run construct. In this 

way the scheduler knows how to handle this result within destination, 

regardless the order of arrival of different results. 

 In all the above code there are no explicit distributed computing 

concepts, such as resource discovery, deployment, synchronization, 

remote invocation/retrieval, error recovery, etc. In the same time there 

are no different calls for different computing resources, for example to 

create GPU kernels for execution on GPU, etc. Our model succeeds to 

hide at the application level all these aspects. For fine tuning of different 

aspects, different settings can be provided, for example to search 

specific network segments for available remote computers or to 

prioritize specific jobs for GPUs or for remote computers. 

 

4.3 The model functional description 

 

 This description is made to facilitate the model implementation 

in many programming languages. Because each programming language 

has a specific syntax, we cannot give a syntactical description of the 

model but a functional one. The main features and interactions are 

described and they can be implemented using a specific syntax for a 

programming language. 

 Our model is structured around three concepts. We designed 

these concepts by starting with the MapReduce model and we strived 

both to generalize this model to the distributed computing applications 
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and also to hide as much as possible the low-level tasks of the 

distributed computing. In the same time our model provides an added 

flexibility by allowing starting the jobs in any sequence(s) and by 

defining implicit actions for most common processing needed in the 

reduce phase. 

 

4.3.1 The unit concept 

 

 A unit represents a logical abstraction of a job, capable to run in 

a distributed environment. It has some common properties with the 

class concept from OOP, but with some important differences. Below 

are the most important aspects of the unit concept: 

 it cannot have static attributes and it cannot access directly or 

indirectly static attributes of any class or global data – this 

requirement ensures that there is no common data shared 

among jobs. In this way every job will only have its own data ( if 

jobs need to communicate, see the section 4.1, the assumption 

4 in a distributed context). 

 a unit can be deployed to different computing resources, such 

as remote computers. In his case all its code dependencies will 

be also deployed. Excepted from this deployment are 

dependencies of the application environment (for example 

standard Java API) which already exists on the remote 

computers. In order to avoid redundant network traffic, each 

unit has a Global Unique Identifier (GUID). When a unit is 

deployed, first the scheduler asks the remote computer if it 

already has cached a unit with the same GUID. If there is such 

a cached unit, it is used from the remote cache, without further 

need for redeployment. The GUID is automatically generated on 

each recompilation, so modified units will have different GUIDs. 

This also means that the new versions are automatically 

deployed, if the unit code changes. 

 a unit is created for each job by using one of its constructors. 

The unit constructor receives the global constant data. This data 

is deployed only once to each computing resource and the unit 

is not allowed to change it, because it may be also used by other 

local instances (jobs) of that unit. 
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 the method run of a unit is the entry point of the computation. 

It is called with the specific data for each job. The result of the 

run method is the output of the computation and it is serialized 

back to the application. If the run method has mainly side 

effects such as writing to a database server, the returned value 

can inform about the actions performed or it can be discarded. If 

any exception occurs, it is also returned to the application. 

 

4.3.2 The with concept 

 

 The with concept is used to encapsulate a jobs scheduler. It 

receives two parameters: 

 a destination 

 a unit constructor with its arguments, the same as a new 

construct 

 A destination is an abstract concept for any processing 

involving the jobs results. It can be simply a vector where all the results 

are stored, a function or an object which implements a standard 

interface which allows it to be called from the scheduler on each result 

arrival. 

 For example, if for each job result a file is created on the main 

application computer, a destination can be a function which is called 

with a job identifier (provided by the run concept, described later) and 

with the job results. This function will create a specific file for each 

result. In this way two goals are achieved: 

 a job result is stored in memory only if needed, which can be 

significant for big results or for many jobs 

 if possible the result will be directly processed, without needing 

an intermediate storage step 

 The unit constructor call used as the second argument of with 

has two functions: 

 it specifies the specific job (the unit used to implement the 

computation) 
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 it defines the global constant data used by each job as 

parameters given to this constructor 

 At the beginning of the with construction a new scheduler is 

created. This scheduler has multiple functions: 

 it performs computing resources discovery, if it is not done yet 

or if these are discovered in a dynamic manner, in order to 

respond to environment changes. These resources are: the 

cores of the local CPUs, network computers and GPUs with 

general processing capabilities 

 it deploys to the network computers the code of the unit along 

with all its dependencies, if these are not in the local cache of 

these computers. For GPUs the code of the unit and all its 

dependencies are converted to a GPU kernel and it is compiled 

(if this compilation is not already done). 

 it sends to the remote computers the global constant data. 

 It provides a queue of jobs created by the run concept 

 it distributes the jobs to the available computing resources and 

receive the results. In order to provide load balancing and 

redundancy advanced the resources can be selected using many 

factors, such as their computation power, load or the 

communication speed. 

 if a result is received, it is sent to the destination for storage or 

for processing 

 if an external error (for example a network timeout, not related 

to the application logic exceptions) occurs, it tries to compute 

again that job, possibly using other computing resource 

 in the end it waits for all the jobs in the queue to be processed 

and their results retrieved 
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4.3.3 The run concept 

 

 The run concept creates a new job and puts it and the current 

scheduler queue. It has two sets of arguments: 

 a unique identifier for each job which is used to identify each job 

inside a destination. This identifier can be an n-dimensional 

index for n-dimensional vector destinations, strings for 

associative arrays (maps, dictionaries), etc. 

 specific data for each job 

 These arguments define a new job which is enqueued for 

execution. The run call is asynchronous and it returns immediately. It 

remains at the discretion of the scheduler the following aspects: 

 when the job will run 

 in what order the jobs are run 

 where the execution takes place 

 if the job runs once or multiple times (to recover from external 

errors) 

 The only constrains that the scheduler ensures are: 

 all the jobs are run (if no application logic error occurs) and their 

results are passed to destination 

 the destination receives all the jobs results before the execution 

flow leaves the with concept 

 A job can be created anywhere inside a with concept. This gives 

a great flexibility to the application logic, because the algorithm can use 

multiple statements, including nested/recursive function calls from 

where these jobs can be created. In general this level of flexibility is not 

achievable using decorations (pragmas, annotations) on specific 

statements. 

 The above concepts (unit, with, run) are enough to implement 

many distributed computing computations. Of course, because our 

model started with the MapReduce model, the jobs must not have 
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mutable shared data. If this kind data is needed, it can be implemented 

as discussed in section 4.1 at assumption 4. Especially by using the 

scheduler many standard distributed computing tasks are hidden from 

the application logic. 

 

4.4 Theoretical performance considerations 

 

 To evaluate the model theoretical performance, there is 

considered a distributed system with NC computing resources and a total 

of NP processing units (fully independent cores). A number of NJ jobs 

(NP≤NJ), will be executed, each job requiring a maximum time TJ to 

complete. We define TS as the time to setup a computing resource 

(deploy a unit to that resource): 

                                          TT=TS+ NJ / NP* TJ,                                                                                                                                                                                                                                                           (1) 

where TT = total computation time;  x=min{n | n≥x}                                                                                                                                                         (2) 

when NP NJ:                  TTTlim JST

NN JP




                                                                                                                                                                                              (3) 

 Here for all jobs the total run time is the run time of the longest 

task (in the case of heterogeneous resources) added with the computing 

resources setup time. This time is a function of factors such as the size 

of global static data and the unit, and network usage. 

 Because TJ can be equated with TJ=TJN+TJC                                                                                                                                                                                                                          (4) 

 where TJN is the needed time for interface/network run 

(dispatching the parameters of “run” to the running units and getting 

the results from them) and TJC is for one processing unit the effective 

computation time, forthe best situation  

                                (NP≥NJ): TT=TS+TJN+TJC                                                                                                                                                                                                                                                                                            (5) 

 Because TS+TJN is a function of only the interface/network 

performance, for best results it is optimal that its percentage from the 

total computing time to be lowered as much as possible. The best case 

is if the TJC of the tasks is much bigger than TS+TJN. In this case the 

distributed system uses most of the time solving the computation (TJC) 
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than on interface/network traffic. In this situation, the distributed 

computation performance closes to the performance of the case when all 

the jobs are executed locally using a NJ cores machine. 

 The above results are in accord with Amdahl’s Law for speedups 

on fixed workloads [71], because when the number of processing units 

NP reaches the number of jobs NJ, the speedup is limited to the 

individual execution time on each processing unit TJC. In later 

developments [71] of the Amdahl’s Law by Gustafson (fixed time), and 

Sun and Ni (memory bounded), in many practical situations if a 

distributed system receives more hardware, its assigned workloads also 

tend to grow, so the tendency is to use the system to its full capacity. In 

this way, by adding or increasing workloads, the system tends to be 

used to its maximum capacity, even for many computing resources. 

  

4.5 Study and implementation 

 

Our model was implemented by creating a dedicated virtual 

machine (VM) with the associated runtime. The runtime is capable to 

use the CPU cores in order to run the VM. Each machine has abstracted 

its computing resources by using a server for receiving units and tasks 

(instances of unit) to be executed on it. A client application can make 

requests to the servers available if multiple threads are needed to run. 

The entire process uses the following steps: 

 The available servers are checked by the client: A network hosts 

list is used and each resource is interrogated about its version 

of the server, the available cores number and protocol. 

 The application is run on client: We created a strongly typed, 

register based VM with automatic memory management and 

high level abstractions such as classes and functions. A 

portable VM used as a layer of abstraction between the host 

available capabilities and the application allows to use a wide 

range of computers, enabling both software and hardware 

independence. 

 A VM which is register based is also important when threads are 

run on GPU cores. For a portable implementation, the GPU 

(programmable using OpenCL) must be coded in a kernel 
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function. The OpenCL uses a C/C++ language subset. In this 

case, all unit functions must be translated from the specific VM 

opcodes to the OpenCL language. In the case of a register 

based VM the translation job is easier to be done.  

 If a with statement is executed, a scheduler is created by the 

runtime: This statement receives the constructor for unit along 

with its parameters and also possible options. The parameters 

of the constructor are serialized in the beginning, only once, 

because they are constants. 

 When needed a scheduler create worker threads. Every thread 

manages a computing resource connection (for example a CPU 

core) available through a server. Permanently open sockets are 

used for the communication between the server and worker 

threads. A new connection object is used for each worker on 

the server side. Each such object is run on a separate thread 

so a CPU core will be used for each connection. In the 

beginning, all the unit code along with all its dependencies is 

made available on the execution server. Code caching is used 

on the server. By doing so, a unit is sent only once and it will 

be used for all the required instances. The unit constructor 

arguments are sent for every worker. 

 When a run statement is encountered, it is added a new job: 

The list of all the tasks is kept by the scheduler. The tasks are 

asynchronously added. When a task is added, the scheduler 

queries for available workers. When no available workers are 

found, the scheduler tries to create new workers. The list of 

the servers available is used. The maximum number of workers 

is equal on each server with the available cores number. 

 The tasks from the list of invocations are handled by the free 

workers: On server is created a VM instance at the connection 

of a worker. The unit initialization data is already on server so 

its constructor is called in order to create a new instance. 

Method overloading is possible because the worker also sends 

methods signatures along with their parameters. On server it is 

executed the run method. The VM instance is used to isolate 

the execution context. 

 The run results are serialized by the server and returned to the 

worker. In case of processing errors (such as network errors), 
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the task is put back by the worker in the tasks list and it is 

tried to be reprocessed. In case of successful completion, the 

receiver given in the with statement receives back the results. 

With this method, tasks are taken from the list by workers, run 

remotely and the results will be made available to the receiver. 

The workers run the tasks until all invocations are successfully 

processed. 

 The with statement ends with a synchronization point where the 

completion of all tasks is waited by the scheduler. The process 

end is given by the empty tasks list and all workers on idle 

state. When all the tasks are done, the workers and the 

scheduler are ended and their resources are disposed. The 

resources allocated on the server and the network connections 

are also disposed or closed.  

 

4.6 Experimental results 

 

The implementation scalability and performance was tested in a 

10 computers network and on a processor’s local cores. We used the 

test program from Code 5.1 with PXHEIGHT=2000, which gives a total 

of 2000 tasks. The implementation in our VM was done in a bytecode of 

about 1.1KB. Each trial was run using a clean server. In every run the 

tasks setup was complete (no caching), so on every test the full 

application code was sent to the servers. 

On every test the speedup was measured from the base case 

with a single core or a single computer in order to test the distributed 

computing system scalability and also the workload for every core. This 

was measured as the amount (in percents) of distributed tasks run on a 

specific core, in order to determine the capacity of the implementation 

to distribute the tasks evenly on all the processing units which are 

available. 

The theoretical top scalability is reached in the case when the 

speedup equals the added number of cores/computers, compared with 

the case of using only one core/computer for the computation. The best 

distribution of the workload would be when all the tasks are equally 

distributed on all the processing resources, in the case of homogeneous 

networks, when all the resources have the same capabilities. 
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4.6.1 Tests using a computer network 

 

A Wi-Fi network was used of 10+1 computers, each computer 

having a 2 cores microprocessor. We used all cores. The tasks were run 

using only on the remote machines. A computer was only used for the 

main application. In this setup all the threads were run in the same 

conditions. The test was started using a single computer. We added 

remote machines one by one on each step. The speedup results can be 

seen in Figure 4.3. The Figure 4.4 shows the workload for each core. 

 

Fig 4.3 – Network speedup results 

 In the best case, the speedup is equal with the number of added 

computation resources, for homogeneous networks. In our tests, for a 

small number of computers, when the total computation amount on 

each machine is high, we obtained a speedup close to the best case 

when we added a new computer to the computation. For a higher 

number of computers, the traffic time and network setup, which are 

constants, start to contribute in a more significant percentage, so the 

overall speedup is lower. The theoretical model behavior presented in 

Section 4.4 is consistent with these results. 
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Fig 4.4 – Computer network workload results  

  A lower reliability Wi-Fi network was used, but even in this case 

the tasks allocation was very good and an approximately equal number 

of tasks were allocated on each core. The maximal difference in percents 

from the best distribution was 13.6%. For all tests the average 

difference in percents was of maximum 5%. 

 

4.6.2 Computer cores tests 

 

A 4 cores computer was used. The tests started using a single 

core. On each step we enabled another core. In Figure 4.5 are the 

results for speedup. The Figure 4.6 shows each core workload. 

In these tests there was no network traffic involved (only the 

local microprocessor cores were used), so the theoretical model TS+TIN 

term is 0. There is required for threads synchronization only a small 

overhead. The speedup shows a linear growth for all the range of test 

cases and this growth is close to the best case. 
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Fig 4.5 – Computer cores speedup results 

 

Fig 4.6 – Computer cores workload results 

 Even if the main application was also run on one core, the 

implementation distributed successfully the tasks on all cores in an 

almost optimal manner. The maximal difference in percents from the 

optimum in the test results was 0.6%. The average difference in 

percents from the maximum was 0.6% for all tests. Even if a core also 

needs to run the with scheduler, there was only a little difference from 

the best workload. This indicates that the scheduler most of the time 

waits for the completion of the threads, so only few resources are 

needed for itself. 
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4.7 Conclusions 

 

 We presented a model at the application level, suitable for 

dependable distributed computations. Our model requires only 3 

concepts and it is a MapReduce derivative. The semantics of the model 

are similar to the OOP programming style and this allows an easy 

implementation of the model concepts in many of the mainstream 

programming languages. 

 We implemented the model using a specially developed VM. This 

implementation shows that using distributed thread pools for a 

scheduling system we can distribute the tasks on all the machines in a 

manner close to the optimal case. By doing so we can obtain a workload 

well balanced, both for network computers and for CPU cores. It was 

possible to abstract different resources (network computers or CPU 

cores) by using threads and client/server semantics. 

 The experiments show the scalability of the model, because it 

succeeded to make use of the added resources in a close to optimal 

way. The speedups obtained were close to the case when the 

computations were done by using multiple parallel programs. 

 In the case of network failures, the failed computations were run 

again so they are successfully completed, which makes the model 

dependable. 

 We consider further developing the research to include the 

usage of GPUs, to better enhance the reliability of the computation and 

the recovery from an extended class of possible errors. For the case of 

heterogeneous resources we also consider developing more advanced 

scheduling algorithms. 
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5. Application components distributed 
computing framework  

 

 In order to be of practical importance, our model should have an 

implementation as a language construct or as a framework or library. As a language 

construct an existing language should be extended with the necessary statements 

(unit, with, for). For languages such as Java, this means the completion of several 

steps such as: creating a Java Specification Request (JSR), JSR formal public 

review, final vote on JSR, creating a reference implementation, providing and 

testing on a Technology Compatibility Kit (TCK). 

If the model is implemented as a framework, the above steps are not 

required since the language remains the same. In this case it is possible, due to the 

lack of the target language expressiveness or capacities, to have only a limited or 

harder to use framework, because the model specific constructs are implemented 

using only standard language features such as classes and methods calls. 

 We chose to implement our model in Java, due to several factors: 

 Java is a mainstream language, widely used so the framework could be used 

by many programmers 

 Java compiles to the Java Virtual Machine (JVM) which is independent of the 

operating system (OS) and CPU. In this way it becomes easier to implement 

the code deployment to remote computers, regardless their OS and CPU. 

 Java offers strong reflection capabilities so a code can introspect itself and 

also create at runtime new code if necessary (by using bytecode 

generators). This introspection is very important when the framework 

computes all the dependencies of a unit which needs to be deployed and it 

also helps to check the consistency of the application code in regard to the 

model (for example to ensure that there is no accesses to outside data from 

a unit). 

 There are also some drawbacks which arise from the implementation of our 

model as a Java framework and we can mention the following: 

 A framework needs to use existing language constructs to model new 

constructs or statements, especially through the means of classes/interfaces 

and methods calls. This can imply that the programmer need to adapt more 
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of the application domain to the semantic imposed by the language 

statements. 

 In general the distributed applications are the ones which require every bit 

of computing resources, especially on the field of High Performance 

Computing (HPC). This is why for such applications are preferred languages 

which can optimize the code almost to the level of the assembly language, 

such as C/C++ or Fortran. For now, even with state of the art compilers, 

Java is behind these languages as execution speed. This means that an 

application written in Java will need more physical resources for the same 

level of computational throughput than a C/C++ or Fortran one. 

 We hope that the above mentioned drawbacks are not too big for many 

applications and our framework can be used in many of them. We view the 

proposed framework as a particular Java implementation of our model, which also 

demonstrates its validity and usefulness. There are other MapReduce Java 

frameworks, such as [22] and because the way of approaching computations 

(MapReduce) is similar, there are similarities between such frameworks. For 

example the automatic code deployment, intrinsic to our model, is also 

implemented. We regard our model as a higher order computation abstraction and 

we aim to add into our framework other features made possible by it, such as 

running distributed code on GPUs. 

  

5.1 Framework overview 

 

 The framework consists from an application library and a server. The server 

is used on the remote computers as a mean to receive, run and return the results of 

the deployed code. The application library provides all the necessary code and data 

structures to implement the model in application. A pseudocode overview of how the 

framework is used is given in Figure 5.1.  

 

(1) var sched:Scheduler 
(2) sched=new Scheduler(computationClass, initialData, dest) 
(3) for job=every workload job 
(4)  sched.addJob(destPosition,job) 

(5) sched.waitForAll() 
(6) combine_results() 
 

Fig 5.1 – Pseudocode of the algorithm 
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 A job is any task scheduled for run using a local or remote, abstracted 

computing resource. The Scheduler is a component of the framework, responsible 

for managing the low level aspects required for the distributed computing. The 

Scheduler at its initialization needs a class who provides the actual computation 

(computationClass), the constant global data who is required for all distributed 

computations initialization (initialData) and the results holder (dest). 

 The addJob method runs asynchronously. It adds a job into the jobs list. 

Each job consists of the needed data for its computation (job) and a destination 

abstract place (destPosition), used on results return. For the enqueued jobs the 

Scheduler creates worker threads, one thread connected to one computing resource.

A special server is provided by the framework for workers connections. Each 

computer used in computation has on it a running server. The jobs are taken from 

the queue by the worker threads and run on a machine. In this process the 

Scheduler will deploy first to the remote computing resources the required code 

(computationClass and the dependencies) and also initialData. The code and initial 

data are sent only once. They will be cached and used for all the jobs executed on 

that resource. The deployment of the code is made using a custom class loader. A 

serialization engine is used for data serialization. We used the Java standard 

serialization framework for our implementation. 

 After the scheduling of all the workload jobs, the method waitForAll waits for 

the completion of all the computations and the retrieval of all the results. The 

received results are combined as the application logic requires. These steps describe 

the entire algorithm. The aspects of a distributed application, such as code 

deployment, resource discovery, synchronizations and serialization are abstracted 

and they do not appear explicitly in the application logic. The computing resources 

are also treated in an abstract manner, so an application can make use 

automatically of any resource, like network computers or local microprocessor cores. 

  

Fig 5.2 – An 3500 spheres image rendered by our test application 
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 As an example, for the image from Figure 5.2 each line of the image is a 

job. We have 2000 jobs for an image of 2000 lines. The scene itself is the initial 

data (including view angles, observer position, output resolution). All this data is 

invariant. The jobs processing is done without a defined order, so the results (the 

image lines) are first stored and then combined in the final image in the right order. 

The computationClass is a derived class from a dedicated interface (framework 

provided), which handles the computation of one image line. This class including its 

dependencies is deployed to the remote computing resources. It will be computed 

employing a distributed manner. The destPosition indexes the job result into the 

vector of the lines of the image. The job is the data specific for each instance, in this 

example it is for every image line its vertical angle. 

 

5.2 Framework detailed description  

 

 This description gives for each step of the algorithm an in-depth discussion 

of the available customizations and options, the support required by the framework 

and also implementation suggestions for specific platforms. 

 

5.2.1 The setup of the network 

 

 Each distributed computing computer is running a dedicated server. These 

servers respond to queries about version and locally available resources. The 

maximum concurrent connections for each server are at most the same with its 

computing resources number. A worker thread is created by the scheduler only 

when a server with free connections is available. After a connection is made 

between the server and the worker, the connection is kept open until the completion 

of all tasks or until the occurrence of an exception. A worker is in this was assigned 

to a computer core. This way of allocating computing resources uses fully all the 

available resources and also minimizes the switching of the kernel threads. This 

algorithm is suitable for small or medium networks, up to around some thousands of 

simultaneous sockets. It also performs well for private networks, when there is no 

direct outside access. 

 In the case of larger networks can be used an alternate model, based on 

queries (pings) addressed to the servers with active computations, to assess the 

status and to retrieve the possible results. This algorithm has no bounds to the 

number of the open sockets, because the sockets exist only when queries are made. 
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 To address volunteer, regulated or unsecure networks, we must observe 

additional requirements: communication encryption for server, application 

authentication, options to set bounds on the server resources usage, file system 

accessing security policies and a fine grained access for network or other sensitive 

functions or components. 

 

5.2.2 The distributed application code 

 

 The distributed components of the application (the computationClass of 

Figure 5.1) need to implement the interface shown in Figure 5.3.  

(1) public interface Distributed<InitialData,TaskIdx,RunData,ReturnType>{ 

(2)  boolean         dInit(final InitialData initialData); 
(3)  ReturnType   dRun(final TaskIdx taskIdx,RunData rData); 
(4)  } 
 

Fig 5.3 – The interface Distributed 

 Java generics are used in the framework to enhance type safety. Each 

connection to a server creates a new instance of computationClass, so on a server 

can be a maximum number of computationClass instances equal with its cores 

number. 

 The dInit method is only once called, at the creation of the new instance. It 

returns true for a successful initialization.  In this case the new instance can be used 

by the worker. For all tasks the initialData argument is the same. The instance 

created is used by the worker for all its computations. By doing so it is possible to 

keep the computeClass state information during multiple tasks, for example if 

partial computations caching is required. The number of tasks or their order is not 

specified for a specific instance. 

 For every job it is called the method dRun. In the destination the argument 

taskIdx is used to index/order a specific task. Some possible situations for taskIdx: 

a vector index or a map key. Every task must have a unique taskIdx. In our 

application the indexes of the image lines are used as taskIdx. For each job the 

argument rData is used to send specific task arguments. dRun returns on success 

an object newly created which encapsulates the computation result. An error is 

thrown on null return from dRun. 

 If a class implements the Distributed interface, all its data must be in 

instance attributes (it cannot have static variables), in order to enable the execution 

of the class on multiple hosts. At runtime the framework can enforce this 
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requirement by analyzing (through reflection) the class members and all class 

dependencies.  

 

5.2.3 The instantiation of the scheduler 

 

The framework provides a Scheduler class. Figure 5.4 shows its signature. 

 

(1) public class Scheduler<InitialData,TaskIndex,RunData,ReturnType> 

 

Fig 5.4 – The signature of the Scheduler class 

 InitialData, TaskIndex, RunData and ReturnType are generic parameters 

and they were detailed in section 5.2.2. There is both non-static constructor and a a 

static one for Scheduler. For automatic system initializations (like resource 

discovery) it is used the static constructor. These initializations are made only once, 

in the beginning of the application. It is possible to make subsequent checks for 

resources, because of the network dynamic nature, where computers can be 

removed or added at any time. These new checks can be triggered by the developer 

or performed automatically at specific time intervals. The non-static Scheduler 

constructor has the signature shown in Figure 5.5. 

 

(1)  public Scheduler(final Class<?> distrClass, 
(2)   final InitialData initialData, 
(3)   Destination<TaskIndex,ReturnType> dest) 
 

Fig 5.5 – The signature of the Scheduler class 

 The argument distrClass is the distributed class internal Java class 

representation. The distrClass code with its dependencies is serialized and sent to be 

run remotely on the available servers. The interface Distributed is implemented by 

this class, so it can be used in a standard Java way. If full reflection capabilities are 

available (languages such as C# or Java), the class description serialization and the 

serialization of the methods code is done by employing the standard 

reflection/introspection API for that language. 

 The argument initialData is the same and constant for all tasks and it will be 

used for each distributed worker initialization. It is sent only once to each server. 
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 The argument dest is the distributed computation destination for the results. 

The Destination interface is shown in Figure 5.6. It abstracts a computation 

destination. 

 

(1)  public interface Destination<TaskIndex,ReturnType>{ 

(2)   void set(TaskIndex index,ReturnType retData); 
(3)   } 
 

Fig 5.6 – The interface Destination 

 When a dRun invocation ends, the result will be sent back. The method set 

of dest is called using the index of the destination and the result of the computation. 

The class used for destination can have a wide range of behaviors, as required by 

the application logic. When the results of the computation must be first available 

(like in our example), a wrapper over a collection class can be used as destination. 

When it is possible to use the computations results independently, the set method 

can encapsulate each result processing.  

 

5.2.4 The workers and the jobs 

 

 A job is scheduled computation, waiting for its execution. The job is added 

to the list of invocations using the method addJob of the Scheduler, shown in Figure 

5.7.  

 

(1)  public void addJob(TaskIndex index,RunData rData) 

 

Fig 5.7 – The addJob method  

 The argument index is the index of the result in dest. The rData argument is 

the specific data required for a computation. The addJob method is asynchronously 

executed, so the application loop is not blocked during its execution. This method 

adds the job into the jobs list. 

 In the case when all the existing workers are occupied by other jobs and if 

more computing resources are available, addJob will create a new worker for the 

newly added job. The newly created worker is a Scheduler created thread that 

handles a specific resource (communication, serialization, etc). The jobs are not 

computed by workers, but a worker only sends the jobs to the computing resource 

receive the jobs results and send the results to the destination. With this algorithm 
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only few resources are required by a worker thread and thousands of workers can 

be used. 

 When it is created, a worker locks a resource for itself. A distrClass instance 

is remotely created and the initialData is sent to its method dInit. During the 

worker’s life that instance is kept alive. The worker will take jobs from the scheduled 

invocations and will send their data (index and rData) to the resource associated. 

On the computing resource, the dRun method of the distrClass instance is called 

with this data, the computation takes place and the result is sent back. 

 If the application logic causes errors by itself, exceptions are used to signal 

them back. If the network causes errors (or on other errors external to the 

application), first the worker tries to reconnect to its attached resource. If it fails, 

the worker signals the framework to verify the availability of the remote server. The 

remote servers which cannot be discovered anymore are removed from the list of 

the available servers. The workers which cannot reconnect will terminate 

themselves. In this situation the failed job remains into the jobs list and its 

reprocessing will be tried by other workers. 

 

5.2.5 The distributed computations end   

 

 After the scheduling of all the jobs, there are two possibilities for the 

application to wait for the completion of the jobs. The straightforward way is to use 

the method waitForAll of the Scheduler, shown in Figure 5.8.  

 

(1)  public void waitForAll() 
 

Fig 5.8 – The waitForAll method  

 The method waitForAll waits for all the jobs completion, including the jobs 

still in the scheduled list and the currently running ones. When waitForAll returns, all 

the jobs were computed and their results were sent to destination. Another way to 

wait for the jobs completion is to check manually for their completion. This can be 

done by using the Scheduler methods shown in Figure 5.9. 

 

(1)  public int getCompletedJobsNb() 
(2)  public int  getAddedJobsNb() 
 

Fig 5.9 – The methods getCompletedJobsNb and getAddedJobsNb 
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 The getAddedJobsNb method returns the jobs number scheduled using the 

addJob method. The getCompletedJobsNb method returns the jobs number 

successfully computed. With these methods, the status of the scheduled jobs can be 

known by the application. 

 When the computation of all the jobs is done, all worker threads are stopped 

by the scheduler. The servers are signaled by the workers to free the resources and 

to end the instances created for these workers. 

 

5.3 Practical tests results 

 

 The framework and the algorithm were tested on a quad core computer and 

on a computer network. Two metrics were evaluated. The first metric is the speedup 

obtained on the addition of new resources. This metric gives also a good estimation 

for a specific application if it is advantageous to employ more resources, also 

considering other factors such as the economic costs of these resources. The other 

metric was the distribution of the workload for every computing resource – by 

evaluating this metric we can assess the algorithm ability to fully use existing 

resources by distributing the workload on all of them, especially when 

heterogeneous networks are involved. We also tried in our tests different Java 

implementations and operating systems to evaluate the suitability of our framework. 

We used for all tests an application that renders the image shown Figure 5.2 using a 

2000x2000 pixels resolution. Every image line is a job, so 2000 jobs were created. 

On each test a new server was used so there were no cached resources (such as 

remote classes) in order to achieve the same startup conditions. 

 

5.3.1 Computer network tests  

 

 We used a 10+1 computers wired network, with CPUs Intel® Core™ 2 

6600@2.40 GHz, with the 64 bits version of the Kubuntu 8.04 and Java HotSpot 

Server version 1.6.0_06. We used one computer only for the client application. The 

invocations were processed only on the network computers, so we can have a 

homogenous working environment for all the jobs. We began using one computer. 

On every step new computers were added, and we measured the speedup from the 

initial case of one computer. As we used dual core computers, we had in the end 20 

cores on which the jobs were run. The Figure 5.10 shows the speedup. The Figure 

5.11 shows the workload percent on each core. 
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Fig 5.10 – Network speedup 

 We can see from Figure 5.10 that in the case of a low computers number, 

the obtained speedup is near the optimum. For 2-5 computers the experimental 

results indicate a performance which is a bit over the predicted model value. We 

consider responsible for these values external factors which can alter the small time 

intervals measurements, such as the network traffic variance.  

 

 

Fig 5.11 – Each core workload in network tests 
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 If we increase the number of the computers, we obtain a lower speedup 

because the algorithm finishes quite quickly (around 1s). In this case factors such as 

threads and sockets management or resource discovery (the TJN and TS theoretical 

model components from section 4.4) accounts for a larger part of the execution 

time. 

 The distribution of the workload was near to the optimum (considered to be 

the case of equal invocations distribution on each core). The average difference in 

percents on all used cores was 1.03% at maximum for all tests. The difference in 

percents from the optimum was at maximum 2.8% for any core workload. 

 

5.3.2 Computer core tests 

 

 A computer with a CPU Intel® Core™ 2 QUAD Q6600@2.40 GHz was used, 

running the 32 bits version of the Windows Vista Business Service Pack 2. The Java 

environment was provided by the version 1.7.0_11-b21 of the HotSpot Client VM. 

This is a four cores computer. The base case was when the invocations were allowed 

to execute using a single core. In every iteration new cores were added. In Figure 

5.12 it is shown the speedup and in Figure 5.13 it is shown the workload on each 

core. 

 

 

Fig 5.12 – Computer cores speedup 

 From Figure 5.12 it can be observed that the speedup when new cores are 

added is near the optimum. In the case of the 4th core we can see a bit larger 

difference (0.09%) from the optimum. That difference appears because that core 

needs also to execute the main application (including all the synchronization, 

serialization and scheduler code). That result indicates that all the threads (the 
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workers) created by the scheduler and also other scheduler activities are using only 

a few resources. This is because a worker most of the time only creates jobs on 

other computing resources, waits for their completion and receive the results. 

 

 

Fig 5.13 – Computer cores workload 

 The distribution of the workload among different cores has a difference in 

percents of maximum 0.6% from the optimum (especially because of the last core 

supplementary activities). The average difference of the workload in percents on all 

tests was 0.4% at maximum. 

 

5.4 Conclusions 

 

 Our framework and the algorithm proposed enable the automatically usage 

of the application classes as components in a distributed computation. The 

resources like network computers or local CPU cores are abstracted by the 

framework, including the case of the heterogeneous networks, which allows the 

developer to employ them by using a uniform manner. Our framework can be used 

in a large variety of applications. The algorithm is well suitable for languages which 

employ virtual machines, like C# or Java. With certain restrictions the algorithm can 

be adapted for native code compiled languages which do not have advanced 

reflection capabilities, like C/C++. 

 The use of the framework is simple. Firstly the developer implements the 

interface Distributed on the class which is to be run distributedly. Secondly, the 

developer uses the scheduler to asynchronously add jobs. These are the only steps 

required for a distributed computation. All the required tasks like serialization, 

deployment, network management and synchronization are performed automatically 

by the framework. 
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 We implemented our framework using the Java programming language. By 

analyzing the tests results it can be seen that when used both on network 

computers or on local cores our algorithm has a good scalability and it also achieves 

an adequate load-balancing. It does so by distributing uniformly the workload to 

each available computing resource. The framework run reliably and in all tests the 

results were provided even in situations such as the network errors occurrence. 

 The framework and algorithm open new directions of research. We consider 

further developing them to use GPUs, to increase the computation dependability 

(especially on external errors) and to better harmonize them with the standard API 

provided by the programming languages or by the industry standard libraries. 
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6. Algorithm for hybrid execution on both CPU 
and GPU 

 
 

 In this section we present a novel algorithm, suitable for the cases when 

some of its parts cannot run on GPU. Our algorithm allows an efficient split of the 

code segments between CPU and GPU. It collects the data for the GPU tasks across 

the CPU threads without stopping the CPU cores and it runs the collected tasks as a 

single package, in order to fully use the GPU. It is especially suitable for massive 

multithreaded applications with many threads, but where no individual thread can 

provide enough data to efficiently use the GPU.  

 As shown before, algorithms with complex code flows or data structures 

sometimes are not appropriate to be run on GPU, especially if they need I/O 

operations. Other algorithms, such as the sequential ones, do not benefit from a 

parallel execution on GPU, so they run optimally on the more powerful CPU cores. 

For such algorithms a mixed programming approach is more suitable to use. Some 

parts will be executed on CPU and others on GPU. If an algorithm part such as a 

matrix multiplication can have a parallel implementation, this part can be computed 

easily by a GPU. When the application works on multiple datasets, so it can benefit 

from a parallel execution but in itself each dataset handling is sequential, another 

approach should be used. In this case we propose our hybrid execution algorithm, 

which makes possible even for complex sequential algorithms to run some of their 

parts on GPU. By using our method, the suitable parts for GPU execution from the 

application algorithm are invoked in a special way so their calling data can be 

collected from all the application threads and run on GPU as a single batch of data. 

In this way any suitable part for GPU execution can benefit from the speedup 

offered by GPUs, even if this part is a component of an algorithm that cannot be run 

entirely on GPU. 

 A ray tracer for example has a high degree of parallelism and all primary 

rays can be processed each by using separate threads. A single ray computation is a 

serial algorithm, because for a given ray the next rays (reflected and refracted) can 

be found only after the given ray intersection is found. Due to the fact that many 

ray tracers employ data structures which are complex and also they in many cases 

need recursion [72], it is hard to use GPUs for full implementations of ray tracers 

which can be used in real world applications. In these situations it helps if it is 

possible to use the GPU only for some code parts, like the computations of the 

intersections, parts that are usually numerically intensive and which occur multiple 
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times during the process of rays tracing. With this approach, when a code designed 

to be run on GPU is reached by a thread, the thread will be put in a waiting state for 

other such threads to reach that code. For all these halted threads their data is 

collected and computed using GPUs. The threads receive back the computations 

results and their normal execution is resumed. 

 The fundamental aspect of the algorithm proposed is a method to run on 

GPU the code chosen by the programmer for this kind of execution, even if the 

invocations of this code are not executed in the same time and they are split among 

the application threads. In order to optimally use the CPU cores cycles, while a 

thread waits for others threads to reach the waiting point for GPU execution, each 

thread suitable for stopping needs to be executed using a single CPU core. In this 

case no thread context switching is necessary. In this respect we used cooperative 

threads (coroutines or fibers). Our algorithm also handles well the case when no 

other thread reaches a code designed for GPU execution, in the situation when there 

are no other threads to reach the same waiting point. 

 

6.1 The proposed algorithm 

 

 The proposed algorithm runs on multithreaded applications by accumulating 
over CPU threads the invocations arguments of the functions which are to be run 
using GPUs, it runs the functions on GPUs and it resumes the CPU threads passing 
them the returned results. When the code reaches such an invocation, its data is 

collected and that thread is put on hold until the GPU computes the invocation. 
Meantime the application executes other threads, so the CPU is fully used. The 
programmer is responsible to choose the parts for GPU execution and to call them 
using a provided component, which will be detailed later. The process can be 
compared with a traversal using breadth-first order of a graph made from the active 
flows of code (threads). In Figure 6.1 are shown multiple CPU threads (T1…Tn), 

running the code ThreadFunction. A code part intended for GPU execution is reached 

(the F_GPU call), following possibly different flows of code. The T1 thread at F_GPU 
after executing the call to F1, and the T2 thread arrives at F_GPU after calling F1, F3 
and F3. The functions F1…F4 are complex and they are executed using separate 
threads. The functions F1…F4 are better suitable for CPU execution (they may have 
recursion, I/O calls, complex lengthy code with multiple branches). Only the F_GPU 
function is intended to be executed on GPUs. In this case the programmer chooses 
GPU execution for F_GPU and he will invoke it in a special way. 

 To employ the computing power which a GPU can provide for massive 
parallel applications, we need to pause all the threads that reach F_GPU and collect 
the call data (the arguments) of the F_GPU invocations. After accumulating a 
suitable invocations number or when no other threads can reach the F_GPU call, the 

collected invocations are sent to GPUs that run a kernel which encodes the F_GPU 
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function. All invocations are computed by the kernel, their results are retrieved to 
the threads paused and the threads execution is resumed. 

 When pausing CPU threads, it is advantageous to minimize the CPU cores 
context switching which appears when a thread is put on a holding state. In the 
case of preemptive multitasking, atomic operations and other mechanisms of 
synchronization must also be used to ensure the data integrity and to resume the 
execution of the paused CPU threads when the GPU execution ended. All the 

synchronization actions require CPU cycles which can be better used for the 
computation itself. In doing so, the synchronization overhead also reduces the 
applications types that may benefit from using the proposed algorithm. 

 

Fig 6.1 – Multithreaded flow of code for mixed CPU-GPU execution 

 To lower the synchronization and atomic operations incurred overhead [73], 

we employed cooperative multitasking. Its basics are implemented already by most 

OS like an API, for example the POSIX ucontext family of functions or on MS 

Windows such as fibers. Both these API allow the programmer to create a special 

kind of lightweight threads, which are cooperative (must receive explicit commands 

to switch between them) and incur a much lower overhead than the preemptive 

tasks.  In the same time, by using explicit switching, many synchronization needs 

are eliminated, because the programmer knows at any time where it is the 

execution point and in a cooperative model only one thread is active at the time. 

The term “thread” will be used for preemptive threads; for cooperative threads we 

will use the term “fiber”. The loop of the main algorithm is listed in Figure 6.2. 

 

 For all GPU kernels initialize their schedulers  

 For every CPU core create a new thread and add it to a threads list 

 Iterate the list of threads in a circular manner and consider a current thread 

as given by this iteration 

T1 

T2 

Tn 

   

   

  

ThreadFunction 

ThreadFunction 

F1 F_GPU F2 

F1 F3 F3 F4 F_GPU 
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 For each parallel task (ThreadFunction): 

o Create a new fiber on the current thread and add it to the fibers pool 

of this thread  

o Advance the threads iterator 

 When a call to a function designed to run on GPU is reached on a fiber, collect 

the call arguments, suspend the current fiber and continue the execution with 

the next fiber of that thread 

 When a full circular iteration through all the threads is done, run all the 

collected call arguments on GPU using their specific kernels and resume the 

call fibers with the GPU provided results 

 Repeat until there are no fibers left in any thread 

 

Fig 6.2 – The loop of the main algorithm 

 The parallel running function is ThreadFunction. A thread is created for each 

CPU core, in order to fully use them. Each ThreadFunction is run in a new fiber. Each 

thread has a pool with its fibers. An iterator which iterates circularly through the list 

of threads assigns the new created fibers in order one fiber to every thread, to 

create a basic load-balancing of fibers in all threads. From the above considerations 

this main loop is almost the same as a main loop for multithreaded applications, 

with the only difference that we create fibers instead threads. This similarity with 

regular multithreaded applications makes easy to convert an application to hybrid 

CPU-GPU execution.  

 For any function (like F_GPU from the example) a special scheduler object is 

instantiated. Every scheduler is responsible to run an associated GPU kernel, which 

produces the same results as the original function. When a function designed to run 

on GPUs is called, instead of: 

F_GPU(arg1…argn); 

 it will be performed through that function scheduler: 

schedulerF_GPU.addCall(arg1…argn); 

 The scheduler which can compute the F_GPU function on GPU is 

schedulerF_GPU. Different from a regular function call, invoke does not execute the 

function but it will append the given arguments to the scheduler list of invocations. 

After that the scheduler yields the computation to the fiber which is next in the 

fibers pool of the current thread. By doing this the current fiber is paused at the 

function call, so the fiber can be resumed with the call result when it will be 

available. In the case when a fiber code (ThreadFunction) does not contain calls to 

functions to be run using GPUs, that code will run only on CPU until its end. After 

that that fiber will be removed from the pool of fibers and its fiber successor will be 

run. Figure 6.3 shows how all fibers are iterated 
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 While non-empty pool of fibers: 

o When reached a GPU designed call, add the call arguments to the 

scheduler of that function and yield the control for the next fiber 

o On a fiber end, delete it from the fibers pool 

o After each iteration of all the pools, run all the added calls using 

GPUs 

 

Fig 6.3 – The handling of the calls to the functions designed to be run on GPU 

 After any iteration it is possible that some of the fibers will end. These are 

deleted from the fibers pool. The remaining fibers are the ones paused in waiting for 

GPU results. The schedulers with added calls will run them on GPUs, each scheduler 

running its own kernel. The results are returned to the fibers. The schedulers call 

lists are cleared so on the next iteration they will be empty. With this algorithm on 

any iteration all the GPU calls are collected and this ensures an efficient use of the 

GPU cores, by running simultaneously on them as many data sets as possible. The 

process is repeated until all the fibers are deleted from the pools. If a pool becomes 

empty, its thread is also ended. 

 In the proposed algorithm only the schedulers require synchronization, 

because more threads can access them concurrently. Inside one thread, its fibers do 

not need synchronization because they run cooperatively. With this algorithm, the 

only incurred overhead inside a single thread is the one needed by the fibers context 

switching. 

 From the above comments, the algorithm can be easily used in many 

situations with only a few changes in the application. This is especially true for code 

which is already multithreaded and a further GPU use is intended for it. Our 

algorithm can be applied to an already multithreaded application by following the 

next steps: 

 Create schedulers for all the functions needed to run on GPU – mostly this 

only requires coding the kernels for these functions and passing the kernels 

source code to the schedulers in the initialization step 

 The threads creation for the multithreaded code will be replaced with fibers 

creation. To optimally use the CPU cores, the application can use a threads 

pool and the fibers will be created circularly, one by one, in each thread, for 

load-balancing.  
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 All functions designed to run on GPU will be called through their specific 

scheduler, using the scheduler addCall method to accumulate the calls into 

the scheduler calls list 

 

6.2 The performance of the algorithm 

 

 In this section we assess our algorithm performance and propose some 

situations for its optimal practical use. Let’s consider an APP application that runs 

simultaneously on NCCPU threads, with NCCPU being the CPU cores number. Inside 

APP the function FN is desired to be run using GPUs. We wish to evaluate the 

speedup SAPP of the application if we use the algorithm to execute FN using NCGPU 

GPU cores. The FN function needs to be called N times.  

 One FN call needs T1CPU time to be executed on CPU and T1GPU time to be 

executed on GPU. In the case of N FN instances, if we run them by using CPU cores: 

TNCPU=T1CPU*N/NCCPU (1) 

 with x=min{n | n ≥x}. The time needed to execute N FN instances by 

using GPU cores: 

TNGPU=T0GPU+T1GPU*N/NCGPU (2) 

 T0GPU is a supplementary time required for GPU execution by the transfers 

between the CPU and GPU memory and by the translation of the data structures 

from the CPU format into the GPU format and back (especially when they contain 

pointers). The application requires a total time of: 

TAPP=TNFN+TOTHER (3) 

 with TNFN being the time needed to execute N FN instances and TOTHER being 

the time needed for other components of the application. When FN is executed on 

GPU, the speedup of the application is: 

SAPP=( TNCPU+TOTHER_CPU)/( TNGPU+TOTHER_GPU) (4) 

 where TOTHER_GPU>TOTHER_CPU, because on the GPU execution case some more 

time is required by the APP for actions such as the GPU kernels loading and 

compiling. Taking (4) into account, we will analyze the involved factors, in 

connection with (1) and (2). 
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6.2.1 The GPU execution incurred overhead 

 

 If the CPU is used to run FN, its data and code are taken by the CPU from 

the memory of the computer (CMEM). After computation the results are put back 

into CMEM. If the GPU is used to run FN, in many cases its data and kernel need 

first to be transferred into the memory of the GPU (GMEM) from CMEM. When in 

GMEM these are taken and computed on the cores of the GPU and put back into the 

GPU memory (GMEM). In the end, the results are sent back to CMEM from GMEM. 

The transfers CMEM->GMEM->CMEM are not required for architectures with shared 

memory, such as integrated CPU+GPU. 

  Before the transfer CMEM->GMEM usually is required another step, for data 

fetching and translating from the application data structures into the GPU needed 

structures. An application may employ complex structures for its data and these 

structures must be transformed into a form adequate for execution on GPU. This 

requires iterating the structures, sometimes recursion and possible allocation for 

new memory to store the transformed structures. 

 After the application data was transformed into structures suitable for 

execution on GPU it is sent from CMEM to GMEM using busses like PCI Express 

(PCIe). The bus usage for data transmission can be a bottleneck with significant 

effects [74] for heavily multithreaded applications or when the data is transmitted in 

big amounts. After the GPU processing, the above steps are reversed: from GMEM 

data is retrieved to CMEM using busses and it is again iterated to transform it from 

the form in which the GPU produced it into a form suitable for the application logic. 

The transformation step may need recursion and memory allocation. 

 It can be seen that when a call is executed on CPU it needs only 2 transfers 

of memory (CMEM->CPU core and CPU core->CMEM). If the call is executed using a 

GPU, it needs 6 memory transfers (CMEM->CMEM (transformation step), CMEM-

>GMEM (over a bus), GMEM->GPU core, GPU core->GMEM, GMEM->CMEM (over a 

bus) CMEM->CMEM (transformation step)). The data transferred between different 

types of memory (CMEM->GMEM or GMEM->CMEM) also cannot be cached in the 

GPU or CPU cache memory and it makes its use even more time-consuming than 

the case of CMEM->CMEM transfers which can be sometimes cached in the cache 

memory of the CPU.  

 T0GPU is important when the called function (FN) needs just a few 

instructions to be executed. The overhead in this situation is similar with the needed 

CPU time to execute FN, particularly if the FN code and its data can fit on the cache 

memory of the CPU. For these small functions, their GPU execution will lower the 

performance of the application. It can be seen that it is a practical minimal 

instructions number (or cycles of the CPU) which can be considered as a lower limit 

for GPU execution of a function. Less than that number there is no gain resulted 
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from an execution on GPU, because the possible speedup is lesser than the needed 

time for the transfers of the memory and for the supplementary code needed to 

transform the application data structures into a GPU suitable form. This minimum 

limit depends of aspects such as memory latency and speed, CPU cache size and 

speed. It may be experimentally evaluated. In this algorithm the developer is 

responsible to select the functions to be run on GPU. He can do this by taking into 

account many factors, especially the ones presented on section 1, when the 

differences between CPU and GPU were discussed. In the same time he can test the 

experimental results when a specific function is run on GPU. 

 

 

6.2.2 The application threads number influence  

 

 Many consumer CPUs are built with fully autonomous 4-8 cores and 

capabilities such as SIMD, multistage pipelines, execution with out of order 

capabilities and also a CPU is better equipped with cache memory and has better 

clock rates than a GPU [75],[76]. Particularly if the function desired to run on GPU 

(FN) needs many branches, the core of a CPU can benefit greatly from capabilities 

like branch prediction. In the case of applications which use instruction sets like AVX 

or SSE when the CPUs are equipped with these instructions, the computing 

throughput of the application can be improved up to a 32x speedup (when using 

256 bits AVX2 operands for bytes operations, like the instruction VPADDB that 

simultaneously adds 32 integers of 1 byte each). The main strength a GPU is its 

cores high number that ensures substantial parallel throughput especially for 

numeric computations, despite the fact that the GPU cores are organized in SIMD 

groups, so these cores are not entirely independent. If the function FN needs many 

branches, the cores of a GPU may by affected by branch divergence and this 

degrade further the performance. 

 From the above considerations, in many cases T1GPU>T1CPU, so for a smaller 

N, near of NCCPU (and if SIMD instructions are used multiplied by their width) and 

considering the clock frequency difference between GPUs and CPUs, it is more useful 

to fully run FN using CPUs, not on GPUs. For example, when the application runs on 

a 8 cores CPU at 3 GHz, for float32 data and it makes use of an instruction set such 

as AVX with operands on 256 bits, the throughput of the computation is at the 

minimum the same with a GPU with a number of 192 cores clocked at 1 GHz 

frequency: (3 GHz/1 GHz) * 8 cores * (256 bits/32 bits) = 192 cores. That outcome 

is correct if there are not vector operations used on the GPU execution, so every 

core of the GPU executes 1 math operation/clock only. The smallest N for which the 

execution on GPU starts to be beneficial for an application is influenced by factors 

such as the code flow of FN, the ratio between the GPU and CPU clock rates, the 

BUPT



82       Algorithm for hybrid execution on both CPU and GPU - 6 

relative complexities of their cores (aspects such as the cache memory size or 

hardware optimizations like out-of-order execution), instruction sets (availability of 

complex instructions such as cryptographic extensions) and their amount of cache 

memory. For example if the FN code has multiple branches, the code divergence on 

GPU will be increased, which will require some cores to wait until all the cores will 

reach again the same instruction, or until the running cores will end their tasks. 

 It can be seen from the above observations that in an optimal case for an 

application to run using GPUs, that application has a large threads number, it uses 

time-consuming functions (so the CPU execution time is bigger even if the overhead 

incurred by the execution on GPU is added) and the functions are arithmetically 

intensive. The definition of the arithmetic intensity is the performed operations 

number per memory transferred words. 

6.3 The test application 

 

 We tested the algorithm with a C++ application in which we implemented 

the threads, scheduler and the fibers pools required by the associated framework. 

For the interface with the GPU (code compilation, data transfer and 

synchronization), OpenCL [77] was used, since it provides an open standard which 

is supported by the GPU producers. Our application uses a sphere to render on it a 

Mandelbrot fractal using a common illumination model, as described below. Figure 

6.4 shows the resulted image. The selection of the code parts to run on GPU must 

be made by programmer. In this case, even if GPU can be used for all the rendering, 

we implement the process using 3 stages, so we can test the GPU-CPU 

collaboration: 

 In stage 1 the CPU is used to cast ray traces for all pixels of the image. In the 

case of intersections, the point of the intersection is mapped into the surface 

coordinates (u,v) of the sphere  

 In stage 2, computed on CPU and in the next test on GPU (to assess the 

differences between executions) the MandelbrotPoint function shown in Figure 

6.5 is called for each (u,v) point to determine the color of that pixel 

 In stage 3 the CPU is used to apply an illumination model for each pixel, so 

the incidence of the ray at the surface of the sphere is taken into account 

 These stages are particular to this application. In the general case, an 

application can have any number of stages and the CPU and GPU executions can be 

mixed in any order. 

 All pixels are concurrently computed. For CPU tests separate threads are 

used (optimized by using a threads pool) and the threads number is equal with the 
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number of the CPU cores. For the GPU tests separate fibers are used. With this 

setup there is a one to one mapping between the threads/fibers number and the 

image pixels number. The sphere is placed in a way that all the visible area is 

covered. In this case the sphere is intersected by each ray trace, so all the above 

stages are executed for each pixel. That setup permits a more homogeneous result 

evaluation and it also needs a bigger time for computation, so the execution time 

differences can be shown better. 

 

Fig 6.4 – The test application result  

 We used 3 different ways to compute stage 2: 1 CPU core, 2 CPU cores and 
GPU execution. Each way was tested on a separate run and we compared the 
results. The Mandelbrot fractal was chosen for the test because some reasons: 

 Its GPU kernel implementation is almost identical with the CPU 
implementation, which allows for a more meaningful comparison 

 MAXITER_MANDELBROT can be changed if we want to vary the maximum 
number of the possible computations done in each call 

 
 The kernel parameters are the point from the sphere surface for which the 
fractal will be calculated. The number of iterations in which the point convergence 
was computed is normalized to the interval 0...1 and it is used as a monochrome 
shade. 

 
 

#define MAXITER_MANDELBROT 10000 
float MandelbrotPoint(float xp, float yp) 
{ 
int iter; 
float xiter, yiter, xtmp; 

xiter = yiter = 0; 
for(iter=0; xiter*xiter+yiter*yiter<2*2 

                        &&iter<MAXITER_MANDELBROT; 
                        iter++){ 
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 xtmp = xiter*xiter-yiter*yiter+xp; 
 yiter = 2*xiter*yiter+yp; 

 xiter = xtmp; 
 } 
return (iter%256)/(float)255; //colors range normalization  
 

Fig 6.5 – The function MandelbrotPoint 

 

6.4 Experimental results 

 

 We used an E8200 Core™2 Duo Intel CPU at 2.00 GHz computer with a 

memory of 2 GB DDR2 and the 64 bit version of the Microsoft Windows 7 Service 

Pack 1. The GPU is a GTS450 Asus DirectCU Silent graphic card. This GPU has a 

memory of 1 GB DDR3 and uses the NVIDIA GF116 chip with 192 cores and clocked 

at 595 MHz. The GPU driver was NVIDIA WHQL v320.18 with OpenCL 1.1 support. 

For the tests on GPU, the compiling time for the kernel (~3 ms) is not included into 

the time measured, because this step is only once performed and it is relatively 

insignificant for most of the applications. The compiling time of the kernel can be 

significant for applications that run numerous times (such as web services), which 

use several large kernels without the facility to cache the already compiled kernels. 

In this case, the kernel compilation is repeated for each application run and it may 

require a significant amount of CPU computation. 

 To evaluate the relation between the computation time and the number of 

iterations performed, we computed an image of 200x200 pixels, varying the 

Mandelbrot iterations maximum number (the loop “for” of the Figure 6.5). The 

Figure 6.6 shows the results. We begun with 5000 iterations as the maximum and in 

each step we increased this maximum in increments of 5000, until we reached a 

maximum of 100000. The iterations numbers were chosen to allow a measurable 

increase in the computation requirements. 
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Fig 6.6 – Different maximum iterations number rendering time 

 The function MandelbrotPoint may need fewer iterations than 

MAXITER_MANDELBROT, so the total iterations effectively run was counted this was 

averaged for all the pixels of the image. In this way we obtained the average 

iterations/pixel effectively computed on average through the entire image. This 

metric allows a more objective view for the involved amount of computation. The 

relation between the MAXITER_MANDELBROT (maximum Mandelbrot 

iterations/pixel) and the iterations/pixel effectively computed is represented in 

Figure 6.7. It can be seen that for a limit of maximum 50000 iterations, the 

iterations/pixel effectively computed is 4005.  

 

Fig 6.7 – Average Iterations/Pixel required by MandelbrotPoint 

 From Figure 6.6, it can be seen that when the number of iterations is lower 

(for 1 CPU core until around 1400 and for 2 CPU cores around 2300) it is more 

beneficial to execute the MandelbrotPoint function using the CPU. For higher 

numbers, the execution on GPU becomes more advantageous, since the fibers used 
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(one fiber for each pixel) are spread to all the cores of the GPU (in our case 192 

cores). That result confirms the Section 6.2.1 performance analysis, about the 

added overhead T0GPU impact for small values of T1GPU. The added overhead impact 

is also represented in that figure by the time need for execution of the minimum 

workloads that is greater in the case of the GPU execution.  Figure 6.6 is a good 

incentive to optimize the applications for execution on GPU, because across all the 

test range it can be seen that even when the total workload was bigger by ~11.8 

times, the GPU execution time was increased by only ~20.1%, while in the same 

time the increase when the full CPU (both its cores) was used was ~774%. For the 

execution time of the application this is an important progress, achieved when a 

GPU was employed.  

 To assess the computation time dependency in regard to the total executed 

fibers, we computed images of various sizes. The maximum number of iterations 

was set to 70000. We begun with an image of 25 pixels width (resulting in 625 

pixels rendered). The image width was increased with 25 pixels at each new step. 

There is a one to one dependence between the threads/fibers number and the pixels 

number. Figure 6.8 shows the results.  

 Considering the Section 6.2.2 performance analysis, in the case of a small 

fibers number, it is more beneficial to execute them using the CPU. The GPU 

becomes a more advantageous solution for an increased fibers number. When 2500 

fibers were needed, the performance of the GPU (while using all its 192 cores) was 

better only by 2.02 times than the execution using the CPU (2 CPU cores). When 

5625 fibers were needed, the difference between GPU and CPU increased to 2.19. 

Our analysis is consistent with these results and they demonstrate the 

computational performance difference between the GPU cores and the CPU cores, 

when the measurements include the additional overhead T0GPU. 

 

Fig 6.8 – Different image sizes rendering time 
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6.5 Conclusions 

 

 We presented in this section a new algorithm that enables the programmer 

to select for GPU execution only desired parts from a multithreaded code. That 

algorithm allows a cooperative GPU-CPU model of computation, which is helpful for 

several application classes. With this model of cooperative execution, even complex 

algorithms can be split in parts suited for GPU or CPU execution, so the programmer 

can choose for them the most advantageous computing resource. 

 The existent multithreaded applications can easily employ our algorithm, 

without demanding more restrictions or any other further limitations. In that respect 

the algorithm is suitable for the optimization of the existent applications for 

execution on GPU. The related runtime uses only standard APIs (for example fibers) 

existent in all the most used operating systems. This allows good application 

portability. The concepts used by the framework can be implemented by many 

programming languages. 

 The performance analysis of the algorithm highlights the most important 

factors implicated in the decisions concerning the selection of the most suitable 

computing resource both for functions and for applications. A programmer can use 

that analysis to accurately assess the impact of the GPU or CPU execution on the 

application performance. 

 The related framework is implemented in C++. The test application was run 

to evaluate different cases. From our results, it can be seen that an application can 

greatly profit from a GPU-CPU cooperative model of execution. The relative weight 

of the involved factors was also highlighted in the use of each of the two computing 

resources. 

 Our research can be further developed in directions like multiple GPUs 

usage, accurate algorithms and metrics to measure and to evaluate a function 

performance when it is executed on different resources, further enhancement and 

optimization of the related framework. 
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7. Java bytecode runtime translation to OpenCL 
and GPU execution 

 

 

 In this section we present a novel algorithm and library, which are capable 

to automatically translate at runtime the host application bytecode to OpenCL and to 

execute the resulted code on GPU. The algorithm is suitable for the cases when 

certain application modules can be run entirely on GPU. All the steps involved in 

using the GPU are automated: the Java bytecode translation, host data structures 

serialization into a GPU suitable format, GPU management and communication, 

results retrieval and their conversion back into the host data format. The library 

follows our proposed model and it abstracts the usage of the CPU and GPU. Both 

CPUs and GPUs are automatically used when available, without any specific settings 

in the source code. 

 Up to OpenCL 2.1 [78], which provides a high level language (subset of 

C++14) and also a standard intermediate representation (SPIR-V), the programs in 

OpenCL were defined using a subset of C99. To maximize performance, the OpenCL 

API is provided in C. The development of an OpenCL application involves the 

following tasks: 

 implementation of the OpenCL code to be run on GPU 

 conversion of the data to a format which can be used by GPU 

 communication and synchronization between application and GPU 

 GPU data retrieval followed by its conversion back to the format of the 

application  

 When we analyze the direct translations to OpenCL from the application 

bytecode, including data structures, we can notice that the process is a standard 

procedure. It can be addressed by special purpose tools and libraries. The 

translation of the Java bytecode into OpenCL is a problem of compiler theory and it 

can be solved by code generators which generate output for higher level language. 

Also the remaining tasks can be solved by specialized algorithms. The output code 

have the same behavior as the input, because it is only a new representation of the 

original code. It is not addressed the problem of creating advanced optimizations for 

the GPU code, but certain situations are still optimized. An optimization can employ 

intrinsics, translated directly to OpenCL constructions in certain situations. We 
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propose a library and an algorithm, which automatically handles the tasks discussed 

and which also simplify much the interoperation between application and GPU. This 

library implements when possible the above optimization so it generates OpenCL 

native instructions. 

 Code generation from application into OpenCL is advantageous because it is 

easy to employ and also it hides many of the GPU specific aspects. The developer 

does not need to implement special data structures. He also does not need to 

implement serialization, deserialization and synchronization to interoperate with the 

GPU. Custom kernels or libraries can be used if needed, and they can replace later 

the automatic generated code. 

 

7.1 OpenCL code generation related work 

 

 We discuss here different libraries that convert to OpenCL fragments of their 

own code. Different algorithms can be employed for this process. For every method 

benefits and drawbacks are highlighted.  

 One method uses the original source code to generate OpenCL, by using 

preprocessor instructions. That method is employed for example by the Bolt library 

(C++) [79]. The Bolt library provides macros like BOLT_FUNCTOR that encapsulate 

segments of the original code, transforming it to text representations. The texts are 

glued to constitute the OpenCL output. No further processing is provided for the 

captured strings. These are used in the original form in which they are provided. 

The strings are combined using glue code. After that they are written in a suitable 

order. That procedure is straightforwardly applicable to languages with the same 

lexical and syntactic structure as the OpenCL, for example C and C++. We can note 

certain advantages, such as the fact that data structures are in the same layout in 

the application and in OpenCL. The exact layout of data can be enforced using 

alignment specifiers. This method considerably simplifies the interoperability 

between host and kernel. If the data uses a compact structure (for example without 

pointers to distinctly allocated structures), the data can be sent to GPU in its native 

form so there is no overhead incurred by serialization/deserialization. The code is 

also the same on the application and on kernel, which greatly simplifies debugging 

and also CPU fallback computation if no GPU is available. As some weak points of 

this method, we can mention the necessity that all the GPU code involved and its 

dependencies to conform to the OpenCL subset. On simple kernels this requirement 

is simple to accomplish. In cases with external dependencies, these dependencies 

need to be encoded in C/C++ restricted form, compatible with OpenCL. For the 

original code, all the dependencies which are not textually included in project need 

to be enclosed manually using provided macros. Other shortcoming is that the code 

provided at runtime (plugins, formulas, snippets) cannot be processed. 
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 Another method implies explicitly building at runtime the computation 

needed using suitable representations, followed by OpenCL generation. Suitable 

representations can be different forms of Abstract Syntax Trees (AST). Employing 

standard procedures, OpenCL can be produced using the AST. Libraries such as 

ArrayFire [80] use that approach. This method provides to the application the 

possibility to run on GPU as a single kernel combined library functions, and so it 

eliminates the transfers between host and GPU, such when these functions are run 

individually. The AST leafs represent the data involved, interfaced by proxy 

adapters. AST nodes are operators and functions. Using operators overloading, the 

AST coding for expressions can be in many cases syntactically abstracted as 

expressions using infix common operators, also including their parenthesis and 

precedence rules. This method is very flexible. If the AST structure allow (when 

nodes can encode loops and declarations), any construction may be generated. 

Expressions provided at runtime or snippets of code can be compiled easily by 

parsing them and generating the associated AST. This method has some drawbacks 

such as the need to write manually the AST. In the case of small kernels, having 

only simple expression and combining only predefined functions, that task is easy. 

In the case of big kernels needing variables, loops and decisions, the AST encoding 

may be tedious and complex. As a different disadvantage, the AST representation is 

separated from the source code and it is not directly available for inspection. 

Because of this, the debugging is difficult and also the interfacing kernel/application 

is complex, even if predefined helpers are used. 

 Other method uses the programming languages reflection features. This 

allows the application to access its bytecode.  That method is applicable in 

languages having sufficiently powerful reflection features, for example C# or Java. 

With this method, segments of the application code are decompiled and translated 

to OpenCL. A translation begins at the algorithm main method (provided by an 

interface exposing the main method of the algorithm to be executed on GPU). If this 

method needs other dependencies, these are also decompiled and added to the 

generated code recursively. The required structures are also translated and the live 

data is retrieved and encoded to the output format. That method is used in well 

known libraries, for example Aparapi [81]. The Aparapi library receives an instance 

of a class derived from the predefined Kernel class. The bytecode of this instance is 

translated to OpenCL. Aparapi uses the method run of a class inheriting Kernel such 

as the starting point. The required data is also serialized and deserialized. That 

method can be applied on many situations and it is possible to automatically handle 

different OpenCL related tasks. Also, the resulted kernel is a direct translation of the 

application code which adds certain benefits, for example ease of debugging (the 

application can be debugged using standard Java tools), also the possibility to 

employ CPU fallback computation if no GPU is available. Other benefit is the capacity 

to translate specific constructs to OpenCL optimized forms. The Java Math class has 

many methods with corresponding OpenCL primitives. Other commonly used 

primitives, for example dot and cross products may be added. That method also 

allows plugins with GPU execution to be loaded at runtime. A shortcoming of these 
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methods is given by the increased time needed for kernel generation due to the 

overhead produced by the code disassembling. This can be alleviated caching the 

generated kernel for later reuse. In the Aparapi particular case, for now it is 

implemented as a thin layer on top of OpenCL, so it uses specific functions like 

getGlobalId. Even more important, Aparapi does not process data structures which 

have objects (it supports only primitive types, single dimension arrays), so complex 

data structures must be handled manually by implementing proxy code. The support 

for reference types was planned on certain architectures, for example 

Heterogeneous System Architecture (HSA). 

 A more integrated approach is the Sumatra OpenJDK [82] project. Its 

primary goal is to enable the applications written in Java to use GPUs and other 

devices from this class. The project Sumatra tries to translate specific APIs like Java 

8 Stream into HSAIL (HSA Intermediate Language). HSAIL will be next converted 

for concrete architectures, (CPUs and GPUs). An important specific aspect when 

compared with the previous methods is that in this case different OpenJDK 

components are employed (custom compiler and virtual machine) for the GPU 

interconnection tasks, making the GPUs first class citizens of the targeted 

architectures. As of this writing, Sumatra project is mainly in proof of concept 

stages. It also depends by the adoption of new technologies (HSA). If it will enter 

production, this project may be an important step forward on the heterogeneous 

execution of the Java applications. 

 

7.2 Our proposed algorithm and library 

 

 The algorithm uses runtime reflection in order to access the application 

bytecode, followed by disassembly, analysis, code generation, in order to generate 

OpenCL from the relevant code. In the execution phase required data is 

automatically serialized and transferred to GPU. Our algorithm also handles GPU 

synchronization and results retrieving, followed by a conversion to the data 

structures of the application.  As the main goal, the GPU execution is abstracted as 

much as possible. A single code could be executed on CPU and GPU, and this allows 

easy debugging and it also provides execution fallback on CPU if no available GPU. 

The library generates OpenCL code for cases of medium complexity, such as 

structures with reference types (class instances), exceptions and dynamic 

management for memory. With these features we create new possibilities to run 

code on GPU, when compared with Aparapi like libraries. These libraries are mostly 

thin layers on top of OpenCL, with OpenCL API dependencies which need to be 

explicitly called by the programmer. Our abstraction layer may cause some loss of 

performance. In the cases where better optimization is needed, the developer can 

code key algorithms using a more optimized form for execution on GPU.  
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 The algorithm starts with a tasks scheduler that enqueues the user provided 

tasks, run the tasks using the GPU and receives their results. We enhance [83] the 

Java thread pools API with an MapReduce model [20] semantics, asynchronous and 

event driven handling on the receiving side, in the same way as Node.js [84] non-

blocking operations. Our library makes available distributed execution using 

different resources like GPU, CPU or network computers. When results are sent 

back, they are processed by the overridden set method of an object that 

implements the interface Destination. To this method are sent the results and a 

identifier unique for each task, like an index into an array. A Destination may 

abstract relatively simple collections like maps and arrays. A Destination can also 

implement advanced processing, by using the data immediately. With this approach, 

when it is allowed by the application algorithms, the retrieved results may be 

directly processed on arrival without needing to store them first. The scheduler 

begins running the jobs when they are added. After the addition of all the jobs, it is 

called a synchronization method to ensure that all the processings are ended and 

the results are available. 

 One task is represented like an object that implements the interface Task. 

The only method of this interface is run. A task encapsulates all the required data. 

The task is created in the host (application) side and enqueued asynchronously for 

execution on GPU, using the add method of the scheduler. That method associates 

also a unique identifier (UID) for each task. The UID will be used when the 

computation result will be processed. Task data is serialized, then sent to GPU. After 

the result is computed and returned from the run method, it is converted to the 

format of the application and sent to the scheduler destination. One generic use is 

shown in Figure 7.1. 

  

// the class Result is defined by programmer and it encapsulates the result of a task 

class ResultHandler implements Destination<Integer, Result>{ 
 // arguments: task UID, data received from computing resources 

 @Override public void set(Integer id, Result ret){ 
  // received result processing 
 } 
} 
class TaskHandler implements Task<Integer, Result>{ 

 public TaskHandler(/*in task specific parameters*/){ 
  // the initialization of one task on the host side 
 } 
 @Override public Result run() throws Exception{ 
  // runs the task using the GPU; returns the Result to the application 
 } 

} 
// ... library start... 
// instantiation of the Scheduler  

Scheduler <Integer, Result> scheduler=new Scheduler<>(new ResultHandler()); 
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// the creation of tasks and their addition to the scheduler queue 

for(/*all input data*/){ 
 TaskHandler task=new TaskHandler(/*data specific for each task*/); 
 scheduler.add(id, task);   // add asynchronously the task to queue 
} 
scheduler.waitForAll();                // wait until all tasks are completed 
 

Fig 7.1 – One generic use of our library 

 In simple cases like the processing of the Java standard collections, 

implementations for the Destination class are provided. From the above 

considerations and example, the processing resources are fully abstracted. On the 

Task implementation and on scheduler no OpenCL specific instructions are used, but 

only general concepts, like the task UID. That allows a better modeling of the 

domain of the application; it better abstracts the computing resources and an easier 

porting to other architectures. Other specific calls are provided only for special 

cases, for example when multiple resources exist and we need to select a specific 

one. 

 When new jobs are enqueued, the scheduler first checks the case when it 

already has generated the OpenCL code of that task. When the OpenCL code was 

already generated it will be used, otherwise the host code for the task is loaded via 

reflection. The bytecode is disassembled and the OpenCL corresponding code is 

produced. The instances data of the tasks are serialized. To accomplish that, their 

fields are checked by reflection. Their content is copied in a buffer. This will act as 

the global heap of the OpenCL code. The serialization and disassembly for both code 

and data are treated in a recursive manner. They continue running until all 

dependencies are processed. When the GPU ends running the code, the data from 

the (modified) heap is sent back to host and deserialized, updating the application 

data. In this way the modifications made by the running kernel are propagated back 

to the application. It also makes available to the application the structures allocated 

by the kernel. 

 

7.2.1 Serialization and retrieval of the data 

 

 The space needed for the global heap, serialized data, and dynamically 

allocated memory is provided in one buffer named the OpenCL heap or global 

memory. The references to data are translated into offsets into heap. A kernel uses 

heap relative indexing to accesses data, in the same way as array accesses. That 

method has an impact on performance when the GPU native instruction set does not 

have indexed access. If this is the case, an instruction will need to add a particular 
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data offset at the heap base pointer. Solutions such as employed for Sumatra 

project may utilize shared virtual memory (SVM – introduced in OpenCL 2). In the 

Sumatra context this can be done because the JVM implementation is known 

(OpenJDK), so all its specific capabilities and structure can be employed. On a 

general case, a memory layout is not specified by JVM for many data structures, so 

the SVM cannot be directly used.  

 Our serialization algorithm directly copies the primitive JVM data types. One 

aspect is when the GPU has a different endianness from the host. In this case a 

conversion must be made. The values handled by reference are handled according 

to two situations: arrays and class instances. The first member is in both cases a 

UID for that array type or class. In the cases of the class instances, their references 

and primitive values are added on the reflection order. All classes are implemented 

using OpenCL structures. The class instances are accessed and created through 

their corresponding class structures. The array length for arrays follows after UID 

and after it the array elements. The primitive type arrays are separate types. The 

reference types arrays are implemented using only one array type (Object) and 

employing type erasure. To be able to know the heap offsets for all instance 

members and array elements at the serialization of the enclosing instance, the 

members are serialized first, in a recursive way. The static members of the classes 

are also stored on heap and they are accessed using the global context. 

 

7.2.2 Code generation 

 

 There are specific JVM features that do not exist in OpenCL, for example 

exceptions throwing/catching, dynamic allocation, recursion, virtual method calls 

(non-final methods). These features must be made available as a layer over the 

OpenCL supported functions. Features like host functions calling are not available for 

now in OpenCL and it is no way to do this apart of ending the kernel execution, 

calling the function from the host and running again the kernel from the last ending 

point. This prohibits the usage of I/O functions, effectively blocking the use of the 

APIs like network or the file system. 

 In the first step, it is simulated linearly (without branching or looping) the 

JVM bytecode for each method, using a symbolic stack. In this stack a cell 

represents an AST node. The bytecodes which operates on stack combine the 

operand nodes into new, result nodes, which will also be pushed on stack, 

simulating the action of the operator. For example the bytecode for constant push 

creates an AST leaf for one constant value or a bytecode for addition creates the 

AST addition node, combining the two top AST nodes from the stack. Different 

nodes are created and operated on by instructions that do not update the stack, 

such as the opcode goto. When this step is ended, there is a distinct full AST 
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constructed for any method. By traversing these ASTs we generate the OpenCL 

code. 

 A complex topic is the memory allocation. It is important particularly in the 

case of automatic memory management, and especially when there is no value 

semantic for classes, which made possible only dynamically allocated class instances 

(if the compiler does not optimize the allocation). On environments with a large 

number of threads like in the GPUs case, where several thousand tasks may run 

simultaneously, memory allocators specially designed are very important, otherwise 

they will constitute performance bottlenecks [85]. For this implementation we 

created a lightweight and fast memory allocator, on the same principles as [86], 

which for now is capable to only allocate data. By using this approach we obtained a 

high throughput on allocations (a single atomic operation required for heap access 

serialization) and there is no memory overhead associated with the blocks allocated. 

For now the allocator does not free the non-referenced memory, so a developer 

needs to be careful on the allocations number. When many memory allocations and 

reclaiming cycles are needed, this may be a serious problem and the allocator 

should be completed with garbage reclaiming. From the programmer point of view, 

considering that the situations when execution on GPU is required are mostly 

situations when high performance is needed, simple methods may be employed to 

reduce memory allocations. These methods also optimize for CPU and GPU by 

lowering the allocator pressure. In our OpenCL interface library, we reduce the 

allocations number by reusing already existent objects. To be able to do this, we 

made the operations on objects (like vectors addition) to use for result the first 

argument of the addition function. In this way we avoid creating new result vectors. 

Because OpenCL does not have global variables, every function needs to access the 

global variables (in this case use the base of the heap address) and this is accessed 

through a supplementary argument for each function. There is no overhead 

associated with the function call (the OpenCL compiler inlines all the function calls 

so no code is required for parameters passing). 

 Even in newer versions such as 2.1 (based on a C++ subset), there is no 

exceptions handling in OpenCL. In Java, even if the developer does not use 

exceptions in the GPU executed code, the exceptions may originate in the memory 

allocator on out of memory cases. Because facilities like stack unwinding are not 

supported, the exceptions were implemented using the functions returned values. 

Each function returns an integer that is a heap offset. For the 0 value (associated 

with Java null pointers), there is no generated exception. If exceptions are thrown, 

the exception objects are allocated and the index of the allocated exception is 

returned. All function calls are guarded against non-zero returned values. When this 

case takes place, the enclosing functions exits immediately, further propagating the 

exception received. When there is no catching block for the exception on any level, 

the kernel will end with the exception object returned to application like that 

particular task result. In order to have a valid exception object for out of memory 

cases, an OutOfMemoryError exception object is preallocated. Because the functions 
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returns propagate exceptions, if a function has a non-void return type, the returned 

value is stored using a supplementary parameter transferred by reference that is 

added by the compiler to all non-void functions. That parameter points to the 

variable that will receive the value returned. The return instruction uses this 

parameter to store its expression at the referred address. We studied the GPU 

machine code generated from the produced OpenCL kernel to assess the impact of 

this implementation decision. As the OpenCL compiler inlines all its functions, the 

pointer indirection required to store the returned value was simply replaced with 

direct stores, so this implementation did not added supplementary processing. 

Similarly, the checks for non-zero returns and early exit of the enclosing functions 

were propagated up to the original exception point (the out of memory check inside 

the memory allocator), followed by an immediate exit from the kernel when the user 

code does not use try…catch statements. In conclusion the compiler optimized away 

this checking. 

 Some Java core classes like Object, Math and Integer are handled as 

intrinsics. That allows a more optimized code generation, which uses the predefined 

functions in OpenCL. Several Math functions can be directly translated into native 

functions, because they are defined already in OpenCL. Some available OpenCL 

functions, like cross and dot products were implemented in an auxiliary intrinsic 

library. The calls to these functions are treated as intrinsics. When the tasks are not 

run using a GPU, this library uses automatically a pure Java implementation, so it 

will run on any JVM. In Figure 7.2 there is a code generation example. We show the 

Java method we used to compute a Mandelbrot fractal and in Figure 7.3 (enriched 

with some comments and also formatted to reduce the lines number) we show its 

OpenCL generated code.  

 

int mandelbrot(float xp,float yp){ 

 final int ITERATIONS=256; 
 float xiter=0,yiter=0; 

 float xtmp; 
 int iter; 
 xp=translate(xp, 1.2501276f, 3.030971f, 0.31972017f, 0.34425741f); 
 yp=translate(yp, -2.9956186f, 1.8466532f, 0.03119091f, 0.0572281593f); 
 for(iter=0;xiter*xiter+yiter*yiter<2*2 && iter< ITERATIONS;iter++){ 

  xtmp=xiter*xiter-yiter*yiter+xp; 
  yiter=2*xiter*yiter+yp; 
  xiter=xtmp; 
  } 
 return iter; 

} 

Fig 7.2 – The Mandelbrot method – original Java version 

  For overloaded functions, to generate multiple C names starting from the 

same Java name, we created a name mangling algorithm, because the original JVM 
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name mangling has characters that cannot appear in valid C identifiers. This 

mangling algorithm was also needed to make the difference between similarly 

named functions in different classes. In our system it is appended to a function 

mangled name the context (class name and package) and the signature (the 

arguments types). 

 

// _g - pointer to heap 
// _l - pointer where the return will be stored 
// return value: 0 on no exceptions, a heap index for exceptions 
// idxtype - integer type used heap indexing (unsigned int) 

 
idxtype    tests_D_T3Work_D_mandelbrot_LP_FF_RP_I 
    (_G _g, idxtype _this, float xp, float yp, int *_1){ 
int ITERATIONS, iter, _TV8;   // temporary variables: _TV* 
float yiter, xiter, xtmp, _TV5, _TV6, _TV7; 
idxtype _0;  // for exceptions testing and propagation 
ITERATIONS =256; 

xiter=0.0; yiter=0.0; 

// all function calls are checked for exceptions occurrence 
if((_0=tests_D_T3Work_D_translate_LP_FFFFF_RP_F(_g, _this, xp, 
 1.2501276,3.030971, 0.31972017,0.34425741, &_TV5))!=0)return _0; 
xp=_TV5; 
if((_0=tests_D_T3Work_D_translate_LP_FFFFF_RP_F(_g, _this, yp, -2.9956186, 
 1.8466532, 0.03119091, 0.0572281593, &_TV5))!=0)return _0; 

yp=_TV5; 
iter=0; 
goto _TMP172; 
_TMP173:; 
_TV5=xiter*xiter;_TV6=yiter*yiter;_TV7=_TV5-_TV6;_TV5=_TV7+xp;xtmp=_TV5; 
_TV5=2.0*xiter;_TV6=_TV5*yiter;_TV5=_TV6+yp;yiter=_TV5; 

xiter=xtmp;_TV8=iter+1;iter=_TV8; 
_TMP172:; 
_TV5=xiter*xiter;_TV6=yiter*yiter;_TV7=_TV5+_TV6; 

// to implement the JVM FCMPG opcode, FCMPG macro is used 
_TV8=FCMPG((float)_TV7,(float)4.0); 
_TV5=_TV8>=0; 
if(_TV5)goto _TMP177; 

_TV8=iter<256; 
if(_TV8)goto _TMP173; 
_TMP177:; 
*_1=iter;  // set the return 
return 0;   // no exceptions 
} 
 

Fig 7.3 – The Mandelbrot method – OpenCL generated code 
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 In OpenCL there are no functions pointers or any means for indirect calls. In 

this situation, the virtual (non-final) functions (implemented commonly with virtual 

tables and pointers to dispatch functions) must be implemented differently. In this 

implementation the first member of each class structure (the unique class 

identifier), can be used in this purpose. That identifier is used as an index to a 

vector maintained on host containing the structures for the generated classes. That 

field for each kernel maintains its value on any actual heap serialized data. By using 

that id a virtual function may be implemented checking the id of the current object 

using a switch statement with dispatches for every situation possible (for all classes 

in a specific hierarchy that provide an implementation for that function). Similarly 

can be generated dynamic dispatch for all implemented interfaces. Our generator for 

now does not implement fully dynamic dispatch (virtual methods) and we can only 

use the Java final classes, in which the compiler can infer the specific method called. 

 Because the GPU do not has an execution stack, recursive calls are not 

implicitly supported [87]. A programmer must use an iterative version of an 

algorithm or the recursion should be implemented with an explicit stack. Our library 

in this version does not implement code generation for recursive calls. We consider 

that a limitation that can be solved so we are trying to implement recursive calls in 

the next versions. 

 

7.3 Practical results 

 

 To test the algorithm and library, a Java application was created which 

renders an image using ray casting. It sends primary rays, without reflections or 

refractions. We used a test scene made from 1301 spheres. Every sphere has the 

Mandelbrot fractal drawn as a procedural texture. In this case every pixel is 

computed on-demand, without using precomputed bitmaps. Along with the 

procedural texture, on each point an illumination model is computed. This model 

considers the intersection angles between the rays and the normals of the spheres 

on the intersection points. The horizontal lines are treated such as separate tasks 

(work-items). Figure 7.4 shows the final result. Java features like classes, static 

members, members of reference types were used. All calculations are done using 

FP32. The Java Math library has especially FP64 operations, and it was needed to 

write a wrapper for the Java provided function, to have a FP32 version. Because of 

this, different operations such as cos() or sin() are executed on CPU as FP64 and on 

GPU as FP32. It was assumed that in the real world scenarios with FP32 data use, 

the developer does not convert it to FP64 for cos() or sin(), but the developer will 

use FP32 if possible. In the OpenCL code these operations become intrinsic 

functions. Specific OpenCL or CPU features were not used. The application ran 

without modifications on GPU and CPU. Our library uses in this version for 
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manipulating Java bytecode the ASM v5.0.3 library [88]. Standard OpenCL bindings 

are provided by JOCL v0.2.0-RC [89]. 

 

Fig 7.4 – The test program result 

 We used the following configuration for tests: 

 a computer with CPU Intel® Core™ i5-3470 at 3.20 GHz, 8GB RAM, Java SE 

8u45 and Windows 7 64 bits Home Premium SP1. The CPU has 4 cores. 

 GPU AMD Radeon™ R9 390X, 1060 MHz, 8GB GDDR5 RAM. The GPU has 

2816 streaming cores with 44 compute units. 

 We observed three main aspects: the GPU execution compared with the CPU 

execution, the GPU handling of different workloads and our library compared with 

the library Aparapi. For the comparison between CPU and GPU we used square 

images. We linearly increased the number of pixels to determine the most suitable 

method of execution for different sizes. All tests were run 5 times. The average 

value was considered. The GPU time sums all the implied times: the kernel 

generation and compilation, the serialization/deserialization and execution time. The 

execution time includes data transfer between GPU and CPU. This GPU total time is 

required only in the worst case, if the computation runs once. If the task code runs 

multiple times, its kernel may be reused (by caching it). In this case the times for 

generation and kernel compilation are insignificant. These times were measured 

over the entire test range. In Table 7.1 are given the results. 
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 Image of 10 KPixels Image of 43000 KPixels 

Heap 

data 

(KB) 

Heap 

total 

(KB) 

Time 

(ms) 

Heap 

data 

(KB) 

Heap 

total 

(KB) 

Time 

(ms) 

Kernel 

generation 

62.8 111 

22 

44442 45490 

23.3 

Kernel 

compilation 

224 228.5 

Serialization 11.3 55.4 

Deserialization 0.65 100.5 

 

Table 7.1 – GPU - Data sizes and setup times 

 

 The Table 7.1 shows that the kernel generation and also compilation are 

invariant with the workload due to the fact that the processed bytecode is identical. 

The times of serialization and deserialization increase when more data has to be 

processed. On small workloads we have the result in Figure 7.5. The measurements 

were made in steps of 10 KPixels (KP).  

 

Fig 7.5 – CPU vs GPU execution on small workloads 

 The execution on GPU begins to be more efficient around 250 KP. When the 

times needed for generation and compilation are subtracted, this threshold is near 

100 KP. In our case, the worst case for GPU is the lower number of pixels, because 

a square 100 KP image has around 316 pixels height. In this case at best maximum 

316 streaming cores on GPU are used from the total of 2816 streaming cores. 
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Maybe a good thing in this situation is that the compute units run fewer work-items 

simultaneously, which improves the divergence. 

 We compared next the CPU vs GPU execution over the entire test range. On 

the test system a GPU run is limited at around 30 seconds. When this period passes, 

the operating system considers the driver unresponsive and it reinitializes the 

graphic driver. On different systems that timeout may be lower, and provisions must 

be made to restrict the execution time for long running kernels. In Figure 7.6 are 

shown the results. The measurements were made in steps of 1 MPixel. 

 

Fig 7.6 – CPU vs GPU execution across all the test domain 

 If the work quantity needed for a task (in this case the width of the image), 

and also the tasks number (the height of the image) grow, the CPU is outrun by 

GPU with a linear progression. Because we incremented linearly the pixels number, 

the work quantity also has a linear increase. In this test the numeric difference 

between the streaming cores of GPU (2816) and the cores of the CPU (4) becomes 

apparent, because on each case the incremented workload is sent to all the 

processing elements available, so each CPU core receives a greater quantity of 

work. Even if both times changes in mostly a linear way, the increase of the CPU 

time is stepper than the time increase on GPU. The GPU maximum speedup 

compared with CPU was 12.65x. 

 We also tested how the GPU computes different types of workloads. In this 

test we kept constant the task size (the image width) and we varied the tasks 

number (the image height). We executed this test on GPU only. We measured the 

times of 3 different task sizes. In Figure 7.7 are are shown the results. Data was 

collected in steps of 64 tasks each. We explain that graph by the effects of two 

aspects. The general shape of every line is given by the way in which the workload 

occupies the GPU cache memory. In the case of smaller workloads (of 

approximately 1000 width), the growth is almost linear across the test domain. If 

the workload is increased and more memory is required, the cache misses grows. 

This increase is more apparent at the graph in the right side, because it influences 

strongly the increase in time. The next aspect that influences the graph is the tasks 
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allocation scheme on GPU. When tasks are added and their total number is lower 

than the streaming cores, the increase of time for each task added is very small, 

due to the fact that a single batch of works is used by the GPU to run all these 

tasks. If the tasks number is greater than the streaming cores number, we can be in 

two extreme case: a batch of jobs end about in the same moment and in that case 

we are in a local minimum; if we increase with a small number of tasks, the new 

tasks need another batch for them only and we will be in a local maximum. More 

complexity is added because the execution divergence and also because not all 

tasks require the same quantity of work.  

 

Fig 7.7 – Different number of tasks run on GPU 

 A result of that analysis is that the longer tasks are better to be reorganized 

so the amount of a task required memory is smaller (or they have common data). 

The execution time in this way is optimized by lowering the cache misses; this 

avoids also the timeout of the operating system when the code is executed on GPU. 

The tasks number for one GPU execution may be modified using the scheduler 

settings. 

 When we compared Aparapi with our library, we needed to write the test 

code using a representation that can be run with Aparapi. It was required to replace 

some high level representations of data structures with lower level ones, like: 

 There is no support for reference types in Aparapi (aside of primitive 

vectors), so each used classes (like Point, Line, …) are replaced using float 

vectors. A Point for example is represented like a 3 floats vector and a Line 

like a 6 floats vector. 

 Aparapi uses the same global context for each thread. The differentiation 

between each thread data is commonly implemented using OpenCL 

functions like getGlobalId(). It was needed to employ combined vectors for 

every thread (task) data. The access of the thread specific data was made 

with the thread global id. 
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 There is no dynamic memory management (not even allocations) in Aparapi 

so it was needed to employ global data structures to hold the values 

returned by functions in the case of non primitive types. To differentiate 

between the threads data it was used the thread global id. 

 To illustrate some of the required changes in Figure 7.8 we show how parts 

of the application are implemented with our library; in Figure 7.9 we show how 

these are implemented with the Aparapi library. 

  

public class Point{ 
 public float xp,yp,zp; 
 public Point(float xp,float yp,float zp) 

{this.xp=xp;this.yp=yp;this.zp=zp;} 
 public Point(){} 

 public void set(float xp,float yp,float zp) 
{this.xp=xp;this.yp=yp;this.zp=zp;} 

 public void set(Point pt){xp=pt.xp;yp=pt.yp;zp=pt.zp;} 
 public float len(){return Math3D.length(xp,yp,zp);} 

 public void vectorFromPoints(Point orig,Point dst) { 
  xp=dst.xp-orig.xp; 

  yp=dst.yp-orig.yp; 
  zp=dst.zp-orig.zp; 
 } 
… 
} 
… 
float propagateRay(Line ray){…} 

Point centerToInters=new Point(); 
Point intersToRayOrigin=new Point(); 

Fig 7.8 – An implementation with our library for a part of the application 

 Because the Aparapi implementation cannot use Java basic idioms such as 

classes, the algorithms written using this library require additional proxy code to be 

integrated with the application: the classes are translated to primitive vectors and 

back, individual tasks data is merged into the same vector, etc. 

 

final float pointLen(float []pt){ 
 int offset = 3*getGlobalId();  
 return length(pt[offset],pt[offset+1],pt[offset+2]); 
} 
final void vectorFromPoints(float []dest,float []orig,float []destination){ 

 int offset = 3*getGlobalId();  
 dest[offset]=destination[offset]-orig[offset]; 

 dest[offset+1]=destination[offset+1]-orig[offset+1]; 
 dest[offset+2]=destination[offset+2]-orig[offset+2]; 
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} 
… 

final float []intersToRayOrigin; 
final float propagateRay(float []r){…} 
final float []centerToInters; 
 

Fig 7.9 – An implementation with Aparapy for a part of the application 

 To compare the execution of our library with Aparapi, we varied the pixels 

number and the amount of needed work for each pixel. The work per pixel 

measurement was required to evaluate different workloads keeping constant the 

used memory amount and the threads number. We recomputed every pixel more 

times (n), starting the normal case (n=1). This process does not requires memory 

allocations. In Figure 7.10 we showed the results using Aparapi and in Figure 7.11 

the results using our library. For all figures the data was collected in steps of 1 

MPixel. 

 

Fig 7.10 – Aparapi execution for different numbers of tasks and recomputations 

 For the Aparapi version, the operating system began at around 25 MPixels 

to reset the graphic card driver. Our library was capable to produce results until 46 

MPixels. Both libraries have approximately linear progressions, with a number of 

prominent peaks. There is a better time for Aparapi and a smaller angle of growing. 

Our library has more irregularities from the linear progression and, as previously 

discussed, we consider that a combined effect of the GPU cache and data layout. 

Aparapi has smaller irregularities due to the fact that in its case data is already 

ordered by tasks and vectorized, which enhances the data locality. The maximum 

running time for both implementations, after which the OS starts to reset the 

graphic card driver was of around 31 seconds. If the peak time exceed 31 seconds, 

then the application crashes. 
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Fig 7.11 – Our library execution on different number of recomputations and tasks 

 

7.4 Conclusions 

 

 We proposed in this section an algorithm and library that enable Java 

execution on GPU. We used reflection to access the code of the application and 

OpenCL code generation in order to create the kernels which run on GPU. Our 

approach is suitable also in the case of code processed at runtime like plugins. The 

library handles automatically common distributed computing tasks like serialization 

and deserialization, synchronization and communication with the GPU. The system 

of data serialization is capable to handle complex data structures and this makes 

possible to make available for execution GPU classes, static methods, fields of 

reference types and all types of arrays. 

 The library provides a thin compatibility layer for Java on top of the OpenCL. 

That layer makes possible dynamic memory management and exceptions handling. 

We strive in the future to extend the compatibility layer with recursive calls and also 

with calls of virtual methods (dynamic dispatch for non-final methods). When 

possible, the functions native to OpenCL are employed over the standard Java 

libraries. A library for OpenCL primitives that are not in the Java standard libraries is 

also provided. This library is portable, and it can be used on CPU and on GPU.  

 Our algorithm uses a model based on MapReduce to manage the 

simultaneous tasks. The return values of tasks are sent directly to a handler. In 

certain cases this allows the processing of results on arrival, without the need to 

store them. The creation and management of tasks is abstracted in regard with the 

computing resources, and the code can be run both on CPU and on GPU without any 

modifications. That simplifies the maintenance of the code, allows an easy 

debugging and the CPU can act as a fallback resource if no suitable GPU is present. 
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 We tested our library with a test application in standard Java code, which 

does not have any OpenCL specific constructs. With our test configuration we had 

significant speedups up to 12.65x for GPU over the execution on CPU. We consider 

an important conclusion of our research that parts of Java standard applications 

which use classes, exceptions handling and dynamic memory allocation (but for now 

without recursion and virtual calls) can be translated automatically into OpenCL and 

be run on GPU, which can bring certain advantages. The proposed library and 

algorithm provides the capability to implement Java code that can be integrated 

easily with complex data structures and this code does not need specific platform 

calls. This simplifies greatly the goal to run more complex applications on computing 

resources such as GPU or CPU. This is an important step forward over existing 

libraries like Aparapi, which were originally designed as thin layers on top of the 

OpenCL and the developer must use specific OpenCL idioms. Aparapi in our tests 

obtained a better time compared with our library but it was able to process only a 

limited data domain. It also needed coding the test application using a way that is 

not Java specific (without classes). The Aparapi implementation also required proxy 

code in order to serialize and deserialize the data of the application to and from an 

OpenCL suitable representation. On future research we will investigate ways to 

increase the range of applications that can run on GPU, research better 

optimizations and also obtain an enhanced reliability for GPU execution. 
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8. Conclusions 

 

 

 The distributed computing field is a very dynamic one and there are many 

research and development directions of great importance. As many computing tasks 

become more resource intensive, both from the point of view of the computation 

power required and regarding the vast amount of data involved in these 

computations, more and more applications try to offer distributed computing 

implementations, in order to be able to solve these problems. With the current tools 

and frameworks the distributed applications require a considerable coding effort and 

to ease and optimize this effort was one of our main research motivations in this 

thesis. Our research was concentrated on three main directions. First we elaborated 

a distributed computing model suitable for using heterogeneous resources such as 

CPUs, GPUs and computer networks in a uniform manner and which can also 

automate many distributed computing tasks. Secondly, we implemented our model 

as a Java library, so it can be used in regular Java applications. Third, in order to 

include the GPUs as a computing resource, we developed two algorithms and their 

implementations. First algorithm is suitable for the cases when the computation is 

too complex to be run solely on GPU. The second algorithm can be used in the cases 

when the GPU is capable to handle the entire computation. 

 There are many concepts specific to distributed computing, such as remote 

function invocation or code deployment. These concepts need to be better 

integrated into the existent frameworks, development tools, programming 

languages and high level models. Many of the tools and frameworks use powerful 

computation models (such as the MapReduce model) taken for example from the 

functional languages theory, but these models were initially developed for sequential 

applications and they are not sufficiently enough adapted to a highly multithreaded 

and distributed environment. We shown that research and development work needs 

to be done in order to adapt the sequential models to the challenges imposed by 

distributed computing, such as scheduled asynchronous invocations or 

synchronization. 

 A comprehensive high level distributed computing framework must make 

available to the application all the existent computing resources, like local CPU 

cores, remote computers and GPUs. Each one of these has very different interfaces, 

for example multithreading libraries for CPU cores, networking and remote 

invocation libraries for remote computers and OpenCL libraries for GPUs. All these 

interfaces must be made available to the application in a uniform and abstract 

manner, in order to isolate the low level details from the application logic. If this 
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aspect is accomplished, the framework will be able to run a given computation on 

the most suitable resource, without any additional code required from the 

developer. 

 In this thesis we propose an original model for distributed computing that 

builds on the well known MapReduce model and extends it with new concepts 

necessary for a multithreaded and distributed environment. Our model uses only 

three concepts and it is simple to learn, especially for programmers with an OOP 

background. The model abstracts in a uniform manner different computing 

resources such as CPUs, GPUs and computer networks, so the application can use 

heterogeneous architectures without the need to write specific code for each 

computing resource type. In our model many distributed computing tasks are 

handled automatically by default, so aspects like resources discovery, code 

deployment, data serialization, tasks distribution, remote invocations, recovery from 

errors and synchronization are automatically handled with good results in most of 

the cases. The model also includes specific optimizations, for example it treats 

immutable data as a special case and this data is sent only once to the computing 

resources. Especially for network computers or slow buses this optimization can 

bring considerable improvements on computing time. We implemented our model as 

a virtual machine and the test results shown that it is scalable and in the same time 

it is capable to distribute evenly the workload on the available computing resources. 

 We implemented the model as a Java framework so it can be used in regular 

Java applications, without specific language level support. We are able to implement 

most of its semantics and constraints only by means of data structures and function 

calls, without resorting to other compilation steps, such as a preprocessor phase. 

We tested our framework and it was capable to abstract both the remote computers 

and the CPU cores as computing resources, as well as low-level distributed 

computing tasks such as resource discovery, code deployment and remote 

invocations. The test results for our framework shown that it is scalable both in 

terms of network computers and CPU cores and the scheduler algorithm succeeded 

to distribute the workload evenly on all these resources. 

 In this thesis a considerable research is dedicated to use the GPUs as a 

computing resource. With the development of the GPUs with general-purpose 

computing capabilities, this new and powerful computing resource can be employed 

to solve different tasks, especially the numerical intensive ones. Due to the fact that 

the GPUs have several shortcomings such as their incapacity to call operating 

system functions or their stackless execution model, it is not an easy task to adapt 

complex code flows for execution on GPU. 

 In order to distribute computing tasks on GPU, we propose two approaches 

on which we made advancements with our research. If the tasks are complex and 

not suitable for execution only on GPU, for example they contain I/O calls, we 

developed a cooperative CPU-GPU execution algorithm. It collects the computation 
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parts intended for GPU execution across multiple CPU threads and runs them on 

GPU in a single batch. For optimal performance this algorithm uses a combination of 

threads and fibers, which reduces the switching time between threads and also 

enables the creation of thousands of tasks, implemented as fibers, which allows us 

to fully use all the GPU cores. The algorithm was implemented as a C++ library and 

it is easily applicable to the existent threaded applications. The practical results 

obtained with our library show a significant speedup over the CPU only execution. 

 If the tasks intended to be distributed on GPU are suitable for this kind of 

execution, we developed a new algorithm and library, capable to translate from Java 

bytecode to OpenCL code and to run the resulted code on GPU. The library also 

automatically handles tasks such as data serialization/deserialization, and GPU 

communication and synchronization. The algorithm can translate code which uses 

classes, reference types, dynamic memory allocation and exception handling (but 

for now without virtual calls and recursion), which is a significant improvement over 

the existing approaches. We integrated the library with our model and we provided 

an abstraction layer over OpenCL, which allows the use of either the CPU or GPU in 

an abstract manner, without any change in the source code. The practical results 

show improvements of over ten times speedup on GPU execution.  

 We intend to further research the thesis subjects in directions such as 

further refinements of our model to allow more use cases, better integration of all 

the three computing resources discussed (CPU, network computers, GPU), load 

balancing, and increased reliability and recovery from errors. We also intend to add 

more features to the OpenCL generation algorithm, so we can increase the range of 

applications which can be run on GPU. 
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