

Integrated frameworks for

distributed computing

Teză destinată obţinerii
titlului ştiinţific de doctor inginer

la
Universitatea Politehnica Timişoara

în domeniul Calculatoare şi tehnologia informatiei

de către

ing. Răzvan-Mihai ACIU

Conducător științific: prof.univ.dr.ing. Horia CIOCÂRLIE

Referenţi ştiinţifici: prof.univ.dr.ing. Rodica POTOLEA

 prof.univ.dr.ing. Viorel NEGRU

 prof.univ.dr.ing. Vladimir-Ioan CREȚU

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 9. Inginerie Mecanică
2. Chimie 10. Ştiinţa Calculatoarelor

3. Energetică 11. Ştiinţa şi Ingineria Materialelor
4. Ingineria Chimică 12. Ingineria sistemelor

5. Inginerie Civilă 13. Inginerie energetică
6. Inginerie Electrică 14. Calculatoare şi tehnologia informaţiei
7. Inginerie Electronică şi Telecomunicaţii 15. Ingineria materialelor
8. Inginerie Industrială 16. Inginerie şi Management

Universitatea Politehnica Timişoara a iniţiat seriile de mai sus în scopul diseminării

expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul Şcolii doctorale
a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006, tezele de doctorat
susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2017

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea acestei
publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea ilustraţiilor,
expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă formă este

permisă numai cu respectarea prevederilor Legii române a dreptului de autor în vigoare
şi permisiunea pentru utilizare obţinută în scris din partea Universităţii Politehnica
Timişoara. Toate încălcările acestor drepturi vor fi penalizate potrivit Legii române a

drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,

Tel./fax 0256 403823
e-mail: editura@edipol.upt.ro

BUPT

Foreword

 This PhD. thesis was developed during my activity at the Politehnica

University of Timisoara, Faculty of Automatics and Computers. I consider teaching

an important, noble work and I am deeply grateful for the opportunities I have here

both for teaching and for researching.

 Special thanks are due to my PhD. coordinator, Prof. Univ. Dr. Eng. Horia

Ciocârlie for his guidance and important advices since the beginning of my work. He

is a very good teacher and adviser and during the years I learned many things from

his great life experience, both from a professional and a personal point of view.

 My PhD. guiding commission composed of Prof. Univ. Dr. Eng. Ionel Jian,

Lect. Dr. Eng. Dan Cosma and Lect. Dr. Eng. Ciprian-Bogdan Chirila was of an

invaluable help. They offered me many advices, suggestions, corrections and ideas

which were very important for the quality and consistency of my research.

 I greatly appreciated the reviews and suggestions from my PhD.

commission, composed of Prof. Univ. Dr. Eng. Rodica Potolea, Prof. Univ. Dr. Eng.

Viorel Negru and Prof. Univ. Dr. Eng. Vladimir Crețu. They considerably helped me

to shape the final form of the thesis.

 I also wish to express thanks to my family, close friends and God, who

helped and supported me during this important period of my life.

BUPT

BUPT

Table of contents

Foreword .. 3

Table of contents ... 5

Table of figures ... 8

Table of tables ..10

1. Introduction ...11

2. Thesis motivation, objectives and structure ..17

2.1 Motivation ... 17

2.2 Objectives ... 21

2.3 Structure .. 23

3. Distributed computing concepts and requirements ..25

3.1 Network management .. 25

3.1.1 Servers or services providers discovery .. 25

3.1.2 Data and code communication ... 27

3.1.3 Security .. 28

3.2 Code deployment ... 29

3.3 Remote invocation ... 31

3.4 Invocations scheduler ... 33

3.5 The remote server ... 34

3.6 Conclusions ... 36

4. Application level execution model ..37

4.1 The original MapReduce shortcomings when a distributed computation is

involved ... 39

4.2 A typical example of a distributed computing application........................... 44

BUPT

4.3 The model functional description .. 48

4.3.1 The unit concept .. 49

4.3.2 The with concept ... 50

4.3.3 The run concept .. 52

4.4 Theoretical performance considerations .. 53

4.5 Study and implementation .. 54

4.6 Experimental results... 56

4.6.1 Tests using a computer network .. 57

4.6.2 Computer cores tests ... 58

4.7 Conclusions ... 60

5. Application components distributed computing framework61

5.1 Framework overview .. 62

5.2 Framework detailed description ... 64

5.2.1 The setup of the network .. 64

5.2.2 The distributed application code .. 65

5.2.3 The instantiation of the scheduler .. 66

5.2.4 The workers and the jobs ... 67

5.2.5 The distributed computations end .. 68

5.3 Practical tests results ... 69

5.3.1 Computer network tests ... 69

5.3.2 Computer core tests ... 71

5.4 Conclusions ... 72

6. Algorithm for hybrid execution on both CPU and GPU74

6.1 The proposed algorithm .. 75

6.2 The performance of the algorithm .. 79

BUPT

6.2.1 The GPU execution incurred overhead .. 80

6.2.2 The application threads number influence ... 81

6.3 The test application .. 82

6.4 Experimental results... 84

6.5 Conclusions ... 87

7. Java bytecode runtime translation to OpenCL and GPU execution88

7.1 OpenCL code generation related work .. 89

7.2 Our proposed algorithm and library .. 91

7.2.1 Serialization and retrieval of the data ... 93

7.2.2 Code generation .. 94

7.3 Practical results ... 98

7.4 Conclusions ... 105

8. Conclusions .. 107

Published papers .. 110

Acknowledgement ... 112

Bibliography ... 113

BUPT

Table of figures

Fig 4.1 – A distributed computing application in a C++ style programming language

 .. 45

Fig 4.2 – The result generated by the code from Figure 4.1 46

Fig 4.3 – Network speedup results .. 57

Fig 4.4 – Computer network workload results ... 58

Fig 4.5 – Computer cores speedup results .. 59

Fig 4.6 – Computer cores workload results ... 59

Fig 5.1 – Pseudocode of the algorithm ... 62

Fig 5.2 – An 3500 spheres image rendered by our test application 63

Fig 5.3 – The interface Distributed .. 65

Fig 5.4 – The signature of the Scheduler class .. 66

Fig 5.5 – The signature of the Scheduler class .. 66

Fig 5.6 – The interface Destination .. 67

Fig 5.7 – The addJob method ... 67

Fig 5.8 – The waitForAll method ... 68

Fig 5.9 – The methods getCompletedJobsNb and getAddedJobsNb 68

Fig 5.10 – Network speedup ... 70

Fig 5.11 – Each core workload in network tests .. 70

Fig 5.12 – Computer cores speedup .. 71

Fig 5.13 – Computer cores workload ... 72

Fig 6.1 – Multithreaded flow of code for mixed CPU-GPU execution 76

Fig 6.2 – The loop of the main algorithm.. 77

Fig 6.3 – The handling of the calls to the functions designed to be run on GPU 78

BUPT

Fig 6.4 – The test application result .. 83

Fig 6.5 – The function MandelbrotPoint .. 84

Fig 6.6 – Different maximum iterations number rendering time 85

Fig 6.7 – Average Iterations/Pixel required by MandelbrotPoint 85

Fig 6.8 – Different image sizes rendering time .. 86

Fig 7.1 – One generic use of our library ... 93

Fig 7.2 – The Mandelbrot method – original Java version 96

Fig 7.3 – The Mandelbrot method – OpenCL generated code 97

Fig 7.4 – The test program result .. 99

Fig 7.5 – CPU vs GPU execution on small workloads .. 100

Fig 7.6 – CPU vs GPU execution across all the test domain 101

Fig 7.7 – Different number of tasks run on GPU .. 102

Fig 7.8 – An implementation with our library for a part of the application 103

Fig 7.9 – An implementation with Aparapy for a part of the application 104

Fig 7.10 – Aparapi execution for different numbers of tasks and recomputations 104

Fig 7.11 – Our library execution on different number of recomputations and tasks

 .. 105

BUPT

Table of tables

Table 1.1 – Distributed computing projects .. 12

Table 4.1 – The original MapReduce and our model ... 47

Table 7.1 – GPU - Data sizes and setup times ... 100

BUPT

1. Introduction

The Distributed Computing is the Information Technology (IT) domain which

researches and implements solutions applicable for distributed systems, as they are

defined in [1]: “a distributed system is a collection of independent computers that

appear to the users of the system as a single computer”. Regarding independent

computers, we try to use all their computing resources, such as their CPU cores and

Graphic Processing Units (GPUs). In this way a greater computational power is used

and it becomes possible to deal with large amounts of data.

In our days, as the computing requirements are more and more demanding,

Distributed Computing started to be used more and more often. Associated with the

fact that after a certain performance level the hardware becomes very expensive,

the alternative to associate many computing resources to solve in parallel the same

task is very attractive and economically feasible.

The actual microprocessors have an upper frequency range around 4-5 GHz and

8-16 cores. Top commodity PC motherboards support around 8 microprocessors.

Above these values special technologies are needed, for example liquid cooling for

CPU. From these values, if the computing requirements are much higher, the only

solution is to use multiple computers or supercomputers formed by using many

interconnected processing units.

Among the domains or applications types which require a large amount of

processing power, we can enumerate the fallowing ones:

 graphic rendering – for complex scenes, with many objects and effects,

for which it is required as much photorealism as possible, the computation

involved can be very large. For example, the 3D animated movie “The

Croods”, required from its producer DreamWorks around 80 million

compute hours to render and 250TB data storage capacity to make [2]. It

can be easily seen that this amount of computation is well beyond the

possibilities of a single computer. For such tasks, DreamWorks uses

computing resources providers like Cerelink. In 2010, the cloud provided

by Cerelink had a theoretical peak speed of 172 teraflops (peak theoretical

speed) from its Altix ICE 8200 cluster, with 133 teraflops sustained

operation. The ICE 8200 consists of 1,792 nodes (14,336 cores) of quad

Xeon 3.0 GHz processors housed in 28 racks [3].

 biochemical simulation – when the simulation needs to achieve a great

precision, it requires taking into account many chemical, biological and

BUPT

12 Introduction - 1

physical laws. To integrate all these, the computations are very expansive.

Maybe the most well known project in this area is folding@home, which

uses a volunteer network [4] to compute folding data for proteins. In

September 2013, there were over 266,000 computers involved in this

project [5]. An interesting aspect of this project is the fact that even if the

computations are very demanding, the core algorithms used for them are

quite simple. This allowed their implementation as Graphics Processing

Units (GPU) kernels.

 earth sciences, such as weather prediction and seismology – these

sciences use very complex systems with a lot of variables interacting each

other according to computationally intensive formulas. To provide real-

time predictions, a huge amount of processing power is needed. For

example, the US National Center for Atmospheric Research (NCAR) uses

several datacenters and one of them, located at Wyoming Supercomputing

Center, houses the IBM Yellowstone supercomputer, with a processing

power of 1.5 petaflop [6].

The folding@home project is only one of the many projects using the same

model. There are also some other notable projects using the same model [7], as

listed in Table 1.1.

Project Domain Users Hosts

LHC@home

SixTrack

Accelerator Physics based at

CERN

115,937 301,786

SETI@home Search for Extraterrestrial

Intelligence

1,425,304 3,476,481

ABC@home Finding abc-triples for the ABC

conjecture

77,414 143,561

Climate Prediction Climate simulation and

prediction

269,829 555,184

Table 1.1 – Distributed computing projects

Regarding the access speed to its components and its management facilities, a

distributed infrastructure can be classified into the following categories [8][9]:

BUPT

1 - Introduction 13

 massively parallel processing systems (MPP) – tightly coupled

computers. Most of the supercomputers are MPP. Because of the involved

hardware and interconnections, in many cases these can be seen as a

single multiprocessor computer.

 clusters, clouds, computers/servers farms – independent computers

usually in the same space, sharing only a high-speed network connection,

usually without other shared or bridging hardware which can be seen in

MPP. The computers within a cloud can be remotely managed and they

possibly have virtualization software [10][11].

 grids – independent computers located in different geographical areas,

communicating through network [10][12]. These computers can have very

different hardware, operating systems and software, usually without

virtualization or remote management software. WAN networks and the

Internet are part of this category.

When clouds are targeted, the fact that their installed operating system and

software can be easily controlled and tailored to specific needs eases considerably

the development of such applications. In the same time abstraction frameworks

such as Apache Hadoop can be installed and configured to automate many

distributed computing tasks.

The most complex task is to address computer grids, because of their

heterogeneous nature and because the online time of the computers in most cases

cannot be predicted [13]. If platforms like Java or .NET are not used to create an

abstract level over the hardware, operating system and the installed software, the

programmer will need to write application variants for specific operating systems

and available hardware. In the same time, the network management and error

handling must be more thoroughly implemented in order to take into account

frequent situations such as computers joining or leaving the grid. Another issue

which needs to be addressed when programming for grid is the fact that the

available computers can have very different computation capabilities and the tasks

scheduler must find a way to use all these computers in an optimal way.

In the context of the above classification, heterogeneous resources means

different computing resources, such as CPU, remote computers and GPU, different

operating systems and different hardware. Using Java frameworks the operating

systems and hardware can be abstracted and also projects such as folding@home

already use GPU for computations, but only in a limited way, for numerical intensive

algorithms.

Another possible classification regarding the physical computing resources takes

into account their computation capabilities. In this case, the targets can be:

BUPT

14 Introduction - 1

 systems with independent microprocessors, capable to run any

algorithm – this is the case of the computer systems. Any algorithm can

be implemented for them and this kind of resources can be used to

execute the most complex algorithms involving complex data structures,

recurrence and dynamic memory allocation.

 systems with dependent computing units, tailored for specific tasks

– this is the case of the General Purpose Graphics Processing Units

(GPGPU or GPU in this work), which can have thousands of computing

units but with more restrictions than the microprocessors. These systems

can ensure a very high computation throughput, much higher than using

microprocessors, but for now only some tasks are suitable for them [14].

Because of their computation power, the GPUs started to be used in many

supercomputer architectures, such as the Titan supercomputer, made from

18,688 CPUs paired with an equal number of GPUs. It was able to achieve

17.59 petaflops, being the most powerful supercomputer in November

2012 [15].

The above examples are large and very large scale applications. There are many

other cases, at a lower scale, where distributed computing can improve a process,

especially by saving a lot of time. For example a firm with 10 computers mainly

used for office work (so the CPUs are loaded under 5-10%), can create with them a

distributed system for the cases when intensive computations are needed on one

computer. In this case the workload can be deployed as background tasks with

lower priority (in order not to interfere with the normal usage) on the other

computers and it can be computed in a distributed manner. Depending on the

required network traffic and the parallel structure of the application, its computation

time can be greatly improved, without disturbing or putting on hold other activities.

This leads to a much more efficient usage of the existent resources and in some

cases can even allow undertaking tasks which would not be feasible without

distributed processing.

Taking into account the above considerations, it is obvious that for computation

or data intensive applications, distributed computing is a big advantage and it is

very important for them to have such capabilities. Unfortunately, the actual tools

(programming languages, libraries, protocols) are not easy to use by programmers

to implement reliable and powerful distributed computing support in applications

[16]. The mainstream programming languages have only a limited support for

distributed computing and in most cases to write such an application involves using

a lot of different libraries and configuration tools. The debugging process is also

harder for a distributed application. The processes of an application can be

implemented in a sequential or in a parallel way. Concurrent programs that employ

message passing are called distributed programs, because the processes can be

distributed across the processors of a distributed-memory architecture [17]. We

consider the following cases:

BUPT

1 - Introduction 15

 sequential – all the tasks are computed one after another. Even if in some

cases an event driven model is employed, there are no two simultaneous

computations. The sequential applications are the easiest to understand

and code, they have the most extensive support from the actual

programming tools and they tend to be very reliable. Their biggest

drawback is the poor utilization of the available computing resources. Even

if the compiler can make some optimizations such as automatic

parallelization or vectorization, suitable for CPUs with multiple cores or

with Single Instruction Multiple Data (SIMD) capabilities, these

optimizations are made only in some very limited cases and most of the

program execution is made in a strict sequential way, so mainly the

application cannot use the advantages provided by the multicore or SIMD

capable CPUs.

 multithreaded – some tasks are performed simultaneously, using the

available CPU cores, or other local CPUs, in the cases of motherboards with

multiple CPUs. The multithreaded applications succeed to fully use the local

computer resources but they come with added complexity. New problems

such as synchronization and simultaneous access to resources need to be

solved and these are sometimes quite hard to model and implement. The

debugging process is also much harder for multithreaded applications and

in many cases to write a reliable multithreaded application can require

several times the time used to write the same application in a sequential

manner. The drawback of such applications is that they cannot use remote

resources, such as other computers from the same local network.

 distributed – some tasks are performed simultaneously, both on the local

machine and on the available remote computers. The distributed

applications fully use both the local and the remote computing resources

for the price of even more added complexity from the multithreaded case.

New issues such as network management, serialization/deserialization,

deployment, remote invocation and computing resources management

need to be addressed. For distributed applications there is only little or

inexistent support from the actual development environments. The testing

of such applications needs to be done more thoroughly, because there are

more interconnected modules, each one with its own requirements, which

creates more possible failure points.

From the above considerations, developing distributed applications is a much

harder task than developing sequential or even multithreaded applications. Most

mainstream languages do not have support for distributed computing at the

language level, but this support is only provided through third party libraries and

tools. Taking into account that to write distributed applications is more and more

necessary, new models, concepts, libraries and tools need to be researched and

developed to address the distributed computing issues.

BUPT

16 Introduction - 1

In this thesis, we will concentrate on proposing, implementing and testing new

models, frameworks and tools in order to make the distributed applications easier to

be developed. The proposed solutions need to fulfill important criteria, such as:

 reliability – the presented solution must not only work, but it needs to

ensure data and computations integrity. If a computation or part of it

cannot be done, it must be reported as so. The application needs to

recover well from a wide range of unexpected conditions and errors and all

these must be done as much as possible in a dynamic or even real-time

manner [18], in order to address the continuous changing conditions

existent in a distributed environment

 abstraction – all the computing resources, such as local CPUs, remote

computers and GPUs must be handled in an uniform way, without explicitly

resorting at the application level to specific functions calls or settings for

each platform. Standard and well implemented distributed computing

tasks, such as code and data serialization/deserialization, code

deployment, remote invocation and others must be handled by the system

and libraries themselves and not by the application programmer. The

programmer must concentrate mostly on the implementation of the high

level application logic [19].

 simplicity – the proposed solutions must be simple and familiar to many

programmers. In order to achieve this, the models need to have only a few

but powerful concepts and they need to express well the application logic.

This report is structured in three main modules:

 motivation, objectives and main concepts – in these sections we

motivate the thesis research by outlining some insufficiently developed

areas in the field, and we provide an overview of the distributed computing

domain, with a discussion of the most used concepts.

 the distributed computing model and a possible Java

implementation – in these sections we explain our model, and we

highlight its advantages and use case. It is also presented a Java

framework which implements the model as a library, making it available

for any Java programs.

 algorithms for tasks distribution on GPU – in these sections we propose

two algorithms which enable the GPU use as a computing resource. The

first algorithm can be used when the application modules are not suitable

to run entirely on GPU. The second algorithm can be used when an entire

application module can be run on GPU. It automatically translates the Java

bytecode to OpenCL and runs it on GPU

BUPT

2. Thesis motivation, objectives and structure

2.1 Motivation

 Taking into account the current status of the distributed computing domain,
there are some insufficient researched or developed areas. Due to this fact, even if
there is a growing need for the complex applications to distribute computation tasks
on more computing resources, developing distributed applications is a complex task,
with many pitfalls, the testing process is hard and even with all these, not all the
computing resources are fully used. We highlight several areas which we identified

as being insufficient researched and developed and our motivation is to enhance
them, both from a theoretical and a practical point of view. In this way, we want to
make them more powerful, easier to be used and capable to handle a much wider
area of tasks, in an abstract way from the point of view of the distributed computing
aspects.

 Current models widely used in distributed computing are taken from other
programming languages. For example, the MapReduce model is taken from the
functional languages, such as the map and reduce primitives from Lisp [20]. It has
a solid theoretical foundation and it can be used to express powerful abstractions,
but the model current implementation for distributed computing has several
drawbacks:

 it is implemented only by using frameworks and does not have a
language level support – this makes its usage harder, due to the fact that
many standard actions, which should be automatically solved from the
compiling phase (if there were language level support), are left for the
programmer to implement. For example framework calls for initializing the

scheduler or for results synchronization must be explicitly made.
Some languages, such as Scala, have a language level support for

distributed computing, but these primitives model an Actors based
computing model. These primitives can be used to implement a MapReduce
model, but in this case in fact a library is developed and the programmer
will use library calls and not the language primitives [21].

 it needs to be extended with specific distributed computing concepts
- the functional languages from which this model was taken were mainly
sequential languages. Several shortcomings of these primitives are present:

o they do not have synchronization constructs – initially such
languages did not need synchronization constructs for concurrent
data access or for results ordering

BUPT

18 Thesis motivation, objectives and structure - 2

o these primitives are not designed to work with asynchronous calls –

they were meant to be blocking calls, due to the sequential
character of the languages

o their strict implementation results in a lack of efficiency, which
sometimes can be very serious – originally these primitives were

designed to work with data stored in local memory, so the access

speed to all data was the same. In a distributed computation there
are most of the times at least two types of data: global constant
data, which is the same for all computations and it does not change
and invocation specific data, which is particular to each
invocation. These primitives do not have constructs to differentiate
between the two types of data, so the developer must manually

specify how the application data must be handled (especially in
order to decrease the network traffic), which adds more complexity
to the application.

 Due to the above shortcomings, new models and concepts need to be

researched and developed, in order to make them more suitable for distributed
computing. These models must be general, simple, they need to ensure a high
computational performance and the concepts must be familiar to the application
domain.

 Due to the increasing need for complex computations or large data

processing, many programming languages start to offer parallel or distributed
execution features. These features are implemented at the core language level or as
libraries. Examples are the concurrency APIs (Application Programming Interface)
for Java (java.util.concurrent) or the Task Parallel Library for .NET Framework.
These APIs can be extended with 3rd party libraries such as GridGain [22]. This
thesis extends concepts and features from these APIs with new aspects such as the

integration of the Graphic Processing Units (GPUs) and other elements which are
made available by the proposed model.

GPUs are increasingly a valuable computing resource. For algorithms which
are massively parallel, a GPU can offer appreciable speedups, in many cases
reducing the execution time many times. In bioinformatics, with highly optimized

libraries, GPU finely tuned algorithms can provide speedups of up to 1000x [23].
AMD Radeon Fury X [24] with 4096 cores, 8.6 TFLOPS FP32, 4GB HBM memory and
NVIDIA GeForce GTX Titan X [25] with 3072 cores, 7 TFLOPS FP32 and 12GB
memory are two 2015 top consumer GPUs. These are optimized especially for FP32
computing. Their FP64 performance is lower (GeForce GTX Titan X has 0.2 TFLOPS
FP64). An Intel Xeon X7560 CPU is capable of 72.51 GFLOPS FP64 [26]. From this

data, the GPUs are important resources. They can enhance greatly specific classes
of applications. If the algorithm is massively parallel and FP32 operations are
enough, one GPU may provide a performance comparable with several desktop
CPUs.

 Considering the above considerations, many researchers try to employ the

GPU advantages and develop new algorithms and libraries capable to use the GPU

computational power. Two main technologies are leaders: OpenCL and NVIDIA

CUDA. We will develop on the OpenCL approaches, as it is vendor neutral, open

BUPT

2.1 - Motivation 19

standard and supported by many major vendors. Many discussed aspects also apply

to CUDA, underlining that the structure of different GPUs has common elements,

and OpenCL and CUDA are layers of abstraction over that physical structure.

 In order to achieve their impressive number of cores, the GPUs must impose

some limitations in other areas. Some of the GPUs tradeoffs are listed in the

following paragraphs.

 A first tradeoff is that a GPU core does not have its own instructions fetching

and decoding unit but many cores are grouped in workgroups which run the same

algorithm. In this respect a GPU core is more like an Arithmetic and Logic Unit (ALU)

of a CPU core, than a full CPU core. The algorithms which require mostly arithmetic

operations without execution branches are especially suitable to use a Single

Instruction Multiple Data (SIMD) model [27], because in this case many ALU can

work in parallel on the same instruction but on different data. This ensures a high

computation throughput. Because such algorithms can be useful in multiple areas,

many CPUs also include some forms of SIMD execution: on Intel/AMD the MMX,

SSE, AVX instruction sets, on ARM the Neon extensions, etc. On GPU an entire

workgroup execution is controlled by a single Computing Unit (CU), which

implements the instructions fetching, decoding and other synchronization aspects. If

a conditional branching makes different cores inside the workgroup to choose

different execution paths, the CU will put some of them in a waiting state until the

execution will resume at the same instruction, sometimes only after other cores

finished their jobs. This phenomenon is named branch divergence [28]. GPU cores

[29][30] are simpler than CPUs, which use optimizations such as out-of-order

speculative execution. The speculative execution is mainly precluded because a

single CU coordinates many GPU cores by using them to run the same instruction on

different data, so it cannot simultaneously try different branching paths on all its

cores. CPUs generally have a greater clock frequency than GPUs, so a CPU core has

the same throughput as several GPU cores.

 Another GPU tradeoff is that it does not have a stack. The OpenCL compiler

is required to inline all the functions code in one kernel (the code to be run on a

GPU core), so it eliminates all the functions calls. This limits the applicability of GPU

use only to non-recursive algorithms. This is one of the reasons why many modern

researches try to find optimized non-recursive variants [31][32] to recursive

algorithms. A simple approach would be to eliminate the recursion by simulating the

stack using suitable data structures, but this brings new questions regarding how to

partition the limited GPU memory between many stacks and the global heap space.

If we consider separate stacks for each core, in order to eliminate the

synchronization overhead between cores, a GPU with 4096 cores would need 1 GB

memory only to provide a 256 KB stack to each core. A simulated stack also

eliminates the compiler possibility to make some optimizations, for example to

eliminate some variables, because the programmer explicitly allocates space in the

simulated stack for all the used variables.

BUPT

20 Thesis motivation, objectives and structure - 2

 Regarding the GPU access to the host computer operating system (OS) or

devices, a tradeoff is that a program executed on GPU does not have access to

them. It cannot make OS calls in order use the disks or the network. This aspect

limits the use of GPUs only to certain segments (without I/O operations) of an

application.

 Until OpenCL 2.0 (which at this moment is implemented only for some

GPUs) the GPUs had a different memory space than the CPU. This tradeoff has its

roots in the history of GPUs, when they were only very specialized peripheral

devices, without general computing abilities. Different memory spaces makes

difficult to share complex data structures which involved pointers. These structures

needed to be serialized with the pointers converted to other representations such as

indexes or identifiers, transferred to GPU and deserialized. In some cases this

process is repeated when the data is transferred back to CPU. These aspects

complicate the algorithm and reduce the potential speedup obtained from the GPU

execution. In the same time memory transfers between CPU and GPU must be made

over an expansion bus (PCIe) and this process can be much slower than the access

to regular memory. OpenCL does not have mechanisms for dynamic memory

allocation (malloc/free) so these must be implemented by taking into account

factors such as the high possible concurrency (thousands of cores) on accessing

shared resources (the heap memory). A memory allocator which is not optimized for

massive concurrency would become a performance bottleneck by keeping all the

memory allocation requests on hold while it processes one request. Without dynamic

memory allocation even simple algorithms such as working with variable sized data

would need to consume much more memory, by preallocating suitable buffer spaces

for all the possible cases.

 Since the GPU general computing power vastly increased, it would be
important to use this power even for more complex algorithms, not only for the
mostly numerical ones. It can be seen from the above factors that to design
algorithms suitable to run on GPUs is not an easy task. This usage is even
impossible when I/O operations are required. In situations with complex code flows

and data structures it is possible that the GPU execution does not bring significant

speedups. It is therefore desirable to use a mixed approach CPU/GPU execution and
to run the different parts of the application on the most suitable device. Our
research improves on this direction with a new algorithm suitable for cooperative
CPU/GPU computing even for complex cases such as GPU suitable sequences
embedded in multithreaded algorithms run on CPU.

 Due to the above limitations, it is not easy to integrate the GPU for general
purpose programming tasks, especially when complex algorithms are needed. New
ways to use the GPU in an application must be found. These new modalities must
make available computation on GPU for complex algorithms and must ensure an
optimal usage of the vast parallel processing power of the GPU. In the same time,
the GPU or CPU cores selection and usage must be as much as possible hidden from

the programmer, so he can access all computational resources in a uniform and

abstract way.

BUPT

2.2 - Objectives 21

 Another research direction is to automate as much as possible the GPU use

from a high level language such as Java, by automatically handling tasks such as
OpenCL kernel code generation from Java bytecode, data
serialization/deserialization and synchronization. These tasks can be formalized in a
general way and implemented as algorithms. For example the translation from Java
bytecode to OpenCL (which is a dialect of C) can be formalized by using the
compilers theory. In section 7 we present some of the current approaches in these

directions and our own contribution.

2.2 Objectives

 The main objectives of this thesis are to research and develop a MapReduce
inspired model and frameworks capable to distribute the computational tasks in an

abstract manner over the main existing computation resources (CPUs, network
computers, GPUs). In these frameworks we strive to automate many of the unique
and complex requirements of the distributed computed domain. In this way many

distributed programming tasks are handled automatically and the programmer can
concentrate on the application logic.

 First we introduce a new high level model capable to use in a uniform way
the computing resources and in the same time automatically handle the distributed
computing aspects such as network management, code deployment,
serialization/deserialization, remote invocation, invocations scheduler. This model
should satisfy the following conditions:

 it needs to be general, in order to be applicable to as many as possible
types of applications. We target especially the computations which can be
split in mainly independent processes, such as graphic rendering of
multiple frames or data mining on large collections.

 it needs to be simple and use only a few concepts, so the developers could
have a quick learning rate and in the same time they could master the
tools they use

 it needs to ensure a high computational performance, due to the fact

that the distributed computing is used to solve problems requiring vast
amounts of computation power, so any optimization or any limitation can
be magnified in good or in worse hundreds or thousands of times

 it needs to be applicable to the application domain in a natural way,

so the developers will not need to use different stratagems in order to
adapt the application algorithm to the proposed concepts and workflow

 Second we create a framework which provides the means to use this model.
This framework should address the following requirements:

BUPT

22 Thesis motivation and objectives - 2

 all the low level tasks such as resource discovery, remote invocation,

serialization/deserialization, load balancing and error recovery should be
handled by the framework in an abstract manner, so the developer
can concentrate on the application logic. If the developer needs fine tuning
of the above aspects, he should have access to their settings in order to
tailor them to his specific needs.

 the framework should use all the available computing resources,
such as local CPU cores, network computers and GPUs. The employment of
these resources must be done in a generic way, so the programmer
should not develop different implementations for different computing
resources. The framework may provide a way to evaluate the performance
of the available computing resources and use them accordingly, for

example the local GPUs and CPU cores and if these are occupied, the
remote resources.

 the interface should be simple and it should use only a restricted set
of concepts. In this way the framework will be easy to be learned and

applied by developers.

 the framework should use when possible well established, industry
standard libraries and tools. Taking into account the fact that there are

many low-level libraries, well developed and optimized over the years and
which are open source, their integration in a high level framework would

be a big advantage. This integration would lead to a significant decrease of
the required development time, ensuring in the same time the usage of
production ready solutions [33]. For example industry standard
serialization or networking libraries can be employed.

 all the framework components must work in a decoupled manner, in
order to be able to use different settings on a specific level, without
affecting other levels. For example, if the available network imposes
restrictions on using TCP non-standard ports, the framework should be
capable to use a different transport protocol, for example HTTP.

 the framework should also provide a remote component

(server/service provider) which will be installed on the remote
computers. This server will be the destination of the deployment of the
application into network and through it the data flow, resources
management and the remote invocations will take place. This server needs
to be able to do the following actions:

o respond to regular queries about its version or available resources
o receive the code destined to run remotely
o receive the global and invocation data
o instantiate the code needed to run the invocation and use it to run

the computation

o return the results or the error codes to the main application

 In this framework we integrate first the computation on local CPU cores and

on the network computers. In a second step we address the integration of the GPUs

BUPT

2.3 - Structure 23

when these are used as a general purpose computing resource. For each

computation resource we present the status of the field and our original
contributions. In some cases we developed multiple approaches, in order to address
different applications requirements. Each approach was also implemented in a
proposed framework and we tested it on different scenarios. The practical results
are given and discussed.

2.3 Structure

 In this thesis, after the introduction, motivation and objectives, section 3
(Distributed computing concepts and requirements) reviews some important
concepts for the current research. Different aspects such as network management,
code deployment, remote invocation, invocation scheduler and the remote server

are discussed with some of their more important options.

 Section 4 (Application level execution model) details the proposed

computation model. The original MapReduce model is first analyzed in the context of
a distributed computation and its shortcomings for this kind of computations are
identified. After that we introduce our model by means of an example. The model is

later formalized and theoretically analyzed. In the end we present an
implementation of our model using a virtual machine developed for it and we
discuss the practical results.

 In section 5 (Application components distributed computing framework) we

implemented our model as a Java framework (client library and remote server), so it
can be used by regular Java applications, without requiring language level
constructs. The library was designed to be flexible and generic, so it abstracts many
aspects such as computing resources or data destinations. We discuss the
implementation and analyze the practical results obtained by using the framework
from a test application.

 In section 6 (Algorithm for hybrid execution on both CPU and GPU) we
propose a novel algorithm for the cases where the computation is too complex to be
executed only on GPU, for example it has calls to the functions of the operating
system. In this case, by using a combination of threads and fibers, we succeed to
split the computation in parts suitable for CPU and for GPU and execute them in an

efficient manner. The algorithm is especially efficient in the cases where there are
multiple threads and each one can have GPU accelerated segments. We provide a
C++ test application and we discuss the practical results.

 In section 7 (Java bytecode runtime translation to OpenCL and GPU
execution) we propose a new algorithm and its implementation as a Java library,

capable to translate parts of the containing Java application bytecode to OpenCL and
run the resulted code on GPU. Beside the use of the reference types, the algorithm

is capable to translate some advanced Java constructs such as exceptions and
memory allocation, for which there is no OpenCL support. The library implements

BUPT

24 Thesis motivation and objectives - 2

our proposed model and it abstracts the computing resources, so the same code can

run both and CPU and on GPU without any modification. We tested our library and
we discuss the practical results. We also make a comparison with the Aparapi
library, both as features and as performance.

 In section 8 (Conclusions) we present the conclusions of our research,

emphasizing our novel contributions.

BUPT

3. Distributed computing concepts and
requirements

 In this section we discuss some distributed computing aspects,
relevant to our research. These aspects can be found in most of the

distributed computing applications. A direction of our research was to
identify among them common patterns which in most of the cases can
be abstracted, so the programmer can focus more on the application
logic. In this respect, our proposed model and algorithms try to
automate as much as possible the tasks involved by these concepts and
requirements.

When compared with sequential or even with multithreaded

applications, the distributed applications have several new requirements,
such as network management or serialization. A distributed computing
framework must address these requirements. In the following sections
they will be explained specifically in correlation with their role in

distributed computing. In our thesis we are concerned especially with
the presentation and the application layer of the Open Systems

Interconnection (OSI) layers [1].

3.1 Network management

 The network management (services discovery, communication,

security) is very important for the distributed applications because the
network is the main mean to distribute the tasks and retrieve the
results. There are several issues regarding the network, such as:

3.1.1 Servers or services providers discovery

 A distributed application is formed from components which run

on different hardware. These components need to cooperate so they

need to connect in some way to other computers in order to use them.

The components can be installed on the available hardware in several

ways:

 on each computer the entire application package is installed

BUPT

26 Distributed computing concepts and requirements- 3

 a component which acts as a specific service provider is

installed. It is used to handle requests, compute them and

return the results

 a component which acts as a generic server that can be used to

receive data and if necessary application components is

installed. It instantiates these components, passes the data to

them for computation and retrieves the results

In any of these cases, the application must have a way to detect the

remote available computers (the ones which can act as servers or

service providers). This detection is named resource discovery

[34][35][36] and it can be done in several ways:

 using broadcast messages – the application sends query

messages to all the computers from the registered networks to

check which ones of them are available for computations. The

networks to be searched can be obtained from a simple

configuration file, which holds a list of hosts and networks. This

is a truly distributed approach, but it can be quite slow to

broadcast queries on large networks and it also creates more

network traffic.

 using resources index servers – the remote computers

register themselves on an index server [37]. When large or

hierarchical networks are concerned, several machines can act

as index servers in a hierarchical topology. The application will

query the servers for the registered remote computers and it

will get their list. This approach makes the resource discovery

simple and quick, but it can create a centralized point of failure

if something happens with the index server or with the

communication with it. These shortcomings can be alleviated if

redundant index servers are kept, better in different segments

of the network.

For either method naming services (DNS, RMI registry) can be used

to obtain the resources network address from the application specific

resources description. After the available remote computers are found,

subsequent queries are made in order to obtain their computing power,

availability and current load. All these factors are important for the tasks

scheduler, in order to make as good as possible decisions regarding

where to send the computing tasks.

BUPT

3.1 – Network management 27

Especially for grid computing, the resource discovery must be a
continuous process, due to the fact that in any moment a remote

computer can join or can leave the network [38].

3.1.2 Data and code communication

To send data and code over the network [39][40], well defined

communication protocols must be employed. These protocols must

address some factors such as:

 all data and code must have standard sizes and

definitions, for example the int type to have 4 bytes and the

floating point numbers to be encoded in IEEE 754 format. If

compression schemes such as variable-sized integers [40] are

used, these schemes must also ensure platform neutrality.

 when structures are sent, the members order (and

padding or separators, if any) must be well defined

 before data is sent over the network, it must be encoded

in an architecture neutral form, for example in little endian

or big endian formats. The process of encoding data in an

architecture neutral form as called serialization. The process

of decoding data from the architecture neutral form to a

specific computer and application format is called

deserialization. The process of serialization/deserialization is

especially important for heterogeneous networks, in which

CPUs with different endianness and data sizes can be found.

 The above aspects are included in the data and code encoding

formats [41]. When the required bytes themselves are sent, respecting

the architecture neutral form, we have a binary format. Binary formats

ensure fast encoding/decoding and do not introduce much overhead. For

some applications, a disadvantage is that they are not human readable,

so they cannot be easily inspected. In the same time the binary formats

are very tightly connected with the application internal structures, which

make these formats to change quite often when new application

versions are released.

 Sometimes the data and code are encoded in standardized, well-

known, human readable formats, such as XML or JSON. These formats

care named text formats. They require more time for

BUPT

28 Distributed computing concepts and requirements- 3

encoding/decoding than the binary formats and in the same time they

tend to be larger, which can be an issue when the data needs to be sent

over the network. The main advantages of the text formats are that

there are human readable, so they can be easily inspected, especially

for debugging purposes and they can interoperate easier with other

tools or services [42].

 To reduce the network traffic, the serialized data can also be

compressed. This is efficient especially for text formats and for

communications over Wide Area Networks (WAN). When binary data is

sent and this data is not well compressible (for example already

compressed multimedia formats), or when the communication is made

over fast local networks, the compression can slow the network

communication.

 There are several ways to send serialized data over the network:

 using TCP/IP or other low-level network protocols – this

method ensures faster speeds because of a lower overhead

and it also offers more customizations. Its drawback is that

some firewalls or internet providers block the access to non-

standard network ports so these computers will not be able to

be used.

 using high level protocols, such as http – this method has a
bigger overhead than the first one, but it has the advantage

that it can use standard ports and accepted formats for data
packets, so it can be used over many firewalls and with many
internet providers.

3.1.3 Security

 When a computer sends data over the network, or when it

receives data from the network, some security aspects must be

observed [43][44][45][46]. There are several issues and we can cite the

following ones:

 when sensitive data is sent over the network, it must be

encrypted or Virtual Private Networks (VPN) must be

employed. Data encryption can be made at the application

level, using custom encryption systems, or standard encrypted

communication protocols such as SSL can be used.

 some remote services or servers can be made available

only for certain users or hosts. In this case the

BUPT

3.2 – Code deployment 29

communication between application and the remote resources

must include authentication mechanisms or host identifying

steps. These mechanisms can employ for example

user/password authentication or electronic signatures. The

authentication can also differentiate the user type, when

different services are offered to different users categories [47].

 logging for the communication history must be employed
for all the cases when important data is used or
sensitive computations are performed. In case of later
problems, divergences or disagreements, these logs can be
used to assert the real history of the events and in the same

time they can help to recover from some situations [48]

3.2 Code deployment

 In most of the cases a distributed application needs to send

components or all of it to the remote computers [49]. This process is

called deployment and it can be done in several ways:

 manual – the network administrator or the application owner

manually installs the remote parts of the application on the

remote computers. For volunteer networks, the computers

owners install themselves the remote parts of the application

on their computers. This is the most tedious and time

consuming way of deployment. Its main advantage is that for

heterogeneous networks, a human can manually optimize the

application settings for each computer [50].

 made by the application itself - the applications can have the

ability to replicate themselves over the network, when suitable

computers are found. The remote computers must have a

receiver application which can receive and manage (install,

run, update, uninstall) the distributed application. This

deployment method is faster and easier, but it requires from

the application developer himself to implement inside the

application the code necessary for replication [51].

 made by the distributed framework in which the
application is run – this method is suitable especially for

BUPT

30 Distributed computing concepts and requirements- 3

cloud computing, where specialized frameworks are installed

on all computers and all the network is carefully setup for
distributed computing [52]. In this case the application
developer must provide into the application some standard
entry points for the framework used, or to provide some
configuration files. The framework will connect to the provided
entry points, or will load the configuration files and it will
deploy the necessary parts of the application. For example a

Java framework can specify that the distributed modules of an
application must implement a certain interface. The framework
will scan all the classes for this interface, load the ones which
implement it and using this interface collect enough
information to know what to deploy. This deployment method
is very reliable, because it uses industry standard frameworks

which operate in carefully set networks. It is also quite easy to
use, because the developer must implement only some small
interfaces and the deployment work will be handled by the
framework. The drawback for this method is that in most of the
cases the framework imposes some special software
requirements for the remote computers, effectively making
them dedicated for distributed computing. This approach

cannot be used for volunteer networks, or when the remote

computers are mainly used for other jobs, not for distributed
computing.

 In any of the above cases, some more aspects need to be

addressed:

 handling of the newer application versions – when new

versions of the application are available, these must be

deployed to replace the old ones. Especially on grid networks it

is possible that the update process will not affect all the

computers with the old application version installed, for

example because they are offline at the update time. In this

case, some computers will run the new application version and

others the old version. To solve such cases, all communication

protocols must have a version identifier and a remote

computer will take part into the computation only if it can

handle the current version of the protocol. Else, it can request

the main application to send updates [53].

 code caching – in order to decrease the network traffic and the

remote startup time, the remote computers can maintain

between sessions a cache of the applications sent to them.

Every cached code must have a method to be compared with

the actual code which needs to be run. For example, a hash

BUPT

3.3 – Remote invocation 31

can be computed for the cached code and when the new code

is about to be sent, it will be transmitted only if on the remote

computer is no cached code with the same hash [54].

 the management of the deployed application – besides
deployment and remote storage, the remote computers must

handle other tasks related to the deployed applications, such
as their removal. This can be done manually (by the computer
owner), at external requests or automatically, according with
some setup, for example after a period of time or after a
number of computations.

3.3 Remote invocation

 The remote invocation is the process to invoke remote code,

possibly passing input arguments and retrieving computation results

[55]. In order to start the remote computations, the required data must

be sent. This data can be categorized in two parts:

 global data – it is the same for all computations and it is

constant until the end of their life time. This data can be sent

only once to each remote computer.

 invocation specific data – it is specific for each invocation and

must be sent separately for every computation.

 For example, a graphic renderer can have some static,

unchangeable data for the scenes background. As this data (which can

be quite big) will never change, it can be sent only once to each remote

computer. The characters and effects instead need to change through

the frames, so their parameters will be different for each remote

invocation and they need to be sent updated for each computation.

 If we make an analogy with a sequential application, the

distributed global data corresponds to global or dynamically allocated

constant data and the invocation specific data corresponds to the

parameters of the functions calls. The functions calls (the distributed

remote invocations) can return a result, especially in an asynchronous

way [56]. This result must be returned to the main application over the

network. If an error or exception is generated on the remote execution,

it must also be made known to the application.

BUPT

32 Distributed computing concepts and requirements- 3

 In many cases, a remote invocation is performed using the

following steps [51]:

 the call arguments and the code for the function needed to

process them are encoded in an architecture neutral way and

are packaged in an invocation data package [57]. In the case

of remote methods calls, it is also encoded the remote object

identifier to which belongs the computation.

 the invocation data package is sent to the remote computer

 the invocations server on the remote computer unpacks the

invocation data and decodes it to its own platform format

 the requested function for computation is found using the

function code and if necessary (for methods) also the

computation object, using its identifier

 the data is passed to the function and it is computed

 the results are collected, encoded in an architecture neutral way

and are sent back the main application. A special field is also

appended to return the status of the computation, i.e. if it was

successful or an exception occurred. In the last case, the

returned data will contain the exception code or description.

 back at the main application, the returned data package is

unpacked and decoded to the architecture own format and

passed as result for the invocation. If an exception was sent as

return, it is transformed in a native exception and thrown.

 As a difference from the applications running only on the local
host, in the case of the remote invocations, network errors can also

appear. These must be handled and they are treated in a different
manner than the returned erroneous computations results (such as

exceptions), which belong to the application logic itself [58]. Mainly the

network errors occur due to the following factors:

 network communication errors – the network link between

the main application host and one or more of the remote

computers is broken and the communication is cut off.

 the remote computers leave the network – for example

they are shutdown or the remote server is stopped on them

BUPT

3.4 – Invocations scheduler 33

 In these cases, different approaches can be used [59], for

example a two phase computation retry. First, the network errors must
be detected, for example by using timeouts or ping signals to detect
broken communication. Second, if an error is detected, the application
can retry to send the invocation data package to it and if this also does

not succeed, that host will be removed from the available computation
resources and the invocation will be sent to another host. When the
resource discovery is performed as a continuous process (important

especially for grid networks), if the removed server is detected again
online, it can be re-added to the available resources.

 3.4 Invocations scheduler

 In distributed computation, the main application has a central

role of scheduler for all the other remote computations [60]. It sends

the required global data, starts invocations and receives the results. In

order to do that, the main application has to follow some principles.

 To be able to act like a scheduler, all the invocations must be

run asynchronously [50][61]. Else, the application will need to wait for

their completion, one by one. In the asynchronous case, the invocation

data is put in a waiting list and it is sent to the remote computers as

they become available. This execution model is much like using worker

threads in multitasking applications and in fact it requires worker

threads for its own implementation.

 When a remote resource becomes available [62][63], one

invocation data is taken from the waiting list and is sent to it. After

computation, the results are returned to the main application thread. In

case of network failures, the scheduler can try to resend the invocation

data to the same remote computer or to other available computers.

 For grid or volunteer networks, two new problems arise:

 the remote computers can join or leave the network any

time – this situation is much more frequent than in the cloud

computing, where a computer is going off only in case of

malfunctioning or revisions/upgrades. To solve this problem,

the invocation scheduler must work closely with the resource

BUPT

34 Distributed computing concepts and requirements- 3

discovery system, in order to have the updated network

situation.

 the remote computers have very different hardware and

software installed – this situation is very different from the

cloud computing case, where the hardware is quite the same,

the installed software in most cases is exactly the same for the

entire cloud and all these aspects are tightly controlled by the

network administrators. When dealing with different hardware

and software, the main application must deploy correspondent

variants for the existent remote components, for example it

can have two different modules, one for computers running

Linux and one for computers running MS Windows. In the

same time, if one module is optimized for specific instruction

sets (such as SSE or AVX), another module is needed to run on

older hardware, which does not have these instruction sets. If

the application is coded in Java or .Net, there will be no

difference related to the remote hardware or software (besides

the installed Java or .Net version) so only one module is

needed for all situations.

 In the situations when different hardware is used [64], or when

the remote server is allowed to use only a percent of the host computing

power, an advanced scheduler can evaluate the computational

capabilities of each remote computer and assign different tasks to them,

in such a way that they are used optimally, from the point of view of the

total computation time [65][66][67].

 When all the invocations are distributed to the remote
computers and there are still unused remote computers, the scheduler
can send the same invocation to more computers, with the hope that
one of them will finish it sooner. This optimization can be very effective

on heterogeneous networks, where different hardware can have very
different computational capabilities. In this case, if another resource
finished earlier, a special message can be send to the servers which are
still computing the invocation, to tell them to cancel that particular
computation.

3.5 The remote server

 On the remote computers special software must be installed, in

order to give access to the resources of that computer. In some cases

the application itself can run in two modes, for performing the required

BUPT

3.5 - The remote server 35

computations or as a server, but in most of the cases the server is

another piece of software.

 The server has several tasks to do [4][51]:

 respond to general queries – in a distributed computing

communication protocol there can be many queries, such as

for retrieving the type and version of the server, its computing

capabilities, security policies or its current load.

 receive the deployed code of the remote applications –

this code can be stored or cached for future usage and it must

be kept in such way that it can be uniquely addressed by the

application which sent it

 receive the global and invocations data packages – this

data must be unpacked and converted into the host native

format

 run the invocations – to run an invocation, the server must

load the code necessary for that invocation (the target function

and all its dependencies) and run it with the invocation data. In

the case of a method, an object must be instantiated or

retrieved if the required instance already exists.

 get the computations results and package them for

sending over network – when the computation is done, its

result must be retrieved. If an exception occurs, it is also

converted to a special data package

 send the results back to the main application – the results

are sent back to the application. In case of network errors, the

sending process can be repeated several times.

 free the resources allocated for a specific application

when that application ends – the global data and code

related to that application are freed from memory. The servers

with caching facilities have specific options regarding the cache

size, the disk and memory size used for cache. In this cache

especially the application code can be stored, due to the fact

that it changes only at relatively long periods of time and in

most of the cases an application will be run many times.

BUPT

36 Distributed computing concepts and requirements - 3

 In the case of grid or volunteer networks special usage policies

must be provided [68]. In these cases the server needs to run according

to the host owner preferences, such as:

 the remote applications will run only when the CPU or memory

are free over some percent, situation defined as host in idle

state.

 the remote applications will run as low priority threads and they

cannot use resources (CPU, memory, disk space, network

bandwidth) over a certain, user defined threshold

 the user can at any time stop, pause or resume the remote

computations

 the remote applications must be isolated from the local data,

such as the user personal files or settings, in order to maintain

his privacy

All the above usage policies must be met in order not to disturb

the user work and privacy. In this way the user will be in complete
control of the usage of his computer. Due to this fact he can accept
more easily to contribute with computing resources to the grid, because
he can finely tune his contribution and in the same time he can be sure
that his privacy will be ensured.

3.6 Conclusions

 In this section we discussed some common distributed

computing concepts and requirements. They can be found in most of the
distributed computing applications, so it is important if they can be

automated. Even if they are implemented as libraries (for example Java
RMI), the use of these libraries add its own complexity to the coding

effort and to the application maintenance.
As we will show in the next sections, our research proves that in

many cases, especially when the application can be coded in a Divide et
Impera manner, these requirements imposed by a distributed
computation can be to a greater extent automated and abstracted from
the programmer. An added benefit is a more uniform handling of

different computing resources such as CPU, remote computers or GPU.

BUPT

Section based on the paper: Razvan-Mihai Aciu, Horia Ciocarlie,
”Application Level Execution Model for Transparent Distributed
Computing”, New Results in Dependability and Computer Systems,
Proceedings of the 8th International Conference on Dependability and
Complex Systems DepCoS-RELCOMEX, September 9-13, 2013, Brunów,
Poland, Springer, ISBN: 978-3-319-00944-5

4. Application level execution model

 In this section we present our novel distributed computing

model. It is based on the well-known MapReduce model. First we

analyze the current MapReduce model we and discuss it in the context

of the distributed applications, in order to identify its shortcomings for

this use case. Next we introduce our model by means of an example.

After that we discuss in depth the concepts our model, their interactions

and we present a theoretical analysis of its performance. We also

provide an implementation of our model as a virtual machine and we

discuss the practical results.

One of the most known computation models for distributed

computing is MapReduce. It has a solid theoretical foundation and it

was mainly used in functional programming languages such as Lisp [20].

With the advent of the first order functions and closures in many

mainstream languages, primitives equivalent with map and reduce are

now also available in standard libraries for Java or C#. We quote how

this model handles a computation [20]:

“The computation takes a set of input key/value pairs, and produces a

set of output key/value pairs. The user of the MapReduce library

expresses the computation as two functions: Map and Reduce.

Map, written by the user, takes an input pair and produces a set of

intermediate key/value pairs. The MapReduce library groups together

all intermediate values associated with the same intermediate key and

passes them to the Reduce function.

The Reduce function, also written by the user, accepts an intermediate

key and a set of values for that key. It merges together these values to

form a possibly smaller set of values. Typically just zero or one output

value is produced per Reduce invocation. The intermediate values are

BUPT

38 Application level execution model - 4

supplied to the user’s reduce function via an iterator. This allows us to

handle lists of values that are too large to fit in memory.”

 For our purposes we propose a MapReduce model. In the map

phase the computation is split in independent units and each unit is

computed separately. If we consider the computation of a single unit as

a function f:X->Y, where X,Y are any simple or compound types, we can

write:

R={ f(xi) | xi∈J }, J⊂X, R⊂Y

 J – the collection of jobs to be computed

 R – the collection of results, each element being the result of the

same computation f applied to one element of J

 If an ordering is required (the (key,value) pairs from the orginial

description), the X and Y can also include the required keys besides

values. Our model makes this original requirement optional, because not

any MapReduce computation requires keys. For example, an application

which only counts the total number of words on multiple texts does not

need keys to identify the source text for that partial count.

 With the above notations we can write: R=map(f,J).

Traditionally a map phase is applied in a sequential way (in Lisp, OCaml,

JavaScript, etc). In more recent libraries (such as Task Parallel for C#)

the map phase can be applied in parallel.

 In the reduce phase the independent results of the map phase

are combined into a final result. If we consider g as a combining function

and Z is the type of the final result, we can write:

g:Yn->Z, n=|R|

 The above is the most generic form of the reduce function which

can apply any combination from the result collection R. In practice

simpler forms are used, for example by iterating R together with an

initial value (an accumulator) and successively applying g to the current

element of R and to the accumulator. The result will be the new

accumulator (the fold family of functions from OCaml). In this case, the

reduce function can take the form:

g:(Z,{Y})->Z

BUPT

4.1 - The original MapReduce shortcomings when a distributed

computation is involved 39

where the first argument of g is the accumulator of the partial results

and the second argument is the list of the partial results computed in

the map phase (the R collection). If g does not need a specific order to

reduce the partial results, these can be passed directly to g, without

putting them first in the R collection.

4.1 The original MapReduce shortcomings

when a distributed computation is involved

 The original implementations of MapReduce are found in

functional languages such as Lisp. These languages were used mainly to

express sequential computations and only later concurrent versions such

as Multilisp were designed [69]. In a sequential computation some

assumptions are (implicitly) made:

 Assumption 1 – because of the sequential model, all the

computations were done synchronously and the results are

available immediately on computation function return. From this

moment the results can be safely used.

 Assumption 2 – in most of the cases all the involved data

resides in the same memory so any part of it can be roughly

accessed in the same way and requiring about the same access

time (taking into account the cache memory and the disk swap).

 Assumption 3 – aside of the computation errors and

sometimes resources (memory or stack) exhaustion, there are

no other sources of errors beside hardware failure, in which case

in most of the times all the computation is aborted.

 Assumption 4 – because of the sequential execution and also

because of the predominant immutable nature of the data

involved, there were no problems of concurrent access to

resources (data racing) so in the map phase it was safe to apply

the computation function without any data synchronization. In a

sequential computation, a problem which may arise from a map

function with side effects is when a specific order must be

ensured on the map function calls. In this case, if the specific

BUPT

40 Application level execution model - 4

order is not ensured, the side effects can change the

computation result.

 In a concurrent execution model and even more in a distributed

computing model, the above assumptions are not necessary true.

Because of them the original MapReduce model cannot be directly

applied in distributed computing. We need to define new semantics and

operations to be able to create a computation model for distributed

computing applications, in the same time trying to keep as much as

possible from the original MapReduce model, which was proved during

time to be a successful computation model.

 In the following sections we will discuss each assumption and we

will analyze its requirements from a distributed computing point of view.

 Assumption 1 – all the computations are done

synchronously and the results are available immediately on

computation function return. In a concurrent model, the

computations are mainly done asynchronously and they can be available

at any later time, during the program execution [70]. There are mainly

two methods to deal with asynchronous operations:

 The main program or the operating system inspects from time to

time the availability of the results. In this method some CPU

cycles are lost due to necessary verifications.

 The main program enters in a wait state and the computation

function notifies the program when the result is ready. In this

method the CPU is better used because it does not consume

cycles during the wait of the main program thread.

 We use in our model the second method because it uses better

the CPU. In this way, while waiting for a result from an asynchronous

call, the CPU can be used for other tasks. The final step of the

computation must be a synchronization step, in order to be sure that all

results have arrived and they were processed.

 Another important aspect regarding the synchronization phase is

the fact that not all algorithms require a full synchronization of all

results of the map phase before the reduce phase. For example if each

of the jobs provides data to be written in a separate file, these files can

be written immediately on data arrival without needing to wait for other

results (the reduce phase is not needed). In these cases standard

BUPT

4.1 - The original MapReduce shortcomings when a distributed

computation is involved 41

synchronization functions such as “join” or “wait” must be carefully

used, in order not to introduce not-needed waiting points.

 Assumption 2 – the involved data resides in the same

memory so any part of it can be roughly accessed in the same

way and it requires about the same access time. In a distributed

computing environment it is possible that parts of the application and

associated data to run on different computers (which requires network

traffic) or on different devices such as GPU (which requires traffic

through the peripheral interfaces). Because any such traffic is much

slower than the main memory access, it is very important to divide the

data involved in computation in more categories, in order to optimize its

usage.

 In our model we consider two types of distributed data involved

in computation:

 global immutable (static) data – this data is common to all

distributed jobs and it remains the same during the

computation. Because of this, if we need to run some jobs on a

remote computer, it is enough to send this data only once to

that computer and all jobs will use the same instance. This

optimization can be quite important for the network traffic

because there are applications in which this data is very large or

there are many jobs and if we send this data with each job, the

network traffic would be considerably increased. For example,

let’s consider an application which renders a movie. There are

many components such as textures, background or non-

modifiable elements which are all immutable data and its size

can be quite big. In the same time there are a lot of jobs, for

example to render a 2h movie at 30 FPS, 216000 jobs are

needed, one for each frame.

 job specific data – this data is specific to each job and it needs

to be sent separately for each job. For the above example, we

can consider job specific data changeable positions,

deformations or colors change, any aspects which change from

frame to frame. Sometimes parts of this data can be further

optimized by considering them immutable data if in more jobs

these parts are not changed. In this case we can consider

clusters of jobs organized in such way that the amount of

immutable data is maximized inside such a cluster.

BUPT

42 Application level execution model - 4

 Assumption 3 – if the algorithm runs correctly, aside of

memory/stack exhaustion there are no other errors. In a

distributed computing environment even if the algorithm runs correctly

(without errors such as accessing null or dangling pointers) there are a

lot of new sources of errors. Most of these new errors are related to

network communication or to the availability of the remote computers,

especially on the case of heterogeneous networks. These errors are so

frequent that they should be handled gracefully by the application,

without aborting the entire computation. Assuming that the algorithm

runs correctly and the results are valid, the above errors have mostly

the effect of dropping the results of some computations. These errors

can be handled by setting timeouts and/or sending query messages

(pings) to the remote computers to test their status. If the timeout is

reached the remote computation is considered lost. The main problem is

the determination of the timeout time, because there are several factors

involved:

 for heterogeneous networks, the computers can have very

different computing capabilities and local workload factor. In this

case even a timeout time is computed by testing the time

needed for one machine to complete a job, this time may not

suffice for other machines to end their computations.

 even in the case of homogeneous networks, it is possible that

different tasks have very different computations requirements.

For example to render a scene with a lot of complex objects and

effects can take orders of magnitudes longer than to render an

almost empty scene.

The recovery from such errors involves especially creating a new job

with the arguments of the lost computation. If there are enough

computing resources we can also assign a redundancy factor to each job

and it will be run simultaneously on multiple computing resources. The

first resource which sends back the results is “the winner“ and the other

computations are aborted. Creating redundant (backup) tasks is also

useful to speedup computations [20], by creating a competition between

different computing resources. For lost computations it is also important

to send to the remote computers (if they are still reachable) cancellation

requests, in order to be as sure as possible that their resources are not

still used for a computation considered lost.

 Assumption 4 – during the map phase there is no need for

synchronization for data access (no data races). In a concurrent

BUPT

4.1 - The original MapReduce shortcomings when a distributed

computation is involved 43

computing environment many algorithms have shared data so data

access synchronization is needed. More than that, on a distributed

computing environment, because different jobs can run on different

machines, the shared (common) data will in fact be replicated on

different places, so the data modifications will not be visible globally to

all distributed jobs. The main solution to this problem is to keep the data

on only one machine and when a job requires it, the necessary data will

be locked, send to that specific job, used, send back and unlocked. This

approach has several drawbacks, some of them quite important and

because of these drawbacks many distributed computing models avoids

using shared data and they use instead mechanisms such as pipes.

Some of the drawbacks of using shared data are:

 if network traffic is involved, the access time to data can be very

large, especially for Wide Area Networks (WAN).

 if many jobs needs the same data in the same time, its access

will become a bottleneck and all these jobs will need to wait

while only one job accesses the data

 if the job which locked the data is lost, all the other jobs will

wait for data unlocking for a time equal with the timeout time,

which can be quite big.

Because of these considerations we decided in our model to forbid

completely shared mutable data (but it allows shared immutable data).

In this way a programmer which uses our model will need to adopt a

programming style similar to programming in functional languages, in

which global variables are seen as highly undesirable. If this kind of data

is still needed, a simple approach can be used: the shared data will be

managed by a dedicated server/service which is also responsible for its

synchronization. The accesses to this data server take place much like

the accesses to an SQL server: data accesses are made mainly in small

packages and are considered atomic (they can have rollbacks if

necessary). The most important thing is to design the application from

the beginning with the distributed environment in mind so the shared

data will be as small as possible and its accesses needed only rarely. In

this way the programmer is made aware that any access to shared

mutable data can incur a high penalty (stopping other processes to

access that data, network traffic) and he will design from the beginning

the application as to minimize these bottlenecks.

BUPT

44 Application level execution model - 4

 From the above considerations, these assumptions which are

true in a sequential model do not hold on a concurrent or distributed

environment. Our model tries to define clear semantics for all the

aspects involved and to create a generic algorithm so it can be safely

and efficiently used in distributed computing applications.

4.2 A typical example of a distributed

computing application

 Ideally speaking, an abstract model at application level will hide

from the programmer all tasks required for low level implementation.

Also, it needs to fit into the existing frameworks and programming

languages with minimal additions, so it can be implemented easily. The

proposed model requires only three concepts and these are familiar to

the OOP programming style. A programmer with an OOP background

should feel comfortable in using them. We introduce the model with the

help of an example.

 To introduce our model, we implemented on a specific interval

the Mandelbrot set, which is a well known algorithm. For this example

we devised a C++ style language that highlights the specific code for

the proposed model, as listed in Figure 4.1.

unit MandelbrotRow{
 double minX,maxX;
 int w,maxIters;

 MandelbrotRow(double minX,double maxX,int w,int maxIters)

 {
 this->minX=minX;
 his->maxX=maxX;
 this->w=w;
 this->maxIters=maxIters;
 }
 string run(double yy)

 {
 int pxl,iter;
 stringstream res;
 double xiter,yiter,x0,xtmp;
 for(pxl=0;pxl<w;pxl++){

BUPT

4.2 - A typical example of a distributed computing application 45

 x0=minX+pxl*(maxX-minX)/w;
 xiter=yiter=0;
 iter=0;
 while(xiter*xiter+yiter*yiter<2*2 && iter<maxIters){
 xtmp=xiter*xiter-yiter*yiter+x0;

 yiter=2*xiter*yiter+yy;
 xiter=xtmp;

 iter++;
 }
 res<<iter%256<<" "; //convert to grayscale
 }
 return res.str();

 }
}

#define PXWIDTH 1000
#define PXHEIGHT 1000
#define MAXITER 10000

int main()
{

 int idxLine;
 double lineY;
 string image[PXHEIGHT];
 double minX=0.33072017, maxX=0.33925741;

 double minY=0.04369091, maxY=0.0522281593;
 with(image ; MandelbrotRow(minX,maxX,PXWIDTH,MAXITER)){
 for(idxLine=0;idxLine<PXHEIGHT;idxLine++){
 lineY=minY+idxLine*(maxY-minY)/PXHEIGHT;
 run[idxLine](lineY);
 }
 }

 ofstream outFile("mdl.pgm");

outFile<<"P2"<<endl<<PXWIDTH<<","<<PXHEIGHT<<endl<<"255"

<<endl;
 for(idxLine=0;idxLine<PXHEIGHT;idxLine=idxLine+1)
 outFile<<image[idxLine]<<endl;

}

Fig 4.1 – A distributed computing application in a C++ style programming

language

 In the above code a grayscale Mandelbrot fractal is generated in

a given interval and it is saved in a .pgm file. The result is given in

Figure 4.2.

BUPT

46 Application level execution model - 4

Fig 4.2 – The result generated by the code from Figure 4.1

 We chose to compute each horizontal line as a separate job.

There are three additions to the C++ language. These additions

implement our model and they will be formalized later:

 unit – similar to a class definition. A unit encapsulates a job and

it is deployed to the computing resources. This construct is

analogous to the map application from the MapReduce model,

but at a higher abstraction level. By using OOP class/instance

semantics, many unit instances can coexist without

interference, each one keeping its own private state. In a

functional model it would have been harder to isolate individual

map states in a multithreaded or distributed environment.

 with – creates a jobs scheduler and run all its associated tasks,

such as jobs queuing, deployment, synchronization, error

recovery, etc. It has two arguments: a destination and a unit

constructor. Regarding the MapReduce model, with combines

the phases of computation splitting (the creation of the

individual map jobs) and combining (the Reduce phase).

 run – adds a new job to the scheduler. It provides both a unique

id for the job result (the indexed parameter) and the job specific

BUPT

4.2 - A typical example of a distributed computing application 47

arguments. Because run is used inside a specific with

construct, it has a better integration with it. In the original

MapReduce model explicit result lists must be created and

passed further to the Reduce function. run directly access the

scheduler created by the with construct and in this way many

MapReduce aspects such as the handling of the intermediate

results can be automated.

Using the above concepts, we can write MapReduce algorithms as in

Table 4.1.

Original MapReduce Our model

// computes a single job

function doOneJob(job){…}
//add a new result to final
function add(final,result){…}
jobs = /*split goal into jobs*/;
// computes individual results
results=Map(jobs,doOneJob);

// combine all results

final=Reduce(results,add);

// computes a single job, also

providing initialization and
encapsulation
unit Worker{…}
//combines all individual results
class Destination{…}
// handles all low-level tasks

regarding network, error recovery,

synchronisation
with(Destination,Worker){
 while((job=/*create new job*/)
 !=null){
 // run asynchronously the job
 run[jobId](job);
 }

 }
// if required, combine all results

Table 4.1 – The original MapReduce and our model

 In our former example, in the main program the “img” vector is

used as the destination of the jobs results. Every job returns a string

which is the .pgm encoding of its rendered line. The with construct

creates a jobs scheduler using its first parameter “img” as destination

and it specifies the unit used for jobs as its second argument. In this

second argument we pass the global constant data as parameters to the

unit constructor. These data are the same for all computations, so they

can be sent only once to each computing resource.

 Inside the with construct a new job is created using the run

construct. The run construct takes first an auxiliary parameter (in our

example “lineIdx”) which is used to specify how the job result will be put

in destination and after that it takes as parameters all the job specific

BUPT

48 Application level execution model - 4

data, in our example the line vertical coordinate. The job is created

asynchronously and it is added to the scheduler. The scheduler will run

it on an available resource, by instantiating a unit and calling its run

method. There is no predefined syntax about how to run jobs inside a

with construct. The needed run constructs can be split in as many as

desired for, while, do…while, etc statements, according with the

algorithm which provides data for the jobs calls. This aspect gives us an

added flexibility above the current approaches which use preprocessor

pragmas to parallelize a specific iteration.

 At the end of the with construct an automatic synchronization

point is added. The synchronization point ensures that all jobs will be

finished before the control flow reaches the next statement. During the

jobs execution, when a new result arrives it is considered according to

the destination argument which was given to the run construct. In this

way the scheduler knows how to handle this result within destination,

regardless the order of arrival of different results.

 In all the above code there are no explicit distributed computing

concepts, such as resource discovery, deployment, synchronization,

remote invocation/retrieval, error recovery, etc. In the same time there

are no different calls for different computing resources, for example to

create GPU kernels for execution on GPU, etc. Our model succeeds to

hide at the application level all these aspects. For fine tuning of different

aspects, different settings can be provided, for example to search

specific network segments for available remote computers or to

prioritize specific jobs for GPUs or for remote computers.

4.3 The model functional description

 This description is made to facilitate the model implementation

in many programming languages. Because each programming language

has a specific syntax, we cannot give a syntactical description of the

model but a functional one. The main features and interactions are

described and they can be implemented using a specific syntax for a

programming language.

 Our model is structured around three concepts. We designed

these concepts by starting with the MapReduce model and we strived

both to generalize this model to the distributed computing applications

BUPT

4.3 - The model functional description 49

and also to hide as much as possible the low-level tasks of the

distributed computing. In the same time our model provides an added

flexibility by allowing starting the jobs in any sequence(s) and by

defining implicit actions for most common processing needed in the

reduce phase.

4.3.1 The unit concept

 A unit represents a logical abstraction of a job, capable to run in

a distributed environment. It has some common properties with the

class concept from OOP, but with some important differences. Below

are the most important aspects of the unit concept:

 it cannot have static attributes and it cannot access directly or

indirectly static attributes of any class or global data – this

requirement ensures that there is no common data shared

among jobs. In this way every job will only have its own data (if

jobs need to communicate, see the section 4.1, the assumption

4 in a distributed context).

 a unit can be deployed to different computing resources, such

as remote computers. In his case all its code dependencies will

be also deployed. Excepted from this deployment are

dependencies of the application environment (for example

standard Java API) which already exists on the remote

computers. In order to avoid redundant network traffic, each

unit has a Global Unique Identifier (GUID). When a unit is

deployed, first the scheduler asks the remote computer if it

already has cached a unit with the same GUID. If there is such

a cached unit, it is used from the remote cache, without further

need for redeployment. The GUID is automatically generated on

each recompilation, so modified units will have different GUIDs.

This also means that the new versions are automatically

deployed, if the unit code changes.

 a unit is created for each job by using one of its constructors.

The unit constructor receives the global constant data. This data

is deployed only once to each computing resource and the unit

is not allowed to change it, because it may be also used by other

local instances (jobs) of that unit.

BUPT

50 Application level execution model - 4

 the method run of a unit is the entry point of the computation.

It is called with the specific data for each job. The result of the

run method is the output of the computation and it is serialized

back to the application. If the run method has mainly side

effects such as writing to a database server, the returned value

can inform about the actions performed or it can be discarded. If

any exception occurs, it is also returned to the application.

4.3.2 The with concept

 The with concept is used to encapsulate a jobs scheduler. It

receives two parameters:

 a destination

 a unit constructor with its arguments, the same as a new

construct

 A destination is an abstract concept for any processing

involving the jobs results. It can be simply a vector where all the results

are stored, a function or an object which implements a standard

interface which allows it to be called from the scheduler on each result

arrival.

 For example, if for each job result a file is created on the main

application computer, a destination can be a function which is called

with a job identifier (provided by the run concept, described later) and

with the job results. This function will create a specific file for each

result. In this way two goals are achieved:

 a job result is stored in memory only if needed, which can be

significant for big results or for many jobs

 if possible the result will be directly processed, without needing

an intermediate storage step

 The unit constructor call used as the second argument of with

has two functions:

 it specifies the specific job (the unit used to implement the

computation)

BUPT

4.3 - The model functional description 51

 it defines the global constant data used by each job as

parameters given to this constructor

 At the beginning of the with construction a new scheduler is

created. This scheduler has multiple functions:

 it performs computing resources discovery, if it is not done yet

or if these are discovered in a dynamic manner, in order to

respond to environment changes. These resources are: the

cores of the local CPUs, network computers and GPUs with

general processing capabilities

 it deploys to the network computers the code of the unit along

with all its dependencies, if these are not in the local cache of

these computers. For GPUs the code of the unit and all its

dependencies are converted to a GPU kernel and it is compiled

(if this compilation is not already done).

 it sends to the remote computers the global constant data.

 It provides a queue of jobs created by the run concept

 it distributes the jobs to the available computing resources and

receive the results. In order to provide load balancing and

redundancy advanced the resources can be selected using many

factors, such as their computation power, load or the

communication speed.

 if a result is received, it is sent to the destination for storage or

for processing

 if an external error (for example a network timeout, not related

to the application logic exceptions) occurs, it tries to compute

again that job, possibly using other computing resource

 in the end it waits for all the jobs in the queue to be processed

and their results retrieved

BUPT

52 Application level execution model - 4

4.3.3 The run concept

 The run concept creates a new job and puts it and the current

scheduler queue. It has two sets of arguments:

 a unique identifier for each job which is used to identify each job

inside a destination. This identifier can be an n-dimensional

index for n-dimensional vector destinations, strings for

associative arrays (maps, dictionaries), etc.

 specific data for each job

 These arguments define a new job which is enqueued for

execution. The run call is asynchronous and it returns immediately. It

remains at the discretion of the scheduler the following aspects:

 when the job will run

 in what order the jobs are run

 where the execution takes place

 if the job runs once or multiple times (to recover from external

errors)

 The only constrains that the scheduler ensures are:

 all the jobs are run (if no application logic error occurs) and their

results are passed to destination

 the destination receives all the jobs results before the execution

flow leaves the with concept

 A job can be created anywhere inside a with concept. This gives

a great flexibility to the application logic, because the algorithm can use

multiple statements, including nested/recursive function calls from

where these jobs can be created. In general this level of flexibility is not

achievable using decorations (pragmas, annotations) on specific

statements.

 The above concepts (unit, with, run) are enough to implement

many distributed computing computations. Of course, because our

model started with the MapReduce model, the jobs must not have

BUPT

4.4 - Theoretical performance considerations 53

mutable shared data. If this kind data is needed, it can be implemented

as discussed in section 4.1 at assumption 4. Especially by using the

scheduler many standard distributed computing tasks are hidden from

the application logic.

4.4 Theoretical performance considerations

 To evaluate the model theoretical performance, there is

considered a distributed system with NC computing resources and a total

of NP processing units (fully independent cores). A number of NJ jobs

(NP≤NJ), will be executed, each job requiring a maximum time TJ to

complete. We define TS as the time to setup a computing resource

(deploy a unit to that resource):

 TT=TS+ NJ / NP* TJ, (1)

where TT = total computation time; x=min{n | n≥x} (2)

when NP NJ: TTTlim JST

NN JP

 (3)

 Here for all jobs the total run time is the run time of the longest

task (in the case of heterogeneous resources) added with the computing

resources setup time. This time is a function of factors such as the size

of global static data and the unit, and network usage.

 Because TJ can be equated with TJ=TJN+TJC (4)

 where TJN is the needed time for interface/network run

(dispatching the parameters of “run” to the running units and getting

the results from them) and TJC is for one processing unit the effective

computation time, forthe best situation

 (NP≥NJ): TT=TS+TJN+TJC (5)

 Because TS+TJN is a function of only the interface/network

performance, for best results it is optimal that its percentage from the

total computing time to be lowered as much as possible. The best case

is if the TJC of the tasks is much bigger than TS+TJN. In this case the

distributed system uses most of the time solving the computation (TJC)

BUPT

54 Application level execution model - 4

than on interface/network traffic. In this situation, the distributed

computation performance closes to the performance of the case when all

the jobs are executed locally using a NJ cores machine.

 The above results are in accord with Amdahl’s Law for speedups

on fixed workloads [71], because when the number of processing units

NP reaches the number of jobs NJ, the speedup is limited to the

individual execution time on each processing unit TJC. In later

developments [71] of the Amdahl’s Law by Gustafson (fixed time), and

Sun and Ni (memory bounded), in many practical situations if a

distributed system receives more hardware, its assigned workloads also

tend to grow, so the tendency is to use the system to its full capacity. In

this way, by adding or increasing workloads, the system tends to be

used to its maximum capacity, even for many computing resources.

4.5 Study and implementation

Our model was implemented by creating a dedicated virtual

machine (VM) with the associated runtime. The runtime is capable to

use the CPU cores in order to run the VM. Each machine has abstracted

its computing resources by using a server for receiving units and tasks

(instances of unit) to be executed on it. A client application can make

requests to the servers available if multiple threads are needed to run.

The entire process uses the following steps:

 The available servers are checked by the client: A network hosts

list is used and each resource is interrogated about its version

of the server, the available cores number and protocol.

 The application is run on client: We created a strongly typed,

register based VM with automatic memory management and

high level abstractions such as classes and functions. A

portable VM used as a layer of abstraction between the host

available capabilities and the application allows to use a wide

range of computers, enabling both software and hardware

independence.

 A VM which is register based is also important when threads are

run on GPU cores. For a portable implementation, the GPU

(programmable using OpenCL) must be coded in a kernel

BUPT

4.5 - Study and implementation 55

function. The OpenCL uses a C/C++ language subset. In this

case, all unit functions must be translated from the specific VM

opcodes to the OpenCL language. In the case of a register

based VM the translation job is easier to be done.

 If a with statement is executed, a scheduler is created by the

runtime: This statement receives the constructor for unit along

with its parameters and also possible options. The parameters

of the constructor are serialized in the beginning, only once,

because they are constants.

 When needed a scheduler create worker threads. Every thread

manages a computing resource connection (for example a CPU

core) available through a server. Permanently open sockets are

used for the communication between the server and worker

threads. A new connection object is used for each worker on

the server side. Each such object is run on a separate thread

so a CPU core will be used for each connection. In the

beginning, all the unit code along with all its dependencies is

made available on the execution server. Code caching is used

on the server. By doing so, a unit is sent only once and it will

be used for all the required instances. The unit constructor

arguments are sent for every worker.

 When a run statement is encountered, it is added a new job:

The list of all the tasks is kept by the scheduler. The tasks are

asynchronously added. When a task is added, the scheduler

queries for available workers. When no available workers are

found, the scheduler tries to create new workers. The list of

the servers available is used. The maximum number of workers

is equal on each server with the available cores number.

 The tasks from the list of invocations are handled by the free

workers: On server is created a VM instance at the connection

of a worker. The unit initialization data is already on server so

its constructor is called in order to create a new instance.

Method overloading is possible because the worker also sends

methods signatures along with their parameters. On server it is

executed the run method. The VM instance is used to isolate

the execution context.

 The run results are serialized by the server and returned to the

worker. In case of processing errors (such as network errors),

BUPT

56 Application level execution model - 4

the task is put back by the worker in the tasks list and it is

tried to be reprocessed. In case of successful completion, the

receiver given in the with statement receives back the results.

With this method, tasks are taken from the list by workers, run

remotely and the results will be made available to the receiver.

The workers run the tasks until all invocations are successfully

processed.

 The with statement ends with a synchronization point where the

completion of all tasks is waited by the scheduler. The process

end is given by the empty tasks list and all workers on idle

state. When all the tasks are done, the workers and the

scheduler are ended and their resources are disposed. The

resources allocated on the server and the network connections

are also disposed or closed.

4.6 Experimental results

The implementation scalability and performance was tested in a

10 computers network and on a processor’s local cores. We used the

test program from Code 5.1 with PXHEIGHT=2000, which gives a total

of 2000 tasks. The implementation in our VM was done in a bytecode of

about 1.1KB. Each trial was run using a clean server. In every run the

tasks setup was complete (no caching), so on every test the full

application code was sent to the servers.

On every test the speedup was measured from the base case

with a single core or a single computer in order to test the distributed

computing system scalability and also the workload for every core. This

was measured as the amount (in percents) of distributed tasks run on a

specific core, in order to determine the capacity of the implementation

to distribute the tasks evenly on all the processing units which are

available.

The theoretical top scalability is reached in the case when the

speedup equals the added number of cores/computers, compared with

the case of using only one core/computer for the computation. The best

distribution of the workload would be when all the tasks are equally

distributed on all the processing resources, in the case of homogeneous

networks, when all the resources have the same capabilities.

BUPT

4.6 - Experimental results 57

4.6.1 Tests using a computer network

A Wi-Fi network was used of 10+1 computers, each computer

having a 2 cores microprocessor. We used all cores. The tasks were run

using only on the remote machines. A computer was only used for the

main application. In this setup all the threads were run in the same

conditions. The test was started using a single computer. We added

remote machines one by one on each step. The speedup results can be

seen in Figure 4.3. The Figure 4.4 shows the workload for each core.

Fig 4.3 – Network speedup results

 In the best case, the speedup is equal with the number of added

computation resources, for homogeneous networks. In our tests, for a

small number of computers, when the total computation amount on

each machine is high, we obtained a speedup close to the best case

when we added a new computer to the computation. For a higher

number of computers, the traffic time and network setup, which are

constants, start to contribute in a more significant percentage, so the

overall speedup is lower. The theoretical model behavior presented in

Section 4.4 is consistent with these results.

BUPT

58 Application level execution model - 4

Fig 4.4 – Computer network workload results

 A lower reliability Wi-Fi network was used, but even in this case

the tasks allocation was very good and an approximately equal number

of tasks were allocated on each core. The maximal difference in percents

from the best distribution was 13.6%. For all tests the average

difference in percents was of maximum 5%.

4.6.2 Computer cores tests

A 4 cores computer was used. The tests started using a single

core. On each step we enabled another core. In Figure 4.5 are the

results for speedup. The Figure 4.6 shows each core workload.

In these tests there was no network traffic involved (only the

local microprocessor cores were used), so the theoretical model TS+TIN

term is 0. There is required for threads synchronization only a small

overhead. The speedup shows a linear growth for all the range of test

cases and this growth is close to the best case.

BUPT

4.6 - Experimental results 59

Fig 4.5 – Computer cores speedup results

Fig 4.6 – Computer cores workload results

 Even if the main application was also run on one core, the

implementation distributed successfully the tasks on all cores in an

almost optimal manner. The maximal difference in percents from the

optimum in the test results was 0.6%. The average difference in

percents from the maximum was 0.6% for all tests. Even if a core also

needs to run the with scheduler, there was only a little difference from

the best workload. This indicates that the scheduler most of the time

waits for the completion of the threads, so only few resources are

needed for itself.

BUPT

60 Application level execution model - 4

4.7 Conclusions

 We presented a model at the application level, suitable for

dependable distributed computations. Our model requires only 3

concepts and it is a MapReduce derivative. The semantics of the model

are similar to the OOP programming style and this allows an easy

implementation of the model concepts in many of the mainstream

programming languages.

 We implemented the model using a specially developed VM. This

implementation shows that using distributed thread pools for a

scheduling system we can distribute the tasks on all the machines in a

manner close to the optimal case. By doing so we can obtain a workload

well balanced, both for network computers and for CPU cores. It was

possible to abstract different resources (network computers or CPU

cores) by using threads and client/server semantics.

 The experiments show the scalability of the model, because it

succeeded to make use of the added resources in a close to optimal

way. The speedups obtained were close to the case when the

computations were done by using multiple parallel programs.

 In the case of network failures, the failed computations were run

again so they are successfully completed, which makes the model

dependable.

 We consider further developing the research to include the

usage of GPUs, to better enhance the reliability of the computation and

the recovery from an extended class of possible errors. For the case of

heterogeneous resources we also consider developing more advanced

scheduling algorithms.

BUPT

Section based on paper: Razvan-Mihai Aciu, Horia Ciocarlie, ”Framework for the
Distributed Computing of the Application Components”, Advances in Intelligent and
Soft Computing, Proceedings of the Ninth International Conference on Dependability
and Complex Systems DepCoS-RELCOMEX, June 30-July 4, 2014, Brunów, Poland,

Springer, ISBN: 978-3-319-07012-4

5. Application components distributed
computing framework

 In order to be of practical importance, our model should have an

implementation as a language construct or as a framework or library. As a language

construct an existing language should be extended with the necessary statements

(unit, with, for). For languages such as Java, this means the completion of several

steps such as: creating a Java Specification Request (JSR), JSR formal public

review, final vote on JSR, creating a reference implementation, providing and

testing on a Technology Compatibility Kit (TCK).

If the model is implemented as a framework, the above steps are not

required since the language remains the same. In this case it is possible, due to the

lack of the target language expressiveness or capacities, to have only a limited or

harder to use framework, because the model specific constructs are implemented

using only standard language features such as classes and methods calls.

 We chose to implement our model in Java, due to several factors:

 Java is a mainstream language, widely used so the framework could be used

by many programmers

 Java compiles to the Java Virtual Machine (JVM) which is independent of the

operating system (OS) and CPU. In this way it becomes easier to implement

the code deployment to remote computers, regardless their OS and CPU.

 Java offers strong reflection capabilities so a code can introspect itself and

also create at runtime new code if necessary (by using bytecode

generators). This introspection is very important when the framework

computes all the dependencies of a unit which needs to be deployed and it

also helps to check the consistency of the application code in regard to the

model (for example to ensure that there is no accesses to outside data from

a unit).

 There are also some drawbacks which arise from the implementation of our

model as a Java framework and we can mention the following:

 A framework needs to use existing language constructs to model new

constructs or statements, especially through the means of classes/interfaces

and methods calls. This can imply that the programmer need to adapt more

BUPT

62 Application components distributed computing framework - 5

of the application domain to the semantic imposed by the language

statements.

 In general the distributed applications are the ones which require every bit

of computing resources, especially on the field of High Performance

Computing (HPC). This is why for such applications are preferred languages

which can optimize the code almost to the level of the assembly language,

such as C/C++ or Fortran. For now, even with state of the art compilers,

Java is behind these languages as execution speed. This means that an

application written in Java will need more physical resources for the same

level of computational throughput than a C/C++ or Fortran one.

 We hope that the above mentioned drawbacks are not too big for many

applications and our framework can be used in many of them. We view the

proposed framework as a particular Java implementation of our model, which also

demonstrates its validity and usefulness. There are other MapReduce Java

frameworks, such as [22] and because the way of approaching computations

(MapReduce) is similar, there are similarities between such frameworks. For

example the automatic code deployment, intrinsic to our model, is also

implemented. We regard our model as a higher order computation abstraction and

we aim to add into our framework other features made possible by it, such as

running distributed code on GPUs.

5.1 Framework overview

 The framework consists from an application library and a server. The server

is used on the remote computers as a mean to receive, run and return the results of

the deployed code. The application library provides all the necessary code and data

structures to implement the model in application. A pseudocode overview of how the

framework is used is given in Figure 5.1.

(1) var sched:Scheduler
(2) sched=new Scheduler(computationClass, initialData, dest)
(3) for job=every workload job
(4) sched.addJob(destPosition,job)

(5) sched.waitForAll()
(6) combine_results()

Fig 5.1 – Pseudocode of the algorithm

BUPT

5.1 - Framework overview 63

 A job is any task scheduled for run using a local or remote, abstracted

computing resource. The Scheduler is a component of the framework, responsible

for managing the low level aspects required for the distributed computing. The

Scheduler at its initialization needs a class who provides the actual computation

(computationClass), the constant global data who is required for all distributed

computations initialization (initialData) and the results holder (dest).

 The addJob method runs asynchronously. It adds a job into the jobs list.

Each job consists of the needed data for its computation (job) and a destination

abstract place (destPosition), used on results return. For the enqueued jobs the

Scheduler creates worker threads, one thread connected to one computing resource.

A special server is provided by the framework for workers connections. Each

computer used in computation has on it a running server. The jobs are taken from

the queue by the worker threads and run on a machine. In this process the

Scheduler will deploy first to the remote computing resources the required code

(computationClass and the dependencies) and also initialData. The code and initial

data are sent only once. They will be cached and used for all the jobs executed on

that resource. The deployment of the code is made using a custom class loader. A

serialization engine is used for data serialization. We used the Java standard

serialization framework for our implementation.

 After the scheduling of all the workload jobs, the method waitForAll waits for

the completion of all the computations and the retrieval of all the results. The

received results are combined as the application logic requires. These steps describe

the entire algorithm. The aspects of a distributed application, such as code

deployment, resource discovery, synchronizations and serialization are abstracted

and they do not appear explicitly in the application logic. The computing resources

are also treated in an abstract manner, so an application can make use

automatically of any resource, like network computers or local microprocessor cores.

Fig 5.2 – An 3500 spheres image rendered by our test application

BUPT

64 Application components distributed computing framework - 5

 As an example, for the image from Figure 5.2 each line of the image is a

job. We have 2000 jobs for an image of 2000 lines. The scene itself is the initial

data (including view angles, observer position, output resolution). All this data is

invariant. The jobs processing is done without a defined order, so the results (the

image lines) are first stored and then combined in the final image in the right order.

The computationClass is a derived class from a dedicated interface (framework

provided), which handles the computation of one image line. This class including its

dependencies is deployed to the remote computing resources. It will be computed

employing a distributed manner. The destPosition indexes the job result into the

vector of the lines of the image. The job is the data specific for each instance, in this

example it is for every image line its vertical angle.

5.2 Framework detailed description

 This description gives for each step of the algorithm an in-depth discussion

of the available customizations and options, the support required by the framework

and also implementation suggestions for specific platforms.

5.2.1 The setup of the network

 Each distributed computing computer is running a dedicated server. These

servers respond to queries about version and locally available resources. The

maximum concurrent connections for each server are at most the same with its

computing resources number. A worker thread is created by the scheduler only

when a server with free connections is available. After a connection is made

between the server and the worker, the connection is kept open until the completion

of all tasks or until the occurrence of an exception. A worker is in this was assigned

to a computer core. This way of allocating computing resources uses fully all the

available resources and also minimizes the switching of the kernel threads. This

algorithm is suitable for small or medium networks, up to around some thousands of

simultaneous sockets. It also performs well for private networks, when there is no

direct outside access.

 In the case of larger networks can be used an alternate model, based on

queries (pings) addressed to the servers with active computations, to assess the

status and to retrieve the possible results. This algorithm has no bounds to the

number of the open sockets, because the sockets exist only when queries are made.

BUPT

5.2 - Framework detailed description 65

 To address volunteer, regulated or unsecure networks, we must observe

additional requirements: communication encryption for server, application

authentication, options to set bounds on the server resources usage, file system

accessing security policies and a fine grained access for network or other sensitive

functions or components.

5.2.2 The distributed application code

 The distributed components of the application (the computationClass of

Figure 5.1) need to implement the interface shown in Figure 5.3.

(1) public interface Distributed<InitialData,TaskIdx,RunData,ReturnType>{

(2) boolean dInit(final InitialData initialData);
(3) ReturnType dRun(final TaskIdx taskIdx,RunData rData);
(4) }

Fig 5.3 – The interface Distributed

 Java generics are used in the framework to enhance type safety. Each

connection to a server creates a new instance of computationClass, so on a server

can be a maximum number of computationClass instances equal with its cores

number.

 The dInit method is only once called, at the creation of the new instance. It

returns true for a successful initialization. In this case the new instance can be used

by the worker. For all tasks the initialData argument is the same. The instance

created is used by the worker for all its computations. By doing so it is possible to

keep the computeClass state information during multiple tasks, for example if

partial computations caching is required. The number of tasks or their order is not

specified for a specific instance.

 For every job it is called the method dRun. In the destination the argument

taskIdx is used to index/order a specific task. Some possible situations for taskIdx:

a vector index or a map key. Every task must have a unique taskIdx. In our

application the indexes of the image lines are used as taskIdx. For each job the

argument rData is used to send specific task arguments. dRun returns on success

an object newly created which encapsulates the computation result. An error is

thrown on null return from dRun.

 If a class implements the Distributed interface, all its data must be in

instance attributes (it cannot have static variables), in order to enable the execution

of the class on multiple hosts. At runtime the framework can enforce this

BUPT

66 Application components distributed computing framework - 5

requirement by analyzing (through reflection) the class members and all class

dependencies.

5.2.3 The instantiation of the scheduler

The framework provides a Scheduler class. Figure 5.4 shows its signature.

(1) public class Scheduler<InitialData,TaskIndex,RunData,ReturnType>

Fig 5.4 – The signature of the Scheduler class

 InitialData, TaskIndex, RunData and ReturnType are generic parameters

and they were detailed in section 5.2.2. There is both non-static constructor and a a

static one for Scheduler. For automatic system initializations (like resource

discovery) it is used the static constructor. These initializations are made only once,

in the beginning of the application. It is possible to make subsequent checks for

resources, because of the network dynamic nature, where computers can be

removed or added at any time. These new checks can be triggered by the developer

or performed automatically at specific time intervals. The non-static Scheduler

constructor has the signature shown in Figure 5.5.

(1) public Scheduler(final Class<?> distrClass,
(2) final InitialData initialData,
(3) Destination<TaskIndex,ReturnType> dest)

Fig 5.5 – The signature of the Scheduler class

 The argument distrClass is the distributed class internal Java class

representation. The distrClass code with its dependencies is serialized and sent to be

run remotely on the available servers. The interface Distributed is implemented by

this class, so it can be used in a standard Java way. If full reflection capabilities are

available (languages such as C# or Java), the class description serialization and the

serialization of the methods code is done by employing the standard

reflection/introspection API for that language.

 The argument initialData is the same and constant for all tasks and it will be

used for each distributed worker initialization. It is sent only once to each server.

BUPT

5.2 - Framework detailed description 67

 The argument dest is the distributed computation destination for the results.

The Destination interface is shown in Figure 5.6. It abstracts a computation

destination.

(1) public interface Destination<TaskIndex,ReturnType>{

(2) void set(TaskIndex index,ReturnType retData);
(3) }

Fig 5.6 – The interface Destination

 When a dRun invocation ends, the result will be sent back. The method set

of dest is called using the index of the destination and the result of the computation.

The class used for destination can have a wide range of behaviors, as required by

the application logic. When the results of the computation must be first available

(like in our example), a wrapper over a collection class can be used as destination.

When it is possible to use the computations results independently, the set method

can encapsulate each result processing.

5.2.4 The workers and the jobs

 A job is scheduled computation, waiting for its execution. The job is added

to the list of invocations using the method addJob of the Scheduler, shown in Figure

5.7.

(1) public void addJob(TaskIndex index,RunData rData)

Fig 5.7 – The addJob method

 The argument index is the index of the result in dest. The rData argument is

the specific data required for a computation. The addJob method is asynchronously

executed, so the application loop is not blocked during its execution. This method

adds the job into the jobs list.

 In the case when all the existing workers are occupied by other jobs and if

more computing resources are available, addJob will create a new worker for the

newly added job. The newly created worker is a Scheduler created thread that

handles a specific resource (communication, serialization, etc). The jobs are not

computed by workers, but a worker only sends the jobs to the computing resource

receive the jobs results and send the results to the destination. With this algorithm

BUPT

68 Application components distributed computing framework - 5

only few resources are required by a worker thread and thousands of workers can

be used.

 When it is created, a worker locks a resource for itself. A distrClass instance

is remotely created and the initialData is sent to its method dInit. During the

worker’s life that instance is kept alive. The worker will take jobs from the scheduled

invocations and will send their data (index and rData) to the resource associated.

On the computing resource, the dRun method of the distrClass instance is called

with this data, the computation takes place and the result is sent back.

 If the application logic causes errors by itself, exceptions are used to signal

them back. If the network causes errors (or on other errors external to the

application), first the worker tries to reconnect to its attached resource. If it fails,

the worker signals the framework to verify the availability of the remote server. The

remote servers which cannot be discovered anymore are removed from the list of

the available servers. The workers which cannot reconnect will terminate

themselves. In this situation the failed job remains into the jobs list and its

reprocessing will be tried by other workers.

5.2.5 The distributed computations end

 After the scheduling of all the jobs, there are two possibilities for the

application to wait for the completion of the jobs. The straightforward way is to use

the method waitForAll of the Scheduler, shown in Figure 5.8.

(1) public void waitForAll()

Fig 5.8 – The waitForAll method

 The method waitForAll waits for all the jobs completion, including the jobs

still in the scheduled list and the currently running ones. When waitForAll returns, all

the jobs were computed and their results were sent to destination. Another way to

wait for the jobs completion is to check manually for their completion. This can be

done by using the Scheduler methods shown in Figure 5.9.

(1) public int getCompletedJobsNb()
(2) public int getAddedJobsNb()

Fig 5.9 – The methods getCompletedJobsNb and getAddedJobsNb

BUPT

5.2 - Framework detailed description 69

 The getAddedJobsNb method returns the jobs number scheduled using the

addJob method. The getCompletedJobsNb method returns the jobs number

successfully computed. With these methods, the status of the scheduled jobs can be

known by the application.

 When the computation of all the jobs is done, all worker threads are stopped

by the scheduler. The servers are signaled by the workers to free the resources and

to end the instances created for these workers.

5.3 Practical tests results

 The framework and the algorithm were tested on a quad core computer and

on a computer network. Two metrics were evaluated. The first metric is the speedup

obtained on the addition of new resources. This metric gives also a good estimation

for a specific application if it is advantageous to employ more resources, also

considering other factors such as the economic costs of these resources. The other

metric was the distribution of the workload for every computing resource – by

evaluating this metric we can assess the algorithm ability to fully use existing

resources by distributing the workload on all of them, especially when

heterogeneous networks are involved. We also tried in our tests different Java

implementations and operating systems to evaluate the suitability of our framework.

We used for all tests an application that renders the image shown Figure 5.2 using a

2000x2000 pixels resolution. Every image line is a job, so 2000 jobs were created.

On each test a new server was used so there were no cached resources (such as

remote classes) in order to achieve the same startup conditions.

5.3.1 Computer network tests

 We used a 10+1 computers wired network, with CPUs Intel® Core™ 2

6600@2.40 GHz, with the 64 bits version of the Kubuntu 8.04 and Java HotSpot

Server version 1.6.0_06. We used one computer only for the client application. The

invocations were processed only on the network computers, so we can have a

homogenous working environment for all the jobs. We began using one computer.

On every step new computers were added, and we measured the speedup from the

initial case of one computer. As we used dual core computers, we had in the end 20

cores on which the jobs were run. The Figure 5.10 shows the speedup. The Figure

5.11 shows the workload percent on each core.

BUPT

70 Application components distributed computing framework - 5

Fig 5.10 – Network speedup

 We can see from Figure 5.10 that in the case of a low computers number,

the obtained speedup is near the optimum. For 2-5 computers the experimental

results indicate a performance which is a bit over the predicted model value. We

consider responsible for these values external factors which can alter the small time

intervals measurements, such as the network traffic variance.

Fig 5.11 – Each core workload in network tests

BUPT

5.3 - Practical tests results 71

 If we increase the number of the computers, we obtain a lower speedup

because the algorithm finishes quite quickly (around 1s). In this case factors such as

threads and sockets management or resource discovery (the TJN and TS theoretical

model components from section 4.4) accounts for a larger part of the execution

time.

 The distribution of the workload was near to the optimum (considered to be

the case of equal invocations distribution on each core). The average difference in

percents on all used cores was 1.03% at maximum for all tests. The difference in

percents from the optimum was at maximum 2.8% for any core workload.

5.3.2 Computer core tests

 A computer with a CPU Intel® Core™ 2 QUAD Q6600@2.40 GHz was used,

running the 32 bits version of the Windows Vista Business Service Pack 2. The Java

environment was provided by the version 1.7.0_11-b21 of the HotSpot Client VM.

This is a four cores computer. The base case was when the invocations were allowed

to execute using a single core. In every iteration new cores were added. In Figure

5.12 it is shown the speedup and in Figure 5.13 it is shown the workload on each

core.

Fig 5.12 – Computer cores speedup

 From Figure 5.12 it can be observed that the speedup when new cores are

added is near the optimum. In the case of the 4th core we can see a bit larger

difference (0.09%) from the optimum. That difference appears because that core

needs also to execute the main application (including all the synchronization,

serialization and scheduler code). That result indicates that all the threads (the

BUPT

72 Application components distributed computing framework - 5

workers) created by the scheduler and also other scheduler activities are using only

a few resources. This is because a worker most of the time only creates jobs on

other computing resources, waits for their completion and receive the results.

Fig 5.13 – Computer cores workload

 The distribution of the workload among different cores has a difference in

percents of maximum 0.6% from the optimum (especially because of the last core

supplementary activities). The average difference of the workload in percents on all

tests was 0.4% at maximum.

5.4 Conclusions

 Our framework and the algorithm proposed enable the automatically usage

of the application classes as components in a distributed computation. The

resources like network computers or local CPU cores are abstracted by the

framework, including the case of the heterogeneous networks, which allows the

developer to employ them by using a uniform manner. Our framework can be used

in a large variety of applications. The algorithm is well suitable for languages which

employ virtual machines, like C# or Java. With certain restrictions the algorithm can

be adapted for native code compiled languages which do not have advanced

reflection capabilities, like C/C++.

 The use of the framework is simple. Firstly the developer implements the

interface Distributed on the class which is to be run distributedly. Secondly, the

developer uses the scheduler to asynchronously add jobs. These are the only steps

required for a distributed computation. All the required tasks like serialization,

deployment, network management and synchronization are performed automatically

by the framework.

BUPT

5.4 - Conclusions 73

 We implemented our framework using the Java programming language. By

analyzing the tests results it can be seen that when used both on network

computers or on local cores our algorithm has a good scalability and it also achieves

an adequate load-balancing. It does so by distributing uniformly the workload to

each available computing resource. The framework run reliably and in all tests the

results were provided even in situations such as the network errors occurrence.

 The framework and algorithm open new directions of research. We consider

further developing them to use GPUs, to increase the computation dependability

(especially on external errors) and to better harmonize them with the standard API

provided by the programming languages or by the industry standard libraries.

BUPT

Section based on paper: Razvan-Mihai Aciu, Horia Ciocarlie, “Algorithm for
Cooperative CPU-GPU Computing”, 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), Romania, September 23-26,
2013, DOI 10.1109/SYNASC.2013.53

6. Algorithm for hybrid execution on both CPU
and GPU

 In this section we present a novel algorithm, suitable for the cases when

some of its parts cannot run on GPU. Our algorithm allows an efficient split of the

code segments between CPU and GPU. It collects the data for the GPU tasks across

the CPU threads without stopping the CPU cores and it runs the collected tasks as a

single package, in order to fully use the GPU. It is especially suitable for massive

multithreaded applications with many threads, but where no individual thread can

provide enough data to efficiently use the GPU.

 As shown before, algorithms with complex code flows or data structures

sometimes are not appropriate to be run on GPU, especially if they need I/O

operations. Other algorithms, such as the sequential ones, do not benefit from a

parallel execution on GPU, so they run optimally on the more powerful CPU cores.

For such algorithms a mixed programming approach is more suitable to use. Some

parts will be executed on CPU and others on GPU. If an algorithm part such as a

matrix multiplication can have a parallel implementation, this part can be computed

easily by a GPU. When the application works on multiple datasets, so it can benefit

from a parallel execution but in itself each dataset handling is sequential, another

approach should be used. In this case we propose our hybrid execution algorithm,

which makes possible even for complex sequential algorithms to run some of their

parts on GPU. By using our method, the suitable parts for GPU execution from the

application algorithm are invoked in a special way so their calling data can be

collected from all the application threads and run on GPU as a single batch of data.

In this way any suitable part for GPU execution can benefit from the speedup

offered by GPUs, even if this part is a component of an algorithm that cannot be run

entirely on GPU.

 A ray tracer for example has a high degree of parallelism and all primary

rays can be processed each by using separate threads. A single ray computation is a

serial algorithm, because for a given ray the next rays (reflected and refracted) can

be found only after the given ray intersection is found. Due to the fact that many

ray tracers employ data structures which are complex and also they in many cases

need recursion [72], it is hard to use GPUs for full implementations of ray tracers

which can be used in real world applications. In these situations it helps if it is

possible to use the GPU only for some code parts, like the computations of the

intersections, parts that are usually numerically intensive and which occur multiple

BUPT

6 - Algorithm for hybrid execution on both CPU and GPU 75

times during the process of rays tracing. With this approach, when a code designed

to be run on GPU is reached by a thread, the thread will be put in a waiting state for

other such threads to reach that code. For all these halted threads their data is

collected and computed using GPUs. The threads receive back the computations

results and their normal execution is resumed.

 The fundamental aspect of the algorithm proposed is a method to run on

GPU the code chosen by the programmer for this kind of execution, even if the

invocations of this code are not executed in the same time and they are split among

the application threads. In order to optimally use the CPU cores cycles, while a

thread waits for others threads to reach the waiting point for GPU execution, each

thread suitable for stopping needs to be executed using a single CPU core. In this

case no thread context switching is necessary. In this respect we used cooperative

threads (coroutines or fibers). Our algorithm also handles well the case when no

other thread reaches a code designed for GPU execution, in the situation when there

are no other threads to reach the same waiting point.

6.1 The proposed algorithm

 The proposed algorithm runs on multithreaded applications by accumulating
over CPU threads the invocations arguments of the functions which are to be run
using GPUs, it runs the functions on GPUs and it resumes the CPU threads passing
them the returned results. When the code reaches such an invocation, its data is

collected and that thread is put on hold until the GPU computes the invocation.
Meantime the application executes other threads, so the CPU is fully used. The
programmer is responsible to choose the parts for GPU execution and to call them
using a provided component, which will be detailed later. The process can be
compared with a traversal using breadth-first order of a graph made from the active
flows of code (threads). In Figure 6.1 are shown multiple CPU threads (T1…Tn),

running the code ThreadFunction. A code part intended for GPU execution is reached

(the F_GPU call), following possibly different flows of code. The T1 thread at F_GPU
after executing the call to F1, and the T2 thread arrives at F_GPU after calling F1, F3
and F3. The functions F1…F4 are complex and they are executed using separate
threads. The functions F1…F4 are better suitable for CPU execution (they may have
recursion, I/O calls, complex lengthy code with multiple branches). Only the F_GPU
function is intended to be executed on GPUs. In this case the programmer chooses
GPU execution for F_GPU and he will invoke it in a special way.

 To employ the computing power which a GPU can provide for massive
parallel applications, we need to pause all the threads that reach F_GPU and collect
the call data (the arguments) of the F_GPU invocations. After accumulating a
suitable invocations number or when no other threads can reach the F_GPU call, the

collected invocations are sent to GPUs that run a kernel which encodes the F_GPU

BUPT

76 Algorithm for hybrid execution on both CPU and GPU - 6

function. All invocations are computed by the kernel, their results are retrieved to
the threads paused and the threads execution is resumed.

 When pausing CPU threads, it is advantageous to minimize the CPU cores
context switching which appears when a thread is put on a holding state. In the
case of preemptive multitasking, atomic operations and other mechanisms of
synchronization must also be used to ensure the data integrity and to resume the
execution of the paused CPU threads when the GPU execution ended. All the

synchronization actions require CPU cycles which can be better used for the
computation itself. In doing so, the synchronization overhead also reduces the
applications types that may benefit from using the proposed algorithm.

Fig 6.1 – Multithreaded flow of code for mixed CPU-GPU execution

 To lower the synchronization and atomic operations incurred overhead [73],

we employed cooperative multitasking. Its basics are implemented already by most

OS like an API, for example the POSIX ucontext family of functions or on MS

Windows such as fibers. Both these API allow the programmer to create a special

kind of lightweight threads, which are cooperative (must receive explicit commands

to switch between them) and incur a much lower overhead than the preemptive

tasks. In the same time, by using explicit switching, many synchronization needs

are eliminated, because the programmer knows at any time where it is the

execution point and in a cooperative model only one thread is active at the time.

The term “thread” will be used for preemptive threads; for cooperative threads we

will use the term “fiber”. The loop of the main algorithm is listed in Figure 6.2.

 For all GPU kernels initialize their schedulers

 For every CPU core create a new thread and add it to a threads list

 Iterate the list of threads in a circular manner and consider a current thread

as given by this iteration

T1

T2

Tn

ThreadFunction

ThreadFunction

F1 F_GPU F2

F1 F3 F3 F4 F_GPU

BUPT

6.1 - The proposed algorithm 77

 For each parallel task (ThreadFunction):

o Create a new fiber on the current thread and add it to the fibers pool

of this thread

o Advance the threads iterator

 When a call to a function designed to run on GPU is reached on a fiber, collect

the call arguments, suspend the current fiber and continue the execution with

the next fiber of that thread

 When a full circular iteration through all the threads is done, run all the

collected call arguments on GPU using their specific kernels and resume the

call fibers with the GPU provided results

 Repeat until there are no fibers left in any thread

Fig 6.2 – The loop of the main algorithm

 The parallel running function is ThreadFunction. A thread is created for each

CPU core, in order to fully use them. Each ThreadFunction is run in a new fiber. Each

thread has a pool with its fibers. An iterator which iterates circularly through the list

of threads assigns the new created fibers in order one fiber to every thread, to

create a basic load-balancing of fibers in all threads. From the above considerations

this main loop is almost the same as a main loop for multithreaded applications,

with the only difference that we create fibers instead threads. This similarity with

regular multithreaded applications makes easy to convert an application to hybrid

CPU-GPU execution.

 For any function (like F_GPU from the example) a special scheduler object is

instantiated. Every scheduler is responsible to run an associated GPU kernel, which

produces the same results as the original function. When a function designed to run

on GPUs is called, instead of:

F_GPU(arg1…argn);

 it will be performed through that function scheduler:

schedulerF_GPU.addCall(arg1…argn);

 The scheduler which can compute the F_GPU function on GPU is

schedulerF_GPU. Different from a regular function call, invoke does not execute the

function but it will append the given arguments to the scheduler list of invocations.

After that the scheduler yields the computation to the fiber which is next in the

fibers pool of the current thread. By doing this the current fiber is paused at the

function call, so the fiber can be resumed with the call result when it will be

available. In the case when a fiber code (ThreadFunction) does not contain calls to

functions to be run using GPUs, that code will run only on CPU until its end. After

that that fiber will be removed from the pool of fibers and its fiber successor will be

run. Figure 6.3 shows how all fibers are iterated

BUPT

78 Algorithm for hybrid execution on both CPU and GPU - 6

 While non-empty pool of fibers:

o When reached a GPU designed call, add the call arguments to the

scheduler of that function and yield the control for the next fiber

o On a fiber end, delete it from the fibers pool

o After each iteration of all the pools, run all the added calls using

GPUs

Fig 6.3 – The handling of the calls to the functions designed to be run on GPU

 After any iteration it is possible that some of the fibers will end. These are

deleted from the fibers pool. The remaining fibers are the ones paused in waiting for

GPU results. The schedulers with added calls will run them on GPUs, each scheduler

running its own kernel. The results are returned to the fibers. The schedulers call

lists are cleared so on the next iteration they will be empty. With this algorithm on

any iteration all the GPU calls are collected and this ensures an efficient use of the

GPU cores, by running simultaneously on them as many data sets as possible. The

process is repeated until all the fibers are deleted from the pools. If a pool becomes

empty, its thread is also ended.

 In the proposed algorithm only the schedulers require synchronization,

because more threads can access them concurrently. Inside one thread, its fibers do

not need synchronization because they run cooperatively. With this algorithm, the

only incurred overhead inside a single thread is the one needed by the fibers context

switching.

 From the above comments, the algorithm can be easily used in many

situations with only a few changes in the application. This is especially true for code

which is already multithreaded and a further GPU use is intended for it. Our

algorithm can be applied to an already multithreaded application by following the

next steps:

 Create schedulers for all the functions needed to run on GPU – mostly this

only requires coding the kernels for these functions and passing the kernels

source code to the schedulers in the initialization step

 The threads creation for the multithreaded code will be replaced with fibers

creation. To optimally use the CPU cores, the application can use a threads

pool and the fibers will be created circularly, one by one, in each thread, for

load-balancing.

BUPT

6.2 - The performance of the algorithm 79

 All functions designed to run on GPU will be called through their specific

scheduler, using the scheduler addCall method to accumulate the calls into

the scheduler calls list

6.2 The performance of the algorithm

 In this section we assess our algorithm performance and propose some

situations for its optimal practical use. Let’s consider an APP application that runs

simultaneously on NCCPU threads, with NCCPU being the CPU cores number. Inside

APP the function FN is desired to be run using GPUs. We wish to evaluate the

speedup SAPP of the application if we use the algorithm to execute FN using NCGPU

GPU cores. The FN function needs to be called N times.

 One FN call needs T1CPU time to be executed on CPU and T1GPU time to be

executed on GPU. In the case of N FN instances, if we run them by using CPU cores:

TNCPU=T1CPU*N/NCCPU (1)

 with x=min{n | n ≥x}. The time needed to execute N FN instances by

using GPU cores:

TNGPU=T0GPU+T1GPU*N/NCGPU (2)

 T0GPU is a supplementary time required for GPU execution by the transfers

between the CPU and GPU memory and by the translation of the data structures

from the CPU format into the GPU format and back (especially when they contain

pointers). The application requires a total time of:

TAPP=TNFN+TOTHER (3)

 with TNFN being the time needed to execute N FN instances and TOTHER being

the time needed for other components of the application. When FN is executed on

GPU, the speedup of the application is:

SAPP=(TNCPU+TOTHER_CPU)/(TNGPU+TOTHER_GPU) (4)

 where TOTHER_GPU>TOTHER_CPU, because on the GPU execution case some more

time is required by the APP for actions such as the GPU kernels loading and

compiling. Taking (4) into account, we will analyze the involved factors, in

connection with (1) and (2).

BUPT

80 Algorithm for hybrid execution on both CPU and GPU - 6

6.2.1 The GPU execution incurred overhead

 If the CPU is used to run FN, its data and code are taken by the CPU from

the memory of the computer (CMEM). After computation the results are put back

into CMEM. If the GPU is used to run FN, in many cases its data and kernel need

first to be transferred into the memory of the GPU (GMEM) from CMEM. When in

GMEM these are taken and computed on the cores of the GPU and put back into the

GPU memory (GMEM). In the end, the results are sent back to CMEM from GMEM.

The transfers CMEM->GMEM->CMEM are not required for architectures with shared

memory, such as integrated CPU+GPU.

 Before the transfer CMEM->GMEM usually is required another step, for data

fetching and translating from the application data structures into the GPU needed

structures. An application may employ complex structures for its data and these

structures must be transformed into a form adequate for execution on GPU. This

requires iterating the structures, sometimes recursion and possible allocation for

new memory to store the transformed structures.

 After the application data was transformed into structures suitable for

execution on GPU it is sent from CMEM to GMEM using busses like PCI Express

(PCIe). The bus usage for data transmission can be a bottleneck with significant

effects [74] for heavily multithreaded applications or when the data is transmitted in

big amounts. After the GPU processing, the above steps are reversed: from GMEM

data is retrieved to CMEM using busses and it is again iterated to transform it from

the form in which the GPU produced it into a form suitable for the application logic.

The transformation step may need recursion and memory allocation.

 It can be seen that when a call is executed on CPU it needs only 2 transfers

of memory (CMEM->CPU core and CPU core->CMEM). If the call is executed using a

GPU, it needs 6 memory transfers (CMEM->CMEM (transformation step), CMEM-

>GMEM (over a bus), GMEM->GPU core, GPU core->GMEM, GMEM->CMEM (over a

bus) CMEM->CMEM (transformation step)). The data transferred between different

types of memory (CMEM->GMEM or GMEM->CMEM) also cannot be cached in the

GPU or CPU cache memory and it makes its use even more time-consuming than

the case of CMEM->CMEM transfers which can be sometimes cached in the cache

memory of the CPU.

 T0GPU is important when the called function (FN) needs just a few

instructions to be executed. The overhead in this situation is similar with the needed

CPU time to execute FN, particularly if the FN code and its data can fit on the cache

memory of the CPU. For these small functions, their GPU execution will lower the

performance of the application. It can be seen that it is a practical minimal

instructions number (or cycles of the CPU) which can be considered as a lower limit

for GPU execution of a function. Less than that number there is no gain resulted

BUPT

6.2 - The performance of the algorithm 81

from an execution on GPU, because the possible speedup is lesser than the needed

time for the transfers of the memory and for the supplementary code needed to

transform the application data structures into a GPU suitable form. This minimum

limit depends of aspects such as memory latency and speed, CPU cache size and

speed. It may be experimentally evaluated. In this algorithm the developer is

responsible to select the functions to be run on GPU. He can do this by taking into

account many factors, especially the ones presented on section 1, when the

differences between CPU and GPU were discussed. In the same time he can test the

experimental results when a specific function is run on GPU.

6.2.2 The application threads number influence

 Many consumer CPUs are built with fully autonomous 4-8 cores and

capabilities such as SIMD, multistage pipelines, execution with out of order

capabilities and also a CPU is better equipped with cache memory and has better

clock rates than a GPU [75],[76]. Particularly if the function desired to run on GPU

(FN) needs many branches, the core of a CPU can benefit greatly from capabilities

like branch prediction. In the case of applications which use instruction sets like AVX

or SSE when the CPUs are equipped with these instructions, the computing

throughput of the application can be improved up to a 32x speedup (when using

256 bits AVX2 operands for bytes operations, like the instruction VPADDB that

simultaneously adds 32 integers of 1 byte each). The main strength a GPU is its

cores high number that ensures substantial parallel throughput especially for

numeric computations, despite the fact that the GPU cores are organized in SIMD

groups, so these cores are not entirely independent. If the function FN needs many

branches, the cores of a GPU may by affected by branch divergence and this

degrade further the performance.

 From the above considerations, in many cases T1GPU>T1CPU, so for a smaller

N, near of NCCPU (and if SIMD instructions are used multiplied by their width) and

considering the clock frequency difference between GPUs and CPUs, it is more useful

to fully run FN using CPUs, not on GPUs. For example, when the application runs on

a 8 cores CPU at 3 GHz, for float32 data and it makes use of an instruction set such

as AVX with operands on 256 bits, the throughput of the computation is at the

minimum the same with a GPU with a number of 192 cores clocked at 1 GHz

frequency: (3 GHz/1 GHz) * 8 cores * (256 bits/32 bits) = 192 cores. That outcome

is correct if there are not vector operations used on the GPU execution, so every

core of the GPU executes 1 math operation/clock only. The smallest N for which the

execution on GPU starts to be beneficial for an application is influenced by factors

such as the code flow of FN, the ratio between the GPU and CPU clock rates, the

BUPT

82 Algorithm for hybrid execution on both CPU and GPU - 6

relative complexities of their cores (aspects such as the cache memory size or

hardware optimizations like out-of-order execution), instruction sets (availability of

complex instructions such as cryptographic extensions) and their amount of cache

memory. For example if the FN code has multiple branches, the code divergence on

GPU will be increased, which will require some cores to wait until all the cores will

reach again the same instruction, or until the running cores will end their tasks.

 It can be seen from the above observations that in an optimal case for an

application to run using GPUs, that application has a large threads number, it uses

time-consuming functions (so the CPU execution time is bigger even if the overhead

incurred by the execution on GPU is added) and the functions are arithmetically

intensive. The definition of the arithmetic intensity is the performed operations

number per memory transferred words.

6.3 The test application

 We tested the algorithm with a C++ application in which we implemented

the threads, scheduler and the fibers pools required by the associated framework.

For the interface with the GPU (code compilation, data transfer and

synchronization), OpenCL [77] was used, since it provides an open standard which

is supported by the GPU producers. Our application uses a sphere to render on it a

Mandelbrot fractal using a common illumination model, as described below. Figure

6.4 shows the resulted image. The selection of the code parts to run on GPU must

be made by programmer. In this case, even if GPU can be used for all the rendering,

we implement the process using 3 stages, so we can test the GPU-CPU

collaboration:

 In stage 1 the CPU is used to cast ray traces for all pixels of the image. In the

case of intersections, the point of the intersection is mapped into the surface

coordinates (u,v) of the sphere

 In stage 2, computed on CPU and in the next test on GPU (to assess the

differences between executions) the MandelbrotPoint function shown in Figure

6.5 is called for each (u,v) point to determine the color of that pixel

 In stage 3 the CPU is used to apply an illumination model for each pixel, so

the incidence of the ray at the surface of the sphere is taken into account

 These stages are particular to this application. In the general case, an

application can have any number of stages and the CPU and GPU executions can be

mixed in any order.

 All pixels are concurrently computed. For CPU tests separate threads are

used (optimized by using a threads pool) and the threads number is equal with the

BUPT

6.2 - The performance of the algorithm 83

number of the CPU cores. For the GPU tests separate fibers are used. With this

setup there is a one to one mapping between the threads/fibers number and the

image pixels number. The sphere is placed in a way that all the visible area is

covered. In this case the sphere is intersected by each ray trace, so all the above

stages are executed for each pixel. That setup permits a more homogeneous result

evaluation and it also needs a bigger time for computation, so the execution time

differences can be shown better.

Fig 6.4 – The test application result

 We used 3 different ways to compute stage 2: 1 CPU core, 2 CPU cores and
GPU execution. Each way was tested on a separate run and we compared the
results. The Mandelbrot fractal was chosen for the test because some reasons:

 Its GPU kernel implementation is almost identical with the CPU
implementation, which allows for a more meaningful comparison

 MAXITER_MANDELBROT can be changed if we want to vary the maximum
number of the possible computations done in each call

 The kernel parameters are the point from the sphere surface for which the
fractal will be calculated. The number of iterations in which the point convergence
was computed is normalized to the interval 0...1 and it is used as a monochrome
shade.

#define MAXITER_MANDELBROT 10000
float MandelbrotPoint(float xp, float yp)
{
int iter;
float xiter, yiter, xtmp;

xiter = yiter = 0;
for(iter=0; xiter*xiter+yiter*yiter<2*2

 &&iter<MAXITER_MANDELBROT;
 iter++){

BUPT

84 Algorithm for hybrid execution on both CPU and GPU - 6

 xtmp = xiter*xiter-yiter*yiter+xp;
 yiter = 2*xiter*yiter+yp;

 xiter = xtmp;
 }
return (iter%256)/(float)255; //colors range normalization

Fig 6.5 – The function MandelbrotPoint

6.4 Experimental results

 We used an E8200 Core™2 Duo Intel CPU at 2.00 GHz computer with a

memory of 2 GB DDR2 and the 64 bit version of the Microsoft Windows 7 Service

Pack 1. The GPU is a GTS450 Asus DirectCU Silent graphic card. This GPU has a

memory of 1 GB DDR3 and uses the NVIDIA GF116 chip with 192 cores and clocked

at 595 MHz. The GPU driver was NVIDIA WHQL v320.18 with OpenCL 1.1 support.

For the tests on GPU, the compiling time for the kernel (~3 ms) is not included into

the time measured, because this step is only once performed and it is relatively

insignificant for most of the applications. The compiling time of the kernel can be

significant for applications that run numerous times (such as web services), which

use several large kernels without the facility to cache the already compiled kernels.

In this case, the kernel compilation is repeated for each application run and it may

require a significant amount of CPU computation.

 To evaluate the relation between the computation time and the number of

iterations performed, we computed an image of 200x200 pixels, varying the

Mandelbrot iterations maximum number (the loop “for” of the Figure 6.5). The

Figure 6.6 shows the results. We begun with 5000 iterations as the maximum and in

each step we increased this maximum in increments of 5000, until we reached a

maximum of 100000. The iterations numbers were chosen to allow a measurable

increase in the computation requirements.

BUPT

6.4 - Experimental results 85

Fig 6.6 – Different maximum iterations number rendering time

 The function MandelbrotPoint may need fewer iterations than

MAXITER_MANDELBROT, so the total iterations effectively run was counted this was

averaged for all the pixels of the image. In this way we obtained the average

iterations/pixel effectively computed on average through the entire image. This

metric allows a more objective view for the involved amount of computation. The

relation between the MAXITER_MANDELBROT (maximum Mandelbrot

iterations/pixel) and the iterations/pixel effectively computed is represented in

Figure 6.7. It can be seen that for a limit of maximum 50000 iterations, the

iterations/pixel effectively computed is 4005.

Fig 6.7 – Average Iterations/Pixel required by MandelbrotPoint

 From Figure 6.6, it can be seen that when the number of iterations is lower

(for 1 CPU core until around 1400 and for 2 CPU cores around 2300) it is more

beneficial to execute the MandelbrotPoint function using the CPU. For higher

numbers, the execution on GPU becomes more advantageous, since the fibers used

BUPT

86 Algorithm for hybrid execution on both CPU and GPU - 6

(one fiber for each pixel) are spread to all the cores of the GPU (in our case 192

cores). That result confirms the Section 6.2.1 performance analysis, about the

added overhead T0GPU impact for small values of T1GPU. The added overhead impact

is also represented in that figure by the time need for execution of the minimum

workloads that is greater in the case of the GPU execution. Figure 6.6 is a good

incentive to optimize the applications for execution on GPU, because across all the

test range it can be seen that even when the total workload was bigger by ~11.8

times, the GPU execution time was increased by only ~20.1%, while in the same

time the increase when the full CPU (both its cores) was used was ~774%. For the

execution time of the application this is an important progress, achieved when a

GPU was employed.

 To assess the computation time dependency in regard to the total executed

fibers, we computed images of various sizes. The maximum number of iterations

was set to 70000. We begun with an image of 25 pixels width (resulting in 625

pixels rendered). The image width was increased with 25 pixels at each new step.

There is a one to one dependence between the threads/fibers number and the pixels

number. Figure 6.8 shows the results.

 Considering the Section 6.2.2 performance analysis, in the case of a small

fibers number, it is more beneficial to execute them using the CPU. The GPU

becomes a more advantageous solution for an increased fibers number. When 2500

fibers were needed, the performance of the GPU (while using all its 192 cores) was

better only by 2.02 times than the execution using the CPU (2 CPU cores). When

5625 fibers were needed, the difference between GPU and CPU increased to 2.19.

Our analysis is consistent with these results and they demonstrate the

computational performance difference between the GPU cores and the CPU cores,

when the measurements include the additional overhead T0GPU.

Fig 6.8 – Different image sizes rendering time

BUPT

6.5 - Conclusions 87

6.5 Conclusions

 We presented in this section a new algorithm that enables the programmer

to select for GPU execution only desired parts from a multithreaded code. That

algorithm allows a cooperative GPU-CPU model of computation, which is helpful for

several application classes. With this model of cooperative execution, even complex

algorithms can be split in parts suited for GPU or CPU execution, so the programmer

can choose for them the most advantageous computing resource.

 The existent multithreaded applications can easily employ our algorithm,

without demanding more restrictions or any other further limitations. In that respect

the algorithm is suitable for the optimization of the existent applications for

execution on GPU. The related runtime uses only standard APIs (for example fibers)

existent in all the most used operating systems. This allows good application

portability. The concepts used by the framework can be implemented by many

programming languages.

 The performance analysis of the algorithm highlights the most important

factors implicated in the decisions concerning the selection of the most suitable

computing resource both for functions and for applications. A programmer can use

that analysis to accurately assess the impact of the GPU or CPU execution on the

application performance.

 The related framework is implemented in C++. The test application was run

to evaluate different cases. From our results, it can be seen that an application can

greatly profit from a GPU-CPU cooperative model of execution. The relative weight

of the involved factors was also highlighted in the use of each of the two computing

resources.

 Our research can be further developed in directions like multiple GPUs

usage, accurate algorithms and metrics to measure and to evaluate a function

performance when it is executed on different resources, further enhancement and

optimization of the related framework.

BUPT

Section based on the paper: Razvan-Mihai Aciu, Horia Ciocarlie, ”Runtime Translation
of the Java Bytecode to OpenCL and GPU Execution of the Resulted Code”, accepted
at Journal of Applied Sciences “Acta Polytechnica Hungarica”, ISSN1785-8860, 2016

7. Java bytecode runtime translation to OpenCL
and GPU execution

 In this section we present a novel algorithm and library, which are capable

to automatically translate at runtime the host application bytecode to OpenCL and to

execute the resulted code on GPU. The algorithm is suitable for the cases when

certain application modules can be run entirely on GPU. All the steps involved in

using the GPU are automated: the Java bytecode translation, host data structures

serialization into a GPU suitable format, GPU management and communication,

results retrieval and their conversion back into the host data format. The library

follows our proposed model and it abstracts the usage of the CPU and GPU. Both

CPUs and GPUs are automatically used when available, without any specific settings

in the source code.

 Up to OpenCL 2.1 [78], which provides a high level language (subset of

C++14) and also a standard intermediate representation (SPIR-V), the programs in

OpenCL were defined using a subset of C99. To maximize performance, the OpenCL

API is provided in C. The development of an OpenCL application involves the

following tasks:

 implementation of the OpenCL code to be run on GPU

 conversion of the data to a format which can be used by GPU

 communication and synchronization between application and GPU

 GPU data retrieval followed by its conversion back to the format of the

application

 When we analyze the direct translations to OpenCL from the application

bytecode, including data structures, we can notice that the process is a standard

procedure. It can be addressed by special purpose tools and libraries. The

translation of the Java bytecode into OpenCL is a problem of compiler theory and it

can be solved by code generators which generate output for higher level language.

Also the remaining tasks can be solved by specialized algorithms. The output code

have the same behavior as the input, because it is only a new representation of the

original code. It is not addressed the problem of creating advanced optimizations for

the GPU code, but certain situations are still optimized. An optimization can employ

intrinsics, translated directly to OpenCL constructions in certain situations. We

BUPT

7.1 - OpenCL code generation related work 89

propose a library and an algorithm, which automatically handles the tasks discussed

and which also simplify much the interoperation between application and GPU. This

library implements when possible the above optimization so it generates OpenCL

native instructions.

 Code generation from application into OpenCL is advantageous because it is

easy to employ and also it hides many of the GPU specific aspects. The developer

does not need to implement special data structures. He also does not need to

implement serialization, deserialization and synchronization to interoperate with the

GPU. Custom kernels or libraries can be used if needed, and they can replace later

the automatic generated code.

7.1 OpenCL code generation related work

 We discuss here different libraries that convert to OpenCL fragments of their

own code. Different algorithms can be employed for this process. For every method

benefits and drawbacks are highlighted.

 One method uses the original source code to generate OpenCL, by using

preprocessor instructions. That method is employed for example by the Bolt library

(C++) [79]. The Bolt library provides macros like BOLT_FUNCTOR that encapsulate

segments of the original code, transforming it to text representations. The texts are

glued to constitute the OpenCL output. No further processing is provided for the

captured strings. These are used in the original form in which they are provided.

The strings are combined using glue code. After that they are written in a suitable

order. That procedure is straightforwardly applicable to languages with the same

lexical and syntactic structure as the OpenCL, for example C and C++. We can note

certain advantages, such as the fact that data structures are in the same layout in

the application and in OpenCL. The exact layout of data can be enforced using

alignment specifiers. This method considerably simplifies the interoperability

between host and kernel. If the data uses a compact structure (for example without

pointers to distinctly allocated structures), the data can be sent to GPU in its native

form so there is no overhead incurred by serialization/deserialization. The code is

also the same on the application and on kernel, which greatly simplifies debugging

and also CPU fallback computation if no GPU is available. As some weak points of

this method, we can mention the necessity that all the GPU code involved and its

dependencies to conform to the OpenCL subset. On simple kernels this requirement

is simple to accomplish. In cases with external dependencies, these dependencies

need to be encoded in C/C++ restricted form, compatible with OpenCL. For the

original code, all the dependencies which are not textually included in project need

to be enclosed manually using provided macros. Other shortcoming is that the code

provided at runtime (plugins, formulas, snippets) cannot be processed.

BUPT

90 Java bytecode runtime translation to OpenCL and GPU execution - 7

 Another method implies explicitly building at runtime the computation

needed using suitable representations, followed by OpenCL generation. Suitable

representations can be different forms of Abstract Syntax Trees (AST). Employing

standard procedures, OpenCL can be produced using the AST. Libraries such as

ArrayFire [80] use that approach. This method provides to the application the

possibility to run on GPU as a single kernel combined library functions, and so it

eliminates the transfers between host and GPU, such when these functions are run

individually. The AST leafs represent the data involved, interfaced by proxy

adapters. AST nodes are operators and functions. Using operators overloading, the

AST coding for expressions can be in many cases syntactically abstracted as

expressions using infix common operators, also including their parenthesis and

precedence rules. This method is very flexible. If the AST structure allow (when

nodes can encode loops and declarations), any construction may be generated.

Expressions provided at runtime or snippets of code can be compiled easily by

parsing them and generating the associated AST. This method has some drawbacks

such as the need to write manually the AST. In the case of small kernels, having

only simple expression and combining only predefined functions, that task is easy.

In the case of big kernels needing variables, loops and decisions, the AST encoding

may be tedious and complex. As a different disadvantage, the AST representation is

separated from the source code and it is not directly available for inspection.

Because of this, the debugging is difficult and also the interfacing kernel/application

is complex, even if predefined helpers are used.

 Other method uses the programming languages reflection features. This

allows the application to access its bytecode. That method is applicable in

languages having sufficiently powerful reflection features, for example C# or Java.

With this method, segments of the application code are decompiled and translated

to OpenCL. A translation begins at the algorithm main method (provided by an

interface exposing the main method of the algorithm to be executed on GPU). If this

method needs other dependencies, these are also decompiled and added to the

generated code recursively. The required structures are also translated and the live

data is retrieved and encoded to the output format. That method is used in well

known libraries, for example Aparapi [81]. The Aparapi library receives an instance

of a class derived from the predefined Kernel class. The bytecode of this instance is

translated to OpenCL. Aparapi uses the method run of a class inheriting Kernel such

as the starting point. The required data is also serialized and deserialized. That

method can be applied on many situations and it is possible to automatically handle

different OpenCL related tasks. Also, the resulted kernel is a direct translation of the

application code which adds certain benefits, for example ease of debugging (the

application can be debugged using standard Java tools), also the possibility to

employ CPU fallback computation if no GPU is available. Other benefit is the capacity

to translate specific constructs to OpenCL optimized forms. The Java Math class has

many methods with corresponding OpenCL primitives. Other commonly used

primitives, for example dot and cross products may be added. That method also

allows plugins with GPU execution to be loaded at runtime. A shortcoming of these

BUPT

7.2 - Our proposed algorithm and library 91

methods is given by the increased time needed for kernel generation due to the

overhead produced by the code disassembling. This can be alleviated caching the

generated kernel for later reuse. In the Aparapi particular case, for now it is

implemented as a thin layer on top of OpenCL, so it uses specific functions like

getGlobalId. Even more important, Aparapi does not process data structures which

have objects (it supports only primitive types, single dimension arrays), so complex

data structures must be handled manually by implementing proxy code. The support

for reference types was planned on certain architectures, for example

Heterogeneous System Architecture (HSA).

 A more integrated approach is the Sumatra OpenJDK [82] project. Its

primary goal is to enable the applications written in Java to use GPUs and other

devices from this class. The project Sumatra tries to translate specific APIs like Java

8 Stream into HSAIL (HSA Intermediate Language). HSAIL will be next converted

for concrete architectures, (CPUs and GPUs). An important specific aspect when

compared with the previous methods is that in this case different OpenJDK

components are employed (custom compiler and virtual machine) for the GPU

interconnection tasks, making the GPUs first class citizens of the targeted

architectures. As of this writing, Sumatra project is mainly in proof of concept

stages. It also depends by the adoption of new technologies (HSA). If it will enter

production, this project may be an important step forward on the heterogeneous

execution of the Java applications.

7.2 Our proposed algorithm and library

 The algorithm uses runtime reflection in order to access the application

bytecode, followed by disassembly, analysis, code generation, in order to generate

OpenCL from the relevant code. In the execution phase required data is

automatically serialized and transferred to GPU. Our algorithm also handles GPU

synchronization and results retrieving, followed by a conversion to the data

structures of the application. As the main goal, the GPU execution is abstracted as

much as possible. A single code could be executed on CPU and GPU, and this allows

easy debugging and it also provides execution fallback on CPU if no available GPU.

The library generates OpenCL code for cases of medium complexity, such as

structures with reference types (class instances), exceptions and dynamic

management for memory. With these features we create new possibilities to run

code on GPU, when compared with Aparapi like libraries. These libraries are mostly

thin layers on top of OpenCL, with OpenCL API dependencies which need to be

explicitly called by the programmer. Our abstraction layer may cause some loss of

performance. In the cases where better optimization is needed, the developer can

code key algorithms using a more optimized form for execution on GPU.

BUPT

92 Java bytecode runtime translation to OpenCL and GPU execution - 7

 The algorithm starts with a tasks scheduler that enqueues the user provided

tasks, run the tasks using the GPU and receives their results. We enhance [83] the

Java thread pools API with an MapReduce model [20] semantics, asynchronous and

event driven handling on the receiving side, in the same way as Node.js [84] non-

blocking operations. Our library makes available distributed execution using

different resources like GPU, CPU or network computers. When results are sent

back, they are processed by the overridden set method of an object that

implements the interface Destination. To this method are sent the results and a

identifier unique for each task, like an index into an array. A Destination may

abstract relatively simple collections like maps and arrays. A Destination can also

implement advanced processing, by using the data immediately. With this approach,

when it is allowed by the application algorithms, the retrieved results may be

directly processed on arrival without needing to store them first. The scheduler

begins running the jobs when they are added. After the addition of all the jobs, it is

called a synchronization method to ensure that all the processings are ended and

the results are available.

 One task is represented like an object that implements the interface Task.

The only method of this interface is run. A task encapsulates all the required data.

The task is created in the host (application) side and enqueued asynchronously for

execution on GPU, using the add method of the scheduler. That method associates

also a unique identifier (UID) for each task. The UID will be used when the

computation result will be processed. Task data is serialized, then sent to GPU. After

the result is computed and returned from the run method, it is converted to the

format of the application and sent to the scheduler destination. One generic use is

shown in Figure 7.1.

// the class Result is defined by programmer and it encapsulates the result of a task

class ResultHandler implements Destination<Integer, Result>{
 // arguments: task UID, data received from computing resources

 @Override public void set(Integer id, Result ret){
 // received result processing
 }
}
class TaskHandler implements Task<Integer, Result>{

 public TaskHandler(/*in task specific parameters*/){
 // the initialization of one task on the host side
 }
 @Override public Result run() throws Exception{
 // runs the task using the GPU; returns the Result to the application
 }

}
// ... library start...
// instantiation of the Scheduler

Scheduler <Integer, Result> scheduler=new Scheduler<>(new ResultHandler());

BUPT

7.2 - Our proposed algorithm and library 93

// the creation of tasks and their addition to the scheduler queue

for(/*all input data*/){
 TaskHandler task=new TaskHandler(/*data specific for each task*/);
 scheduler.add(id, task); // add asynchronously the task to queue
}
scheduler.waitForAll(); // wait until all tasks are completed

Fig 7.1 – One generic use of our library

 In simple cases like the processing of the Java standard collections,

implementations for the Destination class are provided. From the above

considerations and example, the processing resources are fully abstracted. On the

Task implementation and on scheduler no OpenCL specific instructions are used, but

only general concepts, like the task UID. That allows a better modeling of the

domain of the application; it better abstracts the computing resources and an easier

porting to other architectures. Other specific calls are provided only for special

cases, for example when multiple resources exist and we need to select a specific

one.

 When new jobs are enqueued, the scheduler first checks the case when it

already has generated the OpenCL code of that task. When the OpenCL code was

already generated it will be used, otherwise the host code for the task is loaded via

reflection. The bytecode is disassembled and the OpenCL corresponding code is

produced. The instances data of the tasks are serialized. To accomplish that, their

fields are checked by reflection. Their content is copied in a buffer. This will act as

the global heap of the OpenCL code. The serialization and disassembly for both code

and data are treated in a recursive manner. They continue running until all

dependencies are processed. When the GPU ends running the code, the data from

the (modified) heap is sent back to host and deserialized, updating the application

data. In this way the modifications made by the running kernel are propagated back

to the application. It also makes available to the application the structures allocated

by the kernel.

7.2.1 Serialization and retrieval of the data

 The space needed for the global heap, serialized data, and dynamically

allocated memory is provided in one buffer named the OpenCL heap or global

memory. The references to data are translated into offsets into heap. A kernel uses

heap relative indexing to accesses data, in the same way as array accesses. That

method has an impact on performance when the GPU native instruction set does not

have indexed access. If this is the case, an instruction will need to add a particular

BUPT

94 Java bytecode runtime translation to OpenCL and GPU execution - 7

data offset at the heap base pointer. Solutions such as employed for Sumatra

project may utilize shared virtual memory (SVM – introduced in OpenCL 2). In the

Sumatra context this can be done because the JVM implementation is known

(OpenJDK), so all its specific capabilities and structure can be employed. On a

general case, a memory layout is not specified by JVM for many data structures, so

the SVM cannot be directly used.

 Our serialization algorithm directly copies the primitive JVM data types. One

aspect is when the GPU has a different endianness from the host. In this case a

conversion must be made. The values handled by reference are handled according

to two situations: arrays and class instances. The first member is in both cases a

UID for that array type or class. In the cases of the class instances, their references

and primitive values are added on the reflection order. All classes are implemented

using OpenCL structures. The class instances are accessed and created through

their corresponding class structures. The array length for arrays follows after UID

and after it the array elements. The primitive type arrays are separate types. The

reference types arrays are implemented using only one array type (Object) and

employing type erasure. To be able to know the heap offsets for all instance

members and array elements at the serialization of the enclosing instance, the

members are serialized first, in a recursive way. The static members of the classes

are also stored on heap and they are accessed using the global context.

7.2.2 Code generation

 There are specific JVM features that do not exist in OpenCL, for example

exceptions throwing/catching, dynamic allocation, recursion, virtual method calls

(non-final methods). These features must be made available as a layer over the

OpenCL supported functions. Features like host functions calling are not available for

now in OpenCL and it is no way to do this apart of ending the kernel execution,

calling the function from the host and running again the kernel from the last ending

point. This prohibits the usage of I/O functions, effectively blocking the use of the

APIs like network or the file system.

 In the first step, it is simulated linearly (without branching or looping) the

JVM bytecode for each method, using a symbolic stack. In this stack a cell

represents an AST node. The bytecodes which operates on stack combine the

operand nodes into new, result nodes, which will also be pushed on stack,

simulating the action of the operator. For example the bytecode for constant push

creates an AST leaf for one constant value or a bytecode for addition creates the

AST addition node, combining the two top AST nodes from the stack. Different

nodes are created and operated on by instructions that do not update the stack,

such as the opcode goto. When this step is ended, there is a distinct full AST

BUPT

7.2 - Our proposed algorithm and library 95

constructed for any method. By traversing these ASTs we generate the OpenCL

code.

 A complex topic is the memory allocation. It is important particularly in the

case of automatic memory management, and especially when there is no value

semantic for classes, which made possible only dynamically allocated class instances

(if the compiler does not optimize the allocation). On environments with a large

number of threads like in the GPUs case, where several thousand tasks may run

simultaneously, memory allocators specially designed are very important, otherwise

they will constitute performance bottlenecks [85]. For this implementation we

created a lightweight and fast memory allocator, on the same principles as [86],

which for now is capable to only allocate data. By using this approach we obtained a

high throughput on allocations (a single atomic operation required for heap access

serialization) and there is no memory overhead associated with the blocks allocated.

For now the allocator does not free the non-referenced memory, so a developer

needs to be careful on the allocations number. When many memory allocations and

reclaiming cycles are needed, this may be a serious problem and the allocator

should be completed with garbage reclaiming. From the programmer point of view,

considering that the situations when execution on GPU is required are mostly

situations when high performance is needed, simple methods may be employed to

reduce memory allocations. These methods also optimize for CPU and GPU by

lowering the allocator pressure. In our OpenCL interface library, we reduce the

allocations number by reusing already existent objects. To be able to do this, we

made the operations on objects (like vectors addition) to use for result the first

argument of the addition function. In this way we avoid creating new result vectors.

Because OpenCL does not have global variables, every function needs to access the

global variables (in this case use the base of the heap address) and this is accessed

through a supplementary argument for each function. There is no overhead

associated with the function call (the OpenCL compiler inlines all the function calls

so no code is required for parameters passing).

 Even in newer versions such as 2.1 (based on a C++ subset), there is no

exceptions handling in OpenCL. In Java, even if the developer does not use

exceptions in the GPU executed code, the exceptions may originate in the memory

allocator on out of memory cases. Because facilities like stack unwinding are not

supported, the exceptions were implemented using the functions returned values.

Each function returns an integer that is a heap offset. For the 0 value (associated

with Java null pointers), there is no generated exception. If exceptions are thrown,

the exception objects are allocated and the index of the allocated exception is

returned. All function calls are guarded against non-zero returned values. When this

case takes place, the enclosing functions exits immediately, further propagating the

exception received. When there is no catching block for the exception on any level,

the kernel will end with the exception object returned to application like that

particular task result. In order to have a valid exception object for out of memory

cases, an OutOfMemoryError exception object is preallocated. Because the functions

BUPT

96 Java bytecode runtime translation to OpenCL and GPU execution - 7

returns propagate exceptions, if a function has a non-void return type, the returned

value is stored using a supplementary parameter transferred by reference that is

added by the compiler to all non-void functions. That parameter points to the

variable that will receive the value returned. The return instruction uses this

parameter to store its expression at the referred address. We studied the GPU

machine code generated from the produced OpenCL kernel to assess the impact of

this implementation decision. As the OpenCL compiler inlines all its functions, the

pointer indirection required to store the returned value was simply replaced with

direct stores, so this implementation did not added supplementary processing.

Similarly, the checks for non-zero returns and early exit of the enclosing functions

were propagated up to the original exception point (the out of memory check inside

the memory allocator), followed by an immediate exit from the kernel when the user

code does not use try…catch statements. In conclusion the compiler optimized away

this checking.

 Some Java core classes like Object, Math and Integer are handled as

intrinsics. That allows a more optimized code generation, which uses the predefined

functions in OpenCL. Several Math functions can be directly translated into native

functions, because they are defined already in OpenCL. Some available OpenCL

functions, like cross and dot products were implemented in an auxiliary intrinsic

library. The calls to these functions are treated as intrinsics. When the tasks are not

run using a GPU, this library uses automatically a pure Java implementation, so it

will run on any JVM. In Figure 7.2 there is a code generation example. We show the

Java method we used to compute a Mandelbrot fractal and in Figure 7.3 (enriched

with some comments and also formatted to reduce the lines number) we show its

OpenCL generated code.

int mandelbrot(float xp,float yp){

 final int ITERATIONS=256;
 float xiter=0,yiter=0;

 float xtmp;
 int iter;
 xp=translate(xp, 1.2501276f, 3.030971f, 0.31972017f, 0.34425741f);
 yp=translate(yp, -2.9956186f, 1.8466532f, 0.03119091f, 0.0572281593f);
 for(iter=0;xiter*xiter+yiter*yiter<2*2 && iter< ITERATIONS;iter++){

 xtmp=xiter*xiter-yiter*yiter+xp;
 yiter=2*xiter*yiter+yp;
 xiter=xtmp;
 }
 return iter;

}

Fig 7.2 – The Mandelbrot method – original Java version

 For overloaded functions, to generate multiple C names starting from the

same Java name, we created a name mangling algorithm, because the original JVM

BUPT

7.2 - Our proposed algorithm and library 97

name mangling has characters that cannot appear in valid C identifiers. This

mangling algorithm was also needed to make the difference between similarly

named functions in different classes. In our system it is appended to a function

mangled name the context (class name and package) and the signature (the

arguments types).

// _g - pointer to heap
// _l - pointer where the return will be stored
// return value: 0 on no exceptions, a heap index for exceptions
// idxtype - integer type used heap indexing (unsigned int)

idxtype tests_D_T3Work_D_mandelbrot_LP_FF_RP_I
 (_G _g, idxtype _this, float xp, float yp, int *_1){
int ITERATIONS, iter, _TV8; // temporary variables: _TV*
float yiter, xiter, xtmp, _TV5, _TV6, _TV7;
idxtype _0; // for exceptions testing and propagation
ITERATIONS =256;

xiter=0.0; yiter=0.0;

// all function calls are checked for exceptions occurrence
if((_0=tests_D_T3Work_D_translate_LP_FFFFF_RP_F(_g, _this, xp,
 1.2501276,3.030971, 0.31972017,0.34425741, &_TV5))!=0)return _0;
xp=_TV5;
if((_0=tests_D_T3Work_D_translate_LP_FFFFF_RP_F(_g, _this, yp, -2.9956186,
 1.8466532, 0.03119091, 0.0572281593, &_TV5))!=0)return _0;

yp=_TV5;
iter=0;
goto _TMP172;
_TMP173:;
_TV5=xiter*xiter;_TV6=yiter*yiter;_TV7=_TV5-_TV6;_TV5=_TV7+xp;xtmp=_TV5;
_TV5=2.0*xiter;_TV6=_TV5*yiter;_TV5=_TV6+yp;yiter=_TV5;

xiter=xtmp;_TV8=iter+1;iter=_TV8;
_TMP172:;
_TV5=xiter*xiter;_TV6=yiter*yiter;_TV7=_TV5+_TV6;

// to implement the JVM FCMPG opcode, FCMPG macro is used
_TV8=FCMPG((float)_TV7,(float)4.0);
_TV5=_TV8>=0;
if(_TV5)goto _TMP177;

_TV8=iter<256;
if(_TV8)goto _TMP173;
_TMP177:;
*_1=iter; // set the return
return 0; // no exceptions
}

Fig 7.3 – The Mandelbrot method – OpenCL generated code

BUPT

98 Java bytecode runtime translation to OpenCL and GPU execution - 7

 In OpenCL there are no functions pointers or any means for indirect calls. In

this situation, the virtual (non-final) functions (implemented commonly with virtual

tables and pointers to dispatch functions) must be implemented differently. In this

implementation the first member of each class structure (the unique class

identifier), can be used in this purpose. That identifier is used as an index to a

vector maintained on host containing the structures for the generated classes. That

field for each kernel maintains its value on any actual heap serialized data. By using

that id a virtual function may be implemented checking the id of the current object

using a switch statement with dispatches for every situation possible (for all classes

in a specific hierarchy that provide an implementation for that function). Similarly

can be generated dynamic dispatch for all implemented interfaces. Our generator for

now does not implement fully dynamic dispatch (virtual methods) and we can only

use the Java final classes, in which the compiler can infer the specific method called.

 Because the GPU do not has an execution stack, recursive calls are not

implicitly supported [87]. A programmer must use an iterative version of an

algorithm or the recursion should be implemented with an explicit stack. Our library

in this version does not implement code generation for recursive calls. We consider

that a limitation that can be solved so we are trying to implement recursive calls in

the next versions.

7.3 Practical results

 To test the algorithm and library, a Java application was created which

renders an image using ray casting. It sends primary rays, without reflections or

refractions. We used a test scene made from 1301 spheres. Every sphere has the

Mandelbrot fractal drawn as a procedural texture. In this case every pixel is

computed on-demand, without using precomputed bitmaps. Along with the

procedural texture, on each point an illumination model is computed. This model

considers the intersection angles between the rays and the normals of the spheres

on the intersection points. The horizontal lines are treated such as separate tasks

(work-items). Figure 7.4 shows the final result. Java features like classes, static

members, members of reference types were used. All calculations are done using

FP32. The Java Math library has especially FP64 operations, and it was needed to

write a wrapper for the Java provided function, to have a FP32 version. Because of

this, different operations such as cos() or sin() are executed on CPU as FP64 and on

GPU as FP32. It was assumed that in the real world scenarios with FP32 data use,

the developer does not convert it to FP64 for cos() or sin(), but the developer will

use FP32 if possible. In the OpenCL code these operations become intrinsic

functions. Specific OpenCL or CPU features were not used. The application ran

without modifications on GPU and CPU. Our library uses in this version for

BUPT

7.3 - Practical results 99

manipulating Java bytecode the ASM v5.0.3 library [88]. Standard OpenCL bindings

are provided by JOCL v0.2.0-RC [89].

Fig 7.4 – The test program result

 We used the following configuration for tests:

 a computer with CPU Intel® Core™ i5-3470 at 3.20 GHz, 8GB RAM, Java SE

8u45 and Windows 7 64 bits Home Premium SP1. The CPU has 4 cores.

 GPU AMD Radeon™ R9 390X, 1060 MHz, 8GB GDDR5 RAM. The GPU has

2816 streaming cores with 44 compute units.

 We observed three main aspects: the GPU execution compared with the CPU

execution, the GPU handling of different workloads and our library compared with

the library Aparapi. For the comparison between CPU and GPU we used square

images. We linearly increased the number of pixels to determine the most suitable

method of execution for different sizes. All tests were run 5 times. The average

value was considered. The GPU time sums all the implied times: the kernel

generation and compilation, the serialization/deserialization and execution time. The

execution time includes data transfer between GPU and CPU. This GPU total time is

required only in the worst case, if the computation runs once. If the task code runs

multiple times, its kernel may be reused (by caching it). In this case the times for

generation and kernel compilation are insignificant. These times were measured

over the entire test range. In Table 7.1 are given the results.

BUPT

100 Java bytecode runtime translation to OpenCL and GPU execution - 7

 Image of 10 KPixels Image of 43000 KPixels

Heap

data

(KB)

Heap

total

(KB)

Time

(ms)

Heap

data

(KB)

Heap

total

(KB)

Time

(ms)

Kernel

generation

62.8 111

22

44442 45490

23.3

Kernel

compilation

224 228.5

Serialization 11.3 55.4

Deserialization 0.65 100.5

Table 7.1 – GPU - Data sizes and setup times

 The Table 7.1 shows that the kernel generation and also compilation are

invariant with the workload due to the fact that the processed bytecode is identical.

The times of serialization and deserialization increase when more data has to be

processed. On small workloads we have the result in Figure 7.5. The measurements

were made in steps of 10 KPixels (KP).

Fig 7.5 – CPU vs GPU execution on small workloads

 The execution on GPU begins to be more efficient around 250 KP. When the

times needed for generation and compilation are subtracted, this threshold is near

100 KP. In our case, the worst case for GPU is the lower number of pixels, because

a square 100 KP image has around 316 pixels height. In this case at best maximum

316 streaming cores on GPU are used from the total of 2816 streaming cores.

BUPT

7.3 - Practical results 101

Maybe a good thing in this situation is that the compute units run fewer work-items

simultaneously, which improves the divergence.

 We compared next the CPU vs GPU execution over the entire test range. On

the test system a GPU run is limited at around 30 seconds. When this period passes,

the operating system considers the driver unresponsive and it reinitializes the

graphic driver. On different systems that timeout may be lower, and provisions must

be made to restrict the execution time for long running kernels. In Figure 7.6 are

shown the results. The measurements were made in steps of 1 MPixel.

Fig 7.6 – CPU vs GPU execution across all the test domain

 If the work quantity needed for a task (in this case the width of the image),

and also the tasks number (the height of the image) grow, the CPU is outrun by

GPU with a linear progression. Because we incremented linearly the pixels number,

the work quantity also has a linear increase. In this test the numeric difference

between the streaming cores of GPU (2816) and the cores of the CPU (4) becomes

apparent, because on each case the incremented workload is sent to all the

processing elements available, so each CPU core receives a greater quantity of

work. Even if both times changes in mostly a linear way, the increase of the CPU

time is stepper than the time increase on GPU. The GPU maximum speedup

compared with CPU was 12.65x.

 We also tested how the GPU computes different types of workloads. In this

test we kept constant the task size (the image width) and we varied the tasks

number (the image height). We executed this test on GPU only. We measured the

times of 3 different task sizes. In Figure 7.7 are are shown the results. Data was

collected in steps of 64 tasks each. We explain that graph by the effects of two

aspects. The general shape of every line is given by the way in which the workload

occupies the GPU cache memory. In the case of smaller workloads (of

approximately 1000 width), the growth is almost linear across the test domain. If

the workload is increased and more memory is required, the cache misses grows.

This increase is more apparent at the graph in the right side, because it influences

strongly the increase in time. The next aspect that influences the graph is the tasks

BUPT

102 Java bytecode runtime translation to OpenCL and GPU execution - 7

allocation scheme on GPU. When tasks are added and their total number is lower

than the streaming cores, the increase of time for each task added is very small,

due to the fact that a single batch of works is used by the GPU to run all these

tasks. If the tasks number is greater than the streaming cores number, we can be in

two extreme case: a batch of jobs end about in the same moment and in that case

we are in a local minimum; if we increase with a small number of tasks, the new

tasks need another batch for them only and we will be in a local maximum. More

complexity is added because the execution divergence and also because not all

tasks require the same quantity of work.

Fig 7.7 – Different number of tasks run on GPU

 A result of that analysis is that the longer tasks are better to be reorganized

so the amount of a task required memory is smaller (or they have common data).

The execution time in this way is optimized by lowering the cache misses; this

avoids also the timeout of the operating system when the code is executed on GPU.

The tasks number for one GPU execution may be modified using the scheduler

settings.

 When we compared Aparapi with our library, we needed to write the test

code using a representation that can be run with Aparapi. It was required to replace

some high level representations of data structures with lower level ones, like:

 There is no support for reference types in Aparapi (aside of primitive

vectors), so each used classes (like Point, Line, …) are replaced using float

vectors. A Point for example is represented like a 3 floats vector and a Line

like a 6 floats vector.

 Aparapi uses the same global context for each thread. The differentiation

between each thread data is commonly implemented using OpenCL

functions like getGlobalId(). It was needed to employ combined vectors for

every thread (task) data. The access of the thread specific data was made

with the thread global id.

BUPT

7.3 - Practical results 103

 There is no dynamic memory management (not even allocations) in Aparapi

so it was needed to employ global data structures to hold the values

returned by functions in the case of non primitive types. To differentiate

between the threads data it was used the thread global id.

 To illustrate some of the required changes in Figure 7.8 we show how parts

of the application are implemented with our library; in Figure 7.9 we show how

these are implemented with the Aparapi library.

public class Point{
 public float xp,yp,zp;
 public Point(float xp,float yp,float zp)

{this.xp=xp;this.yp=yp;this.zp=zp;}
 public Point(){}

 public void set(float xp,float yp,float zp)
{this.xp=xp;this.yp=yp;this.zp=zp;}

 public void set(Point pt){xp=pt.xp;yp=pt.yp;zp=pt.zp;}
 public float len(){return Math3D.length(xp,yp,zp);}

 public void vectorFromPoints(Point orig,Point dst) {
 xp=dst.xp-orig.xp;

 yp=dst.yp-orig.yp;
 zp=dst.zp-orig.zp;
 }
…
}
…
float propagateRay(Line ray){…}

Point centerToInters=new Point();
Point intersToRayOrigin=new Point();

Fig 7.8 – An implementation with our library for a part of the application

 Because the Aparapi implementation cannot use Java basic idioms such as

classes, the algorithms written using this library require additional proxy code to be

integrated with the application: the classes are translated to primitive vectors and

back, individual tasks data is merged into the same vector, etc.

final float pointLen(float []pt){
 int offset = 3*getGlobalId();
 return length(pt[offset],pt[offset+1],pt[offset+2]);
}
final void vectorFromPoints(float []dest,float []orig,float []destination){

 int offset = 3*getGlobalId();
 dest[offset]=destination[offset]-orig[offset];

 dest[offset+1]=destination[offset+1]-orig[offset+1];
 dest[offset+2]=destination[offset+2]-orig[offset+2];

BUPT

104 Java bytecode runtime translation to OpenCL and GPU execution - 7

}
…

final float []intersToRayOrigin;
final float propagateRay(float []r){…}
final float []centerToInters;

Fig 7.9 – An implementation with Aparapy for a part of the application

 To compare the execution of our library with Aparapi, we varied the pixels

number and the amount of needed work for each pixel. The work per pixel

measurement was required to evaluate different workloads keeping constant the

used memory amount and the threads number. We recomputed every pixel more

times (n), starting the normal case (n=1). This process does not requires memory

allocations. In Figure 7.10 we showed the results using Aparapi and in Figure 7.11

the results using our library. For all figures the data was collected in steps of 1

MPixel.

Fig 7.10 – Aparapi execution for different numbers of tasks and recomputations

 For the Aparapi version, the operating system began at around 25 MPixels

to reset the graphic card driver. Our library was capable to produce results until 46

MPixels. Both libraries have approximately linear progressions, with a number of

prominent peaks. There is a better time for Aparapi and a smaller angle of growing.

Our library has more irregularities from the linear progression and, as previously

discussed, we consider that a combined effect of the GPU cache and data layout.

Aparapi has smaller irregularities due to the fact that in its case data is already

ordered by tasks and vectorized, which enhances the data locality. The maximum

running time for both implementations, after which the OS starts to reset the

graphic card driver was of around 31 seconds. If the peak time exceed 31 seconds,

then the application crashes.

BUPT

7.4 - Conclusions 105

Fig 7.11 – Our library execution on different number of recomputations and tasks

7.4 Conclusions

 We proposed in this section an algorithm and library that enable Java

execution on GPU. We used reflection to access the code of the application and

OpenCL code generation in order to create the kernels which run on GPU. Our

approach is suitable also in the case of code processed at runtime like plugins. The

library handles automatically common distributed computing tasks like serialization

and deserialization, synchronization and communication with the GPU. The system

of data serialization is capable to handle complex data structures and this makes

possible to make available for execution GPU classes, static methods, fields of

reference types and all types of arrays.

 The library provides a thin compatibility layer for Java on top of the OpenCL.

That layer makes possible dynamic memory management and exceptions handling.

We strive in the future to extend the compatibility layer with recursive calls and also

with calls of virtual methods (dynamic dispatch for non-final methods). When

possible, the functions native to OpenCL are employed over the standard Java

libraries. A library for OpenCL primitives that are not in the Java standard libraries is

also provided. This library is portable, and it can be used on CPU and on GPU.

 Our algorithm uses a model based on MapReduce to manage the

simultaneous tasks. The return values of tasks are sent directly to a handler. In

certain cases this allows the processing of results on arrival, without the need to

store them. The creation and management of tasks is abstracted in regard with the

computing resources, and the code can be run both on CPU and on GPU without any

modifications. That simplifies the maintenance of the code, allows an easy

debugging and the CPU can act as a fallback resource if no suitable GPU is present.

BUPT

106 Java bytecode runtime translation to OpenCL and GPU execution - 7

 We tested our library with a test application in standard Java code, which

does not have any OpenCL specific constructs. With our test configuration we had

significant speedups up to 12.65x for GPU over the execution on CPU. We consider

an important conclusion of our research that parts of Java standard applications

which use classes, exceptions handling and dynamic memory allocation (but for now

without recursion and virtual calls) can be translated automatically into OpenCL and

be run on GPU, which can bring certain advantages. The proposed library and

algorithm provides the capability to implement Java code that can be integrated

easily with complex data structures and this code does not need specific platform

calls. This simplifies greatly the goal to run more complex applications on computing

resources such as GPU or CPU. This is an important step forward over existing

libraries like Aparapi, which were originally designed as thin layers on top of the

OpenCL and the developer must use specific OpenCL idioms. Aparapi in our tests

obtained a better time compared with our library but it was able to process only a

limited data domain. It also needed coding the test application using a way that is

not Java specific (without classes). The Aparapi implementation also required proxy

code in order to serialize and deserialize the data of the application to and from an

OpenCL suitable representation. On future research we will investigate ways to

increase the range of applications that can run on GPU, research better

optimizations and also obtain an enhanced reliability for GPU execution.

BUPT

8. Conclusions

 The distributed computing field is a very dynamic one and there are many

research and development directions of great importance. As many computing tasks

become more resource intensive, both from the point of view of the computation

power required and regarding the vast amount of data involved in these

computations, more and more applications try to offer distributed computing

implementations, in order to be able to solve these problems. With the current tools

and frameworks the distributed applications require a considerable coding effort and

to ease and optimize this effort was one of our main research motivations in this

thesis. Our research was concentrated on three main directions. First we elaborated

a distributed computing model suitable for using heterogeneous resources such as

CPUs, GPUs and computer networks in a uniform manner and which can also

automate many distributed computing tasks. Secondly, we implemented our model

as a Java library, so it can be used in regular Java applications. Third, in order to

include the GPUs as a computing resource, we developed two algorithms and their

implementations. First algorithm is suitable for the cases when the computation is

too complex to be run solely on GPU. The second algorithm can be used in the cases

when the GPU is capable to handle the entire computation.

 There are many concepts specific to distributed computing, such as remote

function invocation or code deployment. These concepts need to be better

integrated into the existent frameworks, development tools, programming

languages and high level models. Many of the tools and frameworks use powerful

computation models (such as the MapReduce model) taken for example from the

functional languages theory, but these models were initially developed for sequential

applications and they are not sufficiently enough adapted to a highly multithreaded

and distributed environment. We shown that research and development work needs

to be done in order to adapt the sequential models to the challenges imposed by

distributed computing, such as scheduled asynchronous invocations or

synchronization.

 A comprehensive high level distributed computing framework must make

available to the application all the existent computing resources, like local CPU

cores, remote computers and GPUs. Each one of these has very different interfaces,

for example multithreading libraries for CPU cores, networking and remote

invocation libraries for remote computers and OpenCL libraries for GPUs. All these

interfaces must be made available to the application in a uniform and abstract

manner, in order to isolate the low level details from the application logic. If this

BUPT

108 Conclusions - 8

aspect is accomplished, the framework will be able to run a given computation on

the most suitable resource, without any additional code required from the

developer.

 In this thesis we propose an original model for distributed computing that

builds on the well known MapReduce model and extends it with new concepts

necessary for a multithreaded and distributed environment. Our model uses only

three concepts and it is simple to learn, especially for programmers with an OOP

background. The model abstracts in a uniform manner different computing

resources such as CPUs, GPUs and computer networks, so the application can use

heterogeneous architectures without the need to write specific code for each

computing resource type. In our model many distributed computing tasks are

handled automatically by default, so aspects like resources discovery, code

deployment, data serialization, tasks distribution, remote invocations, recovery from

errors and synchronization are automatically handled with good results in most of

the cases. The model also includes specific optimizations, for example it treats

immutable data as a special case and this data is sent only once to the computing

resources. Especially for network computers or slow buses this optimization can

bring considerable improvements on computing time. We implemented our model as

a virtual machine and the test results shown that it is scalable and in the same time

it is capable to distribute evenly the workload on the available computing resources.

 We implemented the model as a Java framework so it can be used in regular

Java applications, without specific language level support. We are able to implement

most of its semantics and constraints only by means of data structures and function

calls, without resorting to other compilation steps, such as a preprocessor phase.

We tested our framework and it was capable to abstract both the remote computers

and the CPU cores as computing resources, as well as low-level distributed

computing tasks such as resource discovery, code deployment and remote

invocations. The test results for our framework shown that it is scalable both in

terms of network computers and CPU cores and the scheduler algorithm succeeded

to distribute the workload evenly on all these resources.

 In this thesis a considerable research is dedicated to use the GPUs as a

computing resource. With the development of the GPUs with general-purpose

computing capabilities, this new and powerful computing resource can be employed

to solve different tasks, especially the numerical intensive ones. Due to the fact that

the GPUs have several shortcomings such as their incapacity to call operating

system functions or their stackless execution model, it is not an easy task to adapt

complex code flows for execution on GPU.

 In order to distribute computing tasks on GPU, we propose two approaches

on which we made advancements with our research. If the tasks are complex and

not suitable for execution only on GPU, for example they contain I/O calls, we

developed a cooperative CPU-GPU execution algorithm. It collects the computation

BUPT

8 - Conclusions 109

parts intended for GPU execution across multiple CPU threads and runs them on

GPU in a single batch. For optimal performance this algorithm uses a combination of

threads and fibers, which reduces the switching time between threads and also

enables the creation of thousands of tasks, implemented as fibers, which allows us

to fully use all the GPU cores. The algorithm was implemented as a C++ library and

it is easily applicable to the existent threaded applications. The practical results

obtained with our library show a significant speedup over the CPU only execution.

 If the tasks intended to be distributed on GPU are suitable for this kind of

execution, we developed a new algorithm and library, capable to translate from Java

bytecode to OpenCL code and to run the resulted code on GPU. The library also

automatically handles tasks such as data serialization/deserialization, and GPU

communication and synchronization. The algorithm can translate code which uses

classes, reference types, dynamic memory allocation and exception handling (but

for now without virtual calls and recursion), which is a significant improvement over

the existing approaches. We integrated the library with our model and we provided

an abstraction layer over OpenCL, which allows the use of either the CPU or GPU in

an abstract manner, without any change in the source code. The practical results

show improvements of over ten times speedup on GPU execution.

 We intend to further research the thesis subjects in directions such as

further refinements of our model to allow more use cases, better integration of all

the three computing resources discussed (CPU, network computers, GPU), load

balancing, and increased reliability and recovery from errors. We also intend to add

more features to the OpenCL generation algorithm, so we can increase the range of

applications which can be run on GPU.

BUPT

Published papers

Razvan-Mihai Aciu, Horia Ciocarlie, ”Runtime Translation of the Java Bytecode to

OpenCL and GPU Execution of the Resulted Code”, Journal of Applied Sciences “Acta

Polytechnica Hungarica”, ISSN1785-8860, Volume 13, Issue 3, 2016. ISI indexed

Razvan-Mihai Aciu, Horia Ciocarlie, ”Framework for the Distributed Computing of

the Application Components”, Advances in Intelligent and Soft Computing,

Proceedings of the Ninth International Conference on Dependability and Complex

Systems DepCoS-RELCOMEX, June 30-July 4, 2014, Brunów, Poland, Springer,

ISBN: 978-3-319-07012-4. ISI indexed

Razvan-Mihai Aciu, Horia Ciocarlie, ”Application Level Execution Model for

Transparent Distributed Computing”, New Results in Dependability and Computer

Systems, Proceedings of the 8th International Conference on Dependability and

Complex Systems DepCoS-RELCOMEX, September 9-13, 2013, Brunów, Poland,

Springer, ISBN: 978-3-319-00944-5. ISI indexed

Codruta-Mihaela Istin, Horia Ciocarlie, Razvan-Mihai Aciu, ”Optimization Algorithm

for the Preservation of Sensor Coverage”, New Results in Dependability and

Computer Systems, Proceedings of the 8th International Conference on

Dependability and Complex Systems DepCoS-RELCOMEX, September 9-13, 2013,

Brunów, Poland, Springer, ISBN: 978-3-319-00944-5. ISI indexed

Razvan-Mihai Aciu, Horia Ciocarlie, “Algorithm for Cooperative CPU-GPU

Computing”, 15th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), Romania, September 23-26, 2013, DOI

10.1109/SYNASC.2013.53. ISI indexed

Razvan-Mihai Aciu, Horia Ciocarlie, “G-Code Optimization Algorithm and its

application on Printed Circuit Board Drilling”, 9th International Symposium on

Applied Computational Intelligence and Informatics (SACI), Romania, May 15-17,

2014, DOI 10.1109/SACI.2014.6840096. ISI indexed

Razvan-Mihai Aciu, Horia Ciocarlie, “Cooperative Task Scheduler For Entry Level

Microcontrollers”, 6th International Workshop On Soft Computing Applications

(SOFA), Romania, July 24-26, 2014, Springer, ISBN 978-3-319-18416-6

Codruta-Mihaela Istin, Razvan-Mihai Aciu, Horia Ciocarlie, “Traffic Behaviour

Simulator SIMULO with Sensor Coverage Computation”, 6th International Workshop

BUPT

Published papers 111

On Soft Computing Applications (SOFA), Romania, July 24-26, 2014, Springer, ISBN

978-3-319-18416-6

BUPT

Acknowledgement

 This work was partially supported by the strategic grant

POSDRU/159/1.5/S/137070 (2014) of the Ministry of National Education, Romania,

co-financed by the European Social Fund – Investing in People, within the Sectoral

Operational Programme Human Resources Development 2007-2013.

BUPT

Bibliography

[1] A. S. Tanenbaum, M. Van Steen, “Distributed Systems – Principles And

Paradigms”, 2002

[2] L. Mearian, “DreamWorks tops compute-cycle record with 'The Croods'“, High

Performance Computing, March 2013

[3] C. Mellor, “DreamWorks signs cloud computing deal, The register”, July, 2010

[4] A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, V. S. Pande,

"Folding@home: Lessons From Eight Years of Volunteer Distributed Computing",

IEEE International Symposium on Parallel & Distributed Processing, 2009

[5] Pande Lab, Stanford University, Folding@home project, 2013,

http://folding.stanford.edu/

[6] The NCAR-Wyoming Supercomputing Center, 2013, http://nwsc.ucar.edu/

[7] Berkeley Open Infrastructure for Network Computing (BOINC) Project, Berkeley

University, http://boinc.berkeley.edu/

[8] J. Dongarra, T. Sterling, H. Simon, E. Strohmaier, "High performance

computing: Clusters, constellations, MPPs, and future directions", “Lawrence

Berkeley National Laboratory”, 2003

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, "Above the Clouds: A Berkeley

View of Cloud Computing", Technical Report No. UCB/EECS-2009-28, 2009

[10] A.Iosup, D. Epema, “Grid Computing Workloads: Bags of Tasks, Workflows,

Pilots, and Others”, Internet Computing, IEEE Volume:15 , Issue: 2, pp 19,26,

2010

[11] J. Peng, X. Zhang, Z. Lei, B. Zhang, W. Zhang, Q. Li, “Comparison of Several

Cloud Computing Platforms”, Second International Symposium on Information

Science and Engineering (ISISE), Shanghai, 2009

[12] S. Zhang, H. Polytech, X. Chen, S. Zhang, X. Huo, “The comparison between

cloud computing and grid computing”, International Conference on Computer

Application and System Modeling (ICCASM), Taiyuan 2010

BUPT

http://www.computerworld.com/s/author/592/Lucas+Mearian
http://www.computerworld.com/s/topic/67/High+Performance+Computing
http://www.computerworld.com/s/topic/67/High+Performance+Computing
http://www.theregister.co.uk/Author/1861
http://pande.stanford.edu/
http://boinc.berkeley.edu/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Iosup,%20A..QT.&searchWithin=p_Author_Ids:37299711200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Epema,%20D..QT.&searchWithin=p_Author_Ids:37299717900&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4236
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5731577
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5731577
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Junjie%20Peng.QT.&searchWithin=p_Author_Ids:37406138500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xuejun%20Zhang.QT.&searchWithin=p_Author_Ids:37405053900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhou%20Lei.QT.&searchWithin=p_Author_Ids:37405949300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bofeng%20Zhang.QT.&searchWithin=p_Author_Ids:37279403500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wu%20Zhang.QT.&searchWithin=p_Author_Ids:37278435100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Qing%20Li.QT.&searchWithin=p_Author_Ids:37403674900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446611
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5446611
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shuai%20Zhang.QT.&searchWithin=p_Author_Ids:37403501400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xuebin%20Chen.QT.&searchWithin=p_Author_Ids:37403966500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shufen%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiuzhen%20Huo.QT.&searchWithin=p_Author_Ids:37391421800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5602791
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5602791

114 Bibliography

[13] F. Xhafa, A. Abraham, “Computational models and heuristic methods for Grid

scheduling problems”, Future Generation Computer Systems, Volume 26, Issue 4,

2010

[14] B. Neelima, NITK-Surathkal, P.S. Raghavendra, “Recent trends in software and

hardware for GPGPU computing: A comprehensive survey”, International Conference

on Industrial and Information Systems, Mangalore, 2010

[15] Introducing TITAN, Advancing the Era of Accelerated Computing, 2013,

http://www.olcf.ornl.gov/titan/

[16] S. Tucker Taft, J. Bloch, R. Bocchino, S. Burckhardt, H. Chafi, R. Cox, B.

Gaster, G. Steele, D. Ungar. “Multicore, manycore, and cloud computing: is a new

programming language paradigm required?” In Proceedings of the ACM international

conference companion on Object oriented programming systems languages and

applications companion, SPLASH 2011

[17] G. R. Andrews, "Foundations of multithreaded, parallel, and distributed

programming", Pearson, 1999

[18] H. Kopetz, “Real-Time Systems: Design Principles for Distributed Embedded

Applications”, Springer 2011

[19] C. Weinhardt, W. A. Anandasivam, B. Blau, N. Borissov, T. Meinl, W. W.

Michalk, J. Stößer, “Cloud Computing – A Classification, Business Models, and

Research Directions, Business & Information Systems Engineering”, 2009, Volume

1, Issue 5, pp 391-399

[20] J. Dean, S. Ghemawat, “MapReduce: simplified data processing on large

clusters”, Commun. ACM 51, 2008

[21] P. Haller, F. Sommers, "Actors in Scala", artima, 2011

[22] GridGain, “GridGain In-Memory Computing Platform 6.0”,

http://atlassian.gridgain.com/wiki/display/GG60/Home, access time: 07.06.2015

 [23] L. Dematté, D. Prandi, “GPU computing for systems biology”, Briefings in

Bioinformatics, Vol. 11, No. 3, pp. 323-333, 2010

[24] AMD: A New Era in PC Gaming, E3, Los Angeles, California, U.S., 2015

[25] Jen-H. Huang, “Opening Keynote, GPU Technology Conference”, San Jose,

California, U.S., 2015

[26] P. Gepner, D. L. Fraser, M. F. Kowalik, K. Waćkowski, “Evaluating New

Architectural Features of the Intel(R) Xeon(R) 7500 Processor for HPC Workloads,

Computer Science”, Vol 12, 2011

BUPT

http://www.sciencedirect.com/science/article/pii/S0167739X09001782
http://www.sciencedirect.com/science/article/pii/S0167739X09001782
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Neelima,%20B..QT.&searchWithin=p_Author_Ids:38071659700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Raghavendra,%20P.S..QT.&searchWithin=p_Author_Ids:38004725300&newsearch=true
http://www.olcf.ornl.gov/titan/
http://link.springer.com/search?facet-author=%22Prof.+Dr.+Christof+Weinhardt%22
http://link.springer.com/search?facet-author=%22Dipl.-Inform.-Wirt+Arun+Anandasivam%22
http://link.springer.com/search?facet-author=%22Dr.+Benjamin+Blau%22
http://link.springer.com/search?facet-author=%22Dipl.-Inform.+Nikolay+Borissov%22
http://link.springer.com/search?facet-author=%22Dipl.-Math.+Thomas+Meinl%22
http://link.springer.com/search?facet-author=%22Dipl.-Inform.-Wirt+Wibke+Michalk%22
http://link.springer.com/search?facet-author=%22Dipl.-Inform.-Wirt+Wibke+Michalk%22
http://link.springer.com/search?facet-author=%22Dr.+Jochen+St%C3%B6%C3%9Fer%22
http://link.springer.com/journal/12599
http://link.springer.com/journal/12599/1/5/page/1

Bibliography 115

[27] J.M. Vahid, D. Venkata, “Large-Scale Transient Stability Simulation on

Graphics Processing Units”, IEEE Power & Energy Society General Meeting, 2009

[28] M. Roman, M. Avi, K. Avinoam, B. Evgeny, “Exploring the Limits of GPGPU

Scheduling In Control Flow Bound Applications”, ACM Transactions on Architecture

and Code Optimization - TACO , pp. 1-22, 2012

[29] N.G. Peter, “NVIDIA’s Fermi: The First Complete GPU Computing

Architecture”, September 2009

[30] X. Ping, Y. Yi, M. Mike, R. Norm and Z. Huiyang, “Many-Thread Aware

Instruction-Level Parallelism: Architecting Shader Cores for GPU Computing”,

PACT’12, September 19–23, 2012

[31] X. Kai, Z.C. Danny, X.H. Sharon, Z. Bo, “Shell: A Spatial Decomposition

Data Structure for 3D Curve Traversal on Many-core Architectures”, 21st European

Symposium on Algorithms ESA 2013, September 02-04, 2013

[32] G. Pengcheng, T. Yubo, L. Hai, “Parallel Shooting And Bouncing RayMethod

On Gpu Clusters For Analysis Of Electro-Magnetic Scattering”, Progress In

Electromagnetics Research, Vol. 137, 87-99, 2013

[33] C. Dabrowski, “Reliability in grid computing systems”, Concurrency and

Computation: Practice and Experience, Volume 21, Issue 8, pages 927–959, 2009

[34] B.S. Murugan, D. Lopez, “A Survey of Resource Discovery Approaches in

Distributed Computing Environment”, International Journal of Computer Applications

Volume 22, No. 9, 2011

[35] S. K. Kwan, J.K. Muppala, “Resource Discovery and Scheduling in Unstructured

Peer-to-Peer Desktop Grids”, Conference on Parallel Processing Workshops (ICPPW),

2010 39th International, Canada 2010

[36] M. Nazir, “Cost-effective resource management for distributed computing”,

Doctoral thesis, UCL London 2011

[37] D. Cokuslu, A. Hameurlain, K. Erciyes, “Grid Resource Discovery Based on

Centralized and Hierarchical Architectures” International Journal for Infonomics

(IJI), Volume 3, Issue 1, 2010

[38] M. M. Motalebi, R. Maghami, A. S. Ismail, A. A. Ahmed, “Reliable Resource

Discovery Approaches for Grid Environments”, International Journal of Computer

Communications and Networks, 2011

[39] M. I. Andreica, “Techniques for the Optimization of Communication Flows in

Distributed Systems”, 2010

BUPT

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Shun%20Kit%20Kwan.QT.&searchWithin=p_Author_Ids:37849140800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muppala,%20J.K..QT.&searchWithin=p_Author_Ids:37268143800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muppala,%20J.K..QT.&searchWithin=p_Author_Ids:37268143800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muppala,%20J.K..QT.&searchWithin=p_Author_Ids:37268143800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Muppala,%20J.K..QT.&searchWithin=p_Author_Ids:37268143800&newsearch=true
http://hal.archives-ouvertes.fr/index.php?action_todo=search&s_type=advanced&submit=1&search_without_file=YES&f_0=AUTHORID&p_0=is_exactly&halsid=t13agujin821j7r3hl3rp3cnv3&v_0=311007

116 Bibliography

[40] K. Jander, W. Lamersdorf, “Compact and Efficient Agent Messaging”, Eleventh

International Conference on Autonomous Agents and Multiagent Systems, Valencia

2012

[41] D.E. Comer, “Computer Networks and Internets”, Addison-Wesley, 2008

[42] A. Sumaray, S. K. Makki, “A comparison of data serialization formats for

optimal efficiency on a mobile platform”, Conference on Ubiquitous Information

Management and Communication, NY 2012

[43] K. Popović, Z. Hocenski, “Cloud computing security issues and challenges”,

Proceedings of the 33rd International Convention, Croatia 2010

[44] S. Subashini, V. Kavitha, “A survey on security issues in service delivery

models of cloud computing”, Journal of Network and Computer Applications, 2010

[45] D. Zissis, D. Lekkas, “Addressing cloud computing security issues”, Future

Generation Computer Systems, Volume 28, Issue 3, Pages 583–592, 2012

[46] M. Zhou, R. Zhang, W. Xie, W. Qian, A. Zhou, “Security and Privacy in Cloud

Computing: A Survey”, Sixth International Conference on Semantics Knowledge and

Grid (SKG), Beijing, 2010

[47] P. Mell, T. Grance, “Effectively and Securely Using the Cloud Computing

Paradigm”, NIST Cloud Research Team, 2009

[48] N. Hammoud, “Decentralized log event correlation architecture”, Proceedings of

the International Conference on Management of Emergent Digital EcoSystems, SUA

2009

[49] V. Saraswat, G. Almasi, G. Bikshandi, Calin Cascaval, D. Cunningham, D.

Grove, S. Kodali, I. Peshansky, O. Tardieu, “The Asynchronous Partitioned Global

Address Space Model”, First Workshop on Advances in Message Passing, Canada

2010

[50] N. Rodriguez, S. Rossetto, “Integrating Remote Invocations With Asynchronism

And Cooperative Multitasking”, Parallel Process. Lett. 18, 2008

[51] P. Krzyzanowski, “Remote Procedure Calls”, Rutgers. University 2012

[52] G. Juve, E. Deelman, “Automating Application Deployment in Infrastructure

Clouds”, IEEE Third International Conference on Cloud Computing Technology and

Science (CloudCom), Greece, 2011

[53] M. J. Park, D. K. Kim, W. T. Kim, S. M. Park, “Dynamic Software Updates in

Cyber-Physical Systems”, Conference on Information and Communication

Technology Convergence (ICTC), 2010 International, Jeju 2010

BUPT

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Popovic.AND..HSH.x0301;,%20K..QT.&searchWithin=p_Author_Ids:38193332100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hocenski,%20Z..QT.&searchWithin=p_Author_Ids:38267153400&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5512516
http://www.sciencedirect.com/science/article/pii/S0167739X10002554
http://www.sciencedirect.com/science/article/pii/S0167739X10002554
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X/28/3
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Minqi%20Zhou.QT.&searchWithin=p_Author_Ids:37592164100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rong%20Zhang.QT.&searchWithin=p_Author_Ids:37592955100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei%20Xie.QT.&searchWithin=p_Author_Ids:37591633400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Weining%20Qian.QT.&searchWithin=p_Author_Ids:37416694800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Aoying%20Zhou.QT.&searchWithin=p_Author_Ids:37266730700&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5661891
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5661891
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Juve,%20G..QT.&searchWithin=p_Author_Ids:37392818800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Deelman,%20E..QT.&searchWithin=p_Author_Ids:37276642300&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132468
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6132468
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mi%20Jeong%20Park.QT.&searchWithin=p_Author_Ids:38009656700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Dong%20Kwan%20Kim.QT.&searchWithin=p_Author_Ids:37366645100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Won-Tae%20Kim.QT.&searchWithin=p_Author_Ids:37291317500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Seung-Min%20Park.QT.&searchWithin=p_Author_Ids:37406940200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5668578
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5668578

Bibliography 117

[54] J. Ravi, Z. Yu, W. Shi, “A survey on dynamic Web content generation and

delivery techniques”, Journal of Network and Computer Applications, Vol 32, 2009

[55] V. Narvaez, “Distributed Objects and Remote Invocation”, Addison Wesley

2010

[56] B. Silvestre, S. Rossetto, N. Rodriguez, J.-P. Briot, “Flexibility and coordination

in event-based, loosely coupled, distributed systems”, Computer Languages,

Systems & Structures, vol 36, 2010

[57] E. Tilevich, S. Gopal, “Expressive and Extensible Parameter Passing for

Distributed Object Systems”, ACM Trans. Softw. Eng. Methodol 2011

[58] M. D. Preda, M. Gabbrielli, I. Lanese, J. Mauro, G. Zavattaro, “Graceful

Interruption of Request-Response Service Interactions”, Service-Oriented

Computing Lecture Notes in Computer Science Volume 7084, pp 590-600, 2011

[59] E. Sindrilaru, A. Costan, V. Cristea, “Fault Tolerance and Recovery in Grid

Workflow Management Systems”, Conference on Complex, Intelligent and Software

Intensive Systems (CISIS), 2010 International, Krakow 2010

[60] J. Celaya, U. Arronategui, “Distributed Scheduler of Workflows with Deadlines

in a P2P Desktop Grid”, Conference on Parallel, Distributed and Network-Based

Processing (PDP), Pisa 2010

[61] M. Malawski, T. Bartyński, M. Bubak, “Invocation of operations from script-

based Grid applications”, Future Generation Computer Systems, Volume 26, Issue 1,

Pages 138–146, 2010

[62] L. Watkins, W.H. Robinson, R.A. Beyah, “A Passive Solution to the CPU

Resource Discovery Problem in Cluster Grid Networks”, Parallel and Distributed

Systems, IEEE Transactions on (Volume:22, Issue: 12), 2011

[63] V.Vinothina, R. Sridaran, P. Ganapathi, “A Survey on Resource Allocation

Strategies in Cloud Computing”, International Journal of Advanced Computer

Science and Applications Vol. 3, No.6, 2012

[64] H. Izakian, A. Abraham, V. Snášel, “Comparison of Heuristics for Scheduling

Independent Tasks on Heterogeneous Distributed Environments”, International Joint

Conference on Computational Sciences and Optimization, CSO 2009.

[65] Y.-F. Yu, P.-J. Huang, K.-C. Lai, C.-T. Yang, K.-C. Li, “On the Design of a

Performance-Aware Load Balancing Mechanism for P2P Grid Systems”, Advances in

Grid and Pervasive Computing Lecture Notes in Computer Science Volume 5529, pp

269-280, 2009

BUPT

http://www.sciencedirect.com/science/article/pii/S1084804509000526
http://www.sciencedirect.com/science/article/pii/S1084804509000526
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/article/pii/S1477842409000220
http://www.sciencedirect.com/science/article/pii/S1477842409000220
http://www.sciencedirect.com/science/article/pii/S1477842409000220
http://www.sciencedirect.com/science/article/pii/S1477842409000220
http://www.sciencedirect.com/science/journal/14778424
http://www.sciencedirect.com/science/journal/14778424
http://link.springer.com/search?facet-author=%22Mila+Dalla+Preda%22
http://link.springer.com/search?facet-author=%22Maurizio+Gabbrielli%22
http://link.springer.com/search?facet-author=%22Ivan+Lanese%22
http://link.springer.com/search?facet-author=%22Jacopo+Mauro%22
http://link.springer.com/search?facet-author=%22Gianluigi+Zavattaro%22
http://link.springer.com/book/10.1007/978-3-642-25535-9
http://link.springer.com/book/10.1007/978-3-642-25535-9
http://link.springer.com/bookseries/558
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sindrilaru,%20E..QT.&searchWithin=p_Author_Ids:37397523500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Costan,%20A..QT.&searchWithin=p_Author_Ids:37322103600&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cristea,%20V..QT.&searchWithin=p_Author_Ids:37322099900&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Celaya,%20J..QT.&searchWithin=p_Author_Ids:37299712100&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Arronategui,%20U..QT.&searchWithin=p_Author_Ids:37299717800&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5452233
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5452233
http://www.sciencedirect.com/science/article/pii/S0167739X09000727
http://www.sciencedirect.com/science/article/pii/S0167739X09000727
http://www.sciencedirect.com/science/article/pii/S0167739X09000727
http://www.sciencedirect.com/science/journal/0167739X
http://www.sciencedirect.com/science/journal/0167739X/26/1
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Watkins,%20L..QT.&searchWithin=p_Author_Ids:37587848400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Robinson,%20W.H..QT.&searchWithin=p_Author_Ids:37545077800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Robinson,%20W.H..QT.&searchWithin=p_Author_Ids:37545077800&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6056733
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5193618
http://link.springer.com/search?facet-author=%22You-Fu+Yu%22
http://link.springer.com/search?facet-author=%22Po-Jung+Huang%22
http://link.springer.com/search?facet-author=%22Kuan-Chou+Lai%22
http://link.springer.com/search?facet-author=%22Chao-Tung+Yang%22
http://link.springer.com/search?facet-author=%22Kuan-Ching+Li%22
http://link.springer.com/book/10.1007/978-3-642-01671-4
http://link.springer.com/book/10.1007/978-3-642-01671-4
http://link.springer.com/bookseries/558

118 Bibliography

[66] M. Camelo, Y. Donoso, H. Castro, “MAGS – An Approach Using Multi - Objective

Evolutionary Algorithms for Grid Task Scheduling”, International Journal Of Applied

Mathematics And Informatics, vol. 5, 2011

[67] H.-H. You, C.-C. Yang, J.-L. Huang, “A load-aware scheduler for MapReduce

framework in heterogeneous cloud environments”, In Proceedings ACM Symposium

on Applied Computing, 2011

[68] A. Lazouski, F. Martinelli, P. Mori, “Survey: Usage control in computer security:

A survey” Comput. Sci. Rev. 4, 2010

[69] R. H. Halstead Jr, "Multilisp: A Language for Concurrent Symbolic

Computation", ACM Transactions on Programming Languages and Systems, Vol. 7,

No. 4, October 1985

[70] E. B. Johnsen, O. Owe, "An Asynchronous Communication Model for Distributed

Concurrent Objects", Proc. 2nd Intl. Conf. on Software Engineering and Formal

Methods (SEFM 2004), IEEE press, Sept. 2004

 [71] M. A. N. Al-hayanni, A. Rafiev, R. Shafik, F. Xia, A. Yakovlev, "Extended Power

and Energy Normalized Performance Models for Many-Core Systems", Technical

Report Series, NCL-EEE-MICRO-TR-2016-198, January 2016

[72] A. Timo, K. Tero, “Architecture considerations for tracing incoherent rays”,

Advances in Computer Graphics Hardware, pp. 113-122, 2010

[73] T. Usui, R. Behrends, J. Evans, Y. Smaragdakis, "Adaptive locks: Combining

transactions and locks for efficient concurrency", Journal of Parallel and Distributed

Computing, February 2010

[74] N. Nimalan, “Use of Multi-GPU Systems for Larger Than Device FFTs: With

Applications in Ultrasound Simulations”, Thesis submitted for the degree of Master

of Philosophy of the Australian National University, February 2013

[75] K. P. Raphael, “Multi-core architectures and their software landscape”,

Computing Science Handbook, Vol. 1, Chap. 35, 2013

[76] C. S. Angela, M. Jacob, D. Arash, M. Kevin, E. Bryan, “Parallelism via

Multithreaded and Multicore CPUs”, IEEE Computer - COMPUTER , vol. 43, no. 3, pp.

24-32, 2010

[77] E.S. John, G. David, S. Guochun, “OpenCL: A Parallel Programming

Standard for Heterogeneous Computing Systems”, Computing in Science and

Engineering - C in S&E, vol. 12, no. 3, pp. 66-73, 2010

BUPT

Bibliography 119

[78] Khronos Group, “The open standard for parallel programming of

heterogeneous systems”, https://www.khronos.org/opencl/, access time:

14.07.2015

[79] AMD, "Bolt”, https://github.com/HSA-Libraries/Bolt, access time:

16.07.2015

[80] K. Spafford, “ArrayFire: A Productive GPU Software Library for Defense and

Intelligence Applications”, GPU Technology Conference, San Jose, California, U.S.,

2013

[81] AMD, “Aparapi”, https://github.com/aparapi/aparapi, access time:

16.07.2015

[82] E. Caspole, “OpenJDK Sumatra Project: Bringing the GPU to Java”, AMD

Developer Summit (APU13), 2013

[83] R. M. Aciu, H. Ciocarlie, “Framework for the Distributed Computing of the

Application Components”, Proceedings of the Ninth International Conference on

Dependability and Complex Systems DepCoS-RELCOMEX, 2014, Brunów, Poland,

Springer, ISBN: 978-3-319-07012-4

[84] M. Cantelon, M. Harter, T.J. Holowaychuk, N. Rajlich, “Node.js in Action",

Manning, 2014, ISBN 9781617290572

[85] M. Steinberger, M. Kenzel, B. Kainz, D. Schmalstieg, “ScatterAlloc:

Massively Parallel Dynamic Memory Allocation for the GPU, Innovative Parallel

Computing” (InPar), San Jose, California, U.S., 2012

[86] C. Hong, D. Chen, W. Chen, W. Zheng, H. Lin, “MapCG: Writing Parallel

Program Portable between CPU and GPU”, Proceedings of the 19th international

conference on Parallel architectures and compilation techniques, PACT '10, Vienna,

Austria, 2010

[87] Y. Ke, H. Bingsheng, L. Qiong, V.S. Pedro, S. Jiaoying, “Stack-based parallel

recursion on graphics processors”, 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, 2009

[88] E. Kuleshov, “Using the ASM framework to implement common java

bytecode transformation patterns”, Sixth International Conference on Aspect-

Oriented Software Development, Vancouver, British Columbia, Canada, 2007

[89] Java bindings for OpenCL, http://www.jocl.org/, access time: 19.07.2015

BUPT

