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Rezumat: 
This thesis addresses the fieid of visual servoing and deals wi th solut ion 

nnethods for the non-adapt ive est imat ion of the Jacobian in learning 
approaches for visual servoing. Sensors are taken as abstract sources of 
Information that are used to identi fy robot movements by l inearizing the 
coherence between sensor data deviat ions and robot posit ion deviat ions in a 
Taylor expansion wi th a Jacobian. We compare di f ferent methods to determine 
the Jacobian f rom learning data such as the inversion of the Feature Jacobian 
or the direct solution of an over-determined system, regarding the propert ies 
of practicai relevance for visual servoing appiications like the f lexibi l i ty of the 
calculation and the quali ty and the stabil i ty of the result. In the conclusion, we 
are able to suggest a procedure to extract the Jacobian out of learning data. 
The analyzes are i l lustrated by mult ip le examples f rom real worid exper iments. 

Another part of this work deals wi th an effect that occurs when 
collecting learning data; a non-l ineari ty of hysteresis-type in the samples of 
robot positions and the sensor data. This effect can cause problems when 
identi fying the system with some of the previousiy ment ioned methods. We 
explain the origin of this effect (overlay of sampling delays and mechanical 
robot effects) and discuss methods for the determinat ion and compensat ion of 
the effect in the learning data. 
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1. INTRODUCTION 

This chapter offers an introduction to the subject of this thesis as well as an overview of 
the related work of previous publications and a description of the structure of this document. 

1.1. Overview 

Modern industry is nriarked by an increasing level of automation. The main reasons be-
hind this progress are either economical arguments or higher quality standards for the products. In 
the classical production environment, the nnost influential components on production accuracy are 
the manipulator system itself (consisting of the manipulator, the tool and possible externai axes), 
the conveyor system and the amount of production tolerances in the work object. To be able to 
manage the occurring deviations, suitable sensor systems are required to be used to acquire error 
deviations and smart controller systems need to transform this Information into corrections for the 
mariipulator. So, if we want to be able to find automation solutions for tasks with growing complex-
ity at high accuracy demands, this is oniy possible with continued research and development in 
the fieid of sensor-controlled manipulators and industrial robots. This particular fieid of engineering 
and computer science that deals with sensor-controlled robots, is called visual servoing. 

The original approach in visual servoing was limited to the usage of camera sensors (as 
the word "visual" suggests). However, with the availability of newer, industrial grade sensor tech-
nologies such as laser stripe sensors, this approach has been generalized. Because every sensor 
technology has its own unique properties, it can be favorable to combine the advantages of differ-
ent sensor technologies by using multiple sensors simultaneousiy. An example wouid be a robot 
position control relative to a metal sheet with a stamped hole in it. The position relative to the hole 
couid be detected in two DOFs^ by a hand-mounted camera, and the distance to the sheet (one 
DOF) and the tipping (two DOFs) can be determined by additional laser distance sensors. With 
this setup, we combine the easy detection of the hole with the camera with the simple distance 
measurement of the laser sensors to control the robot in five DOFs. Such a multi-sensorapproach 
raises new questions and problems such as the necessary abstraction of the sensor data, the 
optimal rating of different information sources that provide similar Information but with different 
reliability, or the problem of creating a controller capable of making decisions based on partially 
available sensor data. This touches the fieid of sensor data fusion, which is quite a popular subject 
in mobile robotics and military appiications. 

In this thesis, we pursue the learning approach of visual servoing, the Identification of 
robot movements and changes in the feature space with a learning step (in our case by using 
supervised learning, which means it is based on a list of inputs (sensor information) and desired 
outputs (robot positions)). For system Identification, we use analytical methods and limit the anal-
ysis to non-adaptive solutions so that we can identify the system once during setup in a calibration 
procedure and use a fixed Jacobian during the control process. For the discussion of adaptive 
solutions we refer to the papers [23] and [61]. Classifying the systems after [80] and [95], we limit 
our view to image-based systems that follow the dynamic look and move approach. The work of 
[58] (with foilow-up in [59]) discusses in the introduction the difference between 3D and 2D visual 
servoing. In 3D visual servoing, we have a model of the target object and we are able to directiy 

' DOF=Degree Of Freedom 
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2 1 - Introduction 

calculate the robot deviation using the feature deviations (for example, by using cameras and cal-
culating a bundie adjustment), while in 2D visual servoing we transform the feature deviations 
using a Jacobian into the robot coordinate space. The said papers offer an in-between solution -
referred to as the hybrid approach - by separately estimating the rotation and the scaled translation 
to the object, which results in an extremely stable approach due to this decoupling. The approach 
of this thesis is similar to that of 2D servoing, but instead of limiting the view to a hand-mounted 
single camera we consider a number of abstract control signals to any special kind of sensors, 
determine the deviation in the control signal space, and use a Jacobian to transform the result 
into robot coordinates. We make no assumptions of the object's geometry, so our approach is 
model-freeXoo. Furthermore, our learning approach employs a complete system Identification, so 
we do not have to have previous knowledge about any sensor TCPs. 

The method described above - using a Jacobian matrix for the transformation of feature 
deviations into robot corrections - shows in practice a great robustness against changes of the 
Jacobian. Accordingly, if determining the Jacobian the result is not unambiguous. This leaves us 
with the problem of finding an optimal Jacobian to a given configuration and - prior to that - defining 
the term "optimal". The literature provides us with a number of solution methods and discusses 
their different mathematical advantages, but a discussion regarding the practicai properties of the 
single methods (taking the most recent approaches into account) is not available. This thesis tries 
to fill that gap by defining a number of suitable, quality criteria to judge the quality of a solution 
method for a given learning data set (trace data set), and by comparing the collection of different 
methods by using these criteria. Additionally, an effect occurs in connection with the sampling of 
features and robot positions when collecting data for the learning step. This effect is a hysteresis-
like effect that causes problems when determining the Jacobian with certain solution methods 
or when realizing robot controllers. In this thesis, the origin of this effect is analyzed and its 
compensation is discussed. AII important results in this work are illustrated with examples and 
results from real wortd experiments to show the practicai relevance. 

1.2. RelatedWork 

This thesis is basically a work in the fieid of visual servoing. The term "visual servoing" 
was introduced in [33] to differentiate a new method from previous approaches that treated the 
processes of taking pictures and moving the robot as separate tasks. To get a thorough overview 
of the results of the first fifteen years of research in the area of visual servoing with an extensive 
bibliography and multiple appiication examples, take a look at [18] and [19]. An Introductory tutorial 
in the worid of visual servoing can be found in [39]. A more recent introduction to visual servoing 
for manipulation appiications can be found in [44]. Some of the latest tutorials on visual servoing 
have been published in [13] and [14]. Besides an introduction, they present the latest contributions 
in the fieId of visual servoing such as hybrid approaches or the usage of trajectory planning. 

A paper that is closely related to this thesis is [52], in which the author discusses two 
methods for the estimation of the Jacobian, the direct calculation and the inversion of the Feature 
Jacobian, The author shows the advantage of the direct calculation of the Jacobian over the more 
common calculation via the pseudo-inverse of the Feature Jacobian, but points out stability issues 
of the direct cateulation that still have to be addressed. This thesis extends the stability analysis of 
the directiy calculated Jacobian and makes suggestions on how to improve the direct calculation 
in terms of stability by using regulanzation techniques. An example of a system making use of the 
estimation of the Jacobian using the Feature Jacobian can be found in [93]. It describes a robot 
path correction system for the reduction of dynamic robot errors, which uses local Jacobian ma-
trices for each robot path point. Another paper that compares different learning methods can be 
found under [60], though this is done for systems using task sequencing, the separation of control 
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1.2 - Related Work 3 

tasks into multiple sub-tasks for enhanced performance, and stability. 

With the idea of using different kinds of sensors in visual servoing for optimal information 
gathering, the fieid of data fusion is getting more and more important in visual servoing, and deals 
with the fusion of different information sources with individual accuracy and reliability. A historic 
overview over the fieId of data fusion, along with the basic concepts and tutorials, can be found in 
the works of [54], [55] and [56]. Another feature level approach to mulţi sensor data fusion with 
links to robotics can be found in [10] and [32]. 

There is a long list of example appiications in the fieId of visual servoing that use differ-
ent sensor technologies and different methods for system identification. A class of appiications 
where visual servoing is commonly used is seam tracking for welding. The paper of [27] as part 
of the thesis [28] shows a recent overview of the history of robot seam tracking appiications and 
describes the realization of a simulation environment consisting of a commercial robot simulation 
tool connected with a numerical computing environment for the design of a 3D seam tracking sys-
tem for the welding of ship hulls. The work of [72] contains an in-depth analysis of components for 
real time seam tracking appiications as well as some basic approaches for adaptive welding using 
triangulation sensors. In [57], a sensor-based seam tracking system for pipe welding is presented, 
similar to [64] and [65]. A classical visual servoing appiication can be found in [34] with the usage 
of a hand-mounted stereo vision camera and an affine stereo algorithm for control. In [66], the 
authors describe an offiine supervised learning approach for the correction of robot programs in 
which the robot executes an offiine taught program along a work object while a calibrated sensor 
measures the distances to the desired robot path. The differences are fed into a multi-layered neu-
ronal network. Another approach using neuronal networks can be found under [17]. It describes 
the development of an image-based visual servoing controller with a feed-forward neuronal net-
work that used feature information (in this case camera data) and robot states as its learning data. 
The presented approach is an adaptive approach. Similar is the work of [69], in which the authors 
use a position sensitive device (PSD) as sensor to control a robot using a back-propagation net-
work approach. Works that focus mainly on the architecture of visual servoing appiications can 
be found under [97], in which strategies for fast oniine path correction systems are discussed, or 
in [50] and [51] who suggest an architecture where the sensor control is divided into a robot po-
sitional control and a path planning part. This decoupling of the fast robot control and a possibly 
slower sensor-based path planning ailows for very efficient path correction solutions. In [68], a 
laser-sensor based system for autonomous surface-foilowing is developed, which uses no previ-
ous knowledge about the actual surface (no learning approach). Because of its importance for 
industrial appiications, visual servoing is a patent subject matter too. One patent in that area is 
[35], who describes the path correction by a triangulation sensor. This uses a learning approach 
and utilises "conversion" matrices to determine the final robot corrections. Similar approaches for 
real time seam tracking with triangulation sensors can be found under [38] or [62]. 

Some Visual servoing appiications require a TCP^ calibrated sensor, for example the on-
iine path planning systems with a laser triangulation sensor described in [91] or in [66]. An early 
work on the TCP calibration of hand-mounted triangulation sensors can be found under [1 ]. In [79], 
the authors use a Bayesian iterative model to solve for the TCP calibration. In [67], a least squares 
solution for the sensor calibration of triangulation sensors is determined so that the calibrated sen-
sor can be used for the 3D measurement of free formed parts. The work of [73] describes an 
inverted Feature Jacobian approach for TCP calibration. 

A part of this thesis deals with the analysis of the hysteresis effects of robots. Most works 
that have been published in connection with hysteresis effects are about the hysteresis effects 

^TCP=Tool Center Point 
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4 1 - Introduction 

of magnetic materials. A paper that describes the effect of valve stiction in the area of control 
of chemical plants can be found under [16], and provides good definitions of hysteresis-related 
terminoiogy. The paper by [82] studies the compensation of actuator non-linearitles of hysteresis-
type by using neuronal networks. In [43], the author describes the Identification of non-linear 
systems with saturation and hysteresis and the usage of a recurrent neural network and non-linear 
optimization techniques for their compensation. 

1.3. Structure 
After this iniţial chapter (Chapter 1), in which we give an overview of the subject of this 

thesis and list the related publications in that fieid, we offer in the next two chapters an introduction 
to two important components for visual servoing systems: Robots (Chapter 2) and sensors (Chap-
ter 3). These chapters present the current, state-of-the-art technologies that have been used to 
realize a test system and focus on technical details that become important in the further course of 
the thesis. Furthermore, the central problem in visual servoing and the central point in this work 
is the Identification of robot movements by observing sensor data changes. We treat this subject 
extensively in a chapter about system Identification (Chapter 4). During this chapter, two more 
elaborate aspects arise that have been moved into separate chapters. The first one is the com-
position of the weights in the Jacobian matrix using different solution methods (Chapter 5), and 
the other is the appearance of non-linearities of hysteresis-type in the trace data (Chapter 6). In 
the next chapter, we develop a robot position control system by using the results of the previous 
chapters to test the usability and performance of the stated system in practice (Chapter 7). A dos- ^ 
ing chapter follows, in which we summarize the results, draw some conclusions, point out special 
contributions that have been made and mention ideas for a continuation of the work (Chapter 8). 
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2. INDUSTRIAL ROBOTS 

Visual servoing involves using sensor information to control a manipulator or industrial 
robot. In this chapter, we take a closer look at the object of our control attempts by defining 
the term "robof and by learning about its kinematics. Furthermore, we introduce a method for 
robot position interpolation and the effect of hysteresis before we see what kind of communication 
interfaces a modern industrial robot provides to accept externai position corrections. 

2.1. Definition 

The internaţional standard ISO 8373 (see [40]) defines a robot as: 

An automatically control led, reprogrammable, multi-purpose manipulator, programmable 
in three or more axes, which may be either fixed in place or mobile for use in industrial 
automation appiications. 

A more geometrically oriented definition describes the robot as a chain of / + 1 rigid 
objects, called links, connected to each other with l joints vjWh l e N. The joints have a translational 
or rotatory degree of freedom. The status of a single joint (length or angle) can be described by a 
value Oi e M, the vector 

e = 
f \ 

(2.1) 

represents the configuration of all l joints of the robot. The first link of the robot is usually fixed^ 
and is therefore called the robot's base with the attached base coordinate system. The tool is 
connected to the last link, which is called an end-effectorvj\\h the adherent tool coordinate system 
and its point of origin, the toolcenterpoint{TCP, see Figure 2.1). 

The position and orientation of the end-effector in respect of the base coordinate system 
can be expressed with a transformation. Depending on the robot's geometry, this transformation 
contains m g N, m < 6 degrees of freedom up to a maximum of six 

r = 

ri \ 

\ Tn / 

e (2.2) 

where each single element contains either a translational degree of freedom (DOF) (X, Y, Z) or a 
rotatory one (Roll, Pitch, Yaw^). 

^ Exception: Robot appiications in space 
^Possible altematives are Euler angles 
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6 2 - Industrial Robots 

Tool 

Base 

Figure 2.1: Geometrical Robot Model 

2.2. Robot Kinematics 

Because the robot is actuated in the joint space and the end-effector is moved in the 
Cartesian space of our physical worid, it is necessary to be able to map a joint configuration to the 
end-effector position and vice versa. Thus, in practice there are two problematic areas of interest 
when controlling the robot's (see Figure 2.2): 

1. What is the transformation r from the base coordinate system to the tool coordinate system 
when the joint configuration 6 is given? 

2. Which joint configuration 0 has to be chosen to realize a certain transformation r from base 
to tool? 

Forward Kinematics 
Joint Configuration 

e 

Inverse Kinematics 

Figure 2.2: Robot Kinematics 

The first question relates to forward kinematics. This can be expressed mathematically 
by Ihe search for the function 

f:e ~ r. (2.3) 

Because every joint configuration 6 realizes exactiy one transformation r. / is a mathematical 
function. With a known geometry of the links and joints, It is quite easy to find a closed solution 
for / by determining the chain of transforn^tions from link to link. A classic method to do this in a 
standardized procedure is the Denavit-Hartenberg method, which can be found in basic robotics 
literature like [2] or [20]. A typical representation of / is a homogeneous matrix whose elements 
are dependent on the l joint configurations. 
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2.3 - Robot Position Interpolation 7 

The second question addresses the inverse kinematics of the robot. Its solution requires 
the reversibility of / or the existence of 

r':T 9. (2.4) 

The formal mathematical requirement for the invertibility of / is bijectivity. If the number of joints 
/ is greater than the number of controlled DOF m, there might be the possibility of multiple joint 
configurations leading to the same transformation. Figure 2.3 (a) shows two different joint configu-
rations realizing the same transformation r. So, / does not necessarily have to be injective. On the 
other hand, / is not surjective as the transformation cannot be realized with any joint configuration 
because of the limited working area of the robot (see Figure 2.3 (b) for an example). Therefore, the 
existence of is bound to certain constraints that make its computation difficult. Other practicai 
constraints are the physical dimensions of the links required to check if the robot is colliding with 
itself, or the user definition of work spaces the robot is not ailowed to leave. It is quite common to 
solve inverse kinematics using numerical methods. 

Base 

Figure 2.3: Ambiguous and Unsolvable Joint Configurations 

This problem is not limited to the fieid of robotics. It occurs in computer graphics when 
modelling rigid bodies, in medicine when examining the forces and torques occurring in muscles 
moving limbs, or in molecular biology when calculating the possible structures of proteins (loop 
closure problems). For this reason, extensive research has been carried out. A good introduction 
to the inverse kinematics in robotics is provided by [11] and [12]. A special solution for inverse 
kinematics based on a matrix transposition is discussed in [22]. The book [86] provides a wide 
theoretical overview over the inverse problem theory and [24] describes a supervised learning 
approach to the inverse kinematics problem. A basic work on the appiication of inverse kinematics 
in computer graphics can be found under [96], which is based on the paper [94] and a more recent 
work based on a learning approach under [31]. For examples on the works related to neurobiology 
and medicine, see [41] and [83]. 

2.3. Robot Position Interpolation 

The subject of robot position interpolation solves the problem of having two robot posi-
tions r i and t2 - usually these are the position the robot is currently in and a target position -
and wanting to find intermediate robot positions between these positions. This is important when 
establishing a path planning system or oniy realizing a simple proporţional controller. The solution 
that comes first to mind - the component-wise interpolation of the position vectors r i and r2 

t{u) = {\-u)ri+ur2 (2.5) 
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8 2 - Industrial Robots 

with a u e R,0 < u < 1 - leads in practice to problems such as non-natural and non-smooth 
movements. While translations can be interpolated component-wise as shown above, rotations 
expressed in RPY angles or Euler angles shouid not be interpolated in that way. 

A solution for the interpolation of rotations offers the so-called SLERPs^ (see [85] as the 
original source or for further Information [21]). They use a description of the rotations in the form 
of quaîernions. Quaternions were originally invented as the skew fieid IHI = C^ = in the fieid 
of abstract algebra. Later, unit-quaternions were discovered as a way to express rotations. For a 
good introduction to the fieid of quaternion mathematics, see [45]. SLERPs ensure a natural and 
smooth interpolation between two positions that differ in a rotation. 

When using SLERPS, we have to convert the rotatory components of r i and t2 into the 
two quaternions q i andq2. The interpolated quaternion for an interpolation factorii eR,0<u<l 
is then given by 

s i n ( l - . ) < , ş i ^ (2.6) 

smv? sin cp 

with cos(^) = q i • q2. For u = O we get q = q i and for u = 1 the result is q = q2. The resulting 
q(u) has to be converted back to the previous representation and nnerged with the translational 
component that has been interpolated using (2.5) with the same interpolation factor u. 

2.4. Robot Hysteresis 

So far, we have treated the robot as a system of ideal geometrical objects arranged for a 
flexible positioning of the end-effector However, in reality there are multiple physical effects, mostly 
of non-linearity types, that affect the mechanical properties of the robot and therefore reduce its 
overall accuracy. Here is a list of the most important influences: 

• Production tolerances of the mechanical parts 

• Link and joint resilience 

• Gear and bearing slackness 

• Frictional effects 

• Variations in temperature 

It is fairly difficult to take care of these effects. After production, industrial robots are subject to a 
complex testing and measuring procedure to determine the actual robot parameters and to com-
pensate the production tolerances by optimizing the actual robot parameters as model parameters 
in a model-based compensation approach. Some effects are much more difficult to address and 
might require robot hardware modifications that usually lead to higher production costs of the robot. 

Now, we will take a closer look at an effect that is of some importance in the further course 
of this thesis. This is mainly caused by gear slackness and causes hysteresis-like non-linearities. 
For a small expehment, we suppose that we are able to measure the position of the robot with 
some externai measurement system of high accuracy and high reliability. We move the robot in a 
single DOR fonward and backward in a ciosed loop. When comparing the robot position obtained 
from the robot controller with the robot position determined by the measurement system, we see 
a divergence of hysteresis-type. This is illustrated using simulated data by Figure 2.4. 

^SLERP=Sphencal bnear «nterpolatjon 

BUPT



2.4 - Robot Hysteresis 9 

E 
E 
c 
o '-I—' 
"(O 
£ 

o 
•8 
DC 
15 
0) 
QC 

- 3 - 2 - 1 0 1 2 3 
Measured Robot Position (mm) 

Figure 2.4: Mechanical Robot Hysteresis 

This effect is made worse by a certain practice that is especially common for industrial 
robots. As you can see in Figure 2.5, in industrial robots the incremental resolver - responsible 
for the joint position determination - is usually nnounted on the motor-side of the gears as shown 
in a) and not on the joint-side of the gears as in (b). This gives the advantage of having a higher 
resolution for the robot position because the gear ratio increases the resolution of the incremen-
tal resolver, and it is possible to use cheaper incremental resolvers with lower resolution. The 
downside, however, is that this leads to enhanced hysteresis effects because the joint position is 
measured indirectiy by including certain gear effects. 

Figure 2.5: Incremental Resolver in Industrial Robots 

In the foilowing, we see the results of a real worid experiment for estimating the dimen-
sion of the hysteresis effect. We define a target position for the robot and move the robot to this 
target position; once from the positive and once from the negative direction of a certain DOF Ev-
ery time we reach the robot's stop position, we measure the distance of the target position with 
an externai measurement system. With this procedure, we get two measurements for one single 
cycle. Figure 2.6 shows the results after 1000 cycles. The absolute positioning error reflects the 
repeating accuracy of the robot and is here below one tenth of a millimeter. The distance belween 
the average of the measurements from the positive and negative directions is over five hundredths 
of a millimeter and represents our mechanical robot hysteresis. 
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Figure 2.6: Reaching Target from Different Directions 

The results of this experiment are bound to a certain robot and depend heavily on the 
absolute target position. Therefore, although they are not generally valid, they shouid give us an 
idea about the dimension of the hysteresis effect that we might expect. 

2.5. Robot Control 

Robot controllers are usually embedded into an industrial environment with the require-
ment to communicate with a variety of other components such as programmable logic controllers 
that are responsible for the central operation control, or with externai nfieasurement systems. As a 
consequence, robot controllers have to support a variety of different communication interfaces and 
communication protocols such as common industrial bus systenns (Interbus, Profibus, Profinet). 
We distinguish the communication interface by its ability to directiy control the robot in real time or 
by providing control vaîues to the robot's commando interpreter and controlling the robot indirectiy. 

2.5.1. Real Time Control 
Real time robot control requires low level access to the robot controller. The robot con-

troller of industrial robots contains a path planning module that performs the planning of the robot 
path between two path points over the time. Part of this is the interpolator that calculates the inter-
mediate points of the robot's path, and this is where the real time control takes place by accepting 
externai robot target positions or by overlaying the robot's movement with externai corrections. The 
cycle time of the interpolator determines the maximum frequency at which externai corrections qpn 
be processed. The cycle time of the interpolator of toda/s KUKA robot controllers, for example, is 
12 ms. 

Today, oniy a few robot controllers for industrial robots support low level access to the 
control core and interpolator. Examples of this are the KRC controllers for KUKA robots. The 
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interface is known as the Robot Sensor Interface (RSI, see [48]) and is a real time interface for 
externai sensors. It is an object oriented extension of the KUKA Robot Language (KRL) and con-
sists of a toolbox for accessing sensors that are connected with the l/O connponents of the robot 
controller and realizes basic controllers within the KRL A further extension of the RSI, developed 
by the company Amatec Corporation (see [46]), ailows for access to the robot interface via externai 
computer systenns' Ethernet, and is the way in which the robot can be controlled from an outside 
computer system: The robot program moves the robot into a starting position and passes control 
to the computer system - this returns control to the robot after finishing its task. 

The RSI/Corob interface establishes a TCP/IP connection between the robot controller 
and computer system. Every 12 ms, the robot sends a data packet in XML format containing In-
formation about the current Cartesian and joint positions, positions of the externai axes, motor 
currents and the status of a set of l/O variables. The computer system replies with a packet con-
taining Cartesian corrections, joint corrections and corrections for externai axes as well as its own 
set of l/O variables. Since the Ethernet communication has no real time capabilities and there are 
certain wider time limits, the robot requires the acknowledgement of its packets by the reply of the 
receiver. 

A technology review of the flexible sensor interface RSI for KUKA robots has been pub-
lished in [9], which describes the development of the interface by analysing the industrial require-
ments for an open control system. A similar technology to the KUKA/RSI for robots from ABB is 
discussed in the article [7]. The authors describe the ABB S4CPIus controller as a fast and flexible 
real time sensor interface that tries to offer access to the robot's control core while taking security 
and performance issues into consideration. 

2.5.2. Non-Real Time Control 
If no real time control for the robot is available, it remains to control the robot by transmit-

ting corrections via one of the available communication interfaces. These corrections are received 
by the robot's command line interpreter and can be processed with the robot's programming lan-
guage. An example of the serial communication interface that is used in KUKA robots is the 
industrial serial communication protocol 3964/3964R. The KUKA robot language KRL (see [47]) is 
extended by commands for opening or closing a connection (COPEN/CCLOSE) and for receiving and 
sending data (CREAD/CWRITE) (see [49]). For the development of a complete robot control system, 
it is necessary to define certain message datagrams for sequential control, correction transmis-
sion and error signalling. The non-real time control of the robot via standard communications and 
the usage of the robot's programming language is the most versatile solution. One drawback is 
the slower speed of the control process because it requires a stricter synchronization of measure-
ment and the robot's movements (synchronous system, see Chapter 7.1), as no intermediate robot 
positions are availab'e while the robot is moving due to the last transmitted correction. 
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3. SENSORS 

The sources of information used to control the robot in visual servoing are sensors. This 
chapter introduces some of today's important sensor technologies for robot control - Laser distance 
sensors, laser stripe sensors and cameras. Since most sensors provide information of greater 
compiexity and each type of sensor technology provides different kinds of information, we learn 
in the foilowing sections about a concept that explains how to use sensors as abstract sources of 
information to make it easier to fuse different sensor technologies in a single appiication and to 
make different sensor technologies more interchangeable. 

3.1. Sensor Hardware 

3.1.1. Laser Distance Sensors 
Optica! distance sensors such as laser distance sensors for measuring small distances 

with high accuracy in robot control appiications use the triangulation as a measurement principie. 
Figure 3.1 shows an overview of the sensor components and the measurement principie: 

Line Camera 

Figure 3.1: Laser Triangulation Principie 

Triangulation sensors use a laser module to emit a laser beam, which is diffuse reflecTed 
back to the sensor. The returning laser light passes through a filter (to suppress light from other 
light sources that have different wavelengths to the laser light of the sensor) and one or more 
lenses, which finally project the light onto a line camera. The angle under which the laser light 
returns to the sensor depends on the distance between the object and the sensor. This angle is 
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3.1 - Sensor Hardware 13 

detected by determining the position where the laser light hits the line camera. The mathematical 
coherence between the distance 2 and the position of the maximum brightness on the camera chip 
can easlly be derived. In the major triangle we get 

tan(Q -h a ) = 

and in the minor triangle we get 

20 + 2 _ tan a 4- tan a 
d 1 - tana • tana' 

tana = j . 

(3.1) 

(3.2) 

Combining both, we get the distance z depending on the deviation x on the line camera chip 

/ • tan Q -h X 
z{x) = d • _ - Z Q . 

f — X • tana 
(3.3) 

Because of the geometrical influences in the form of d and / , the adjustment of the sen-
sor components shouid be kept fixed. Therefore, laser triangulation sensors are usually compact 
modules with all of the components encapsulated in a compact case, ready to be used in rough in-
dustrial environments. An example is shown in Figure 3.2: The sensor (Micro-Epsilon "optoMCDT 
1401 -10") for a measurement range of 20... 30 mm is not much bigger than a matchbox. 

Measurement-
Range 

Figure 3.2: Laser Triangulation Sensor 

The laser modules are usually semiconductor laser modules with a power of about 1 mW 
(eye-safe) and with a visible light that has a wavelength of about 670 nm (red color) for easy ad-
justment. The laser usually runs in pulsed mode. Most sensors have an automatic exposure time 
control (timing of laser pulses) to be able to cope with the different reflective behaviors and colors 
of the measurement objects. Internai electronics convert the deviation on the line camera into 
an analog signal whose value is linear to the measured distance or directiy into a digital distance 
value provided to the user by standard interfaces (for example, serial interfaces). The measure-
ment rate is usually around 1... lOkHz but can go up to 500 kHz. Table 3.1 shows the technical 
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14 3 - Sensors 

Range Frequency Resolution Linearity 

2 mm (24. . . 26 mm) 

20 mm (40.. . 60 mm) 

200 mm (70. . . 270 mm) 

j 750 mm (200... 950 mm) 

2.5 kHz 

2.5 kHz 

2.5 kHz 

2.5 kHz 

±0.1 ^m 

±1.5 /xm 

±12/im 

±50//m 

±2|xm(±0.1%) 

±16/im(±0.08%) 

±200/xm (±0.1%) 

±750/xm (±0.1%) 

Table 3.1: Common Laser Triangulation Sensors 

specifications of typical laser distance sensors. 

Even though laser triangulation sensors can cope with a wide variety of object surfaces, 
highiy reflective materials can be problematic, as well as transitions of the sensor's laser light be-
tween surface regions with very different optical properties such as paint films. When measuring 
the distance to an object with a very jagged surface, some shadowing effects may occur - the laser 
point projected on the object cannot be detected by the sensor's camera line. The sensor shouid 
be aligned in a way that the laser beam stands normally on the object's surface. Tipping the sensor 
up to 15 ^ from this position usually does not affect the quality of the measurement. 

One basic problem with triangulation sensors is that with the growing measurement dis-
tance ;:o + the distance between the laser module and camera d has to be increased too. This 
has to be done to maintain a measurement with acceptable accuracy - if a gets nearer to 90 ° we ^ 
get numerica! problems with tana in (3.3), leading to a bad measurement accuracy. Increasing d 
leads to more space-consuming sensor solutions for higher measurement distances. To avoid this, 
sensors for the measurement of the distances above 1 m usually use the time-of-flight or phase dif-
ference measurement principles (see [6]), but due to the decreased measurement accuracy these 
sensors do not have many appiications in connection with control systems for industrial robots. 

3.1.2. Laser Stripe Sensors 
The triangulation principie is also the measurement principie of laser stripe sensors. How-

ever, the laser projects no other point apart from a line onto the object and the line camera is 
replaced by a matrix camera. This way, the measurement dimension of the sensor module is in-
creased by one and it is possible to simultaneousiy retrieve distance Information for multiple points 
along the laser line. The measurement area is a trapezoid in the plane of the laser stripe pro-
jection, an example of which is given in Figure 3.3. The laser stripe is projected onto a step-like 
structure and the sensor provides Information about a set of measurement points along the laser 
line; often called a scan. Each point has two assigned coordinates and an intensity value. 

Although it is possible to set up a laser stripe sensor using single components - a laser 
module and a matrix camera - it is advisable to use ready-mounted systems due to the difficult 
alignment and calibration of the components and their sensitivity to externai mechanical influ-
ences. Multiple manufacturers offer compact and ready-to-use solutions for industrial appiications 
that contam a hardware-accelerated camera evaluation providing the user with linearized metrical 
measurement data via standard interfaces (Firewire, Ethernet). Figure 3.4 shows such a laser 
stripe sensor module (MEL •̂ M2D"). Through the right window, the laser module emits the laser 
stripe, and the camera is located behind the left window. The total width of the sensor module is 
140 mm. To reduce the size and weight of the sensor head, the data processing unit is located in 
a separate module. 

Table 3.2 shows the properties of laser stripe sensors from two different manufacturers. 
The A' coordinate describes the position of a measurement point along the laser line. Because 
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Figure 3.3: Laser Stripe Sensor Scan 
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Figure 3.4: Laser Stripe Sensor 
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of the trapezoid measurement area of the sensor, the range for X is given twice in the table - the 
smaller value for the nearer side of the trapezoid and the greater value for the further one (de-
pendent on the aperture angle of the emitted laser line). The sensors of both manufacturers have 
two operation modes with a different resolution in X. The Z coordinate represents the distance 
between a measurement point on the laser line and the sensor. Its measurement range starts at a 
basic distance f rom the sensor. Details about the linearity for the sensors are oniy known by Micro 
Epsilon. The frequency depends on the resolution mode chosen for the X coordinate. A doubled 
resolution in X halves the possible measurement frequency. AII sensor modules work with visible 
laser light - in MEL sensors with 1 m\V power, and in the Micro Epsilon sensor with 15 mW power. 
The higher the measurement frequency is, the shorter the camera exposure time has to be. A 
shorter exposure time demands an increased intensity of the laser line. AII sensor modules have 
an automatic exposure tinr>e control to adapt the exposure tinne to different distances to the mea-
surement object and different object surface properties. 

MEL 
M2D 7/6 

MEL 
M2D 120/54 

MEL 
M2D 1200/600 

Micro Epsilon 
LLT2800-100 

Range in X 
(nim) 

6/7 54/54 600/600 30/50 

A' Resolution 
(points) 

283/566 283/566 283/566 256/512 

X Resolution 
(mm) 

0.015/ 

0.03 

0.25/0.5 1.00/2.00 0.16/0.08 

X Linearity 
(mm) 

- - - ±0.12 - ±0.2 

Range in Z 
(mm) 

7 

(20 - 27) 

120 

(110 - 2 3 0 ) 

1200 

(900 - 2100) 

100 

(145 - 245) 

Z Resolution 
(mm) 

0.015 0.25 1.50 0.04 

Z Linearity 
(mm) 

~ - - ±0.2 

Frequency 
(Hz ) 

50/110 50/110 50/110 500/1000 

Table 3.2: Common Laser Stripe Sensors 

The limits of the laser stripe sensors are pretty much the same as for the laser triangula-
tion sensors. To deal with different surface properties, most sensor modules contain an automatic 
exposure time control for the laser beam, but to be able to scan objects with different surface col-
ors of high contrast, the exposure time can be set nnanually too. The problem of shadowing exists 
tor laser stripe sensors too: when the camera is unable to see parts of the laser stripe because it 
is hidden behind some protnjding parts of the object. This is the first problem when using laser 
stripe sensors in connection with an externai axis in quality assurance appiications (see for ex-
ample [8]). To reduce this problem, special sensor models are available with one laser module 
and two cameras that observe the projected laser line on the measurement object from opposite 
directions. 

BUPT



3.1 - Sensor Hardware 17 

3.1.3. Cameras 
The model for the ideal camera is the pinhole camera. It uses an infinite small hole in an 

infinite thin material to project light onto a projection plane with a light-sensitive sensor element. 
Because of the low light sensitivity of the pinhole camera, real cameras use one or more lenses for 
projection. AII the aberrations and internai properties of the camera system are concluded in the 
internai camera parameters, and the camera position is defined as externai camera parameters. 
Some of these parameters are important when using the camera as a 3D measurement system. 
The literature shows a great variety of methods to estimate internai and externai camera param-
eters - some of the most important being [4], [5], [53] and [92]. Which parameters are important 
depends on the particular appiication. For our appiication, we require a linear coherence between 
distances in the camera picture and physical distances in the real worid. Knowledge of the internai 
or externai camera parameters is not necessary. It is enough to have a scaling factor to convert 
pixei distances into millimeters for easier conception and the rest is done by the system's self-
learning capability. 

Object 

Projection 
Plane 

Hole 

Figure 3.5: Pinhole Camera Schematic 

The two standard digital camera sensortechnologiestoday are the CCD^ and CMOSVAPS^ 
sensors. CCD chips provide the higher density of photo-sensitive elements on the chips' surface, 
but CMOS chips have the advantage of a more flexible evaluation (exposure and evaluation at the 
same time and pre-evaluation in parallel per sensor element) at much higher frame rates. 

The classical, and at present most relevant, communication interface for cameras is still 

^ CCD=Charge-Coupled Device 
^CMOS=Complementary Metal Oxide Semiconductor 
^APS=Active PixeI Sensors NIV. "POLITEHNICA 

TIMIŞOAAA 
BIBLIOTECA CENTRMLA 

BUPT
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the analogous transmission of the pixei data as a video signal. After transmission, the video signal 
is re-digitalized by special hardware called frame grabber. However, because of the decreasing 
analog signal quality due to electromagnetic interferences in rough industrial environments and 
more expensive hardware (framegrabber), modern cameras offer digital interfaces like Firewire 
(IEEE 1394) or the more important Gigabit-Ethernet (GigE) that are capable of handiing the high 
data rates of high resolution cameras at high frame rates. An important current standard interface 
for Gigabit-Ethernet cameras is the GigE Ws/on standard. 

A rather new type of camera is the so-called "intelligent camera". Besides the actual 
camera hardware, which consists of optics and a camera chip, these cameras contain custom 
hardware with FPGA or DSP capabilities to execute some basic picture processing algorithms. 
With cameras like this. it is, for example, easy to execute the task of finding the center point of a 
hole; visible as a black circle in the camera picture. The advantages of intelligent cameras are their 
evaluation speed, their compact design and their price compared to computer-based solutions. 
On the downside, the limited user interface prevents the appiication of complex picture processing 
tasks with extensive parameterization and more complicated setup and debugging requirements. 

3.2. Sensor Abstraction 

The measurements of a single laser distance sensor may be used directiy to control the 
position of a robot. That said, most of the sensors introduced in the previous section provide more 
complex sensor raw data that cannot be used directiy for robot control, like a monochrome camera, 
picture of a complex scene or a set of distance points from a laser stripe sensor. In these cases, 
we need to have a further evaluation of the sensor's raw data to extract information that is suitable 
for robot control. The output of the evaluation can be seen as some sort of sensor information it-
self. This raises the idea of having abstract information sources, called sensor signals, that provide 
numerical geometrical information about a certain feature independent from its source, a sensor 
hardware device or the result of an evaluation of more complex data. Figure 3.6 illustrates the 
concept of the abstraction of sensor data. 

In essence, a sensor device is a piece of hardware. On the top we have a laser distance 
sensor. a laser stripe sensor and a camera. After executing a measurement, all these sensors 
provide sensor information in the form of raw data. For sensors with more complex raw data, we 
have to appiy different evaluation methods to extract further information. In the case of the laser 
stripe sensor data, we determine the position of an edge in the sensor scan as well as the angle 
of the base line. For one of the camera pictures we determine the position of a screw nut in the 
picture. On the other camera picture we use a different evaluation to measure the distances of 
two edges of metal sheets using camera coordinates. All of this information describes simple geo-
metrical information that is ready to use for robot control purposes. The concept of sensor signals 
ailows for the handiing of different kinds of sensors for robot control - the basis for multi-sensor 
fusion applications. Sensor signal values shouid be in the unit of millimeters or degrees to simplify 
conception when used in connection with robot movements, but this is not obligatory. 

The mounting position of the sensors may vary. The oniy requirement is that the recorded 
sensor information leads to sensor signals, which change if the robot is moved, and that we are 
able to correlate the robot's positions with the control signal information. The sensors' mounting 
positions may be fixed, but it is quite appiicable to mount the sensors as extensions of the robot 
tool. The tool extenslon together with the sensors is referred to as the sensor tree. 

An important distinction of sensor signals is the question of whether the sensor signal 
values depend on the mounting position of the sensor that provides the raw data for the sensor 
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Figure3.6: Sensor Abstraction 
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signal. An absolute measuring s\qnQ\ measures geometrical features relative to the sensor's coor-
dinate system, such as the position of the screw nut in the camera picture or the relation of both 
edges to one another in the example above (the orientation of the coordinate system in which the 
distances are measured depends on the camera mounting position). A relative measuring signal 
measures geometrical features independent from any sensor's coordinate system. If we wouid 
define the relationship of both edges in a coordinate system that is fixed on one of the edges, 
camera relocation wouId not affect the measured distances. The question as to whether a signal is 
absolute or relative measuring is interesting when a sensor has to be replaced, for example, in the 
case of a sensor malfunction. After exchanging an absolute measuring sensor, the system has to 
be re-identified or, at least, the signal reference values have to be updated. This is not necessary 
for relative measuring signals. 

In the literaturo, the abstraction of sensor information in connection with visual servoing 
is quite common. An example work that proposes a concept for a flexible multi-sensor fusion and 
integration can be found in [25]. Other works on sensor data fusion can be found under [10] and 
[32]. 

3.3. Control Signals 

Instead of using the previousiy introduced sensor signals directiy for robot control, we add 
another layer of abstraction by defining the control signals. These control signals allow us a more 
flexible usage of the sensor information for solving problems with additional requirements such as 
the conservation of symmetries. We consider having some sensors that provide us with a number' 
of m sensor signals h^ with t € [1. . . m]. Using these sensor signals, we define a number of n 
control signals with j € [1... n] as a linear combination of a number of sensor signals. We do 
this by writing the sensor signals and control signals as vectors h and s and by using a matrix C 
of the size n x m to realize the desired transformation: 

s - C h . (3.4) 

Each row of C contains the weights for the j-th control signal. In the simplest case, each control 
signal is identica! to one sensor signal without any further weighting. This means that m = n and 
C are equal to an identity square matrix. 

Nevertheless, there are appiications that make the definition of more complex control 
signals interesting, for example, for the symmetric positioning of the robot. We take a look at the 
situation shown in Figure 3.7. A robot has grabbed some part and we want to control its position 
relative to the work object for a subsequent assembly. Six sensors provide information about the 
size of the gaps between the part and work object in the form of six control signal values. The 
work object shouid be positioned symmetrically in terms of 

h ] ^ h^ and h^ ^ /15, (3.5) 

for /î3 and /i4 we have certain nominal values. Of course, we couid set up a system with six control 
signal values like 

.Si = /îl, .Sn h2, . . , S 6 = /i6, (3.6) 

but the foilowing approach with four control signals shows better results 

S\ = {hy - /le), ^ (/i2 - /is), S3 ^ /13, S4 = /14. (3.7) 

The differences ensure a far better performance in terms of the symmetric positioning of the part 
when the part has some forms of deviation. This is because the differences represent directiy a 
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measure for the symmetry instead of taking the gap sizes as single values and leaving it to the 
system identification algorithm to distribuie errors on those gaps, as done in the first approach. 
Therefore, defining the control signals in the second approach is a way to implement the previous 
knowledge about the desired symmetry into the system. 

Work Object 

/15 

he 

V h M 

y 

ZT X 

Part 

h2 

Figure 3.7: Symmetric Assembly using Control Signals 

BUPT



4. SYSTEM IDENTIFICATION 

So far, we have learned about the basic components of a visual servoing system - Sen-
sors as the providers of geometrical information and robots as objects for which position has to 
be controlled. This chapter introduces a method for the identification of robot movements using 
sensor information. The system identification is based on a learning approach and includes a lin-
eahzation using a Taylor expansion with a Jacobian matrix as a local derivative. We learn about 
the basic idea of this system identification and how to collect learning data. After discussing differ-
ent approaches to estimate the Jacobian, we compare these methods under the practicai points 
of view (quality, flexibility, stability and geometrical considerations). 

4.1. Problem Description 

Suppose we want to control a robot in Cartesian space in a number of m g N, m < 6 
(translational or rotatory) DOFs. The status of the robot is expressed as a status vector 

r = (4.1) 

/ 
with the components of r containing up to three translational and up to three rotatory coordinates 
in Euler or RPY angles, such as in (2.2). 

In special cases it might be in order to directiy describe the status of the robot by its link 
status vector 0 like in (2.1). This is first of all the case if the robot controller offers oniy basic robot 
control due to its lack of a build-in kinematic solver or in cases where the robot has multiple redun-
dant degrees of freedom that shouid be taken into consideration by the visual servoing. However, 
the direct usage of robot links as status description in visual servoing can be problematic for robots 
with a more complicated kinematic coherence and an appiication with a tool-centered view: When 
moving the robot link-wise the visual servoing shouid be able to judge the resulting movement and 
speed of the robofs tool, which is not available without a known robot kinematic. 

Let n G N be the number of control signals. The control signals are abstract data sources 
that depend somehow on some geometrical features that change when the robot is moved. A 
snapshot of all the n control signal states can be written as a vector of control signal values 

s = 

S\ 

€ (4.2) 

function 
To control the robot using the control signal data, the knowledge of the vector-valued 

R" 
s (4.3) 
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or written as a set of scalar-valued functions 

r = f ( s ) = 

Tm = /m(s) 

(4.4) 

wouid be convenient. However, since / is unknown and it is not necessary for our appiication to 
have global knowledge about the relationship between control signal values and robot positions, 
an approximate solution for / in a snnall area around a working point Is sufficient. We denote the 
working point - or the nominal robot position - with ro and the control signal values at this point 
(nominal control signal values) with SQ. AII absolute values are now expressed in relation to this 
working point: 

A r = r - ro 

As = S — SQ. 

(4.5) 
(4.6) 

For system Identification, the literature offers a great variety of different Identification 
methods such as analytical ones or approaches using neuronal networks as in [66]. In our ap-
proach, the approximation of / at the working point is made with a linearization. Key to this 
linearization is the Jacobian nnatrix of the size n x m containing the parţial derivatives of each DOF 
with respect to each control signal: 

J = 
dsi 

OSn 

dsi 

OSn 

\ 

/ 

(4.7) 

So, the 2-th column vector of J with ie [1 , . . . , m] is the gradient of the scalar fieid ft: 

grad fi = S7 fi = 
dsi 

OSn 

(4.8) 

We use an analytical approach where we make the approximation with a simple Taylor 
expansion of s: 

which finally gives 

: = /(s) 

^ /(so) + J ' ( so) (s -So) 
- ro + J^ (so)(s - So) 

r - ro = J^ (so) (s - So) 

A r = J^As. 

(4.9) 
(4.10) 

(4.11) 

(4.12) 
(4.13) 

The approximation is adequate if we limit the robot deviation Ar to a few millimeters for transla-
tional DOFs and to a few degrees for rotatory DOFs. The known fact that trigonometric functions 
like sin() and cos() can be approximated with linear functions for small angles ensures the required 
linear behavior, which can be substantiated with a look at real worid data later on. 

Since there is no unique solution for the Jacobian\ the actual problem we have to solve 
is to find an appropriate Jacobian matrix that performs well in terms of our problem. This SL bject 
is addressed in the further course of this chapter. 

^ For an in-depth mathematical view on this fact, take a look at the fixed point theorem and the inverse function theorem. 
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4.2. Data Collection 
To finally identify the correlation between robot movements and control signal changes, 

we choose the way of letting the system calibrate itself in an autonnated process - in visual servo-
ing this is called the learning approach. During this self-calibration that we call training, we collect 
robot position samples and control signal samples while moving the robot. 

Initially, the robot tool and the work object are both posed into their reference positions in 
a way that this configuration and setup will be reproduced with every work object during produc-
tlon. Since our approximation uses this working point as a reference, the first step in the training is 
to obtain a number of control signal samples without moving the robot. The mean values of these 
samples provide the nominal control signal values so, and the statistical analysis of the samples 
gives an idea about the quality of the sensors, their configuration and the stability of a possibly 
underlying sensor data evaluation. Definition of the nominal robot position ro is attained with the 
definition of a tool coordinate system which is the frame of reference for all robot movements. Usu-
ally, the ohgin of this tool coordinate system shouid be located somewhere near the barycenter of 
all positions where features are measured for the generation of the control signals to ensure an 
equally distributed change of the control signals upon angular displacement of the robot or of the 
work object and to avoid unnecessary attenuation of errors. 

In the actual training, we move the robot to cause dislocations between the robot tool 
with adherent sensors and the work object in a controlled way. During production, the robot's start 
position (nominal robot position ro) is fixed and it is the work object that varies in position and* 
geometry. The training is separated into m training steps - one for every DOF that shouid be con-
trolled. For the ?-th step with z € [1. . . m], we execute a series of movements in the negative and 
positive direction of the z-th DOF within a certain training range; keeping all other DOFs constant 
and stopping at the nominal position again. During this movement, the changing robot positions 
and control signal values are continuousiy recorded. The robot movements for each DOF are or-
thogonal in the robot's position vector space to get enough linear independent Information for the 
reconstruction of / in the area around the working points ro and so respectively. 

The recorded data, known as trace data, contains Information about the change of the 
control signals under robot movement. It can be arranged in the form of two matrices 

R. -

A r i 

A r i , / 

and St = 
/ As I \ 

(4.14) 

for the i-th training step with ki e N defining the number of collected samples in the H h training 
step. Rz has the size k, x m and contains all robot positions relative to the nominal values as row 
vectors. S» has the size A-, x n and contains all related control signal values relative to the nominal 
control signal values as row vectors. The row ordering of R, and Si is free, but the robot position 
of the j'\h row vector of R, has to correspond with the control signal values in the j-th row vector 
of S» for all j e [ ] . . . kt]. If availaWe, It might be interesting to save timestamps for every one of 
the kr samples to analyze the movement of the robot over time, for example, in connection with 
hysteresis determination. 

Figure 4.1 shows the result of a real example trace in a single translational DOF for three 
control signals plotted into a diagram. You can see that all signals change linearly when the robot 
moves in that DOF between -5mm and -f5mm. Signal 3 shows the most significant change 
whilst signal 2 remains nearly unchanged. 
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-4 -2 0 2 4 

Robot Position (mm) 

Figure4.1: Trace Example 

In practice, there is a number of things that can go wrong when recording trace data. 
When the system identification fails, we shouid take a closer look at the trace data. Figure 4.2 
shows the effects of some common problems occurring in practice: 

(a) The step-like structure might result from a non-plane surface structure nearthe measurement 
position of a distance sensor. 

(b) A hole with multiple missing control signal values in the trace can be found if the measure-
ment range of a sensor involved in the generation of the control signal has been reached. 
This is often the case at the outer borders of the trace but can happen inside the trace data 
as well. 

(c) Intermittent missing control signal values, excepţional noise variations and outiiers couid be 
as a result of an improperly chosen or badiy configured raw data evaluation. 

(d) The saturation-type non-linearity occurs if some collision happens during the trace. Here, the 
robot movement was perfectiy sensed by the control signal from a distance sensor measuring 
the distance between a fixed work object and a part moving with the robot, until the collision 
led to the simultaneous movement of both objects with constant distance. 

(e) In rare cases, the robot system introduces effects, for example, a repeating saw-like structure 
as shown in th figure. We have seen effects like this when the robot is outstretched far to 
reach the nominal robot position and the trace leads to a movement mainly in the first joint. 
The behavior of the movement of this joint is amplified by the long lever arm of the whole 
outstretched robot and is reflected in the trace. 

(f) A non-linearity of hysteresis-type (overstated in the figure) can be found in nearly every trace; 
characterized by a gap between the samples of the fon/vard and the backward movement of 
the robot. Because of its frequent occurrence and that the consequences for the system 
identification and its stability are serious, the complete Chapter 6 attends to this subject. 

The precondition we buiit our system on is a working sensor subsystem, providing stable 
and reliable control signals and near-linear coherence between control signals and robot reloca-
tions in an area around a working point. So, we must take action to ensure these preconditions 
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Figure 4.2: Irregularities in Trace Data 

by fixing the sensor configuration and evaluation by reducing the training range or changing the 
nominal robot position. Another way to look at these effects is to state that every sensor has a 
limited measurement range and if we move the robot far enough away from its nominal position, 
it is clear that some sensors might leave its measurement range. Consequently, we can take this 
error effect as a way of automatically detecting the ailowed range of the robot - we employ training 
for an extended training range and automatically determine the linear range in the trace diagram 
for each control signal with an algorithm. The expected linear range for a DOF is the range that is 
linearly detected by all control signals, 

4.3. Solution Strategies 

4.3.1. Direct Solution 
For the direct calculation of the Jacobian J, we combine all trace matrices R i and S» into 

two matrices 

/ R. \ 

\ / 

and S = 
/ s, 

V S. / 
(4.15) 

with î e [1... m]. The matrix R has the size k x rn, the matrix S the size kxn with A: e N the total 
number of samples 

(4.16) 
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The direct solution now involves the solution of the linear system 

S J = R . (4.17) 

for J. As, usually m < n < k, the linear system is over-deternnined and this nneans we have to try 
to find the matrix J that minimizes the sum of the squared distances between the estimated robot 
positions, which is calculated from the control signal values using the Jacobian and the real robot 
position 

min||SJ - RII2. (4.18) 
J 

In other words, we have to search for the least-squares optimal solution for J. We can separate 
the problem into m independent sub-problems by solving m linear systems 

S j , = (4.19) 

for i i , with j , column vector of J, Ti column vector of R and z G [1.. .rn]. This leads to the 
optimization terms 

min||Sj,-r,||^ (4.20) 

for each DOF to control. 

For solving, we take the equation (4.17) and solve for J. Because S is not a square 
matrix, we cannot directiy invert it. So we calculate 

S J = R (4.21) 

S^SJ = S^R (4.22) 

( S ^ S ) - ' ( S ^ S ) J = ( S ^ S ) - ' S ^ R (4.23) 

J = ( S ^ S ) - ' S ^ R (4.24) 

J = S - ' R (4.25) 

The matrix S"̂  denotes the pseudo inverse of S, which is also called Moore-Penrose Inverse after 
its inventors (see [63] and [70] for the original reference). 

If the column vectors of a matrix A are linearly independent, as in the case here, the 
pseudo-inverse of A is given by 

A"" = { A " A ) - ' A \ (4.26) 

if the row vectors of A are linearly independent, the pseudo-inverse of A is given by 

A " ' ^ A ^ ( A A ^ ) - ' (4.27) 

and if both the row and column vectors of A are linearly independent, the pseudo-inverse of A is 
equal to the inverse of A 

A"" = A " ' . (4.28) 

Besides this special case, the pseudo-inverse has the foilowing properties as the weak inverse of 
the multiplicative semi-group of the matrices: 

A A ^ A = A (4.29) 

A ^ A A ^ = A^ . (4.30) 
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The best method for the nunrierical calculation of the pseudo-inverse of a matrix A is 
via the singular value decomposition (SVD) of A . The theory of the SVD is an extension of the 
eigenvalue theory to non-square nnatrices. It states that for every matrix A of size m x n with range 
r. there exists a SVD 

A = U E V ' (4.31) 

with two square matrices U and V of sizes m x m respectively n xn and a diagonal matrix E of 
size m X n. The non-zero elements ai of E with l e [1. . . r] are called singular values of A . The 
column vectors u, of U with i e [1... rn] are known as left-singular vectors, and the column vec-
tors \ j of V with j e [1... n] are referred to as right-singular vectors of A . For further Information 
alxîut the theory of the SVD, see [30]. For methods to calculate the SVD to a given matrix, take a 
look at [42] and [71]. 

To a given SVD of a matrix A , the original matrix can be recalculated by 

A = (4.32) 
(=1 

the pseudo-inverse of A can now be determined by 

A"" = V E + U ^ (4.33) 

- (4.34) 
* — — ' rr I 

pretty easily. 

The most important feature of the direct calculation is that its oniy optimization criterion is 
the minimization of the least-squares. Because this criterion is fulfilled - no matter what the cost -
this might lead to stabllity problems. We will further state and investigate the problem in a separate 
section (see Chapter4.6). 

4.3.2. Inverse of Feature Jacobian 
A different approach uses the fact that during the training we move the robot along the 

coordinate axes of the robot space. As a consequence, we are able to calculate the parţial deriva-
tlves of each control signal with respect to every robot's DOF If we want to know the derivative of 
the i-th control signal with respect to the j-th robot's DOF 

dsi 

for i t [1.. . nj and j e (1... m], we use the j-th column vector r^ of K j and the i-th column vector 
s, of S;. Figure 4.3 shows the result when plotting the kr values in r^ against the ki values in Si. 
The slope of the best-fit line represents the required parţial derivative. 

Furthermore. because we have a parlial derivative for every control signal with respect to 
every DOF, we arrange all the parţial derivatives in a matrix of size m x n, known as the Feature 
Jacobian: 

F = 

/ £ « i \ 
a r i dri 

dsi dsn 
\ / 

(4.36) 
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Figure 4.3: Determining the Local Derivative in Trace Data 

Because each value in F represents the sensitivity of a control signal for a certain robot's DOR it 
is sometimes called a sensitivity matrix or an interaction matrix (see [13]). 

It is possible to calculate a full row of F at once - the matrix has as many rows as there 
are DOFs to control. To calculate the z-th row of F with i e [1... m], we need the results from the 
2-th training step or, more precisely, the î-th column vector of Rt and the matrix S». We get the 
result by solving the linear system 

( hi hn ) = S. (4.37) 

\ / 

for the required column row of F. Of course, it is possible to calculate F in one step similar to the 
Jacobian by solving a linear system after merging all the trace data matrices as in (4.15): 

F R = S 

but this might lead to stability problems as in the direct calculation, which can be avoided. 

(4.38) 

For the calculation of the Jacobian from the Feature Jacobian, we invert the Feature 
Jacobian using the pseudo-inverse: 

J = F"̂  = F^ (FF^) Tn-1 (4.39) 

Table 4.1 now shows an overview of the properties of the Jacobian and the Feature 
Jacobian. The Jacobian is used for the local approximation of / to derive a robot correction to a 
given control signal deviation. The Feature Jacobian can be used to approximate and can be 
derived as a direct result from the trace data as the change of control signals caused by a certain 
robot's movement. The direct calculation determines J directiy and the calculation via the Feature 
Jacobian inverts the Feature Jacobian. 
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1 Jacobian | 
1 Jacobian 

Funcţional correlation r = f (s ) s = f - ^ ( r ) 

Local solution A r = J^As As = F ^ A r 

Relation to trace data 
SJ = R R F = S 

J = S^ R F = R^ S 

Table 4.1: Overview of Jacobian and Feature Jacobian 

4.3.3. Inverse of Feature Jacobian with Weighting 
It is possible to appiy a certain weighting to a matrix before inverting it. We will check 

out the consequences of appiying weighting to the Feature Jacobian before inverting it to get the 
Jacobian, as introduced in the previous section. 

To do the weighting, we use two diagonal matrices as weight matrices. The first weight 
matrix M has the size m x m and is responsible for the row weighting of F, and the second matrix 
N has the size n x n and does the column weighting of F. Because in F we have one row per 
DOR M is for the weighting of the DOFs. Likewise, N is for the control signal weighting. The 
parţial derivatives in the Feature Jacobian have the control signal in the enumerator and the DOF 
in the denominator, as in the (4,35). With this in mind, we arrange M and N as: 

M = 

f / i i O 

O /X2 

o \ 

O 
N = 

T̂ r O O 

O T^ 1^2 

V o o ^ m / \ O 

The Jacobian is finally calculated as 

J = N ( M F N ) M " ^ . 

O T^ 

O 
J_ 
l^n / 

(4.40) 

(4.41) 

So far, the general theory of matrix weighting has been in connection with inversion. However, we 
are interested in a special case. When reconstructing the robot movement by analysing a number 
of control signals, we usually have at least as many control signals as robot DOFs to control -
the more control signals, the better. This gives us rn < n. In this case, the appiication of a 
column weighting is impossible because the term (4.41) becomes independent from M for m < n. 
Consequently, we can reduce our weighting to a single weight matrix 

W = 

IL'l ^ O 

O ^ L 
W2 

0 
1 

(4.42) 

for control signal-based weighting, which simplifies the calculation of the Jacobian to 

J = W ( F W ) ' ^ . (4.43) 

It is further interesting to note that for m = n, the term (4.43) becomes independent from the 
weight matrix W too - leaving us with the simple pseudo-inverse of F. In this case. no redundant 
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control signal Information is available and therefore there is no need for weighting. 

Weighting ailows us to define a certain weight for every control signal in cases where 
there are more control signals than robot DOFs to control. This makes sense because this way we 
are able to affect the weighting of the control signals in the Jacobian and therefore influence the 
amount of infornnation each single control signal that contributes to the reconstruction of the robot 
movement. This weighting can be determined manually by a user, for example, for completely 
suppressing a control signal by setting its weight to zero. Or - what is more interesting - the 
weighting can be done automatically, for example, by evaluation of the noise of the control signals 
and by suppressing noisy control signals. Chapter 5.2.2.3 makes a suggestion for noise-dependent 
signal weighting on an analytical basis. 

4.4. Quality 

A sufficient density of samples, together with the way the training movements are exe-
cuted, is a precondition for obtaining enough Information about the connection of robot movements 
and control value changes. Nevertheless, a well-conditionedsolution requires a control signal con-
figuration that is able to detect changes in every DOF that has to be controlled - if a movement in 
a certain DOF does not lead to significant control signal changes, this DOF cannot be controlled 
with this configuration. Assuming we have identified the system after the training by determining 
the Jacobian from the trace data with any of the solution methods presented previousiy, it wouid 
be beneficial to have some method to get an idea about the quality of the achieved solution or a 
way to compare two different solutions. So, the quality definition has two purposes: 

1. Judgment of the current sensor and robot setup by determining the quality of the recorded 
trace data with respect to its usability for system Identification 

2. Evaluation of a certain solution method and comparison with other solution methods 

This section suggests some useful tools for providing a quality estimation. 

4.4.1. Residual Square Sums 
For the direct solution, we have to solve an over-determined linear system. The opti-

mization criterion used here is the least-squares criterion (see (4.18)). With this in mind, for a first 
quality conception we calculate the error value of least-squares optimization. 

The trace data consists of robot deviations Ar^ out of R with the according control signal 
deviatlons Asj out of S with i e [l...k]. For each pair we use the Jacobian to calculate the 
estimated robot deviatlon from the control signal deviatlon and calculate the difference to the real 
robot deviatlon. This can be done with a few basic matrix operations 

E = S J - R . (4.44) 

The resulting residual matrix or error matrix has the size k x m. To get a more compact qual-
ity statement, we separately sum up the squares of the residuals for each DOF to get a vector 
containing the residual square sums-. 

/ k \ 

e = 

\ 1 = 1 

(4.45) 
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Let us take a look at an example. For an example configuration of four DOFs identified 
with six control signals, we get for the residual square sums 

^^ = { 0.689 0.360 0.022 0.152 ) (4.46) 

after solving by the direct calculation and 

e^ = ( 0.979 0.713 0.023 0.413 ) (4.47) 

after solving by the Feature Jacobian with certain weighting. The direct calculation is the better 
one in terms of least-squares; just as expected. Nevertheless, the residual square sunns do not 
allow for comparing the identification of the single DOFs with one another. DOF 4 has a lower 
residual square sum than DOF 2 but it wouid be wrong to say that DOF 4 is better recognized, 
because this DOF is a rotatory one and DOF 2 is a translational one. Another problem is that with a 
growing trace data set and, therefore, more Information about the system to identify, this increases 
the residual square sum because of the growing sums in (4.45) and decreases the quality, which 
is hardiy desired. 

4.4.2. Coefficient of Determination 
For our next quality definition we use a concept from the mathematical fieid of statistics. 

In the theory of linear regression, we have observed data, an independent variable Xi and a de-
pendent variable y^. Using a model, we predict values f i for y» on the basis of the independent 
variable X|. The coefficient of determination (COD, see for example [78]) is defined by 

and contains the quotient of the variability of the prediction errors and the variability of the depen-
dent variable. It measures how much of the variability of the dependent variable can be explained 
by the variability of the independent variable. The COD is a value between zero and one and is an 
Indicator for the quality of the regression model with respect to the observed data. If the COD is 
near zero, the regression model is unsuited for the observed data and a COD of near one indicates 
a good adaption by the model. 

In our trace, the independent variables are the control signals and the dependent vari-
ables the robot deviations. For each DOF, we get a COD by calculating 

k 

Zeh 

= 1 - ^ ^ (4.49) * 1 / * \ 
E r J . - i E r . . . 

V^-' / 
for I € [1.. . rn]. The nominator calculates square sums over the i-th column of the residual matrix 
E (residual square sum) and the denominator runs over the z-th column of the robot deviation 
matrix R. Finally, we calculate the product of the CODs of all DOFs 

f i ' = f l R i (4.50) 
i - -1 

to get a single quality value. 
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Referring back to the previous example, we can see here quality in the form of CODs for 
each DOF and the total quality as a product of these values - here for the direct calculation 

R'̂  = 0.992 • 0.996 • 0.975 • 0.843 = 0.812 (4.51) 

and here for the calculation via Feature Jacobian with weighting: 

R'̂  = 0.988 • 0.992 • 0.974 • 0.572 = 0.546. (4.52) 

The CODs allow us to compare the quality of the reconstruction of the single DOFs - the fourth 
DOF was apparently not as well identified as the other DOFs. The product of the CODs is a good 
and quick indicator for the quality of a full trace data set. If its value is low, then something went 
wrong and checking the CODs of the single DOFs heips to reduce the problem to certain DOFs. 

4.4.3. Jacobian Condition Number 
To a given linear system in the form A x = b, the condition number oi the matrix A gives 

us an idea of how sensitive the solution x is against the changes in A and b. The condition number 
« of A is therefore a relative error attenuation factor and is defined as 

/A\ * 11̂  I2 CTmax JA r-o\ 
= . I lAxI I , = 

Theterm ||x||2 denotesthe L2 norm - or Euclidean norm of vector x, ||Ax||2 - the norm of vectors 
X transformed with A. The quotient is the relative change of x after transformation with A. Be-
cause the enumerator is greaterthan or equal to the denominator, k, is always greater than or equal 
to one. Furthermore, as we use the Euclidean norm for the definition of the condition number, it 
can also be calculated by the quotient of the highest singular value amax and the lowest singular 
value amin too. 

The condition number of a matrix describes the sensitivity of the result of a linear system 
with the matrix as a coefficient matrix on small changes to the matrix or the right-hand vector 
of the linear system. Consequently, it can be used to detect ill-conditioned linear systems. A 
high condition number occurs, for example, when the smallest singular value is very near to zero. 
Calculating the inverse of this matrix wouid lead to very high values in the inverse because in (4.33) 
the singular values occur in the denominator^. Compared to this, the concept of the determinant 
can be used to check if a matrix is invertible, but for the usage in our case it is limited to square 
matrices and is inferior compared to the condition number. If taking the example of a diagonal 
square matrix A of size 10 x 10 with all diagonal elements equal to 0.1, we get 

det(A) = 1.0 • 10"'° «(A) = 1 (4.54) 

The determinant warns of a near-singular matrix, while the condition number signals a well condi-
tioned matrix. The latter is more realistic; after all, A x just multiplies all elements in x with 0.1. 

The condition number can be determined by using J or - in the case of calculating J as 
the pseudo-inverse of F and calculating the SVD of F for the pseudo-inverse anyway - by using F 
because 

/c(J) = = k(F). (4.55) 

^ A singular value of exact zero is no problem because the index of the sum in (4.33) is limited to the range of the matnx. 
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If J has (7max and crm.n as the highest and lowest singular values, then J"̂  has ^ and ^ ^ as 
the highest and lowest singular values because of (4.33). In both cases, the condîtion number k is 
the same. 

It shouid be mentioned that there is one problem in connection with the condition number. 
If we take a look at the matrix 

F = ' ' 1 (4.56) 
O 1000 ' 

and calculate the condition number, we get k(F) = 1000, which is quite high and wouid indicate 
an ill-conditioned system. However, the system is well-conditioned - just a littie scaling away from 
the perfectiy conditioned identity matrix. The second control signal might just provide values of a 
different scale (perhaps meter instead of millimeter). Especially when controlling rotatory DOFs 
and dealing with long lever arms, this problem of scaling may arise. So, the condition number is no 
absolute quality criterion but may be used to compare different solutions on the same trace data 
to discuss their stability. 

To complete our previous example, we see here the results for the condition numbers for 
the direct solution (left) and the inverted Feature Jacobian with weighting (right): 

Both conditions indicate no significant instabilities, although the matrix resulting from the direct 
calculation is more sensitive to changes of outer conditions, so we consider it less stable. 

4.5. Flexibility 

This chapter addresses the point that a solution has to offer a certain flexibility in use to 
be appiicable in practice. Imagine a situation of sensor failure during production that affects one 
or more of the control signals. A flexible solution shouid allow a system reconfiguration to offer 
continued functionality without the faulty sensor (assuming the remaining sensors provide enough 
information to do so) and without new training. 

4.5.1. DOF Deactivation 
Consider we have a trace data set for a number of DOFs and control signals and we have 

identified the system by calculating the Jacobian matrix. Now we want to completely deactivate 
the z-th DOF with i e [1... rnj. A first solution wouId be to remove all trace data that has been 
recorded for that particular DOF and carry out a recalculation of the Jacobian. That wouId require 
us to remove R, and S» and the z-th column in all R j with j e [1. . . m] and j ^ i. Alternatively, 
we couid just replace the i-th column of the Jacobian with zeros to prevent the calculation of a 
correction for that particular DOF That wouId be more simple and independent from the calcula-
tion method. To see the difference between both approaches, we take a closer look at an example. 

With the X and the Y direction we want to control two DOFs and we have two control 
signals for that. We execute training and receive the foilowing result for the trace matrices: 

(4.58) 

( 1.0 0.0 \ / 0.0 1.0 \ 
R i - 2.0 0.0 R2 = 0.0 2.0 

3.0 0.0 J 0.0 3.0 
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1.0 0.5 ^ 0.0 0.5 ^ 

Si = 2.0 1.0 S2 = 0.0 1.0 (4.59) 

3.0 1.5 ) 0.0 1.5 ) 

It seems that signal 1 senses oniy the robot's movement in .Y with a sensitivity of 1 and signal 2 
senses movements in both DOFs with a sensitivity of 0.5. We set up the Feature Jacobian and 
calculate the Jacobian matrix: 

/ . r \ / 

F = 
\ 

1.0 
0.0 

0.5 

0.5 / 

1.0 

0.0 

- 1 . 0 

2.0 
(4.60) 

/ 

For the first approach we reduce the trace data to the first DOF onIy: 

1.0 \ 1.0 0.5 ^ 

Ri - 2.0 Si = 2.0 1.0 (4.61) 

3.0 j 3.0 1.5 ) 

The results for the Feature Jacobian and the Jacobian are the foilowing: 

/ o \ 

F = ( 1.0 0.5 ) 
\ 

0.8 

0.4 / 
The second approach takes the Jacobian from (4.60) and removes the second row: 

1.0 
0.0 

(4.62) 

(4.63) 

After training, we relocate the work object by moving it two millimeters in the direction of the second 
DOF. This leads to a signal deviation of 

As = 0.0 
0.1 

(4.64) 

as you can see from the second row of S2. If we estimate the robot deviation using the two 
Jacobian matrices J and J', we get the foilowing results: 

( 0.8 0.4 ) I j = 0.4 ( 1.0 0.0 ) 
0.0 
0.1 

= 0.0 (4.65) 

Both Jacobian matrices are not identical and are therefore the approximations of the said devia-
tion. We have to take a closer look to the consequences of these results. The system analyzod so 
far couid have a setuo similar to that shown in Figure 4.4. In (a) we see the reference setup and 
in (b) the situation â  :er moving the work object in F-direction. Using the Jacobian from the first 
approach wouid cause the robot to be moved a littie in the negative X-direction, as shown in (c). 
If using the second Jacobian, it wouId not lead to any robot relocation - the situation wouId stay as 
it is in (b). 

If, when identifying the system for just one DOF, there are deviations in other DOFs, the 
system tries to minimize the errors in the control signals by moving the robot in the directions that 
have been identified. This behavior was seen in (c). In the other case, we identify the system in 
both DOFs. As a consequence, the system "knows" that the current signal deviation is caused by 
a deviation in y-direction, but by zeroing out that column in the Jacobian we prevent the system 
from moving the robot in that designated direction. This result is important when deciding about 
the DOFs to be controlled and the DOFs to be trained. 
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(a) (c) 

Si Si 

0 Robot Base 
2 X 

Figure 4.4: Deviations in Uncontrolled DOFs 

4.5.2. Control Signal Deactivation 
The complete deactivation of the i-th control signal with i e [l...n] can be done by ze-

roing out the i-th column of the Feature Jacobian before inverting it. This leads to a weighting of 
zero for this control signal in the z-th row of the Jacobian and a re-weighting of the other rows. In 
order to do the same for the direct solution, we have to operate on the trace data by removing the 
i-th column in S for i g [1... n] and then recalculating J. 

The deactivation of the ;-th control signal oniy for the z-th DOF with i e [1. . . m] and 
j e [\... ni is more complicated. When solving the system directiy, we are able to separate the 
solution with a single linear system, like in (4.17), into m steps by determining each column of J 
separately by 

(4.66) 

with j , being the i-th column vector of J and r» the i-th column vector of R. For deactivating the 
j-th control signal for the i-th DOF we modify the i-th linear system of (4.66) by replacing the jf-th 
column of S with zeros. For a solution using the Feature Jacobian, the deactivation cannot be 
done. Setting f j , i to zero does not lead to a zero at the correlating element of J and the inversion 
of F cannot be separated into multiple steps. 

4.5.3. General Flexibility 
Solutions using the Feature Jacobian make use of the trace movements that are orthog-

onal in robot space to identify the local parţial derivatives of the elements of the Feature Jacobian. 
This limitation is not present for the direct solution. If using trace data with any kind of robot po-
sition samples and control signal samples, the direct solution is still able to determine a solution 
for the Jacobian. This flexibility may be used, for example, to utilize trace data collected during a 
control process to re-identify the system after a sensor change. 

4.6. Direct Solution Stability Issues 

4.6.1. Problem % 
In the sections above, we have stated a certain stability problem in connection with the 

direct system Identification. To understand the problem, we take a look at a small example. We 
consider that we want to control a single robot DOF using three control signals. Here, we see 
the result from a trace experiment with a robot position matrix of R and a resulting control signal 
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matrix S: 

R = 

/ 1.0 
2.0 
3.0 

V 4.0 / 

S = 

\ 

-0.0004 

0.0003 

-0.0002 

0.0001 

0.9600 

2.0300 

2.9800 

4.0100 

0.0004 

-0.0003 

0.0002 

-0.0001 

(4.67) 

/ 

The DOF is oniy really reflected by the second control signal and this tact is confirmed by a look 
into the Feature Jacobian 

F = 0.0000 1.0000 0.0000 ) . 

To get the Jacobian, we invert the Feature Jacobian and get the foilowing result 
/ 0.0000 

1.0000 
0.0000 

\ 

(4.68) 

(4.69) 

Everything is fine - the result is as we expected - but if we solve the system directiy, we get the 
foilowing Jacobian: 

/ -50.0000 \ 

J = 1.0000 (4.70) 
^ 50.0000 

The result is quite unacceptable. The matrix contains two very high attenuation factors for the 
control signals 1 and 3. OnIy the slightest of changes to the mounting position of a sensor involved 
in one of these control signals wouid lead to great robot corrections. Even if we cannot determine 
the instability of this matrix in terms of the matrix condition number (there is onIy one singular 
value which is the highest and the lowest at the same time, so the condition number is 1), the SVD 
shows a singular value of 70.72, which wouId lead to quite a high condition number if this matrix 
was part of a Jacobian with additional DOFs. 

What has happened? AII the control signals contained some additional noise of decreas-
ing intensity. The noise is a hundred times greater on control signal 2 than on the other control 
signals. The reason for this noise couid be vibrations in the sensor tree caused by a jerkily starting 
robot movement. To reduce the residual square sum, the direct solution uses a high attenuation 
for control signals 1 and 3 to cancel the noise in the second control signal. By doing this, it realizes 
a residual square sum of zero. 

This might have been a mahciously constructed example, but it illustrates the probi3m of 
the direct solution that optimizes for the least squares; sometimes at the cost of stability. Unfortu-
nately, this problem cccurs in the real worid too when solving trace data using the direct calculation. 
We take a look at the result of an experiment with the setup shown in Figure 4.5. A robot is po-
sitioned relative to a fixed work object using four distance sensors mounted at the robot's tool; 
providing us with four control signals. The robot moves in all three translational DOFs. 

After training, we get the foilowing Jacobian matrix by using the inversion of the Feature 
Jacobian without weighting: 

0.498 

-0.024 

0.006 

0.489 

-0.029 

-0.030 

-1 .012 
-0.017 

-0.001 

1.007 

0.001 

0.001 

(4.71) 
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Figure 4.5: Experimental Setup 

The result is just as expected. The X direction is reconstructed using control signals 1 and 4, the 
Y direction by control signal 3 and the Z direction by control signal 2. Now, we solve the linear 
system to directiy estimate the Jacobian. The result is as foilows: 

J 

/ 0.720 

-0.023 

0.008 
\ 0.256 

-3.290 

-0.034 

-0.964 

3.295 

-0.284 N 

1.004 

0.003 

0.289 

(4.72) 

The reconstruction of A' is still acceptable. Control signal 1 is favored over control signal 4, but 
that might be because of the lower noise ratio of signal 1 (this is not the case, but see below). The 
problem is the high attenuations of control signals 1 and 4 in the reconstruction of (most notably) 
Y and Z, just like in the constructed example. 

4.6.2. Solutions 
4.6.2.1. Hysteresis Compensation 
The stability problem of the direct Identification, based on the least-squares optimal so-

lution of an over-determined linear system, is worsened by the hysteresis effect, which has been 
addressed briefly in the previous section about the trace data collection and which will be an-
alyzed in more depth in Chapter 6. This effect superimposes certain Information to all control 
signals, causing the direct solution to use redundant control signals with high attenuation to bal-
ance out this effect to accomplish a lower residual square sum. Later in Chapter 6.3.2, we will 
discuss a method for the compensation of the hysteresis in trace data. At this point, we will test the 
appiication of this method to achieve more stability of the Jacobian derived from our experimen-
tal trace data. When calculating the Jacobian with a direct solution after appiying the hysteresis 
compensation we get: 

J = 

/ 0.226 
-0 .021 

0.006 
0.76-4 

-1.437 

-0.030 

-0.991 

1.418 

-0.017 \ 

1.003 

-0.001 

0.019 

(4.73) 

The stability problem is still there, though in a diminished state. Apparently, the hysteresis cc^n-
pensation can improve the situation but cannot solve the problem entirely. It is interesting to note 
that for the reconstruction of the A' direction, the shares of signals 1 and 4 have changed com-
pared to the situation without hysteresis compensation in (4.72). The reason is that the hysteresis 
effect prevents the direct calculation from using a reasonable welghting of the control signals due 
to the signal noises. To understand this effect. we take a look at Figure 4.6. On the left side we 
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see a number of k samples (xi.yi) wlthout any hysteresis, the regression line and the residuals. 
The residual square sum - the optimization criterion for the direct calculation - depends oniy on the 
noise of the samples ay and can be estimated as: 

i = l 
(4.74) 

On the right side we have added a hysteresis h to the samples. The regression line is nearly the 
same, but the residuals have grown. Their square sum can be estimated now by: 

(4.75) 
i=i 

We can see that the hysteresis is misinterpreted as control signal noise and this way the direct cal-
culation fails to implement a correct noise-based weighting. The hysteresis compensation solves 
at least this problem. 

Figure 4.6: Hysteresis Influence on Residual Square Sum 

4.6.2.2. Manual Deactivation 
If a stability problem has been spotted, we can manually deactivate the affected control 

signals for certain DOFs, as aiready discussed in Chapter 4.5.2. In our case, we will deactivate 
control signals 1 and 4 for the DOFs Y and Z. The result is: 

/ 0.226 
- 0 .021 

0.006 

\ 0.764 

0.000 
-0.028 

-1.004 

0.000 

0.000 
1.003 

- 0 .001 

0.000 

(4.76) 

The first column of J for the X direction is the same, just as it has to be (the hysteresis compen-
sation is still used). In the other DOFs, the weighting for signals 1 and 4 is exactiy zero. The result 
is very stable, but of course this method for solving stability problems has a significant drawback -
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it does not work automatically. We have nnanually identified and solved the stability problem for a 
very clear case. In a more complex situation we cannot be sure to spot aii stability problems and 
it requires an experienced user to analyze the situation and to take useful action. 

4.6.2.3. L2 Regularization 
For the direct solution, we receive a least-squares optimal solution that optimizes the term 

m i n | | S j , - r , | | ^ (4.77) 

for 7 e [ ] . . . m j . The mathematical solution for our stability problems is the introduction of an 
additlonal optimization criterion, often called a prior or a penalty term. In the case of the L2 
regularizatior), also called Tikhonov regularization or ridge regression (see [88]), we introduce a 
term that depends on the L2 norm (Euclidean distance) 

/ n \ 2 

of the Jacobian column vector 

rn in ( | |S j , - r t | | ^ + A l l j i l l^) . (4.79) 

With the constant A € R, A > O we can control how important it is that the solution is least-squares* 
optimal and how important it is to get a small result vector j». For A = O, the solution is the 
same as for the least-squares optimal solution - increasing A, the L2 norm of the solution vector 
gets smaller, which makes the solution less accurate. For further Information and a more general 
overview of the inverse problem theory, see, for example, [86]. 

For the direct calculation, we have used the pseudo-inverse of S 

j . ^ S - ' r , = (4.80) 

for the Tikhonov regularization we have to calculate 

j i = (S'S + A I ) - ' S ' r i . (4.81) 

Here, we get an idea how this method enhances the stability - by adding a diagonal matrix we 
ensure the invertibility of the covariance matrix S^ S. The Tikhonov regularization heips to achieve 
the stability of the solution, but because of the square norm it encourages the elements in to 
become similar to one another with increasing A, which is an unwanted effect. The reason for this 
is that the square function of the L2 norm in the prior initially punishes components of j» with high 
values, including those important for the system Identification. 

We check the result of identifying our experimental trace data using the Tikhonov regu-
larization. With A ^ 10.0 we get 

J = 

f 0.489 - 0.036 0.000 N 

-0 .020 -0 .026 0.979 

0.003 -0.983 -0.001 

0.485 -0.004 0.002 ^ 

(4.82) 

We realize that we have achieved a good stability but we see that the weights for signals 1 and 4 
for the X direction are very similar. This is the effect described before - that for the achievement 
of a small square norm of the column vectors of J. all elements are shrunk simultaneousiy. This 
cancels the noise-based weighting in the Jacobian too, which is not desirable. 
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4.6.2.4. L1 Regularization 
The solution lies in the appiication of the L1 Regularization, which has been presented 

independentlyas LASSCP (see [87]) and as Basis Pursuit Denoising(see [15]). The unconstrained 
formulation of the LI regularization is given by the formula 

min(||Sji - + A i ) . (4.83) 

Compared to the Tikhonov regularization, the norm in the prior has been replaced by an LI norm 
(Manhattan norm) 

(4.84) 

Again, the constant A g M, A > O determines the compromise between the accuracy and stability 
of the solution. Moreover, for A = O the solution is identical to the least-squares optimal solution. 
There are constrained formulations of the problem too, which assure that each element of the so-
lution vector is smaller than a certain boundary, but these formulations are less appiicable for our 
appiication. 

Since the optimization criterion introduces some numerical problems (the optimization 
term is not differentiable for any component of j i equal to zero), there is no closed form available 
for the solution. Instead, there is a variety of different methods for determining the solution for 
a problem using the LI regularization. The results below have been calculated using a recent 
Gauss-Seidel approach from Logistic Regression (see [84]). Another approach that has been well 
tested for its usage in the fieid of system Identification is the so called "Shooting" approach, which 
is described in [29] and has its easy implementation as an advantage. For a comparative study 
of different methods and for implementations, see the work of [81]. These methods are currently 
under heavy development and are being employed for a variety of different problems like the lin-
earization of problems depending on a high amount of redundant input variables. 

The interesting properties of the LI regularization are that the obtained solution is not oniy 
more stable, but the prior enforces a certain sparsity of the solution matrix easing the interpretation 
of the solution. If calculating the solution for our experimental data using the LI regularization with 
A = 1, we get the Jacobian 

J -

0.328 -0.040 0.000 \ 

-0.020 -0.026 1.002 

0.004 -1.005 0.000 

0.659 0.000 0.000 / 

(4.85) 

This solution has no stability issues and keeps the weights of control signals 1 and 4 for direction 
X. If we increase A to a value of 35 we get the foilowing result: 

J = 

0.936 0.000 0.000 \ 

0.000 0.000 0.960 

0.000 -0.962 0.000 

0.000 0.000 0.000 / 

(4.86) 

The solution matrix becomes increasingly more sparse. Smaller and less important weights of the 
matrix are replaced step-by-step with zeros. 

^LASSO=Least Absolute Selection and Shrinkage Operator 
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The question which is still open is how to choose the parameter A. First, it is innportant 
to note that we can choose a different A for each DOR Even if we had used a single A for the ex-
amples above, the theory presented so far has calculated the colunfins of J separately, so we can 
choose Individual A , with 1 e f l . . . ? n ] . To make things clear, we study the effect of the choice of 
At on the quality of the solution by using an example. This tinne we take a less academic example, 
whereby we use the data obtained from the configuration of an industrial appiication where five 
DOFs are controlled using eleven control signals. 

First, we take a look at the dependency of the coefficient of determination on the size of 
the Ai. Figure 4.7 shows that for all DOFs, the initially high COD decreases with increasing Ai until 
the COD reaches zero - indicating that the solution is no longer a solution. A typical behavior that 
can be found for any experimental data is that the quality of the rotatory DOFs decrease faster 
than for translational DOFs. This is because of the usually smaller entries in the column vectors of 
J that is responsible for the rotatory DOFs. This demonstrates the need for individual choices for 
A for each DOR 

CM 

O 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 

Figure 4.7: Coefficient of Determination and A 

If we analyze how the sparsity of the Jacobian increases with increasing A, we see a pic-
ture as in Figure 4.8. Here, we see how many non-zero components of the first column vector of 
the Jacobian (responsible for the reconstruction of X) are left. The number decreases from eleven 
(all eleven control signals have a weight different from zero) to five within an increase of A up to a 
value of 2.0. For a value of A above 500, all components of the first column vector of the Jacobian 
are zero and this is the time when the COD for the X direction drops to zero too (compare Fig-
ure 4.7). It is further interesting to note that sometimes (for example, visible here in the zoomed-in 
interval) the number of non-zero elements increases when increasing A for a short time. However, 
because we have two optimization criteria, a small residual square sum and a small L1 norm of 
the solution, we cannot expect that the number of non-zero elements is in any way monotone over 
A. 
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Figure 4.8: Number of Non-Zero Components and A 

Next, we check the consequences for the stability of the Jacobian on the choice of A (see 
Figure 4.9 for this). The Jacobian condition number k is plotted against the size of A (the same A for 
aii DOFs to keep it manageable). First, the k decreases (see zoomed-in view); indicating a more 
stable solution for J. After a while, k increases more and more until A reaches a value of about 
234.5. This time, the fourth column vector of J (pitch angle) is a zero vector (see Figure 4.7) and k 
is infinity. There is something important to note here. While the previous figures were qualitatively 
similar for all trace data occurring in practice, this figure might look quite differentdepending on the 
trace data. Sometimes, there is no decrease of the Jacobian condition when increasing A and the 
shape of the curve might be completely different. The oniy thing that all curves have in common is 
that for a high A, the value o f increases until it reaches infinity. 

Consequently, the L1 regularization offers a more stable solution as well as a sparse solu-
tion matrix. To see the advantage of a sparse solution matrix, we take a look at the Jacobian matrix 
of our current example; determined by inverting the Feature Jacobian with additional weighting: 

/ 0.067 

-0.012 

-0.458 

0.059 

-0.232 

0.020 

-0.127 

0.006 

-0.462 

0.059 

\ -0.037 

0.476 

0.267 

0.018 

0.101 

-0.007 

-0.038 

0.023 

0.054 

-0.018 

0.371 

0.135 

-0.084 

0.204 

-0.355 

0.142 

0.078 

0.073 

0.161 

0.011 

0.090 

-0.041 

0.273 

-0.025 

0.010 
0.001 

-0.008 

-0.025 

-0.023 

-0.027 

0.003 

0.031 

0.028 

0.021 

-0.060 \ 
-0.032 

0.020 

0.004 

-0.012 

0.027 

-0.017 

0.028 

0.006 
-0.005 

-0.015 ) 

(4.87) 
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250 

Flgure 4.9: Jacobian Condition and A 

The overall quality in terms of COD is given by: 

R^ = 0.991 . 0.996 • 0.996 • 0.999 • 0.999 = 0.980. (4.88) 

We now sacrifice some of the really good quality of the system Identification by using a direct 
solution with L1 regularization by adapting the Ai in a way that we have a COD of R'} = 0.980 for 
a l l i 6 [ l . . . m ] : 

R^ = 0.980 • 0.980 • 0.980 • 0.980 • 0.980 = 0.904. (4.89) 

We can find the necessary A, by obtaining the intersection points of the curves in Figure 4.7 with 
the horizontal line at 0.980. This can be done manually or by numerical root-finding. In our case, 
we choose 

Al - 36.70, A2 = 70.57, A3 = 60.51, A4 = 21.31, A5 = 17.21. (4.90) 

The resultant mathx is given by 

/ 0.000 0.341 0.000 0.000 - 0 .041 
0.000 0.325 0.000 0.000 -0 .034 

-0.153 0.000 -0.064 0.000 0.000 
0.009 0.000 0.098 0.000 0.000 

-0 .347 0.000 0.000 0.000 0.000 
J - 0.000 0.068 0.000 -0 .010 0.000 

0.000 0.000 0.262 -0.058 -0 .012 
0.000 0.000 0.000 0.000 0.064 

-0.514 0.000 0.000 0.018 0.000 
0.000 0.358 0.000 0.000 0.000 

\ 0.000 0.000 0.558 0.044 0.000 

(4.91) 

Due to its sparsity (oniy 20 out of the 55 matrix elements are non-zero), the result is much easier 
to interpret. We can identify the sensors most important for the reconstruction of certain degrees 
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much easier than was the case in the original matrix and this sparsity, together with an enhanced 
stability, was bought for oniy a small loss of quality. 

When using the L1 regularization in practice, a preferable method for finding adequate 
values for the A, with i e [ l . . . m] is to define the ratio of COD we are willing to sacrifice for the 
sake of stability and sparsity. We call this share p G R with p e [0... 1]. If the direct solution 
for the i'th DOF gave a COD of R^, then this quality is what the L1 regularization method wouid 
return for A, = O and the highest COD that any solution may achieve. If we want to sacrifice, let's 
say 5% of that maximal achievable COD (p = 0.05), we find the value of Az, where the COD of 
the L1 regularized solution is still 95 % of the COD of the direct solution. Because of the benign 
coherence between A, and R] (see Figure 4.7), this problem can be solved by numerically finding 
the root of 

(4.92) 

for Ai. This may take a few runs of the L1 regularization algorithm, but because we calculate the 
Jacobian once during system setup, time is not an important issue here. The stated property of 
Ri{\i) to be well behaved shouid be confirmed, but this may be difficult because there is no closed 
form solution of the L1 regularization available. 

4.7. Geometrical Considerations 

In this section, we will analyze how the weighting of the control signals in the Jacobian will 
affect the geometrical result of the approximation of the robot deviation. We do this on the basis of 
a small example. Considering the situation shown in Figure 4.10, we want to position a part fixed 
in the robot's hand symmetrically between the gap inside a work object. There is onIy one DOF to 
control and we have two control signals determined by the gaps between the work object and the 
part at two different positions. 

X 

s\ 
Part 52 

Figure 4.10: Symmetry Example Setup 

The reference situation shouid be symmetrical and we have a gap of 1.0 mm to the left 
and right of the part. The Feature Jacobian is quite trivial too: 

So = 
L S ) 

(4.93) 

The according Jacobian depends on the solution method. If just inverting the Feature Jacobian, we 
get an equal weighting of both control signals, as in J i , but if we use any noise-weighting solution 
and the control signal two contains less noise, we might get a weighting as in J2: 

J i = 
0.5 

-0.5 
J2 = 

0.2 ^ 
-0.8 , (4.94) 
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In the production, we might tind a situation where the part is moved 0.5 mm to the right: 
\ / 

s = 
1.5 
0.5 

As = s - so = 
0.5 ^ 

V / 
(4.95) 

The approximation using each of the Jacobian matrices gives the foilowing result: 

Axi = Jl As - 0.5 A.T2 = J2 As = 0.5 (4.96) 

where both results reflect the same correct replacement. Now, we consider that we have a situation 
where the part is subject to a form deviation - it is actually 1.0 mm too short: 

s =: 
1.0 

2.0 
As = 

0.0 
1.0 

We now get the approximations using the Jacobian matrices 

Axi = J{ As = -0.5 Ax2 = J2 A s = -0.8 

(4.97) 

(4.98) 

and receive different results. If we use the results to move the robot to balance out the deviations, 
we receive the new control signals and the new control signal deviations. In the first case, we get 
a situation where the part is positioned symmetrically just as demanded; the residual errors are 
distributed evenly over both control signals: , 

Si = 
1.5 
1.5 

Asi = 
^ 0.5 ^ 

\ 0.5 
(4.99) 

In the second case, the situation is different; the part is not positioned in a symmetrical way: 

si = 
^ 1.8 ^ 

1.2 
Asi = 

0.8 
0.2 

(4.100) 

Apparently the residuals, caused by the form deviation of the part, are distributed over the mea-
sured features in a way that is determined by the weighting of the control signals in the Jacobian. 
An equal weighting of the control signals causes equally distributed residuals. If we appiy another 
certain weighting to the control signals, this affects the distribution of possible residuals. So, if we 
have redundant control signals for the reconstruction of a DOF and if we expect form deviations of 
significant size, we shouid be aware that the weightings of control signals influence the distribution 
of the residuals on the control signals. To deal with this, one solution can be the dynamic adaption 
of the nominal values so due to the current work object dimensions for example based on a pre-
ceding measurement or the choice of a solution method less susceptible to. 

If dealing with form deviations of the work object, it might be interesting to estimate the 
form deviations and to monitor them duhng the control process. Our estimated robot correction is 
determined as described previousiy by calculating 

Ar - J^ As. (4.101) 

We take this robot correction Ar to estimate the control signal situation after appiying the robot 
con-ection. This is done by transforming Ar back to sensor space by using the Feature Jacobian 
and subtracting the control signal deviation: 

Se - F ' A r - As 

- F ' j ' A s - A s 

- (J F ) ' As - As. 

(4.102) 
(4.103) 
(4.104) 
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The vector Se is now the expected form deviation for each control signal and can be calculated 
at every control step. A check of Se against the nnaximum ailowed values can be used to prevent 
the control process to continue for work objects with extreme form deviations. In the preferable 
situation of Se equal to the zero vector, we get 

(JF)^ As = As, (4.105) 

which is the case of the square matrix J F of size n xn being the identity matrix. If m ^ rz and the 
Jacobian is calculated as the pseudo-inverse of the Feature Jacobian, it is not guaranteed that J F 
is an identity matrix, because this is not necessarily a property of the pseudo-inverse (see (4.29) 
and (4.30)). Oniy if m = n and all the row and column vectors of F are linearly independent, we 
get an identity matrix for J F (see (4.28)). If we have a highiy redundant configuration with much 
more control signals than DOFs to control, meaning m <c n, we have the problem, that the for the 
calculation of the form deviation, we first transform the control signal vector As from IR" into R"^. 
This involves an Information reduction which leads to problems with the subsequent transformation 
back to W^. In these cases the estimation of the form deviation is quite bad. 

4.8. Conclusion 
In this chapter, we discussed several solution methods for the learning approach in visual 

servoing to identify the system using linearization and Jacobian matrices - the direct solution of 
an over-determined linear system and the classical method of inverting the Feature Jacobian with 
and without additional weighting. After that, we analyzed different methods for the estimation of 
the quality and stability of system Identification. We looked at additional aspects such as flexibility 
and some geometrical considerations. To address the stability problems of the direct solution, 
we checked the usability of different enhancement techniques for the direct calculation, such as L2 
and L1 regularization. As we saw, the hysteresis effect has malign effects on a proper noise-based 
weighting of the control signals. A compensation of this effect is therefore advisable. Before we 
can decide which method is the best for our fieid of appiication, we have to take a further look at 
the hysteresis effects that couid be found in the trace data. Another point to address is how the 
weighting of the control signals in the Jacobian depends on the properties of those control signals. 
Finally, we have not yet found an adequate weighting to use in connection with the inversion of the 
Feature Jacobian. These points are addressed in the next chapters. 
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When calculating the current robot deviation for a single DOF, we determine the dot prod-
uct of the vector containing the current control signals values with the appropriate column vector of 
the Jacobian. This way, each element of this column vector states how much each control signal 
takes part in the resulting reconstruction of the DOF. Nonetheless, the calculation of the Jacobian 
does not necessarily reveal details about how the elements of the Jacobian depend on the prop-
erties of the control signals or the robot. If directiy solving a linear system using the trace data, the 
result is not easy to interpret. If a control signal is nearly zeroed out in the Jacobian it is difficult to 
find out why this happened. 

In this chapter, we specify a model consisting of different data sources for control signals 
and robot positions with individual sensitivities for the robot movement and individual noise ratios 
as model parameters (see Figure 5.1). Using this model, we are able to generate trace data and 
determine the Jacobian with different solving methods. By an additional calculation of the solu-
tions directiy from the model parameters, we are able to analyze the influence of the single model 
parameters on the solution and compare different solution methods. 

Model 
Parameters 

Trace 
Data 

i 
Jacobian 

Figure 5.1: Modelling Overview 

The contents of this chapter have been presented at a conference, and the corresponding 
paper can be found under [75]. 

5.1. Basic Model 

5.1.1. Without Noise 
First, we assume a simple model with oniy two signals and without any noise. Consider 

a function 

r R — R 
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that describes the linear dependence of two signal values Xi and yi with the gain g e R and with 
i e [l...k], k eN and A: > l the numberof samples. The values of x» are equidistantlydistributed 
over an interval [a, b] with a,b eR and xi = a <b = xk (see Figure 5.2). 

O -

Figure 5.2: Sinnple Model 

To calculate the best-fit linear regression from the sample data to reconstruct the gain as 
the model parameter, one wouid calculate 

k 

i = l 

(5.2) 

where the result can be expressed in terms of the sample data, either with the scalar products of 
sample data vectors or with sum terms. We will now try to calculate the sums in the nominator and 
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denominator directiy from the model parameters: 

^ x f (5.3) 

= (5.4) 

= + (5.5) 
i = l 

i=l 
k 

(5.6) 

(5.7) 

= a''k + a i b - a ) k + { b - a f k ^ ^ (5.8) 
OK — o 

= + (5.9) 

= rk w i t h r : = a 6 + ( 6 - a ) 2 | ^ ^ (5.10) DAC — 6 

For the regression we now get 

k k 

J »=i /I- ^^x 
— = — 

So far, so good. This is what we expected, but calculated in a very complicated way. That is true, 
but we need some of the results later on. 

A property of r we need later on is the fact that r is always greater than zero for all A; > 1 
and a < 6. If we call 

2Jt- 1 

weget 

r > o (5.13) 
a i + 7(6 - a)^ > O (fe.l4) 

o- + -27)06 + 76^ > O (5.15) 
70^+ ->6̂  > (27 - l)a6 (5.16) 

a ^ > (2--)ab. (5.17) 
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Because of ^ > 7 > ^ we know that 

So this estimation 

0 > ( 2 - - ) > -1 . (5.18) 
7 

0<{a-bf + > 2ab > (2 - - )a6 (5.19) 

proves that r is always greater than zero. 

5.1.2. WithNoise 
As a next step, we add noise to the samples and check for the consequences. We 

assume that Xi and yi both contain the additional normal distributed noise of zero mean and 
standard deviation a^ and cry, respectively. When recalculating the regression, the sum in the 
denominatorbecx)mes noise dependent: 

k 

n' = = (5 20) 

i=l 

It is interesting to note that the result of the regression is independent from the noise in the ordinate 
(7y. This is because the Xi and the yi in the nominator are uncorrelated (which is cancelling the 
noise) while in the denominator the noise in Xi is accumulated in the sum. Additionally we get 
g' < g for all noises al > 0. 

5.2. Enhanced Model 

5.2.1. Description and Model Parameters 
Now back to our problem with the Identification of robot movements by observing a num-

ber of control signals. Here we develop a model of describing the deviation of the robot in a single 
DOF Ar G R and reconstructing this deviation using a number of n e N control signal changes 
with a status vector of As e M". 

We start by considering that there is a deviation between the work object and the robot 
tool. During system setup, this deviation is caused by a robot movement when recording a trace. In 
production, the work object is replaced every production cycle with a new one at varying positions; 
causing this deviation. In the foilowing, we call this real physical deviation the true deviation. 

When the robot is moved, the robot controller determines the robot's joint angles with 
incremental encoders. From this data the robot controller calculates the robot position using the 
foHA/ard transformation. Of course, this process contains various sources of errors. For our model 
we simply assume that the robot deviation we get from the robot controller is the true deviation 
sensed with a gain of gr e 

IR and overlaid with zero-mean noise with a standard deviation of cTr. 
The gain gr shouid, of course, be close to one. 

The n control signals measure the true deviation depending on the geometrical feature 
they are measuring and the influence of the deviation in a certain DOF on this feature. For our 
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model, we presume an individual gain and noise for each control signal. The control signal gain is 
a vector 

\9n J 

as well as the standard deviations of the additional zero-mean noise 

a = 

ar \ 

V <Tn / 

eR" 

... ... ! 

(5.21) 

(5.22) 

For the description of the sampling process, we use the same as used above. A trace 
is executed in the robot DOF r between two limits T'min and Tmaxi creating a number of A: g N 
samples with A: > 1. To make things clear, here is a short Matlab code snippet for generating the 
trace matrices R and S out of the model parameters: 

true_dev = [ r_inin : ( r .mai - r .min) / (k -1) : r.max ] » ; • 
R = g_r » true.dev •»• sigma_r » r2aidii(k, 1) ; 
S = zerosCk, n ) ; 
fo r ( i = l : n ) 

S ( : , i ) = g ( i ) * true.dev + sigma(i) » randnCk,!); 
end 

Finally, Table 5.1 gives an overview of the model parameters. 

Parameter Meaning 
n Number of control signals 
k Number of samples in trace 

[̂ minţ r̂nax] Robot trace interval 
9r Robot gain 
Or Robot noise standard deviation 

</l, • . . , ^n Control signal gains 
Control signal noise standard deviations 

Table 5.1: Enhanced Model Parameters 

And for the value r introduced above we get now: 

,2 2Ar - 1 
T '— '"min ̂ max (î̂ max — ^min) 6A:-6 (5.23) 

5.2.2. Solving the System 
>From a given trace we are able to calculate the Jacobian using the different methods 

that were mentioned previousiy. In the case of one robot DOF to control, the Jacobian matrix 
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consists of a single column 

J = 

/ dr \ 
ds\ 

dr 
\ ^ / 

(5.24) 

5.2.2.1. Direct Calculation 
In (5.2), we have seen the best-fit solution for a regression with a function yi = / ( x j = 

g Xx depending on a single variable. For higher degrees, one has to solve terms that minimize the 
residual square sum, shown here for a robot nnovement depending on two control signals: 

k k 
- f{si)f = - ji 5i,i - j2 = min (5.25) 

1=1 1=1 
Besides the calculation via the pseudo inverse of S, the solution can be made by setting the parţial 
derivatives of the sum to the single function parameters to zero and solving the resulting linear 
system. For the above nninimization, for example, the result is: 

Ji,i = 

Jl.2 = 

k k 

i=l i = l 

k 

- E ^ f 
1=1 

k 
,2 I ^ n S i . i 

i=l 
( k k 

H 5i,2 
\ i = l / 1=1 i = l 

k k k k 
1 I ] 7-151,2 

i = l i = l 1=1 1=1 
k 

i = l 1=1 

(5.26) 

(5.27) 

To obtain the result of the Jacobian of the direct solution, we must use the result from the 
optimization like (5.26) and (5.27) and replace all sum terms with appropriate terms, basing on the 
model parameters. We must take into account that when a sum contains factors of two different 
signals out of r i , or Si,2, the individual noises on both signals are statistically balanced out 
in the sum of the product with a high number of samples^ For our model, these sums can be 
replaced by the product of both gains, the number of samples and r , for example 

k 
^ Si,i Si,2 = 9i92T k. (5.28) 

In the case that the sum contains the square of a single signal, the noise is not canceled. We get 
another sum containing the summarized noise: 

=9lrk + Glk. (5.29) 
i=i 

After replacing all sums in the optimization result and simplifying the term, we finally get the result 
we were looking for - the Jacobian depending on nothing but the model parameters: 

5 \ 

1 9 i 
- + z Z ^ T ^ at 

Ol 

% 
(5.30) 

^ This is because the correlation of two uncorrelated signals is zero. 
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The Jacobian determined by direct calculation has some interesting properties: 

• The size of a single element of J is how much a control signal contributes to the recon-
struction of the DOR This size increases llnearly with the gain of the control signal and is 
redprocally proporţional to the square of the standard deviation of the noise of the control 
signal. If considering two control signals with the same Information content - one with the 
double amount of noise - the noisy signal wouid have a quarter of the weight of the less noisy 
one. This weighting is very convenient because it suppresses noisy control signals. 

• If the interval [rmin^rmax] is very small, r is very small and therefore ^ becomes very big. 
This leads to numerica! problems for tiny intervals. 

5.2^.2. Inverse of Feature Jacobian 
The solution via the Feature Jacobian starts with the determination of the Feature Ja-

cobian F, which contains the parţial derivatives of each control signal with respect to the single 
DOF: 

(5.31) 

The elements of the matrix can be calculated by getting the slope of a regression line through the 
samples of robot positions and control signal values from the trace data. We have seen in (5.2) 
how to do this: 

1 / fc \ 
^ = I Z l n s i . n ) 

^ \ '=1 «=1 / 
(5.32) 

Foilowing the rules from (5.28) and (5.29), we replace the sums with terms depending on the 
model parameters: 

_ f ffl 3r T k g„ grTk \ 
V ^ r f c + affc g^Tk + a^k ) (5.33) 

The last step is the inversion of F to get the Jacobian. The special case of the pseudo inverse of a 
matrix containing oniy a single row 

has the solution 

F* 

F = ( / : / „ ) 

/ h 
\ 

(5.34) 

(5.35) 

\ fn / 

After appiying this to (5.33) and summarizing it we get the final result 

9Î 9l 

^ 

\ 9n / 

(5.36) 
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with 
2 2 

P —: =9r + QrT QrT 
(5.37) 

The factor p ^ gr depends oniy on properties of the robot and reflects the reconstructed robot 
gain, which is a consequence of the sampling of the data points for calculating the Feature Jaco-
bian. 

The first thing that is apparent is the absence of any control noise terms In the solution 
for F. This means that without a noise dependent weighting, two sensors with the same informa-
tion content but different noise levels are equally weighted in contrast to the direct solution. It is 
important to mention here, that for the direct solution it is possible to break down a single problem 
of m G N DOFs to identify with n eN control signals into m problems of identifying one DOF with 
n control signals. This is not possible for the solution via the Feature Jacobian F, because the 
inversion of F cannot be separated into the inversion of single rows of F like it was done in the 
special case of (5.35). Likewise it is not possible to extend the solution shown in (5.36) to multiple 
DOFs that easy. 

5.2.2.3. Inverse of Feature Jacobian with Weighting 
It is possible to appiy some sort of weighting when inverting the Feature Jacobian. We 

take a look at a per control signal weighting of the form 

J = W ( F W ) ' ^ 

with W a diagonal weight matrix of the form 

(5.38) 

W = 

/ JL 
Wi ^ O 

O 4 

o 
O 

Wn / 

(5.39) 

After setting up F, as in (5.33), and solving for J, we get: 

J = P 

/ ^ \ 
Wi 

H 

(5.40) 

An eye-catching fact is the similarity between the direct solution (5.30) and the current one, if 
setting the weight in N to the control signal standard deviations 

to get a per control signal weighting based on the particular noise. 

(5.41) 

5.2.3. Noise of the Reconstructed Signal 
A good possibility for comparing the Jacobian matrices obtained by the three different 

solving methods is to take a look at the noise of the reconstructed robot movement using the 
control signals. We have the noise of the single control signals as model parameters and the 

BUPT



56 5 - Model-Based Signal-Weighting Analysis 

Jacobian contains the rate at which each control signal participates in the result. So, the resulting 
noise can be calculated by 

(5.42) 
i = l 

For the direct calculation of the Jacobian, we get the ternfi 

2 _ 2 
^direct - 9r — TT^ • 

If using the inverted Feature Jacobian the noise is 

(5.43) 

"2 .2 (5-44) 

(S'O-
and if appiying a control signal based weighting of Wi = di for all i g [1. . . n], the noise can b^ 
written as 

^̂ weighted = P^ n^ 2 ' (5.45) 

i=l CTt 

If comparing the single noises, a very clear result can be deduced - the direct solution leads to 
the smallest noise in the reconstructed signal; inverting the Feature Jacobian leads to the noisiest 
signal. If appiying the mentioned weights, the results lie right between: 

'̂'dircct < <7wcighted < ^̂ featurc- (5.46) 

The first inequality is easy to prove. If assuming p ^ gr (see (5.37)), an easy transformation leads 
to 

Eft < 
\ 

The second inequality is more difficult to prove, but it leads to the term 

n 2 \ / n \ / n \ 2 

E - 0 E ^ n > 0 (5.48) / / \.=1 / 

which can be transformed into a sum of terms that are greater than zero and 

,2 2 "^If (5.49) 

prove the postulated presumption. 

Another interesting fact that can be derived from the terms for calculating the noise of the 
reconstructed signal is that adding another signal might enforce no higher resulting noise in the 
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reconstructed signal. The easiest way to show this is to add another (n -f l)-th control signal to a 
configuration with n control signals and to solve via the inverted Feature Jacobian with weighting: 

> (5.50) 
£ 4 

P n . l 2 
E ^ 

t = l CTi 1=1 CFi 
n+1 2 
v ^ gi > v ^ gi 

gn^ l > 0. 

(5.51) 

(5.52) 

We see from our model that it is guaranteed that the noise of the reconstructed signal does not 
increase if another control signal is added, no matter how noisy this new control signal may be. 
A similar behavior can be shown for the direct calculation, but this is more complicated so we 
just make an estimation. If replacing in (5.43) the term ^ with zero (this is acceptable for a robot 
trace interval of sufficient size), we get a similar term to that of the inverted Feature Jacobian 
with weighting, with the same result. For the inverted Feature Jacobian without weighting, the 
desired property cannot be proven. When adding a new, very noisy control signal to an existing 
configuration, the solution using the inversion of the Feature Jacobian might lead to an increasing 
of the noise of the reconstructed signal, which is a serious drawback. 

5.2.4. Coefficient of Determination 
In Chapter 4.4.2 we have introduced the coefficient of determination as a quality criterion. 

We will now try to calculate the COD directiy from the model parameters. The COD depends on 
the residuals. The error matrix has been defined in (4.44) as: 

E = S J - R . (5.53) 

In our case, the error matrix has just one single column. We determine the effective gain and noise 
of the residuals as 

/ n 
9e = 

C^l 

\i=l 
X^PtJi.i ) -9r (5.54) 

(5.55) 

Using the definition of the COD in (4.49) and the rule for calculating the square sum of a signal 
with certain gain and noise in (5.29), we get for the COD 

2 _ glrk + alk _ gir + al . 

If calculating the COD for the direct calculation depending on the model parameters, we 
get 

^ 2 
E iL ^ 

„ . ^ 1 ^ g f P I ^ g t ^ - ^ ^ f l — = — r f i—2 ' (5-57) 
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The robot dependent first part of the term is near one if Or is very small, and it tends more and 
more to zero if ar is growing. The signal dependent part is near zero for small sum terms and near 
one for greater sum terms. The sum term increases with increasing signal gains and decreasing 
signal noises. The COD is near one if both parts are near one, and the COD is near zero if one of 
the two parts Is near zero. 

For the solution via the Feature Jacobian (unweighted and weighted), the COD is less 
compact to display and less easy to interpret. For reasons of completeness, here is the result for 
the inverted Feature Jacobian 

^ 2 2 
2 2 2 , 2 

^^ . _ (5.58) 

and for the inverted Feature Jacobian with a control signal based weighting of Wi = a» for all 

a ^ ^ l L ^ . i l ^ ^ , (5.59) 

1=1 CTi ^ 

5.3. Conclusion 
In this chapter we examined how different control signal properties influence the weighting 

of those control signals in the Jacobian matrix for different solution approaches. All these analyses 
were model-based. An important result was that for a weighting with a weight matrix containing 
the (estimated) reciprocal standard deviations of the control signals, we received a good noise-
weighting. The quality of this solution was between the inversion of the Feature Jacobian and the 
direct calculation (in terms of the noise of the reconstructed signal). Some of the experiences 
made in practice couid be confirmed using the model, such as the possibility to decrease the qual-
ity of the system identification by adding a noisy control signal to an existing setup and using the 
inverted Feature Jacobian as the Jacobian. 

The equations developed in this chapter are good for clarifying the properties of the solu-
tion methods. However, as some experiments confirmed, their usage in practice is limited. If you 
take trace data from a real worid experiment (see Figure 5.3) and try to deduct the model param-
eters from the data, you get different Jacobian matrices if calculating it from the model parameters 
(Ji) or fronr the trace data directiy (J2). This is because reality is more complex than our limited 
model. The equality J j = J2 is oniy valid in the case that the trace data has been generated using 
the same model (compare with Figure 5.1). 
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Figure 5.3: Practicai Usage of Model 
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6. HYSTERESIS 

In this chapter, we make an in-depth analysis of the hysteresis-effect that has been de-
tected in the trace data in the chapter before. First, we check the official definition of hysteresis 
before we start the analysis of the origin of this effect - mechanical robot effects and delays in the 
sampling process. After that, we check methods to detect and compensate the hysteresis in trace 
data and discuss the effect of the hysteresis on the control process. 

6.1. Introduction and Definition 

When recording a trace, the robot is nnoved fon^/ard and backward in a single DOF while 
the control signals are continuousiy recorded. If plotting the samples of a single control signal 
against the robot position, we wouid expect the resulting trace data points to lie around a line 
through the point of origin according to occurring noises. The slope of the line depends on the 
sensitivity of the geometrical features observed by the control signal for the robot DOF, as shown 
in Figure 6.1 on the left-hand side. The results, though, obtained fronn practicai experinnents show 
a very different result, as shown in Figure 6.1 on the right-hand side where we see a non-linearity 
behavior of hysteresis-type. 

- 3 - 2 - 1 0 1 2 3 
Robot Position (mm) 

- 3 - 2 - 1 0 1 2 3 
Robot Position (mm) 

Figure 6.1: Ideal Trace and Experimental Result 

The analysis of this behavior is the subject of this chapter, A shorter version of this re-
search has been published at a conference, and the paper can be found under [76]. 

m 
To clarify the term hysteresis, we take a look at an official definition given by a norm from 

the American National Standards Institute (ANSI, see [3]): 

Hysteresis is that property of the element evidenced by the dependence of the value 
of the output, for a given excursion of the input, upon the history of prior excursions 
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and the direction of the current traverse. (...) It is usually determined by subtracting 
the value of dead-band from the maximum measured separation between upscale-
going and downscale-going indications of the measured variable (during a full-range 
traverse, uniess otherwise specified) after transients have decayed. 

As with the norm, we define a hysteresis as the difference of the measured values - in our 
case the control signal - between the fonvard and the backward movement, as shown in Figure 6.2. 
The figure shows a zoomed-in view around the point of origin of the trace shown in Figure 6.1 on 
the right side. The hysteresis size h is defined as half of the difference of the control values - the 
control signal value from the forward movement minus the one from the backward movement. This 
way, the hysteresis is a signed value and, in the case of this example, h is negative. It is useful 
to define hysteresis size in the control signal space because without the system Identification, this 
hysteresis is difficult to interpret in terms of degrees of freedom and it is first of all a value bound 
to a certain control signal. 

E 
E 
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-1 -0.5 O 0.5 1 

Robot Position (mm) 

Figure 6.2: Definition of Hysteresis Size h 

Because there is a hysteresis size h for every DOF and every control signal, we collect 
all the values in a single matrix Hs of size m x n (the same size as the Feature Jacobian) The 
subscript denotes that the hysteresis is measured in signal space. Of course, we want to see the 
hysteresis effects in the robot coordinate system, so we calculate 

Hr — Hs J (6.1) 

The matrix Hr has the size m x m. Its rows contain vectors that describe the size of the hysteresis 
for the traces in each DOF and the columns the size of the hysteresis in each DOF. 

Taking a look at the result of a real worid experiment with eight control signals controlling 
a standard six axis industrial robot in three DOFs, we get the foilowing result for the hysteresis in 
the control signal space: 

Hs = 
f 0.041 0.061 -0.102 0.072-0.193-0.046-0.219-0.002 \ 

0.087-0.238 0.036-0.242 0.021 0.212-0.044 0.167 

\ 0.136 0.056 0.108 0.017-0.103 0.000-0.059-0.005/ 

(6.2) 
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The data is difficult to interpret wlthout further information, so we have included the Feature Jaco-
bian: 

F -
/-0.046 0.001 0.567 0.087 0.641 0.0691.000 0.102^ 

-0.550 0.833 -0.435 0.835 0.106 -0.988 0.055 -0.987 

-0.804 -0.555 -0.679 -0.505 0.674 0.120 0.272 -0.107 J 

(6.3) 

One coherence that is easily spotted is that if the sensitivity of a signal for a certain DOF is high 
according to the Feature Jacx)bian, then the absolute value of the hysteresis is high too. By re-
peating the same experiment multiple times, we get a stable result for Hs, which indicates that we 
are observing a certain non-volatile effect. For further analysis, we transform Hs into the robot 
coordinate space: 

H r -

/ -0.212 
-0.041 

-0.015 V 

0.017 -0.069 ^ 

-0.208 0.070 

-0.011 -0.138 y 
(6.4) 

The values have an absolute size up to tenths of a millimeter, which is a littie bit greater than the 
expected range because the repeating accuracy of the used industrial robot is a littie smaller (in this 
case 0.15 mm for a "KUKA KR60 HA") and the hysteresis is not the oniy effect responsible for the 
limited absolute accuracy of the robot. See Section 2.4 for an estimation of the dimensions of robota 
hysteresis. AII values are different from zero, which is acceptable because if assuming mechanical 
robot properties like gear slackness as a reason for the hysteresis effect, the hysteresis takes 
place in the joints of the robot and therefore usually influences the movement in more than one 
DOF in each of the Cartesian coordinate systems of the robot. This is a direct consequence of the 
robot kinematics introduced in Section 2.2. It is notable that the values in the diagonal of Hr are 
significantly greater than those outside the diagonal. This is suspicious, but later on we will find an 
explanation for this. 

6.2. Analysis of Hysteresis Effects 

Considering the experimental results reviewed so far, we couid take the mechanical prop-
erties of the robot as the onIy reason for the hysteresis effects. Nevertheless, repeating the pre-
vious experiment with exactiy the same configuration and with different robot speeds during the 
trace, we experience a surprise - the size of the hysteresis effect changes with the changing robot 
trace speed v: 

Hs = Hs {v ) and Hr = Hr(t;). (6.5) 

We analyze this behavior by means of an example. Consider we run a trace in all three 
translational degrees of freedom of an industrial robot. We have four control signals; each observ-
ing a different geometrica! feature with different sensitivity. The Feature Jacobian, which is speed 
independent, is determined as 

^ -0.023 -0.006 

-0.347 -0.796 

-0.791 0.491 

0.542 -0.033 ^ 

-0.392 -0.867 

-0.741 0.457 / 
(6.6) 

For a complete trace cycle, the robot is moved in a DOF in positive and negative directions. This 
leads to phases where the robot accelerates or retards. When talking about the robot speed, we 
refer to the speed of the robot in phases of linear movement - as marked with arrows in Figure 6.3 
which shows the robot moving along a full trace cycle. The acceleration in the figure has been 
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Figure 6.3: Robot Movement Speed 

chosen with 2 ^ lower than typical to better illustrate the robot's behavior. We vary the robot 
speed between 0.2 ^ and 2.4 ^ with a step-size of 0.2 which produces 12 samples in total. 

First, we take a look at the occurring hysteresis in the control signal space and therefore 
at the contents of the matrix H» at different robot speeds. In Figure 6.4, on the left side we see the 
hysteresis in control signal space for the trace in X direction (first row of Hs) and on the right side 
for the trace in Y direction (second row of Hs) over the robot speed. 
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Figure 6.4: Hysteresis in Control Signals for X and Y 

As the next step, we plot the contents of Hr i representing the hysteresis in robot space. 
The result can be seen in Figure 6.5. On the left side we see all diagonal elements of Hr over the 
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speed approximated with a solid line and all elements outside the diagonal approximated with a 
dashed line. The diagonal elements, which denote the hysteresis in the main trace directions, are 
also shown on the right side along with the key identifying the single DOFs. 
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Figure 6.5: Hysteresis in Robot Coordinates 

The assumption of a linear coherence between robot speed and hysteresis size is clearly 
visible. It can be strengthened by more examples with different configurations and over wider 
speed ranges. This linear behavior can be found for all elements of Hs and because of the lin-
earized coherence in (6.1) for Hr too. Therefore, we assume a linear model with 

Hs(tO 
Ur{v) 

A T s Î; 4- Hso 

A T r î ; - h H r o . 
(6.7) 
(6.8) 

In the linear model H^o and Hro are some hysteresis offset that is added to the speed dependent 
hysteresis component described by A T s and A T r . The elements in Hso and Hro have the unit 
millimeters, the elements in A T s and A T r the unit seconds. This way the products of A T s v and 
A T r V have the unit millimeters, too. 

In the next two sections, we will take a look at the model parameters determined from 
the experimental data of our example configuration. On the basis of these results, we analyze the 
physical meaning of the model parameters and their practicai relevance. 

6.2.1. Timing Issues 

For the model parameters A T s and A T r , we get from our experimental data the follow-
ing results: 

A T s = 
f 0.004 -0.008 -0.036 -0.008 ^ 

0.049 0.064 0.029 0.067 

0.060 -0.040 0.052 -0.033 / 
(6.9) 
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A T r = 
-0.074 

-0.012 

- 0 . 0 0 8 

0.006 -0.008 ^ 
-0.083 -0.004 

0.001 -0.077 

(6.10) 

/ 
In our model, the matrices ATs and A T r represent the dynamic component of the hysteresis and 
have the physical quantity of time. This time is the delay or lagging between the sampling of the 
robot position and the sampling of the raw sensor data that is evaluated to finally obtain the control 
signals. To test this assumption, we set up a simulation where we move a robot with an attached 
sensor in a way as if executing a trace and collect robot positions and sensor samples. The sensor 
has a sensitivity for the robot movement of one. After artificially retarding the sampling of the 
sensor values for 500 ms, we get the result shown in Figure 6.6. The delay. together with the robot 
trace speed of 1 leads to a hysteresis of 0.5 mm. Increasing the robot speed and constant 
sample delay, the hysteresis increases linearly - just as observed in the real worid experiment. 
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Figure 6.6: Hysteresis caused by Sample Delays 

If the sample delay is positive, then the sampling of the robot position takes place before 
the sampling of the sensor raw data. If the delay is negative, the sensor data sampling happens 
first, as shown in Figure 6.7. So, all sample delays are relative to the robot position sampling, 
which makes sense because the sampling of the raw data for the considered control signal may 
happen at different times and this way we take the robot position sampling time as a reference for 
all sensor sampling times. 

The matrix A T r describes the speed-dependent part of the hysteresis in the robot space. 
The speeds occurring during the trace are vectors pointing in the directions of the basis vectors 
of the robot coordinate system. It is, consequently, not surprising that the elements outside the 
diagonal of A T r are approximately zero - the first line of the matrix describes the speed-dependent 
component of the first trace which was done in the first DOF with a speed vector, with oniy the first 
element non-zero. Assuming a software system executing the trace with a single constant mean 
sample delay At for the complete time over the whole trace process as in our experiment, we are 
able to simplify our linear model by writing 

A T r = (6.11) 
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Figure 6.7: Sign of Sample Delay 

Hr(v) = l u A i + HrO, (6.12) 

where I is the identity matrix. We now know that the speed dependent part affects oniy the diag-
onal of Hr , which explains its distinct diagonal mentioned previousiy when referring to the greater« 
diagonal elements suspicious. For our experiment, we get a sampling delay At of -78 ms. 

If assuming different sample delays per sensor signal and per trace, it wouid be interesting 
to calculate those values. The basis for this calculation is the matrix ATs . Comparing these values 
with the values of the Feature Jacobian F, we see that if the sensitivity of a signal for a certain 
DOF is high, the value in A T s is high too and vice versa. The reason for this is clear - the speed 
vector points in the direction of the movement and the sensor signal senses it onIy at the rate that 
is defined by the according element of F. To compensate for this we can divide each element of 
A T s by the according element of F. The result for our example is: 

( -0.190 1.323 -0.066 0.232 \ 

-0.089 -0.080 -0.075 -0.078 

V -0.076 -0.082 -0.070 -0.072 ) 

(6.13) 

When interpreting the results, some caution is advised. Most elements show a sample delay that 
is similar to the one in the diagonal of A T r , but some values diverge. These are values where the 
sensitivity of the signal for the DOF is too small. In this case the value in F is nearly zero and so a 
division by zero is pending. ObviousIy, we cannot determine the sample delay for a sensor signal 
at a certain DOF if the sensor is not sensitive for that DOF, which is indicated by a near-zero value 
in F. 

6.2.2. Mechanical Causes 
The component of the hysteresis that is independent from the robot speed can be found 

in the matrices Hso and Hro. The matrices' values for the experimental data are: 

Hso — 
/ 0.018 

-0.003 

0.027 

-0.023 -0.019 -0.040 \ 

0.098 -0.030 0.099 

0.021 0.017 0.031 ) 

(6.14) 

HrO — 

/ -0.065 0.021 

-0.029 -0.081 

V -0.006 -0.036 

-0.035 ^ 

0.060 
-0.009 ) 

(6.15) 
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These matrices contain the hysteresis that wouid occur if we were able to execute a zero speed 
at trace, so that the sample delay wouId not play any role. The causes, finally, for this hysteresis 
are the mechanical effects taking place in the robot gears, as introduced prevlousiy in Section 2.4. 
Creating a similar simulation like before with a robot moving a hand-mounted sensor, but this time 
with a gear dead-zone of 0.5 mm, we receive the result shown in Figure 6.8. The hysteresis size 
is independent fronn the robot speed. 
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Figure 6.8: Hysteresis Caused by Mechanical Effects 

Note that the shape of the curve is different than that caused by the sample delays in 
Figure 6.6. If the robot couid be stopped during its trace for a short time, the curve wouId be the 
same if oniy a mechanical hysteresis were present. In the case of an existing sample delay this is 
not the case. 

In practice, the matrix Hro has a higher relevance because it describes the mechanical 
hysteresis in terms of robot coordinates is easier to interpret. As mentioned in the introduction, the 
reason for the values outside the diagonal are that the mechanical hysteresis takes place in the 
robot's joints and influences more than one DOF than just the DOF the trace is executed in. To 
demonstrate this effect we take a look at another experiment. The setup is as shown in Figure 6.9. 
We have four distance sensors at the robot tool, measuring the distances to a simple box as a 
work object. Each sensor has a sensitivity of nearly one for one of the translational DOFs and 
nearly zero for all other DOFs. 

We execute a trace in the X direction and observe the sensor values for sensors 2 and 
3. The result is shown in Figure 6.10, with sensor 2 on the left and sensor 3 on the right. Because 
the trace is executed in X , the speed vector shows in that direction too. So, independent from the 
speed of the robot and the size of the sample delay the hysteresis caused by a sample delay is 
zero. With a sensitivity of about one for sensors 2 and 3 (the mechanical mounting of sensors 2 
and 3 shouid be quite accurate), we observe here directiy the movement of the robot in Y and Z 
while actually executing a move in X. The hysteresis sizes of about 0.15 mm in Y and 0.02 mm in 
Z are quite remarkable. 
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6.2.3. Hysteresis Stability 
In this short section, we check the stability of the hysteresis in terms of the signal configu-

ration. What we expect is thatthe size of the hysteresis is independent from the signal configuration 
as long as the signals carry enough information to reconstruct the robot movement. We use the 
same experimental setup as used in the previous sections to control a robot in three translational 
DOFs. However, this time we vary the number of control signals that we use for the system Iden-
tification and the hysteresis determination from between three and seven signals. Each of these 
control signals adds new information about a new geometrical feature. The results are shown in 
Table 6.1. 

Number of Mean Sample j Robot Hysteresis (mm) 
Signals Delay (s) X Y Z 

3 -0.078 -0.064 -0.082 -0.011 
4 -0.078 -0.065 -0.081 •0.009 
5 -0.079 -0.064 -0.079 -0.005 
6 -0.078 -0.064 -0.074 -0.006 
7 -0.078 -0.055 -0.075 -0.007 

Table 6.1: Stability of Hysteresis 

The first column shows the number of control signals used, the second column the aver-
age sampling delay as the average of the diagonal of the matrix ATr, and the last three columns 
contain the diagonal of Hro. The second row is marked because it contains the results of a signal 
configuration with four signals, as used before. The sample delay remains very stable at ~ 78 ms. 
The hysteresis in the robot's coordinates is less stable, but still at a sufficient level. 

6.3. Hysteresis Handiing 

6.3.1. Hysteresis Determination 
So far, we have seen the definition of the hysteresis. Now we develop a method for 

determining the hysteresis in trace data. We concentrate on the trace data of a single control 
signal and a single DOF to extract h. For a more extensive trace, this method has to be appiied 
for each control signal and each DOF to obtain the complete result of Hs. The procedure of the 
algorithm can be comprehended using Figure 6.11. 

1. In the first step, we remove all trace data points from the trace that results from a non-linear 
movement of the robot. This is the case at the beginning and the end of the trace and at 
the turning points of the robot path. The size of the intervals in which the robot moves non-
linearly can be determined by observing the robot speed if logging timestamps with the trace 
data. 

2. We calculate an approximate line through the trace data with slope g and intersection c. 

3. The trace data is then separated into two sets - samples that were sampled with the robot 
moving in a forward direction and those that result from a backward movement. Through 
each data set we place an approximate line with the previousiy calculated slope g and with 
intersection points hf and hb for the fonvard and backward movement, respectively. 
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Figure 6.11: Hysteresis Determination from Trace Data 

4. The resulting hysteresis h can now be determined as 

^ _ hf - hb 
2 

(6.16) 

This is the basic approach for hysteresis determination and experience shows that it 
performs very well for a great variety of real worid testing data. A probable source of small inac-
curacies might arise from trace data irregularities in the form of outiiers, as shown, for example, 
in Figure 4.2 (c), and we use least squares regression techniques to calculate the approximate 
lines in the approach described above. This is because the result of the least squares regression 
is quite sensitive to outiiers. Although it is advisable to find the source of the problem causing the 
outiiers and to repair it, it is still interesting to harden the hysteresis determination for cases like 
this by replacing the least squares regression with a robust regression method. 

The most common method for robust regression is the M-estimation. The original idea 
was published in [36] and its appiication to regression in [37]. A regression takes a number of 
n e N observed data tuples of an independent variable Xi and of a dependent variable yi and 
uses a model to predict values /»for yi on the basis of the independent variable Xi. The errors 
or residuals for each sample tuple are given by Ci = ŷ  - f i . The M-estimation appiies a function 
known as the objective function p{ei) to each of the residuals and minimizes its sum over all 
residuals 

(6.17) 

For p(e,) = ef, the sum is identical to the least squares approach. Nevertheless, while the least 
squares approach uses an equal weight for the summed-up residuals, the M-estimation defines 
a weight function w{ei) to appiy an individual weight to each sample. Because of a circular de-
pendency of weights, residuals and estimated model parameters, the result cannot be determined 
directiy. This is done in an iterative algorithm known as iterativelyre-weightedleast squares (IRLS). 
There is a set of available objective functions and weight functions of favorable behavior, such as 
the Huber or the Tukey bi-square estimators. 
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In Figure 6.12, we see a comparison between the performance of a least squares regres-
sion and an M-estimation wlth a Huber weight function using a concrete example. The latter shows 
much less influence on the group of outiiers. For a very good introduction to the theory of robust 
estimation, take a look at the book [26]. 

-4 -2 0 2 4 

Independent Variable X 

Figure 6.12: Robust Regression with M-estinnation 

6.3.2. Hysteresis Compensation 
With an increasing robot trace speed, the quality of the trace data decreases because 

of the increasing hysteresis size caused by the sample delay. This might lead to problems when 
identifying the system on the basis of the trace data with certain methods. Figure 6.13 illustrates 
this problem by showing results of a real worid experiment. Both plots show the condition of the 
Jacobian as result of a system Identification on the trace data over the trace speed of the robot. 
The condition of the Jacobian is the ratio of the largest and the lowest singular value and gives 
us an idea about the stability of the identified system. The different solution methods used are 
derived via the inverted Feature Jacobian with weighting and the direct solution. In the left plot we 
see the result using the raw trace data, and on the right side using trace data with appiied hystere-
sis compensation. Independent from the hysteresis compensation, the solution via the inverted 
weighted Feature Jacobian is indifferent against changes to the robot speed. However, the direct 
solution, which has . tability issues as discussed before, produces solutions of growing instability 
with increasing robot speed. A hysteresis compensation can lower these effects and make the 
stability of the solution more predictable due to the lower variability of the condition. 

This compensation is quite easy to appiy if the hysteresis size has been determined as 
described in the previous section. After separating the trace data into the set containing the trace 
data sampled when moving fon/vard and the trace data sampled when moving backward, we sub-
tract the hf from the control signal values of the first set and ht from the control signal values of 
the second set. The new trace data contains the union of both sets without the previousiy removed 
samples. Of course, this must be done - as with the hysteresis determination - for each ODntrol 
signal and each DOF separately. This way, the hysteresis is artificially set to zero. 
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Figure 6.13: Robot Speed vs. Jacobian Condition 

Finally, we check the behavior of the residuals that occur with or without hysteresis com-
pensation for the direct solution and the solution via the Feature Jacobian. The example con-
figuration contains eleven control signals to control five DOFs. First, we see the results for the 
residuals for the Y direction based on a trace of A: = 688 samples over all DOFs without hysteresis 
compensation in Figure 6.14. In the solution via F, we have a residual square sum of 17.732 mm^ 
(upper figure) and for the direct solution of 13.581 mm^ (lower figure). This is all right - the direct 
solution is least-squares optimal - but looking at the figure, the direct solution looks like the noisier 
one. Because of the hysteresis, the direct solution tries to reduce the high residuals by choos-
ing a weighting in J that minimizes the squared residuals and not their noise. The situation with 
hysteresis-compensated trace data (k = 647 samples left) is shown in Figure 6.15. The residual 
square sum for the solution via F (upper figure) is 0.615 mm^ and for the direct solution (lower 
figure) 0.494 mm". Both residual graphs look quite similar, but now it is the solution via F that has 
the noisier residuals. 

6.3.3. Dual Speed Trace 
We have discussed before how to determine the hysteresis in trace data and how to 

distinguish the effects from mechanical robot properties and delays in the sensor subsystem. It 
requires the execution of a series of traces at different speeds and to fit the data to a linear system. 
In practice, this is quite a time consuming task. A simple idea how to simplify things and to do this 
in a single trace is to vary the robot speed during the trace. 

To have a trace data set of sufficient size, we choose to use two different robot speeds 
during the trace. One way to do this is to use one speed for the fon/vard and one speed for the 
backward movement. This wouid lead to two approximate lines through the data from the fonvard 
and backward movement, whose offsets have to be considered relative to zero. That said, sirjpe 
we use data relative to nominal values, it is no certainty that zero is the exact value the offsets 
shouid be referred to. To avoid those problems we use different speeds in the positive and the 
negative robot movement range of the trace, just as shown in Figure 6.16. The speed in the first 
half of the trace was 0.1 ^ and in the second half with l.O ^ ^ it was ten times as high. You can 
clearly see that the hysteresis in the first half is smaller than in the second half and that the density 

BUPT



6.3 - Hysteresis Handiing 73 

E 
E 
(D 
N 
CD 
15 
"O 
' ( / ) O 
CC 

E 
E 
G) 
N 
co 
15 
•g 
O) 
o 
DC 

0.4 - ' z ' Pitcri Yaw -

0.2 -

1 n -

0 "sr 1 
-0.2 - . -

-0.4 - 1 1 
O 100 200 300 400 500 600 700 

Trace Index 

0.4 
0.2 

O 
-0.2 
-0.4 

X ' 

iHii 

• z : Pitcri taw 

.. 1 1 1 

1 

1 1 

i 
0) 0.2 
N 

O) o 
1 -0.2 
1 -0-4 oc 

I 0.4 

(/) o 
"I -0.2 
1 -0-4 
OC 

o 100 200 300 400 500 600 700 
Trace Index 

Figure 6.14: Residuals without Hysteresis Compensation (via F/Direct) 
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of the sample points is lower when the robot moves faster. 
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Figure 6.16: Dual Speed Trace 

We appiy this dual speed strategy to the experimental setup used before to obtain new 
data. By a separate analysis of the data of the first and the second half of the trace, we get the 
two matrices Hs(î;i) and U s M with vi = 0.1 ^ and V2 = 1.0 This gives us the minimum 
amount of data to solve for the linear model, which means determining the approximate line by 
oniy two points. The results are as foilows: 

A T s = 
/ 0.008 -0.015 -0.045 -0.032 ^ 

0.054 0.103 0.037 0.094 

V 0.074 -0.043 0.062 -0.027 / 

(6.18) 

ATr = 
( -0.098 0.021 -0.022 \ 

0.001 -0.111 0.009 

V -0.014 -0.009 -0.089 ) 

(6.19) 

Hso = 
0.017 -0.016 -0.012 -0.030 \ 

-0.006 0.072 -0.035 0.078 

0.018 0.017 0.008 0 .027 ) 

(6.20) 

HrO = 

/ -0.052 0.014 -0.029 \ 

-0.039 -0.060 0.051 

\ -0.011 -0.028 -0.003 ) 

(6.21) 

Comparing these results with (6.9) and (6.10) and (6.14) and (6.15), respectively, which are based 
on a complete sample set of twelve different speeds, we see that we get a rough estimation on the 
basis of our dual speed trace data. However, since a linear approximation with onIy two samples 
does not allow an error estimation, the execution of two dual-traces wouid lead to a sufficient 
amount of experimental data for a hysteresis analysis at the cost of an additional trace run. 
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6.4. Hysteresis and Control 
Despite of all our efforts to cancel the hysteresis effects In the trace data, we shouid not 

forget that the hysteresis effects influence the control process as well. If using a simple proporţional 
controller (see Figure 7.3) for robot control without any precautions to deal with hysteresis effects, 
the controller might be able to move the robot near to the target position. Then again, as soon as 
the dimension of the hysteresis effects is reached, we experience the expected oscillation effects. 
We can find this behavior in the results of a littie experiment with the said controller and an example 
setup. The actual control process is over in less than ten seconds, but we do not stop the control 
process until two minutes have elapsed. The actuation for the X coordinate for the last twenty 
seconds of the control process is shown in Figure 6.17. We see an oscillation with a period length 
of about 3.5 s and an amplitude of about 0.01 mm. With growing control gain, the amplitude and 
the frequency of the oscillation increase. For the modeling and cancellation of hysteresis effects in 
control systems, take a look at [43]. 
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Figure 6.17: Remaining Oscillation in X Coordinate 

6.5. Conciusion 
In this chapter, we analyzed the non-linearities of hysteresis-type that occurred when 

recording trace data. After defining the hysteresis size, we saw the connections of the hysteresis 
in robot and signal space. The hysteresis turned out to be linearly dependent from the robot's trace 
speed. The dynamic part of the hysteresis had the delays between the robot position sampling 
and the control signals sampling as a reason, and the static part had the mechanical effects of the 
robot as a cause. We learned that the robot-induced hysteresis effect takes place in the robot's 
joints, which leads to hysteresis effects; even in DOF when the robot is not actually moved. Later 
on, we learned how to distinguish both hysteresis effects in the trace data and how to compensate 
for the hysteresis in the trace data. The hysteresis compensation helped when using solution 
methods with stability issues such as the direct solution. Additionally, it was a condition for a 
proper noise-based weighting of the control signals in the Jacobian. This chapter is oniy about 
hysteresis detection and its compensation in trace data. To take care of hysteresis effects during 
control, other methods have to be used, though the hysteresis determination may help to provide 
data for a model-based hysteresis compensation approach. 
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First, we introduce a general classification of visual servoing systenns to distinguish be-
tween the often occurring terms used to describe robot control systems such as, for example, 
"position control", "oniine" or "multi-step" and we take a look at official classification attempts. In 
the next part of this chapter, we build an example visual servoing system to check the usability and 
performance of the previousiy introduced methods. 

7.1. System Classification 

Some properties of robot control systems allow a classification into different categories* 
to make evaluations and comparisons of systems easier. 

Robot control systems in common can be divided into robot position correction systems 
and robot path correction systems. The former ones determine the position change of the work 
object or a robot-grabbed part relative to a fixed setup position. The sensors can be fixed sensors 
such as multiple cameras; each observing a certain work object feature. Then, the global position 
change can be calculated using bundie adjustment techniques (see, for example, [89] or [90]). 
The sensors can also be hand-mounted. In this case, the robot moves the measurement system 
subsequently to the individual measurement positions. The main appiication fieids for position cor-
rection systems are the compensation of tolerances in the conveyor system for the work objects 
or the positioning of work object parts before a subsequent assembly. Robot path correction sys-
tems, on the other hand, provide local correction of single robot path points using hand-mounted 
sensors. These can be used to balance out tolerances in the work object. 

Figure 7.1 illustrates the differences between both systems. During system setup, the 
work object is posed into the nominal position in the robot cell and the appiication program for the 
robot is taught (a). The nodes along the robot's path are the path points taught in the robot program 
and refer to the work object coordinate system. During normal system operation, the conveyor 
places a new work object with certain production tolerances in the robot cell at a slightiy different 
than the nominal position (b). With a position correction, the work object coordinate system can 
be corrected to have the robot path run along the work object again (c). To compensate for the 
production tolerances of the work object, a path correction of the single path points is advisable (d). 

In oniine systems, the corrections are directiy appiied to the robot path, while offiine 
systems separate the process into a measurement run and an appiication run. During the mea-
surement run, the system acquires the measurement data and after determining and transmitting 
the corrections the robot executes its appiication. The offiine system is slower because of the ex-
tended robot movement for separate measurement and appiication, but it still has advantages such 
as no mutual interference of the measurement and appiication. For a more in-depth comparison, 
see [74]. 

Robot control systems usually manage the complex global coherence between sensor 
Information and robot position by using a simplified model for a local working point. An oniine one-
step solution uses a single set of sensor Information to determine a robot correction, and an oniine 
multi'Step solution continues the measurement after the robot has been moved towards the target 
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Figure 7.1: Position Correction vs. Path Correction 

position and generates successive, new corrections. This enhances the accuracy of the process 
at the cost of additional time. 

On the input side, robot control systems acquire sensor data, and on the output side cor-
rections are delivered to the robot. For oniine multi-step robot control systems, both events may be 
coupled or not. In the case of synchronous sys\err\s, the next measurement is not executed before 
the robot has appiied the last correction. In asynchronous sysXems, the next measurement is exe-
cuted while the robot is still executing the last correction. This ailows for a much faster correction 
process because the current correction is continuousiy updated. Nevertheless, for asynchronous 
systems we need a real time communication interface to the robot to provide it continuousiy with 
corrections. 

Another common classification method or taxonomy, especially for visual servoing sys-
tems, can be found originally in [80] and [95], with further explanations in [39]. They distinguish 
between systems with a hierarchical control structure where the vision system provides set points 
to the robot's joint controller (dynamic look-and-move systems) and systems that directiy control 
the joints of the robot (direct visual servo systems). The second characteristic for distinction is the 
definition of the error signal in terms of the 3D coordinates of the robot (position-based systems) 
or in image coordinates (image-basedsystem). A further question is whether the system observes 
oniy the target object (endpoint open-loop systems (EOL)) or both the target object and the robot 
end-effector {endpoint closed-loop systems (ECL)). 

7.2. Robot Controller 

In this chapter, we will put together the previousiy introduced technologies and approaches 
into a fully funcţional robot position correction system (see Chapter 7.1). The functionality of the 
system is illustrated in Figure 7.2. We want to control the position of a standard industrial robot 
(see Chapter 2.1) using a number of control signals. After choosing one or more adequate sensor 
technologies (see Chapter 3.1), we will define - based on the sensor signals (see Chapter 3.2) - a 
number of control signals (see Chapter 3.3) depending on our special appiication. In the next step, 
we set up the robot and the work object in their nominal positions, as in (a), and execute a training 
run to record the nominal positions as well as the trace data (see Chapter 4.2). Then we use 
one of the solution strategies (see Chapter 4.3) to determine the Jacobian matrix and, therefore, 
identify the system. During production, we have a situation as in (b), where we have a work object 
positioned at a different position to that of the nominal position and the work object may contain 
certain form deviations. The objective the position correction system has to achieve is to position 
the robot in a way relative to the work object that the control signal deviations are minimized, as in 
(c). 
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(b) 

Figure 7.2: Robot Position Correction System 

We use a simple proporţional controller to control the robot's position, as shown in Fig-
ure 7.3. The feedback from the sensors in the form of the control signals s is converted into control 
signal values relative to the nominal control signals SQ. These control signal deviations As are 
transformed into robot deviations A r using the Jacobian matrix J, by calculating 

Ar = f As (7.1)-

as described in Chapter 4.1. To realize the controller gain Kp of the proporţional controller, we 
use SLERPs (see Chapter 2.3), where Kp plays the role of the interpolation factor u such that 
O < Kp < The result is transmitted to the robot and the movement of its tool leads to a change 
in the current control signal values. 

Ax 
Kr. 

I 

Robot X Sensors s 
1 
i 

Robot Sensors 

Figure 7.3: Robot Controller Diagram 

The stop criterion halts the control process when the current correction A r is small 
enough over a certain period of time (to avoid precipitate control stops on zero-crossings of an 
oscillating A r during control). 

How the calculated robot corrections are transmitted to the robot depends on its commu-
nication and control interfaces (see Chapter 2.5). In the case of unavailable real time control, we 
can realize a synchronous communication where the calculated corrections are transmitted to the 
robot using standard communications. The robot appiies the correction and signals its readiness 
for a new correction. The controller triggers the next measurement and calculates the requested 
correction. This synchronous communication is the most portable one. If real time control is 
available, as it is with RSI/Corob systems, the robot controller is able to process a new position 
correction every 12 ms. Here, we can realize an asynchronous communication by decoupling the 
measurement and the correction calculation and delivery. The current correction is buffered and 
transmitted to the robot as long as no new correction is available. Therefore, the sensor subsystem 
can provide control signals at lower speed, which is not a big problem because the robot may be 
able to accept new corrections at that high speed, but the mechanical parts of the robot are much 
slower. 

It is fairly advisable to implement the control system in a way that it can cope with the 
failure of one or more sensors that lead to the unavailability of one or more control signals. In 
optimal cases, this shouid even be possible during the control process. In case of a sensor failure. 
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we use the method described in Chapter 4.5.2 for a complete deactivation of the control signal to 
reconfigure the system and to continue the control process at a lower accuracy. Such a feature 
ailows the usage of redundant sensors for a more reliable system. 

The parameter Kp can be used to control the speed of the robot. For lower values of 
Kp, the total control time depends almost linearly on Ap, where low values of Kp lead to long 
total control times. Increasing Kp, the total control time decreases until a point is reached where 
the high gain leads to harder robot movements that are accompanied by an increase of the total 
control time. For very high values of Kp, it may be impossible to fulfill the requested accuracy 
requirements due to the coarse robot movements. 

Now we take a look at an example control process. The system controlled the directions 
X, Y and Z with three control signals; Figure 7.4 shows on the left side the current actuation 
values Ax sent to the robot over the control time. The accuracy chosen as the stop criterion was 
0.01 mm for all three DOFs over a time of 120 ms, the control gain was Kp = 0.2, and the resulting 
total control time was around 3.2 s. Figure 7.4 displays on the right side the sensor deviations from 
the nominal position As over the time. The data in both figures was thinned out to make the single 
signals distinguishable. 
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Figure 7.4: Robot Control Cycle in Robot and Signal Space 

The result of the control process was quite sufficient. The relative positioning to the work 
object was better even than the repeating accuracy of the robot. The robot in the experiment had a 
repeating accuracy of ±0.15 mm but it was possible to position it relative to the work object with a 
quite remarkable accuracy of ±0.01 mm, and in a stable way. This makes the usage of the system 
interesting in connection with appiications with high accuracy positioning demands. 
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8. CONCLUSION AND FUTURE WORK 

This chapter provides a conclusion of the results of the previous chapters, along with an 
overview of the analyzed methods and a suggestion for a successful system identification based 
on these insights. Furthermore, it contains a list of personal contributions that have been made in 
this thesis and possible starting points for a continuation of the work of this thesis. 

8.1. Conclusion 
This work cx)ntains the in-depth practicai comparison of a number of different methods for 

the estimation of the Jacobian for the learning approach in visual servoing. The most commonly* 
used method to calculate the Jacobian as the inverse of the Feature Jacobian has its weaknesses 
compared to other solution approaches such as the direct solution, as previous works like [52] 
have also shown. We have checked the given solution methods against a list of properties that 
are important when appiying the theory to real worid scenarios, like stability, behavior in the pres-
ence of redundant signals with different noise ratios and flexibility. Based on the results, we have 
vahed existing methods such as appiying weighting before inverting the Feature Jacobian, or us-
ing existing mathematical solutions to improve the approaches, such as the usage of regularization 
techniques to gain stability for the direct solution. The methods have been implemented and tested 
using simulated and real worId robot trace data. The Table 8.1 shows an overview of the results by 
naming the advantages and disadvantages of the single system identification approaches. Refer-
ences to the adherent chapters are given to make it easier to find the discussion of that particular 
problem. 

Though the inversion of the Feature Jacobian is most commonly used, its result is easily 
tested for stability and it is invariant against problems connected with the hysteresis effect; it has 
a number of serious drawbacks. Some of them can be compensated for by using certain weight-
ing, but the results are still not very convincing. The best solution in terms of least-squares is 
provided by the direct solution, but it has serious problems connected with instabilities. The stan-
dard method of enhancing the stability by taking the L2 norm of the result into consideration heips, 
but it appiies unwanted changes to the signal weighting. The usage of the L1 norm for the system 
identification and implementation of appropriatecalculation methods has been discussed in recent 
mathematical publications, but it performs well in the fieid of visual servoing and in experiments 
with real world trace data. The L1 regularization enhances the stability and adds with the better 
interpretability - because of the sparsity of the solution - another nice feature. The more compli-
cated calculation of the solution is a less important disadvantage as we determine the Jacobian 
once during system setup and because of this there are no tight time-constraints. 

Therefore, if implementing a system for the identification of the Jacobian on the basis of 
trace data, we can make the foilowing suggestions based on the insights of the previous chapters. 
After recording the trace data, we shouid appiy a hysteresis compensation after Chapter 6.3.2 to 
minimize the stability problems introduced by the hysteresis effect and ailowing proper noise-based 
weighting. The next step wouid be the selection of the control signals we want to use, to identify 
the particular DOFs and the deactivation of unnecessary combinations, based on the concept of 
the sensor setup (see Chapter 4.5.2). The solution based on this pre-processed trace data shouid 
be calculated using the L1 regularization - a method which showed the best result in the tests. 
For enhanced stability and sparsity, a ratio of quality drop shouid be defined (see Chapter 4.6.2.4) 
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Method Advantages j Disadvantages 
Inverse of the 
Feature Jacobian 

• Transparent 
• Easy stability 

analysis 
• Invariant against 

Hysteresis Effects 

• Inflexible 
(Chapter 4.5) 

• No noise-dependent 
weighting 
(Chapter 5.2.2.2) 

• Quality drops upon addition 
of noisy sensors 
(Chapter 5.2.3) 

Inverse of the 
Feature Jacobian 
with Weighting 

• Transparent 
• Easy stability 

analysis 

• Inflexible 
(Chapter 4.5) 

Direct Solution • LeastSquares 
Optimal 

• Unstable 
(Chapter 4.6) 

• Hysteresis effects 
aggravate instabilities 
(Chapter 6.3.2) 

L2 Regularization • Enhanced Stability 
• Closed-form 

solution available 

• Encourages unfavorable sim-
ilarity of weightings 
(Chapter 4.6.2.3) 

LI Regularization • Enhanced stability 
• Sparse solution 

• No closed-form solution 
available 
(Chapter 4.6.2.4) 

Table 8.1: Solution Method Overview 

to be used in connection with the LI regularization. We must take special care when we expect 
higher work object deviations and use combinations of redundant sensors to assemble parts in a 
certain way. In these cases, the weighting in the Jacobian influences the final control position (see 
Chapter 4.7). This problem may be solved by defining proper control signals; redundant control 
signals shouid be avoided by combining respective sensor signals to a single control signal (see 
Chapter 3.3). 

Another significant part of this work regards the analysis of the hysteresis effect, its cause 
and its consequences for the solution methods. The hysteresis effect, appearing in the trace data, 
has two different reasons. One is the mechanical properties of the robot system, the other delays 
between the sampling of the robot position and of the raw data of sensors. The first part is inde-
pendent from the robot speed and affects not oniy the trained DOF because the effect takes place 
in the robot's joints. The second part depends linearly on the robot's trace speed and affects onIy 
the trained DOF. Besides the determination of the hysteresis from trace data and its separation into 
hardware-dependent part and sampling delay we have discussed methods for the compensation 
of the hysteresis effect in trace data. This is interesting because the hysteresis effect is unfavorable 
when using the direct solution method or any solution with noise-based weighting. In these cases, 
it leads to instabilities or misinterpretation of the hysteresis for sensor noise. Although the results 
may help to determine model parameters for a model-based cancellation of the hysteresis effect, 
this work does not deal with this subject. 
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In the end. we have put together all the previously developed and evaluated nnethods 
together with the introduced components to a fully funcţional robot position correction systenn. The 
working system shows the usability of the theories fronn this thesis in practice and, besides that, 
archives a remarkable accuracy. 

8.2. Contributions 

The most important subject of this thesis is the comparison of different solution methods 
for the Jacobian of the learning approach in visual servoing from a practicai point of view, and the 
development of a procedure for a successful system Identification. The analyzed methods include 
well known approaches, but some of those such as the additional noise-dependent weighting of 
the inverted Feature Jacobian have been improved . To get a comprehensive comparison, new 
approaches like the L1 regularization techniques - currently more a matter of theoretical mathe-
matical publications - have been examined for their usability in connection with visual servoing.• 
The analysis has been done with a number of tools to estimate the quality of a solution method 
in terms of stability and linearity in connection with a given data set. Some of these tools are 
standard tools like the stability estimation using the condition number. However, other tools such 
as the COD^, which is a common tool in statistics, have been successfully adapted to our problem. 
Practicai problems like the flexibility of the solutions regarding the ability to work with different kinds 
of trace data or the deactivation of features for certain DOFs have been taken into consideration. 
To get more Information on the way, the weighting of the features in the Jacobian matrix depend 
on the properties of the feature Information and the chosen solution method, we have realized a 
model-based analysis of the weighting providing detailed insight into the subject. 

Another contribution of this work is connected with an effect detected in the recorded 
trace data that leads to problems in connection with a system Identification using certain solution 
methods. It prevents a proper noise-based weighting of the sensor Information and introduces 
stability problems. The effect is a non-linear behavior between the robot position and the feature 
Information of hysteresis-type. In this thesis, we have found two important reasons for this effect 
- the mechanical robot hysteresis and the delays in the sampling process. We have developed a 
method to distinguish both effects from one or more trace data sets and to compensate the effect 
for a proper system identification. 

To assign the author's contributions to single chapters of this thesis, we can say that the 
introductory chapters about robots and sensors contain almost common knowledge, even if the 
concept of sensor signals and control signals for specifying different control tasks has not been 
described in other publications yet. The chapter about system identification introduces well known 
system identification methods and quality estimation approaches, but further to these, all system 
identification related and previously described topics are discussed. The analysis of signal weight-
ing by using a model in the next chapter gives a substantial insight into the origin of the signal 
weights on the basis of signal properties. In the chapter on hysteresis analysis, the distinction 
between two known effects is presented. The methods used here are unique and of practicai 
relevance, e.g. for hysteresis compensation. The description of a robot control system and its 
practicai results in the foilowing chapter is not new, although it does prove the usability of the 
specified complete identification and control concept. In the concluding chapter, a new method for 
system identification is given. 

The results of this thesis are interesting for any kind of appiications using the supervised 
learning approach in connection with linearization in visual servoing to control the path or position 

^ COD=Coefficient Of Determination 
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of a robot. These appiications use a learning data set (trace data) and a combination of input data 
(sensor data) and desired output data (robot deviations) to determine the elements of a Jacoblan 
matrix. For this task, a number of solution methods come to mind which have different advantages 
and disadvantages. This work heips to understand the mechanisms of different approaches and 
heips to choose the right approach for the required appiication. Furthermore, it offers an insight 
into the causes of the hysteresis-type non-linearities that occur every time we sample robot and 
sensor data, and it makes suggestions on how to detect and cancel the hysteresis effect in the 
learning data. 

The author of this thesis had the opportunity to test different theories in practice using 
a laboratory setup of an industrial robot with a great variety of different hand-mounted sensor 
systems, including laser distance sensors, laser stripe sensors and camera systems. This exper-
imental environment ailowed us to test different methods for the execution of training runs and for 
the recording of trace data, as well as to carry out control experiments with different work cbject 
configurations. Besides these testing facilities in the laboratory, the author is part of a development 
team that realizes a robot positioning system of industrial grade with a number of installaticns of 
greater scale in the factories of an automobile manufacturer. Consequently, there was a great 
amount of trace data of different control configurations available to gain new experiences and en-
hance given theories. 

For the analysis of the trace data, we have implemented a number of software tools in 
the Matlab environment: 

• Simple simulation of robot training runs using different control signal gains and different 
control signal noises 

• Physical simulation of a robot with hand-mounted sensors to simulate training runs with 
acceleration/deceleration phases and the robot moving at constant speed, robot hysteresis 
and delays in the sensor subsystem, and a geometrical definition of the work object and 
distance sensors 

• Detection of robot linearity ranges for a given trace data set: Robot movement range in which 
the signal response of the sensors is nearly linearly dependent on the robot position. 

• Hysteresis detection and hysteresis compensation 

• System Identification using various solution approaches 

• Quality and stability analyzes for a given solution 

• Comparative analysis of the results of different solution approaches 

Additionally, the resuils from this work have been used to improve the previousiy mentioned indus-
trial robot position control system. The experiences from this real worid operation were the basis 
for further enhancements of the theories. 

During the work on this thesis, the author has published a number of papers with ideas 
and interim results. The paper [73] rose from the iniţial work on solving non-linear systems by 
a Taylor expansion using Jacobian matrices for identifying the TCP of hand-mounted laser stripe 
sensors. A further publication [8] in cooperation with K. Bohnke was the result of examining the 
optical properties of laser stripe sensors and their suitability of use as hand-mounted sensors on 
robots. In the paper [74], we discuss the design of an offline path con-ection system and its ad-
vantages and disadvantages over oniine path correction systems. The publication [75] compares 
different methods for the estimation of Jacobian matrices regarding noise and stability. The static 
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and dynamic components of hysteresis occurring on trace recording for visual servoing applica-
tions has been analyzed in [76]. Finally, the conception of a robot positioning system and the 
requirements for its operation in industrial environnnents is presented in [77]. 

Here we give a summarized list of the most innportant theoretical contributions of this 
thesis as a quick overview: 

• Definition of quality measures for a systenn identification (trace data and resulting Jacobian): 
linearity, stability, flexibility, geometrical correctness and interpretability 

• Comparison of existing methods for system identification, including ones not used in visual 
servoing before regarding to previousiy defined quality measures 

• Enhancement of existing methods: Additional noise-based weighting for inverted Feature 
Jacobian approach 

• Model-based analysis of weights in Jacobian providing enhanced insight in the results of 
different approaches 

• Analysis of causes for the hysteresis effect occurring in learning data: Mechanical robot 
properties and sampling delays of robot position and sensor data 

• Approach of automatic distinction of causes for the hysteresis effect and its compensation in 
trace data which leads to increased stability and correct weighting of noisy redundant sensor 
information 

• Development of a successful procedure for system identification 

The practicai contributions include the development of software tools for the simulation of visual 
servoing setups with robot and sensors to generate learning data and tools for the analysis and 
system identification of simulated and real worid learning data. The results of the theoretical work 
were used to develop and improve an industrial robot positioning system appiication which shows 
the practicai appiicability of this work. 

8.3. Future Work 

When writing a thesis, one has to establish priorities - it is not possible to work on every 
detail with the same effort and to follow every interesting thought. With this in mind, this is a 
collection of loose threads that one may wish to pick up when continuing the work that was started 
with this thesis: 

• A subject of high practicai interest wouid be the integration of new control signals (or the 
re-integration of slightiy modified control signals due to the replacement or adjustment of 
sensors) without a complete new training run, which costs precious production time. The 
author has experimented with an approach to use the samples of robot positions and control 
signals that can be collected during one or more control processes to re-identify the system. 
Nevertheless, because the control process is based on the known sensors, all methods that 
have been tested so far favoured the known sensors over the new sensors. It wouId be njpe 
to have a method to slowly adapt the additional knowledge of the new control signals to the 
Jacobian, but because this a completely new subject on its own, it has been excluded from 
this thesis. Possible solution methods wouId be adaptive Jacobian techniques (see [23] or 
[61]) or neuronal network approaches (self-organizing maps, also known as Kohonen maps, 
see [17] and [69]). 
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• In this thesis, we have developed a method for the estimation of the hysteresis effect and 
we have presented a nnethod for the compensation of this effect in trace data. It wouid be 
nice if this numerical identification couid be used to compensate for the hysteresis effect in 
the control process too. This couId be done, for example, by developing an inverse system 
model of robots and sensors including the hysteresis, which couId be fed with the numerical 
results from the hysteresis determination from this thesis. The model couId then be used to 
realize a controller that takes the hysteresis into consideration and achieves higher resulting 
accuracies. 

• The situation of system identification under the circumstances of expectant high work object 
form deviations has been described in this thesis. However, the solution of deactivating or 
joining redundant control signals to avoid unequal residual distributions is not very satisfac-
tory. An approach to solve this problem wouId be a separate weighting of the control signals 
for the reconstruction of a robot DOF (for example noise-based weighting) and for the dis-
tribution of the residuals after finishing the control process (for example, equally distributed 
residuals). 

• It wouId be interesting to find out how different Jacobian matrices influence the performance 
of the control process, like the overall control time or the maximum achievable accuracy, 
depending on the different possible controller architectures. Accuracy and control time are 
the most interesting system properties from a user's point of view. 
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A. GLOSSARY 

COD "Coefficient Of Determination", statistical indicator for the quality of a regression model with 
respect to observed data 

Control Signal A source of information that is used to control the robot, which is calculated by a 
linear combination of sensor signals 

DOF "Degree Of Freedom" 

Euler Angles Method to describe any 3D rotation Rby a combination of three rotations around 
the basis vectors of the coordinate system: 

/ Î E u i e r ( a , ^ , 7 ) = R{Zn) ' ' RiZ.a) (A.1) 

Feature Jacobian Matrix with as many rows as DOFs to control and as many columns as control 
signals available, contains parţial derivatives of each control signal with respect to each DOF, • 
often called "sensitivity matrix" or "interaction matrix" 

IRLS "Iteratively Re-Weighted Least Squares", iterative algorithm to determine regressions that 
are robust against outiiers in the regression data 

Jacobian Matrix with as many rows as control signals available and as many columns as DOFs 
to control, contains parţial derivatives of each DOF with respect to each control signal 

KUKA, KRC, KRL KUKA Robotics Corporation is a German robot manufacturer, the robots are 
controlled with a KUKA Robot Controller (KRC), the robot's programming language is the 
KUKA Robot Language (KRL) 

L1 Norm or "Manhattan Norm", sum of the absolutes of the elements of a vector x of length n e N : 

= (A.2) 
1=1 

L2 Norm or "Euclidean Norm", root of the sum of the squares of the elements of a vector x of 
length n e N : 

/ n \ 5 
2 

Ei - ^ i 
\ i = l 

(A.3) 

Learning Approach A class of approaches in the fieid of visual servoing, that tries to adapt 
the knowledge of the coherence of robot movements and feature changes in a supervised 
(based on the list of inputs and desired outputs) or unsupervised learning (no such knowl-
edge) procedure • 

RPY Angles "Roll-Pitch-Yaw Angles", method to describe any 3D rotation Rby a combination of 
three rotations around basis vectors of the coordinate system: 

= R(Z.i)' R{y,3)- R{X,a) (A.4) 
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RSI/Corob Ethernet-based low-level, real time control protocol for robots from KUKA. 

Sensor Signal Single source of Information about a geometrical feature that changes if the robot 
Is moved, often a result of the evaluation of more complex sensor raw data 

SLERP "Spherical Linear Interpolation", method to interpolate between two transformations, each 
including position and rotation, in a smooth way 

TCP "Tool Center Point", point of origin of the robot's tool coordinate system; a "TCP calibrated 
sensor" is a sensor mounted at the robot's hand, which tool transformation is known 

Visual Servoing The area in the fieid of engineering and computer science that is about using 
(originally) visual sensor Information for the control of a robot 
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