

CONTRIBUTIONS
ON THE MULTI-TIER

ARCHITECTURE OF ELECTRONIC
HEALTH RECORD SYSTEMS

Teză destinată obţinerii

titlului ştiinţific de doctor inginer
la

Universitatea Politehnica Timişoara
în domeniul

CALCULATOARE ŞI TEHNOLOGIA INFORMAŢIEI
de către

Ing. ec. inf. Daniel-Alexandru JURCĂU

Conducător ştiinţific: prof.univ.dr.ing. Vasile STOICU-TIVADAR

Referenţi ştiinţifici: prof.univ.dr.ing. Rodica POTOLEA

 prof.univ.dr.fiz. Gheorghe-Ioan MIHALAȘ

 prof.univ.dr.ing. Horia CIOCÂRLIE

Ziua susţinerii tezei: 06.10.2016

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 10. Ştiinţa Calculatoarelor
2. Chimie 11. Ştiinţa şi Ingineria Materialelor
3. Energetică 12. Ingineria sistemelor
4. Ingineria Chimică 13. Inginerie energetică
5. Inginerie Civilă 14. Calculatoare şi tehnologia informaţiei
6. Inginerie Electrică 15. Ingineria materialelor
7. Inginerie Electronică şi Telecomunicaţii 16. Inginerie şi Management

8. Inginerie Industrială 17. Arhitectură
9. Inginerie Mecanică 18. Inginerie civilă și instalații

Universitatea Politehnica din Timişoara a iniţiat seriile de mai sus în scopul

diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2016

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea

acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii Politehnica din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,

tel. 0256 403823, fax. 0256 403221
e-mail: editura@edipol.upt.ro

BUPT

Cuvânt înainte

 Teza de doctorat a fost elaborată pe parcursul activităţii mele în cadrul

Departamentului de Automatică şi Informatică Aplicată al Universităţii Politehnica
Timişoara.
 Lucrarea se adresează tuturor celor interesați de dezvoltarea sistemelor
informatice de gestiune a înregistrărilor electronice de sănătate, aducând contribuții

în ceea ce privește găsirea metodelor de a proiecta sisteme software ce gestionează
înregistrări electronice de sănătate.
 Lucrarea investighează un mod de a structura datele pe baza tipurilor de

înregistrări identificate. Ulterior caută să îmbunătățească flexiblitatea prin găsirea
unor moduri de a integra specificații, standarde și terminologii existente în solutie.
 Întrucât personalul medical interacționează zilnic cu astfel de sisteme,
lucrarea investighează și evaluează de asemenea moduri de creare a interfețelor
moderne de interacțiune cu utilizatorul în ceea ce privesc înregistrările electronice
de sănătate.

 Consider că lucrarea este un suport ştiinţific de luat în seamă pentru
cercetările viitoare asupra modalităților de dezvoltare și integrare a aplicațiilor ce
gestionează înregistrări electronice de sănătate.
 Mulţumiri deosebite se cuvin conducătorului de doctorat prof.dr.ing. Vasile
STOICU-TIVADAR, alături de membrii comisiei de îndrumare: prof.univ.dr.ing. Ionel
JIAN, prof.univ.dr.ing. Diana LUNGEANU respectiv șl.dr.ing. Dorin BERIAN.

Timişoara, septembrie 2016 Daniel-Alexandru Jurcău

BUPT

Alese mulţumiri şi profundă recunoştinţă se cuvin adresate conducătorului
de doctorat prof.dr.ing. Gheorghe Rogobete pentru consilierea permanentă şi

îndrumarea atentă pe tot parcursul realizării lucrării.
 Adresez mulţumiri deosebite domnului prof. dr. Gheorghe Ianoş atât
pentru materialul documentar pus la dispoziţie, pentru ajutorul competent şi
susţinerea constantă pe parcumai sus?rsul elaborării acestui material, cât şi pentru

calitatea de referent al tezei de doctorat.
 Mulţumesc, de asemenea memrilor comisiei de doctorat, în persoanele

domnilor prof. dr. Iacob Borza şi prof. dr. ing. Teodor Eugen Man în calitate de
referenţi ai lucrării şi domnului prof. dr. ing. Victor Doandeş în calitate de
preşedinte al comisiei.
 Respect şi mulţumiri colectivului OSPA Timişoara pentru sprijin în realizarea
experimentelor de teren şi laborator cu privire la analiza profilurilor de sol analizate,
de asemenea Direcţiei Apelor Banat pentru documentarea de care am beneficiat.
 Aduc mulţumiri familiei mele şi tuturor celor care mi-au oferit o susţinere

morală şi profesională.

Jurcău, Daniel-Alexandru

Contributions on the Multi-Tier Architecture of Electronic
Health Record Systems

Teze de doctorat ale UPT, Seria 14, Nr. 31, Editura Politehnica,
2016, 156 pagini, 70 figuri, 19 tabele.

ISSN: 2069-8216

ISSN-L: 2069-8216

ISBN: 978-606-35-0090-9

Cuvinte cheie: electronic health records, HL7 CDA, openEHR,
LOINC, ICD10, architecture, usability,

Rezumat,

This thesis brings contributions to finding methods for
designing software systems that manage electronic health

records. It investigates a way to structure the data based on
types of inputs identified and then goes on to improve the
flexibility by finding ways to integrate existing specifications,
standards and terminologies into the solution. The thesis handles

multiple areas of interest concerning the development of
electronic-heath record applications: storage, processing and the
presentation of data; all in a structured manner.

BUPT

CONTENTS

List of Figures 7

List of Tables 9

Abbreviations 10

1 Introduction 11
1.1 Thesis Goals . 11
1.2 Thesis Structure . 12

2 Medical Standards and Terminologies 15
2.1 Health Level Seven Clinical Document Architecture 16
2.2 Medical Code Systems . 22
2.2.1 Logical Observation Identifiers Names and Codes 22
2.2.2 International Classification for Diseases 25
2.3 The openEHR Specifications . 28

3 Designing a Solution for the Structured Collection of Medical Data 37
3.1 Identifying the Business Domain . 37
3.1.1 Analyzing Medical Input Forms . 39
3.1.2 Identifying Types of Input . 40
3.2 Rapid Prototyping Using XML . 42
3.2.1 Structuring Input Elements . 43
3.2.2 Structuring Input Forms . 45
3.3 Designing Business Domain Classes . 46
3.3.1 Modeling Entity Classes . 47
3.3.2 Modeling Behavioral Classes . 53
3.3.3 Persisting Data to a Relational Database 54
3.3.4 Persisting Data to a NoSQL Document Database 62

4 Integrating Medical Standards 67
4.1 Translating Logical Observation Identifiers Names and Codes 67
4.1.1 Analyzing Medical Terminology . 68
4.1.2 Observed Data Patterns . 69
4.1.3 Applying Patterns . 71
4.1.4 Building a Web Application for Performing Translations 73
4.1.5 Results of Piloting the Translation . 76
4.2 Matching ICD-10 Codes Using Full-Text Search Engines 77
4.2.1 Analysis Methods . 77
4.2.2 Results . 78
4.3 Achieving Interoperability . 83
4.3.1 Linking openEHR archetypes . 84
4.3.2 Linking Medical Terminologies . 87
4.3.3 Clinical Document Architecture . 91

BUPT

5 Developing a Web Front-End for Electronic Health Records 97
5.1 Developing the Web Application . 97
5.1.1 Designing the Web Interface . 97
5.1.2 Client-Side Development – Single Page Applications 105
5.1.3 Server-Side Development – Web API . 111
5.2 Evaluating the User Interface . 114
5.2.1 Heuristics . 117
5.2.2 Aesthetics . 119
5.2.3 Goals, Objects, Methods and Selection Rules 122
5.3 Developing a Framework for Automated User Activity Tracking 123
5.3.1 Existing Tracking Solutions . 124
5.3.2 Creating a Custom Solution . 124
5.4 Analyzing the Users’ Activity . 128
5.4.1 Heat Maps . 128
5.4.2 Mouse Movement . 132
5.4.3 Input Analysis . 132
5.5 Improving the User Interface . 135
5.5.1 Improving Aesthetics . 136
5.5.2 Increasing Flexibility . 137

6 Conclusions 141

References 145

BUPT

LIST OF FIGURES

1.1 Diagram detailing the subjects and technologies encountered in the thesis
chapters . 14

2.1 The HL7 Reference Information Model . 18
2.2 Major parts of a LOINC concept name . 25
2.3 Searching a LOINC code using RELMA . 25
2.4 RELMA showing details on item 11488-4 26
2.5 The openEHR paradigm . 29
2.6 The openEHR multilevel model . 30
2.7 Complexity of a openEHR query against a SQL store 33
2.8 Using URI paths to construct an openEHR query 34
2.9 Example of a Archetype Query Language query 35
2.10 openEHR Template-based Integration . 35

3.1 Legislation detailing organizational aspects of patient monitoring 40
3.2 Legislation detailing the classification of medical risks 40
3.3 Example of an initial and active monitoring form 41
3.4 Rendering of a formula description expressed using LATEX 45
3.5 References between input forms and input elements 47
3.6 UML class diagram of the input element abstract class 48
3.7 UML class diagram of the input element subclasses. 49
3.8 UML class diagram of the input element class hierarchy 50
3.9 UML class diagram of the input form class 51
3.10 UML class diagrams modeling a patient and an employee class 51
3.11 UML class diagram related to the medical data classes 52
3.12 Use cases of the web application . 53
3.13 Fetching input forms from a repository 55
3.14 Saving input forms to a repository . 56
3.15 Database diagram with flattened hierarchies 58
3.16 Database diagram preserving input element hierarchies 59
3.17 Database entity classes used with Microsoft Entity Framework 61

4.1 Incidence rate of canonical vs. derivedmedical terminology in natural language 69
4.2 Splitting a LOINC value into patterns . 72
4.3 Comparison of the number of values to be translated and their average

length before and after applying patterns 73
4.4 Input area for the user’s LOINC translation 74
4.5 LOINC table displayed with highlighted abbreviations 74
4.6 The database schema used for the translation of LOINC terms 75
4.7 Amount of entries together with the minimum number of words (left) required

for distinct matches in the case of common entries 80
4.8 Amount of entries together with the minimum number of words (left) required

for distinct matches in the case of all entries which contain between 2 and
15 words . 82

4.9 Example ICD-10 search form . 83

BUPT

4.10 Using the Archetype Editor developed by Ocean Informatics to edit the blood
pressure archetype . 86

4.11 Expanding a numeric input element with information necessary to link it to
an openEHR archetype . 86

4.12 Archetype query requesting blood pressure over a specific amount 87
4.13 xpanding an input element value with information necessary to link it to a

medical terminology . 88
4.14 Applying AOP inside the repository for matching terminologies 90
4.15 Example object hierarchy using the HL7 SDK 93
4.16 Ocean Informatic’s approach to using openEHR to produce CDA/CCD artifacts 94
4.17 Connectors linking systems via CDA documents 95

5.1 Editing the Anamnesis (family history) input element 99
5.2 Configuring the elements that make up an input form 100
5.3 Two-column layout showing the selected input form 101
5.4 Layout used on mobile devices for showing the selected input form 102
5.5 Various input elements . 103
5.6 Action buttons displayed at the top and bottom of the input form 104
5.7 Comments input for an input element . 105
5.8 Sequence of steps taken for displaying input elements 110
5.9 SCORE - European High Risk Chart . 112
5.10 UML class diagram showing the input forms API controller 114
5.11 Sequence of RESTful API calls . 115
5.12 Packet capture showing the overhead of HTTP headers 127
5.13 Sequence of events describing the tracking framework 129
5.14 Example information shown in the user experience evaluation scenario . . 130
5.15 Heat maps using a linear and logarithmic scale 130
5.16 Heat map showing the cursor following a text while the user reads 131
5.17 Heat map also highlighting mouse clicks 131
5.18 Chronology of the user’s mouse movements 132
5.19 Order in which inputs are filled . 133
5.20 Direction of navigation between adjacent inputs 134
5.21 Spikes indicating pauses when writing . 135
5.22 Histogram of the duration between user key presses 136
5.23 Compacting the header and duplicating the form selector 139
5.24 Centering the input group header . 140
5.25 Using drag&drop to rearrange input groups 140

BUPT

LIST OF TABLES

2.1 Example entries in the LOINC table . 24

3.1 Summary of medical input types . 42
3.2 XML node names of input elements . 44

4.1 Summary of the data found in the LOINC table 69
4.2 Result of applying patterns to the LOINC data 73
4.3 Summary of translating LOINC terms into Romanian 76
4.4 Example queries for D63.1 – Anemia in chronic kidney disease 78
4.5 Most frequently encountered lexemes in ICD-10-CM 79
4.6 Number of common entries not distinctly identified 79
4.7 Average number of words needed/match 81
4.8 Number of common entries not distinctly identified 81
4.9 Example LOINC codes related to the systolic blood pressure 89
4.10 Terminology found in archetypes from the openEHR repository 92

5.1 Example of a RESTful service . 113
5.2 Respecting the principles of interaction design 118
5.3 Analysis of aesthetics measures . 121
5.4 Timings used by the GOMS model . 122
5.5 Quantitative analysis using the GOMS model 123
5.6 Writing speed per minute of all users . 135

BUPT

ABBREVIATIONS

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
AOP Aspect-Oriented Programming
CDA Clinical Document Architecture
CSS Cascading Style Sheets
DBMS Database Management System
DI Dependency Injection
DOM Document Object Model
EHR Electronic Health Record
GOMS Goals, Objects, Methods and Selection rules
HL7 Health Level Seven
HTTP HyperText Transfer Protocol
HTML HyperText Markup Language
ICD International Classification for Diseases
JSON JavaScript Object Notation
LOINC Logical Observation Identifiers Names and Codes
MVVM Model View ViewModel
NoSQL Non Structured Query Language
OLTP Online Transactional Processing
OOP Object-Oriented Programming
ORM Object-Relational Mapping
RDBMS Relational Database Management System
REST Representational State Transfer
RIM Reference Information Model
SDK Software Development Kit
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SPA Single-Page Application
SQL Structured Query Language
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
XML Extensible Markup Language
XSL Extensible Stylesheet Language

BUPT

1. INTRODUCTION

Healthcare is a domain which generates a lot of data every day, however,
traditionally, in paper form. Automating healthcare processes by using computer
software systems opens the way to a lot of improvements, among which: [1]

• Recording information with less room for error

• Allowing for much easier/faster information retrieval

• Providing a higher degree of understanding information recorded by someone
else

• Providing easier ways of sharing information between systems

• Allowing complex queries to be performed on pools of data for analytic/statistical
purposes.

The first obstacle encountered when setting of to build a software system for
dealing with healthcare data is that the domain in question is both complex and huge.
Depending on variables such as the medical specialty, the clinical setting or the country
in which one operates, each medic might encounter a completely different slice of the
healthcare information domain on a day to day basis. Considering that some type of
information is useful from a clinical perspective, while a different piece is only used for
administrative purposes like health insurance further complicates matters.

Because of this diversity, creating simple Create-Read-Update-Delete (CRUD)
applications that merely store a few bits and pieces of information in a database is
not an option as it provides no more utility than simply using a word processor for
recording information instead of pen and paper. The challenges involved in creating a
flexible system have inspired many research projects.

This thesis aims to bring contributions to finding methods of designing software
systems that manage electronic health records. It investigates a way to structure the
data based on types of inputs identified and then goes on to improve the flexibility by
finding ways to integrate existing specifications, standards and terminologies into the
solution.

Because medical professionals need to interact with such systems on a daily
basis, the thesis also investigates and evaluates ways of creating a modern user
interface for storing electronic health records.

1.1. Thesis Goals

The aim of this thesis is to bring valid knowledge which is both useful and
usable in practice for the creation and improvement of software solutions dealing with
electronic health records, in all the areas of interest concerning their development:

BUPT

12 Introduction – 1

storage, processing and presentation of data; all in a structured manner. As such, the
author brings contributions with the purpose of obtaining medical applications that are
both efficient and easy to use by medics.

To this end, the goals taken into consideration are the following:

• Identifying the type of data stored in electronic health records

• Researching into a way of structuring the required data in a manner that is both
easy to implement and flexible enough to change

• Identifying a way of implementing domain and service logic for dealing with the
structured electronic health record data

• Finding ways to include standard medical terminologies in an existing solution

• Researching ways of building an appropriate user-interface and how to evaluate
the usability.

1.2. Thesis Structure

This thesis is divided into four major chapters, accompanied by an introduction
and conclusions. The structure of each chapter and the interrelations between them
are summarized in figure 1.1.

Chapter 2, Medical Standards and Terminologies starts by providing
information about existing medical approaches and standards for building applications.
It presents the Health Level 7 (HL7) Clinical Document Architecture (CDA) standard
which provides a way to format (usually as XML) documents which exchange medical
information.

An as alternative to HL7 standards, the chapter also presents the openEHR
specification. Medical coding standards like the Logical Observation Identifiers Names
and Codes (LOINC) and the International Classification for Diseases (ICD) are also
introduced.

The information presented in this chapter is later used in chapter 4 which
analyses ways of integrating such standards into an existing application.

Chapter 3, Designing a Solution for the Structured Collection of Medical Data
analyses the requirements for building an application that manages electronic health
records. It then proceeds with suggesting an architecture and building a prototype of
such a system that uses a flexible approach of storing metadata on the actual inputs
that compose each form, instead of simply storing unrelated columns in a database.

This approach is designed to easily provide a solution to current requirements
and does not take specifications such as openEHR into account. The prototype created
is used in the next chapter as a starting point for linking openEHR artifacts and also
finding ways of using Health Level 7 (HL7) standardized documents for exchanging
medical data.

Chapter 4, Integrating Medical Standards, presents the implications of
integrating standard medical terminologies into an existing electronic health record
application and also deals with ways of inter-operating with openEHR methodologies
in order to more easily deal with terminologies.

BUPT

1.2 – Thesis Structure 13

An analysis is performed on the structure of Logical Observation Identifiers
Names and Codes (LOINC) codes and ways to more easily translate them into
languages in which they are currently not available.

International Classification for Diseases (ICD) codes are also discussed in
an effort to evaluate open-source full-text search engines for providing better and
more precise ways of searching and matching such codes. Lastly, the chapter
proposes a solution for combining the elements above in an architecture which provides
interoperability by generating specific connectors which consume or produce health
data in the form of Clinical Document Architecture (CDA) documents.

Chapter 5, Developing a Web Front-End for Electronic Health Records deals
with the aspects of building a front-end for an application that deals with electronic
health records. The chapter presents the links between the front-end and the back-end
architectures and offers a flexibly way of using metadata in combination with a rich
client-side application in order to generate UI elements on the fly. As the front-end is
the gateway to the application, seen from the eyes of the users, its usability is very
important. Ways of evaluating the usability are taken into account and applied on a
prototype application.

While working on this thesis, various parts have been published in the following
articles:

• Modern Technologies for Improving Interoperability in Health Information
Systems. Daniel-Alexandru Jurcău and Vasile Stoicu-Tivadar. Buletinul
Științific al Universității Politehnica Timișoara, 2014, pp. 53–58

• Using Modern Technologies to Facilitate Translating Logical Observation
Identifiers Names and Codes. Daniel-Alexandru Jurcău, Vasile
Stoicu-Tivadar and Alexandru Șerban. Proceedings of the 6th International
Workshop Soft Computing Applications (SOFA 2014), pp. 219–229

• Incidence Rate of Canonical vs. Derived Medical Terminology in Natural
Language. Vasile Topac, Daniel-Alexandru Jurcau and Vasile Stoicu-Tivadar.
Digital Healthcare Empowering Europeans. Proceedings of MIE 2015, pp. 5–9

• Evaluating Open-Source Full-Text Search Engines for Matching ICD-10 Codes.
Daniel-Alexandru Jurcău and Vasile Stoicu-Tivadar. 14th International
Conference on Informatics, Management and Technology in Healthcare, 2016

• Evaluating the User Experience of a Web Application for Managing Electronic
Health Records. Daniel-Alexandru Jurcău and Vasile Stoicu-Tivadar.
Proceedings of the 7th International Workshop Soft Computing Applications
(SOFA 2016)

BUPT

14 Introduction – 1

Chapter 1
Introduction

Chapter 6
Conclusions

HL7 CDA

openEHR

LOINC

ICD-10

RDBMS

NoSQL

XML

Metadata

Aesthetics

Activity
Tracking

Chapter 4
Integrating Medical Standards

Integrating
archetypes

Integrating
codes

Generating
connectors

Chapter 5
Developing a Web Front-End for

Electronic Health Records

Form
generation

Single-page
application

User
experience
evaluation

Chapter 2
Medical Standards And

Terminologies

Existing
standards

Existing
medical coding

systems

Existing
specifications

Chapter 3
Designing a Solution for the

Structured Collection of Medical
Data

Analyzing
electronic

health records

Building a
prototype

Analyzing
persistence

solutions

Fig. 1.1: Diagram detailing the subjects and technologies encountered in the thesis chapters

BUPT

2. MEDICAL STANDARDS AND TERMINOLOGIES

The healthcare domain is one of the most complex in the world and, as such,
poses many challenges when it comes to being automated with the help of computer
software.

Among the reasons for automating health care data is the possibility to
document actions taken to treat patients: [2]

• The request of a test

• The report of a test result

• The creation of a diagnosis

• The prescription of treatment.

The goal of software systems that deal with electronic health records is to
allow users to digitally record medical information that has been traditionally stored
on paper. As the diversity of this type of information is large, so are the amount of
ways in which such software can be written. Simple approaches might find it easy to
fulfill a very limited subset of requirements but evolving the system with new goals
will be ever more difficult.

The most important challenge when building software that automates working
with health records is in finding efficient ways of dealing with medical data. As
documented in literature, physicians are usually passive users that show no concern
on what the data type is and how it is organized [3]. This creates a need for building
efficient user interfaces that manage to extract as much information as possible from
the physicians with as little effort as possible.

This chapter introduces medical standards and specifications which have been
developed to help software vendors provide solutions that operate in a similar way
and are able to export data from one system so that other systems will automatically
understand it. Adopting such standards is not a bullet-proof solution, each of them
presenting various strengths and weaknesses which have given rise to new suggestions
and alternative approaches.

The chapter also deals with common medical coding systems and the issues
of using them. Such systems provide a good introduction into the healthcare domain
and can be readily used by developers as a source of domain entities.

Using standardization leads to easier interoperability which is defined as “the
ability of two or more systems or components to exchange information and to use the
information that has been exchanged” [4].

Why is standardization needed? In order to treat a medical problem, patients
often need to consult multiple physicians [3]. Without interoperable systems,
physician #2 has no way of knowing what medical information physician #1 has about
the patient’s condition. Typical solutions which involve the first physician issuing a

BUPT

16 Medical Standards and Terminologies – 2

hand-written letter describing facts about the patient, or, even worse, relying only on
information provided verbally by the patient himself are seldom appropriate.

In Romania, integration between medical systems is mostly limited to
reporting administrative information to the Unique Integrated Information System of
Social Health Insurances (SIUI), a complex national system with the goal of managing
the acquisition, storage and processing of data in regards to the national health
insurance system [5, 6].

Established at the University of Pennsylvania in 1987, Health Level Seven®

(HL7) is one of several ANSI-accredited standards developing organizations (SDOs)
operating in the healthcare domain [7]. HL7 provides “a standard for the exchange,
management and integration of data that support clinical patient care, management,
delivery and evaluation of healthcare services” [7].

HL7 standards provide rules on how data contents should be exchanged
between healthcare applications [7]. Among the functional domains covered by HL7
standards are financial transactions, observation reporting, order entry and patient
administration [8].

The essence of version 3 of the HL7 standards is to “apply the ‘best practices’
of software development to developing standards – a model-based methodology”
[2]. In contrast with version 2 of the standards which are “primarily concerned with
organizational issues and rarely provide means for terminological control”, HL7 v3
intends to support the interchange of medical contents at context level [3]. Among
HL7’s v3 standards, CDA is the most widely adopted [9].

This chapter is divided into three sections. Section Health Level Seven Clinical
Document Architecture introduces HL7’s Clinical Document Architecture (CDA), a
document standard for exchanging clinical information.

Section Medical Code Systems introduces the world of coding systems and
terminologies. Instead of using long terms when communicating medical information,
a practice that can easily lead to confusion or misinterpretation, various coding systems
have been developed which provide simple codes, that, when transmitted, allow the
recipient to easily understand what the sender is talking about. This section presents
the Logical Observation Identifiers Names and Codes (LOINC) which are mainly used
for coding laboratory data and International Classification for Diseases (ICD) which
encode medical diagnostics.

In order to also look at alternatives, The openEHR Specifications section
describes an approach to building electronic health record systems known as openEHR.
This specification is built on a multi-model approach and aims to improve in certain
areas where HL7 standards are lacking.

2.1. Health Level Seven Clinical Document Architecture

The HL7 Clinical Document Architecture (CDA®) is a standard which provides
a common architecture, coding, semantic framework, and markup language for the
creation of electronic clinical documents. Among its goals are: [10]

• Allowing cost effective implementations across a wide variety of systems

• Allowing the exchange of human-readable documents

BUPT

2.1 – Health Level Seven Clinical Document Architecture 17

• Compatibility with a wide range of applications used to create documents

• Promoting document exchange in a manner independent of the actual storage of
transfer mechanism used

• Promoting longevity of all the encoded information.

The HL7 CDA standard can be used to transmit messages in a simple and
structured manner, thus allowing access to unstructured databases [11]. An important
challenge lies in the local adaptation of computer-based guidelines and protocols [11].

Data stored in CDA documents can be quite diverse: clinical summaries,
diagnostic reports, discharge summaries, history/physical examinations, prescriptions,
etc [11].

CDA documents are coded using the Extensible Markup Language (XML) and
are created with a focus on document exchange [10]. Release 2 of CDA was launched
in 2005 and the model is characterized by context, human readability, persistence and
the ability to sign documents [12].

The characteristics and goals of clinical documents differ from those of
messages, implemented in the form of the HL7 v3 messaging standard: [13]

• Documents promote human readability, persistence and self containment

• Messages promote machine processability, are based on the status change of one
or more business-objects and are capable of providing real-time information.

The CDA standard is derived from the HL7 Reference Information Model (RIM),
shown in figure 2.1. The model contains four basic classes: [3]

• Entity – a physical thing or group thereof: patients, clinicians, nurses, rooms,
wards, etc.

• Act – a record of something that “is being done, has been done, can be done,
or is intended or requested to be done” [3]: admissions, treatments, transfers,
etc.

• Participation – “an association between an Act and a Role with an Entity playing
that Role” [3]

• Role – “a competency of the Entity playing the Role as identified, defined,
guaranteed, or acknowledged by the Entity that scopes the Role” [3].

As such, composing CDA entries presents challenges such as requiring RIM
modeling expertise in order to express any particular piece of clinical information, as
the representations are not obvious out of the box [9]. Moreover is does also lead
to common clinical concepts being modeled differently under different circumstances
[9].

The HL7 v3 RIM has also been specialized to the medical device domain
resulting in a Refined Message Information Model (RMIM) [15]. This allowed the
authors to achieve interoperability as they used concepts derived from a common
RIM, allowing the building blocks of the interfaces to be similar and traced back to it
[15].

BUPT

18 Medical Standards and Terminologies – 2

Fi
g.
2.
1:
Th
e
H
L7
Re
fe
re
nc
e
In
fo
rm
at
io
n
M
od
el
[1
4]
.
Th
e
fo
ur
m
ai
n
cl
as
se
s
an
d
th
ei
r
hi
er
ar
ch
ie
s
ar
e
hi
gh
lig
ht
ed
in
di
ff
er
en
t
co
lo
rs
:
En
tit
y

(g
re
en
),
Ro
le
(y
el
lo
w
),
Pa
rt
ic
ip
at
io
n
(c
ya
n)
an
d
A
ct
(r
ed
).

BUPT

2.1 – Health Level Seven Clinical Document Architecture 19

CDA documents rely heavily on code sets for document types, document
sections, clinical procedures, and clinical findings. Codes include Current Procedural
Terminology (CPT®), International Statistical Classification of Diseases and Related
Health Problems (ICD), Logical Observation Identifiers Names and Codes (LOINC®),
MEDCIN®, Systematized Nomenclature of Medicine (SNOMED®) or any code set used
in the RIM or internal RIM vocabularies [10]. As can be seen in the listing below, using
a code involves specifying:

• The code system’s unique object identifier (OID): 2.16.840.1.113883.6.1

• The code system’s human readable name: LOINC

• The code identifier: 11488-4

• The code identifier’s human readable name: Consultation note

<code code=”11488-4” codeSystem=”2.16.840.1.113883.6.1”
codeSystemName=”LOINC” displayName=”Consultation note” />

The structure of a CDA document consists of two main parts: [16]

1. The Header provides information on authentication, the document’s identity, the
document’s classification, the encounter, the patient and the providers involved

2. The Body contains the clinical report and can be structured or unstructured.

The listing below exemplifies the metadata present in a CDA document
standardized header, showing information about the document’s author: [10]

<author>
<time value=”2000040714”/>
<assignedAuthor>
<id extension=”KP00017” root=”2.16.840.1.113883.19.5”/>
<assignedPerson>
<name>
<given>Robert</given>
<family>Dolin</family>
<suffix>MD</suffix>

</name>
</assignedPerson>
<representedOrganization>
<id root=”2.16.840.1.113883.19.5”/>
<name>Organization Name</name>

</representedOrganization>
</assignedAuthor>

</author>

The hierarchy of a CDA document extends on three levels: [16]

• Level I – largely narrative text, no structured data (non XML)

• Level II – provides a structured narrative, broken into sections (XML body,
narrative block)

BUPT

20 Medical Standards and Terminologies – 2

• Level III – includes additional formal expressions of clinical content by means of
coding and explicit data representations (XML body, clinical statement). Level III
markup cannot contain more information than the narrative, in order to adhere
to CDA’s human readability principle [17].

CDA documents provide a narrative block, a mechanism to dress up
information in the user’s browser. This block provides representations of tables, item
lists and various text formatting [3]. XSL style sheet transformations can be applied on
the CDA document resulting in an HTML file ready to display inside the user’s browser.
Having a higher level CDA document which also contains information for computers to
parse is also beneficial when the document is read by a person as it helps clarify the
information, should the narrative block contain ambiguities.

The document content, when structured, contains multiple sections, as in the
example below provided by [18]:

<ClinicalDocument
xmlns:xsi=”http ://www.w3.org/2001/XMLSchema- instance”
xmlns:mif=”urn:hl7 -org:v3/mif” xmlns=”urn:hl7 -org:v3”>
. . .
<component>

<structuredBody>
<component>

<section>
. . .
</section>
. . .

</component>
</structuredBody>

</component>
</ClinicalDocument>

Each section can contain any number of CDA entries, but only a single narrative
block [3]:

<section>
<templateId root=”2.16.840.1.113883.10.20.5.5.15”/>
<code codeSystem=”2.16.840.1.113883.6.1”

codeSystemName=”LOINC” code=”18769-0”
displayName=”Findings Section”/>

<t it le>Bug-Drug Tests</ t it le>
<text>. . .</text>
<entry>. . .</entry>

</section>

The content a CDA entry is expressed using a “complex and extremely abstract
model based on HL7’s Clinical Statement project” [9] with the purpose of allowing any
degree of rigor and granularity. The clinical statement consists of 9 Acts classes: Act,
Encounter, Observation, ObservationMedia, Organizer, Procedure, RegionOfInterest,
SubstanceAdministration and Supply [3]. The listing below shows an example entry
which codes the value of the body temperature as an observation [11]:

<entry>
<observation classCode=”OBS” moodCode=”EVN”>

<code code=”386725007” codeSystem=”2.16.840.1.113883.6.69”
codeSystemName=”SNOMED CT” displayName=”Body temperature” />

BUPT

2.1 – Health Level Seven Clinical Document Architecture 21

<statusCode code=”completed” />
<effectiveTime value=”200004071430” />
<value xsi:type=”PQ” value=”36.9” unit=”Cel” />

</observation>
</entry>

An issue still present in today’s healthcare facilities is that, while they introduce
electronic medical record systems, some facilities still use paper when exchanging
clinical information [19]. When switching medical facilities, patients receive referral
form inputs from medics at the former one and manually pass them along to the staff
of the current facility, a process that wastes resources and also prevents medics at the
accepting facility from reading the documents in advance [19].

N. Mihara et al [19] have made the transition from traditional paper documents
to electronic ones by generating a PDF file of the medical document, using a virtual
printer, and appending it to an XML file containing the meta-information of the
document in the format of a CDA Release 2 header. This a good example of
implementing CDA step-by-step, at first in a narrative manner.

The HL7 application methodology is often enhanced by using web services [20].
Release 2 of HL7 CDA is being used inside service oriented architectures to facilitate
integration between healthcare facilities, as is, for example, the one developed by
Medinfo researchers that connects medical records from the Ligurian HIV Network to
the Biobanca database [21].

The emergence of the CDA standard was followed by the development
and publishing of several implementation guides that target specific types of CDA
documents. Among them is the The Continuity of Care Document (CCD), a joint project
by HL7 and ASTM International, which implements the clinical requirements specified
in the Continuity of Care Record (CCR) using the CDA architecture [10].

The Windows Communication Foundation (WCF) framework has been used
to build service-oriented applications which transfer HL7 CDA documents as XML
encapsulated in the body of SOAP messages [5].

HL7’s decision to adopt a RIM-based methodology is questioned by some
authors which consider that after ten years of effort, “the promised benefits of
interoperability which were to have been engendered by its use remain elusive” [22].
The classes which compose the RIM, having associated “a rich stock of attributes
derived from the specific domain of US hospital billing practices” [22] are considered
counterproductive when applied to new domains as one must constantly delete existing
attributes and replace them by others [22], a methodology considered to break the
central rules of object-oriented software design [23].

By storing information about observations and not information on various
medical issues like fractures or infections, the RIM makes it difficult to infer that two
different messages actually refer to the same fracture or infection [22].

The requirement to model the clinical content of CDA entries according to the
RIM leads to most of CDA’s primary shortcomings according to [24]:

• Lack of cohesion between the text and the coded entry. The coded entries meant
for computers to process are also optional and only considered “nice-to-have”
[24]. No mechanism is provided for adequately tying the narrative part to coded
entries or transforming one into the other.

BUPT

22 Medical Standards and Terminologies – 2

• Inconsistent representation of clinical concepts

• Lack of specialization semantics

• Lack of tools to assist the design, evaluation and standardization of detailed
clinical models by clinicians.

The RIM is also criticized for not providing associated tooling that can facilitate
easily designing CDA documents, requiring years until one is “extensively versed in
much of the HL7 RIM’s architecture, language and undocumented usage practices”
before being able to design, understand or communicate CDA or construct messages
that can accomplish actions [24, 8].

Although HL7 CDA enables the exchange of clinical information from a data
perspective, additional efforts are required to “enable a more flexible interaction with
EHR systems” [25]. The functionality of current systems, from the users’ point of view,
is often limited to performing basic queries on existing documents [25].

M. Schweitzer et al [25] have performed a study using direct observations to
record all common activities executed by clinical personnel during routine diabetes
consultations. Their observations show that some medics still used printouts and
recorded notes on paper while all nurses were observed to document electronically.
The most used IT action in the case of medics was information retrieval and, in the
case of nurses, documenting data.

In practice, according to [26] “HL7 interfaces always end up being a thin
wrapper around the structure of the database of the application which feeds them” .
Even though standards are used, there are areas where it is unclear how to structure
the data, thus leading to pain [26]. According to [26], “the best any vendor can ever
do is provide a stream of messages with fields that map adequately to most of the
data from their application”.

B. Smith [26] finds using a single data model for serving all purposes wrong
and suggests using small, simple models for various problems.

2.2. Medical Code Systems

2.2.1. Logical Observation Identifiers Names and Codes

When it comes to terminology standards, some authors argue that “the
existence of the perfectly coded biomedical data set may be more of a theoretical
concept to aim for rather than an obtainable goal” [27].

Developed by the Regenstrief Institute, the LOINC project aims to “create
universal identifiers (names and codes) used in the context of existing ASTM
E1238, HL7, CEN TC251, and DICOM observation report messages employed in the
various sub-domains of healthcare informatics such as Clinical Laboratory Information
Management Systems and Computer-Based Patient Record Systems” [28].

From the beginning, LOINC has been developed as an open standard and made
available worldwide through the LOINC website1 [29]. LOINC codes are available for

1http://loinc.org

BUPT

2.2 – Medical Code Systems 23

commercial use without charge [10]. The current available version is 2.54 released
on December 21st 2015.

Initially released in April 1996, LOINC codes have been greeted enthusiastically
and managed to gather 27 000 users in 158 different countries: clinical institutions
to health systems, government agencies, international e-Health projects, IT vendors,
research projects, etc [28]. LOINC has been even adopted as a national standard in
countries like: Australia, Brazil, Canada, Cyprus, Estonia, France, Germany, Mexico,
Mongolia, the Netherlands, Rwanda, Thailand, Turkey, and the United States; and is
also seeing large-scale use in Hong Kong, Italy, the Philippines, Spain, Singapore, and
Korea [28].

HL7 messages can include LOINC codes which are identified as the code system
LN [28]. In the context of messaging standards, using LOINC codes enables the
exchange of clinical laboratory data between heterogeneous digital environments [28].
LOINC codes are also frequently used in CDA documents [10].

The LOINC codes were developed in English and, over time, the
received contributions for the following linguistic variants: Chinese (China), Dutch
(Netherlands), Estonian (Estonia), French (Belgium, Canada, France, Switzerland),
German (Austria, Germany, Switzerland), Greek (Greece), Italian (Italy, Switzerland),
Korean (Korea, Republic of), Portuguese (Brazil), Russian (Russian Federation),
Spanish (Argentina, Mexico, Spain) and Turkish (Turkey) [30].

The LOINC database comes in the form of a tabular file and contains standard
text names and codes. LOINC names are fully specified, containing all the information
needed to map a local test name to one of the fully specified names when a person
wants to map a local test dictionary to LOINC codes [28]. The current version of the
database contains 78 959 rows. Table 2.1 shows a section of the database.

The LOINC database’s laboratory portion’s scope includes all observations
reported by clinical laboratories including: blood bank, chemistry, cytology, fertility,
hematology, microbiology, serology and surgical pathology [28].

As can be seen in table 2.1, each LOINC entry has a unique, permanent code
assigned to it (LOINC_NUM). This code is used to identify test results in electronic
reports and is composed of two numeric values, the last one being a modulo 10 check
digit [28].

As shown in figure 2.2, the LOINC concept names are composed of six core
name parts which provide information necessary to map local test names to LOINC:
[31]

1. The component or analyte

2. A property indicating various kinds of quantities

3. The time aspect of the measurement

4. The system or specimen

5. The type of scale

6. The method of performing the test.

Besides the LOINC database, the Regenstrief institute also freely provides a
software program called RELMA® (the REgenstrief LOINC Mapping Assistant) which

BUPT

24 Medical Standards and Terminologies – 2

LO
IN
C
_N

U
M

C
O
M
PO

N
EN

T
Pa

Tb
S
YS

TE
M

S
c

LO
N
G
_C

O
M
M
O
N
_N

A
M
E

10
00
-9

D
B
G
A
b

Pr
Pt

S
er
/

Pl
as
^
B
PU

O
rd

D
B
G
A
b
[P
re
se
nc
e]
in
S
er
um

or
Pl
as
m
a
fr
om

B
lo
od
pr
od
uc
t
un
it

10
32
2-
6

Po
ta
ss
iu
m
in
ta
ke

S
Ra
t

24
H

^
Pa
tie
nt

Q
n

Po
ta
ss
iu
m
in
ta
ke
24
ho
ur

16
41
5-
2

A
sp
er
gi
llu
s
fla
vu
s
A
b

A
C
nc

Pt
C
S
F

O
rd

A
sp
er
gi
llu
s
fla
vu
s
A
b
[P
re
se
nc
e]
in
C
er
eb
ra
l

sp
in
al
flu
id

18
96
-0

A
rg
in
in
os
uc
ci
na
te

M
C
nc

Pt
S
er
/P
la
s

Q
n

A
rg
in
in
os
uc
ci
na
te
[M
as
s/
vo
lu
m
e]
in
S
er
um

or
Pl
as
m
a

20
64
5-
8

H
is
tid
in
e

S
C
nc

Pt
S
er
/P
la
s

Q
n

H
is
tid
in
e

[M
ol
es
/v
ol
um
e]

in
S
er
um

or
Pl
as
m
a

35
00
6-
6

Pl
as
m
a
ce
lls

N
C
nc

Pt
B
od
y
fld

Q
n

Pl
as
m
a
ce
lls
[#
/v
ol
um
e]
in
B
od
y
flu
id

47
93
9-
4

S
ul
fo
cy
st
ei
ne

S
C
nc

Pt
Pl
as

Q
n

S
ul
fo
cy
st
ei
ne
[M
ol
es
/v
ol
um
e]
in
Pl
as
m
a

51
75
4-
0

H
is
to
pl
as
m
a
ca
ps
ul
at
um

A
g

M
C
nc

Pt
C
S
F

Q
n

H
is
to
pl
as
m
a
ca
ps
ul
at
um

A
g
[M
as
s/
vo
lu
m
e]

in
C
er
eb
ra
ls
pi
na
lf
lu
id
by
Im
m
un
oa
ss
ay

55
55
7-
3

N
ic
ot
in
e

S
C
nc

Pt
S
er
/P
la
s

Q
n

N
ic
ot
in
e
[M
ol
es
/v
ol
um
e]
in
S
er
um

or
Pl
as
m
a

57
79
4-
0

N
ew
bo
rn

sc
re
en
in
g
te
st

re
su
lts
pa
ne
l

-
Pt

B
ld
.d
ot

-
N
ew
bo
rn
sc
re
en
in
g
te
st
re
su
lts
pa
ne
l-
D
ri
ed

bl
oo
d
sp
ot

59
57
4-
4

B
od
y
m
as
s
in
de
x

Pr
ct
l

Pt
^
Pa
tie
nt

Q
n

B
od
y
m
as
s
in
de
x
(B
M
I)
[P
er
ce
nt
ile
]

66
99
5-
2

H
ow

m
an
y
tim

es
in
th
e

la
st

Y
ha
ve

yo
u
be
en

dr
un
k
in
a
pu
bl
ic
pl
ac
e

N
Ra
t

Pt
^
Pa
tie
nt

Q
n

H
ow

m
an
y
tim

es
in
th
e
la
st
ye
ar
ha
ve
yo
u

be
en
dr
un
k
in
a
pu
bl
ic
pl
ac
e
[P
he
nX
]

Ta
bl
e
2.
1:
Ex
am
pl
e
en
tr
ie
s
in
th
e
LO
IN
C
ta
bl
e.
Ea
ch
en
tr
y
co
nt
ai
ns
de
ta
ile
d
in
fo
rm
at
io
n
su
ch
as
th
e
tim

e
as
pe
ct
,
sy
st
em

an
d
sc
al
e
ty
pe
.

a
PR
O
PE
RT
Y

b
TI
M
E_
A
S
PC
T

c S
C
A
LE
_T
YP

BUPT

2.2 – Medical Code Systems 25

Creatinine renal clearance :VRat :24H :Ur+Ser/Plas :Qn

analyte/component

kind of property
of observation or
measurement

time aspect

system (sample)

scale

Fig. 2.2: Major parts of a LOINC concept name [28]

facilitates “searching the LOINC database, viewing detailed accessory content about
the terms, and mapping local terminology to LOINC terms” [29].

Fig. 2.3: Searching a LOINC code using the Regenstrief LOINC Mapping Assistant (RELMA)

Research around LOINC is focused around mapping local terms. H. Kim et al
[31] found mapping using RELMA challenging due to two major reasons: some local
name variants were not recognized by RELMA and tests showed incomplete information.
A study performed by Ch. Zunner [32] et al shows that they managed to map 1660
interface terms (∼77%) to LOINC out of 2148 which were processed, resulting in 1208
individual LOINC codes. The time necessary was 4 working days with a wide variation
between the time needed for simple terms (>200 terms mapped/hour) and the time
needed for terms requiring further investigation (<10 terms/hour) [32].

2.2.2. International Classification for Diseases

The International Statistical Classification of Diseases and Related Health
Problems (ICD) is an internationally used medical classification list from the World
Health Organization. Its current version, 10, has been in use since 1994 [33].

BUPT

26 Medical Standards and Terminologies – 2

Fig. 2.4: Regenstrief LOINC Mapping Assistant (RELMA) showing details on item 11488-4

ICD version 10 codes are organized in a tree structure, becoming more and
more specific when navigating deeper inside the hierarchy. The actual codes consist
of a letter prefix followed by digits. Each code is also accompanied by a description
and optional notes.

At the root of the hierarchy are multiple chapters, as shown in the list below,
an extract from ICD-10-CM Tabular List of Diseases and Injuries [34]:

1. Certain infectious and parasitic diseases (A00-B99)

2. Neoplasms (C00-D49)

3. Diseases of the blood and blood-forming organs and certain disorders involving
the immune mechanism (D50-D89)

4. Endocrine, nutritional and metabolic diseases (E00-E89)

5. Mental, Behavioral and Neurodevelopmental disorders (F01-F99)

6. Diseases of the nervous system (G00-G99)

7. Diseases of the eye and adnexa (H00-H59)

8. Diseases of the ear and mastoid process (H60-H95)

BUPT

2.2 – Medical Code Systems 27

9. Diseases of the circulatory system (I00-I99)

10. Diseases of the respiratory system (J00-J99)

11. Diseases of the digestive system (K00-K95)

12. Diseases of the skin and subcutaneous tissue (L00-L99)

13. Diseases of the musculoskeletal system and connective tissue (M00-M99)

14. Diseases of the genitourinary system (N00-N99)

15. Pregnancy, childbirth and the puerperium (O00-O9A)

16. Certain conditions originating in the perinatal period (P00-P96)

17. Congenital malformations, deformations and chromosomal abnormalities
(Q00-Q99)

18. Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified (R00-R99)

19. Injury, poisoning and certain other consequences of external causes (S00-T88)

20. External causes of morbidity (V00-Y99)

21. Factors influencing health status and contact with health services (Z00-Z99)

For each chapter, the hierarchy branches further, providing more specific codes.
The first part of the first chapter, Intestinal infectious diseases (A00-A09) starts with
the following codes: [34]

• A00 – Cholera

– A00.0 – Cholera due to Vibrio cholerae 01, biovar cholerae

– A00.1 – Cholera due to Vibrio cholerae 01, biovar eltor

– A00.9 – Cholera, unspecified

• A01 – Typhoid and paratyphoid fevers

– A01.0 – Typhoid fever

* A01.00 – Typhoid fever, unspecified
* A01.01 – Typhoid meningitis
* A01.02 – Typhoid fever with heart involvement
* ...

– A01.1 – Paratyphoid fever A

– A01.2 – Paratyphoid fever B

– ...

• ...

BUPT

28 Medical Standards and Terminologies – 2

A very common task for clinicians is to query a code for the diagnostics they
have come up with. Due to time constraints, browsing through the codes is not
normally an option, so having a readily available search functionality which can provide
the correct answer in a quick and easy fashion is important [35].

As ICD codes classify diseases in a comprehensive way, there have been found
uses for them as a foundation in building a search system for identifying doctors by
their specialty in large health facilities [36].

ICD-10 is also being used in Romania. The Australian version,
ICD-10-AM, has been translated into Romanian and is available at
https://www.drg.ro/DocDRG/download.php?fi=2.

2.3. The openEHR Specifications

Established in 2000 in the UK, the openEHR Foundation2 publishes e-health
domain models (archetypes), educational material, open source software and
specifications around a platform architecture [37]. Although it is not a standards body
itself, openEHR is dedicated to work with standards organizations and has influenced
the revised European standard CEN 13606 [17].

Specifications provided by openEHR impact: [37]

• Clinical (EHR) and demographic data (the openEHR Information Models)

• Clinical (EHR) and demographic content models, and connection points to
terminology (the openEHR archetypes and templates)

• Guidelines

• Portable Queries

• Key Services and APIs.

As can be seen in figure 2.5, at the core of openEHR is providing a layer
which houses models built by domain experts. This makes using terminology much
easier and has given rise to an international repository of these models, also called
archetypes [37]. Archetypes and templates are models of semantics, independent of
any document or messaging standards [37]. The goal is that, once the modeling is
established, other artifacts such as specific UI forms or source code can be generated.

The approach taken by openEHR is to a have a stable reference model which
can be implemented in software and to also provide a flexible domain model expressed
as archetypes and templates [38]. Archetypes are there to give semantic meaning to
objects persisted via the reference model and are intended to be created and edited
by domain experts and not by programmers [38]. Preventing structural or business
rules changes in the reference model and directing them to the archetypes ensures
that the persistence mechanism doesn’t need to change [38].

An openEHR electronic health record is structured based on the following
model: [39]

• EHR – the root object – a globally unique EHR identifier
2http://www.openehr.org/

BUPT

2.3 – The openEHR Specifications 29

Ref Sets

Terminology

Queries

Bindings

Templates

Archetypes

Reference
Model

Operational
Template

Java API

C# API

XSD

Forms

Software

System

Fig. 2.5: The openEHR paradigm (adapted after [37]). At the center lies the Reference Model
which is used to form Archetypes that are further specialized into Templates.

• EHR_access (versioned) – an object describing the access control information for
the record

• EHR_status (versioned) – various control and status information

• Directory (versioned) – an optional hierarchy of folders used to organize
Compositions

• Compositions – contains all the administrative and clinical content of the record.

The openEHR specifications “aim at providing a way of implementing more
flexible EHRs, by gracefully embracing change” [40]. Figure 2.6 presents a simplified
view of the multilevel model used by openEHR. The reference model (RM) contains
commonly occurring structures, building blocks which are used to create archetypes
that express domain concepts. Combining archetypes leads to templates which are
further used to generate messages or UI forms [40].

The official documentation defines an archetype as “a computable expression
of a domain content model in the form of structured constraint statements, based on
a reference (information) model” and a template as “a directly locally usable definition
which composes archetypes into a larger structures often corresponding to a screen
form, document, report or message” [41]. As archetypes are generally broad models,
templates play an important role in narrowing the choice of archetypes for specific
purposes.

Archetypes are expressed using a formal language called the Archetype
Definition Language (ADL) [42]. ADL documents are parsed into a network of objects
defined by a formal, abstract object model – the openEHR Archetype Object Model
(AOM), which can be further represented in a number of ways, including XML [42].

Am important strength of openEHR archetypes is the ability to store
parts of a component. The listing below, taken from an archetype available at

BUPT

30 Medical Standards and Terminologies – 2

CLUSTER ELEMENT

ITEM
items
1..*

DV_TEXT DV_COUNT

DATA_VALUE

DV_QUANTITY

0..1

value

Reference Model

CLUSTER
ELEMENT – Systolic Blood Pressure

value: DV_QUANTITY
ELEMENT – Diastolic Blood Pressure

value: DV_QUANTITY

Blood Pressure Archetype

Archetypes

Diastolic Blood Pressure:
Systolic Blood Pressure:

...... mmHg

...... mmHg
Template

Fig. 2.6: The openEHR multilevel model (adapted from [40]). The figure shows how archetypes
are built using primitives from the reference model. Archetypes are further used to create
templates which detail which inputs are to be presented to users.

https://github.com/openEHR/adl-archetypes.git, exemplifies how Blood Pressure is
composed of (among others) a systolic and a diastolic value.

OBSERVATION[at0000] matches { -- Blood Pressure
data matches {

HISTORY[at0001] matches { -- history
events cardinal i ty matches {1..*; unordered} matches {

EVENT[at0006] occurrences matches {0..*} matches { -- Any event
data matches {

ITEM_TREE[at0003] matches { -- blood pressure
items cardinal i ty matches {0..*; unordered} matches {

ELEMENT[at0004] occurrences matches {0..1} matches {
-- Systolic

value matches {
C_DV_QUANTITY <

property = <[openehr::125]>
l i s t = <

[”1”] = <

BUPT

2.3 – The openEHR Specifications 31

units = <”mm[Hg]”>
magnitude = <|0.0..<1000.0|>
precision = <|0|>

>
>

>
}

}
ELEMENT[at0005] occurrences matches {0..1} matches {
-- Diastolic

value matches {
C_DV_QUANTITY <

property = <[openehr::125]>
l i s t = <

[”1”] = <
units = <”mm[Hg]”>
magnitude = <|0.0..<1000.0|>
precision = <|0|>

>
>

>
}

}

The listing above presented the systolic blood pressure using a local term,
[at0004]. An archetype contains a term_definitions section which defines all the local
terms in various languages:

term_definitions = <
[”en”] = <

items = <
[”at0004”] = <

text = <”Systol ic ”>
description = <”Peak systemic ar ter ia l blood pressure -

measured in systo l ic or contraction phase of the heart cycle . ”>
>
[”at0005”] = <

text = <”Diastol ic ”>
description = <”Minimum systemic ar ter ia l blood pressure -

measured in the d iasto l i c or relaxation phase of the heart cycle . ”>
>

>
>
[”de”] = <

items = <
[”at0004”] = <

text = <”Systolisch ”>
description = <”Der höchste ar ter ie l l e Blutdruck eines Zyklus -

gemessen in der systolischen oder Kontraktionsphase des Herzens. ”>
>
[”at0005”] = <

text = <”Diastolisch ”>
description = <”Der minimale systemische ar ter ie l l e Blutdruck

eines Zyklus - gemessen in der diastolischen oder Entspannungsphase
des Herzens. ”>

>
>

>
>

BUPT

32 Medical Standards and Terminologies – 2

Terminologies are also linked:

term_bindings = <
[”SNOMED-CT”] = <

items = <
[”at0004”] = <[SNOMED-CT(2003)::163030003]>
[”at0005”] = <[SNOMED-CT(2003)::163031004]>

>
>

>

In contrast, HL7 does not have a data type for storing a pair of component
parts. This leads to the creation of an extra pair of Observation classes and
Act-Relationship objects with the downside that these components gain so much
importance that the parent Observation is discarded [24]. An example of this is the
ASTM/HL7 Continuity of Care Document which contains two separate and uncorrelated
Observations for systolic and diastolic blood pressure [24].

When it comes to persistence, openEHR does not specify or require a specific
persistence method or strategy. As shown by [43], modeling a relational database
for persisting EHR records according to openEHR would result in performance issues
due to the large number of joins required by the complex tree structure of openEHR
archetypes. Figure 2.7 demos such a query.

As a practical persistence solution for future-proof electronic health record
systems, L. Wang et al propose a relational database schema based on the following
mapping rules: [44]

• Each archetype is mapped to a table

• Each basic data item represented by the archetype basic data type is mapped

• The identification data item is constrained as the key column

• The query data item is constrained as an indexed column

• Archetype slots are mapped

• Collection data items are mapped according to the collection data structure

• Query data items are propagated in order to reduce the recursive level

The structure of the reference model allows generated EHR data to be
serialized in several popular formats like XML or JSON. When it comes to storing EHR
data in a relational database, performing a pure object-relational mapping may not
yield an efficient solution because the reference model contains a large set of classes
which can easily form relatively deep tree hierarchies [38].

One solution is to use XML databases which are readily available. If using them
in production systems, [38] identifies an important requirement in the fact that such
databases must present good performance “not only when querying for data about an
individual (clinical query) but also for data about a whole population (epidemiological
query)” when performing research studies, an important secondary use of electronic
health records.

A study has been performed by [38] on the viability of using XML databases
for storing EHR data. They benchmark a relational database (MySQL version 5.5.24)

BUPT

2.3 – The openEHR Specifications 33

Fi
g.
2.
7:
C
om
pl
ex
ity
of
a
op
en
EH
R
qu
er
y
ag
ai
ns
t
a
S
Q
L
st
or
e
[4
3]
.
Th
e
da
ta
is
no
rm
al
iz
ed
th
ro
ug
ho
ut
m
an
y
ta
bl
es
re
su
lti
ng
in
a
lo
t
of
ta
bl
e

jo
in
op
er
at
io
ns
be
in
g
re
qu
ir
ed
to
fe
tc
h
th
e
re
qu
es
te
d
re
co
rd
s.

BUPT

34 Medical Standards and Terminologies – 2

against the following XML databases: eXist (version 1.4.2), BaseX (version 7.3),
Sedna (version 3.5), and Berkeley DB XML (version 11g). When it comes to the
necessary storage space, they have observed large discrepancies between the XML
databases which require between 38 and 164 times more storage space than the
relational database. The response times when performing epidemiological queries on
XML databases also leave much to be desired when compared to the relational database
[38].

An explanation on the poor performance of XML databases might lie in the
way openEHR archetypes are designed. They usually contain many attributes with the
same value thus making XML text and attribute indexes point to a huge number of
entries in the database, rendering them inefficient [38].

A later study performed by [40] also includes a benchmark of a modern,
distributed NoSQL database based on the MapReduce approach, Couchbase is a
document database and provides native support for the JSON format. The results
of the benchmark show an overall better response time in the case of Couchbase
compared to MySQL, however with the note that Couchbase requires indexing for
each different query [40]. The indexing performance can however be increased
proportionally by introducing more nodes in the cluster.

E. Sundvall et al [45, 46] have investigated ways of creating REST services as
interfaces to openEHR implementations. They use XML for passing messages and an
XML databases with support for XQuery for storage. The REST architecture benefits
from the features offered by HTTP, making it easy to switch between XML or JSON
content by just changing the mime type of the request.

The system presented by [45] supports queries in two ways:

• By constructing them with the help of URI paths, a convenient method thanks to
the documents’ hierarchical structure. This method is detailed in figure 2.8.

• By providing AQL queries which the system then translates to XQuery. As
example AQL query is shown in figure 2.9.

ehrID ehr://1234567/

Compositions (versioned) 87284370-2D4B-4e3d-A3F3-F303D2F4F34B
@latest_trunk_version/

Sections content[openEHR-EHR-SECTION.vital_signs.v1]/

Entries items[openEHR-EHR-OBSERVATION.heart_rate-pulse.v1]/

Data structures data/events[at0006]/data/items[at0004]/value/

Values magnitude

Fig. 2.8: Using URI paths to construct an openEHR query [45]. Each part is explained on the
left.

T. Beale [47] suggests the following steps for a template-based integration
of non-EHR systems into an openEHR backend, as shown in figure 2.10. Templates
can also be used to other way round, to produce documents based on other medical
standards.

• Building openEHR templates for each message

BUPT

2.3 – The openEHR Specifications 35

Fig. 2.9: Example of a Archetype Query Language query [46]. The language is quite similar to
SQL, with the added complexity if being able to reference elements of an archetype by means
of a path and being able to check for the existence of archetypes inside records.

• Generating XML schemas from the template definition

• Populating XML documents from source data

• Transforming to standard openEHR XML

• Using the integration engine to do XML processing.

HL7 V3 CDA
Discharge Summary

HL7 V2 ORU
Microbiology Result

HL7 V2 ADT
Hospital Admission

Template Data
(e.g. Microbiology
Laboratory Report)

openEHR
Composition

EHR
Service

EHR
Repository

XSD XSD

Fig. 2.10: openEHR Template-based Integration (adapted from [47]). This approach from
literature makes use of XML technologies like schemas and transformations to integrate HL7
documents into an openEHR repository.

Similar to openEHR’s dual model approach, HL7 has developed a specification
for the electronic exchange of healthcare information called Fast Healthcare
Interoperability Resources (FHIR) [48]. The main difference in the approach compared
to openEHR archetypes is that archetypes are maximal datasets, expected to represent
all clinical content, while the FHIR resources are meant to only contain the most

BUPT

36 Medical Standards and Terminologies – 2

commonly used clinical information, providing ways to be extended for specific use
cases [48].

Conclusions

This chapter focused on providing a literature study concerning coding systems,
methodologies, standards and terminologies from the field of medical informatics.

The chapter presented details about the Health Level Seven Clinical Document
Architecture, a standard which defines the structure of electronic documents that
store health related information, mostly for the purpose of document exchange. CDA
documents use XML as a markup language for structuring documents and place a high
emphasis on also storing the data in a human readable format. The study on CDA also
reveals limitations such as the possibility that documents may not provide information
in a structured manner targeted at being processed by a computer. Authors also
question the reference information model on which CDA is based, considering it
counter-productive and leading to inconsistent representations of clinical concepts.

When it comes to building electronic health record applications, the openEHR
Foundation provides methodologies and specifications for aiding software development.
Similar to CDA, openEHR is also based on a reference information model, which is then
used to construct one of openEHR’s distinguishing features, models, called archetypes,
built by domain experts. Repositories of such models have been created, containing
important details, including links to medical terminology, making them attractive for
use in electronic health record applications. One of the limitations of the openEHR
specifications is that they do not provide any solution for persisting the data, a
requirement that each EHR implementer needs to deal with.

In regards to medical coding systems, this chapter presents information on the
Logical Observation Identifiers Names and Codes and the International Classification
for Diseases. LOINC codes are mostly used for clinical laboratory data and provide
challenges when requiring new mappings, especially if they are to be used in a
language for which no official translation is currently available. ICD codes, organized
in a tree hierarchy, benefit from translations in many more languages; however they
still pose challenges when it comes to accurately choosing the correct code.

BUPT

3. DESIGNING A SOLUTION FOR THE
STRUCTURED COLLECTION OF MEDICAL DATA

This chapter sets out to analyze the implications of building an electronic health
record application. Building the application follows the principle of creating only what
is strictly necessary for achieving the current goals. A prototype application that is
built in this chapter serves as a base for the next chapters that deal with integrating
medical standards and interoperability.

The first section, Identifying the Business Domain presents an analysis of
the targeted business domain. The goal is to investigate the requirements needed
when creating an electronic health record application and what influences these
requirements. For the purpose of building a prototype application, the scope of the
medical documents is restricted to medical forms that register information regarding
patients with chronic illness.

Section Rapid Prototyping Using XML takes the requirements previously
identified and uses hand crafted XML documents to rapidly prototype the structure of
domain classes capable of dealing with a handful of input forms regarding chronically
ill patients. In contrast to some legacy applications which simply create unrelated
create-read-update-delete (CRUD) forms for whatever the daily requirement is, the
goal of the approach is to store the information regarding what inputs are present in
what forms in a reusable manner. This is built around the observation that medical
forms have a tendency to change or be later added and thus provides flexibility by
allowing a simpler manipulation of forms by users that are not developers.

With this approach in place, Designing Business Domain Classes goes into the
details of building domain classes. While being kept flexible for future expansions,
these classes are still mostly focused on the current requirements. In contrast with
approaches such as building openEHR systems based on archetypes and templates,
this approach is kept simple for developers and does not require them to have expert
knowledge on complicated systems such as openEHR. As will be shown in a later
chapter, this architecture is flexible enough to be integrated with openEHR artifacts at
a latter stage.

When it comes to persisting data, this chapter discusses the implications of
using a traditional relational database management system but also take the possibility
of using a modern NoSQL document database into account.

3.1. Identifying the Business Domain

Medical information pertaining to a patient is organized in the so called patient
records which account for the health and disease after the patient has sought medical
help [1].

Traditionally recorded on paper, early patient records had numerous
disadvantages [1]:

BUPT

38 Designing a Solution for the Structured Collection of Medical Data – 3

• Existing in only one copy, the records are only available at one place at a time

• Their free-text content may be illegible, incomplete and/or ambiguous leading to
potential errors when interpreting or transcribing for scientific analysis purposes

• Active advice, reminders or warnings cannot be implemented while the various
notes are only stored on paper.

All of the above argument the need of finding ways of using computer systems
for storing patient records, a topic under research for the past decades [1]. It
is important to distinguish between health information only used for administrative
purposes, such as health insurance and clinically meaningful applications [49].

Much of the new data that is being introduced into the system comes from
medical observations of the patient’s condition along with information measured using
various medical equipment. One of the challenges faced by general practitioners as
well as specialized medics, in Romania, is how to collect all this information into a
digital system as easy and as efficiently as possible. Improvements in this area can
lead to advances on the use of information and communication technology by citizens
on communication with their general practitioners as implemented in some European
countries [50].

Studies have identified two major strategies for collecting patient data: [1]

• Natural Language Processing – The computer system inputs free text and
processes it to extract meaningful information,

• Direct Entry – The system instructs the medic how to enter the data in a
structured fashion.

This chapter investigates a way of designing a highly flexible software system
aimed at collecting medical data in a structured way. The medics interact with the
system via a web interface which allows them to easily manage information regarding
the medical condition of their patients (at any time and place [51]). For demonstration
purposes, the scope of the medical information will be limited to the monitoring of
patients with chronic illnesses.

Information collected while investigating and monitoring patients with a
chronic condition is often grouped into various forms, organized by specific conditions.
Medics investigating such patients need to fill in a lot of information present in such
forms. To make matters even more complicated, the information requested by each
form differs based on whether it is the first time the form is filled for a specific patient,
or whether it is a recurring entry.

From the software point of view, presenting a user with a web page that
requests the input of data and storing that data in a database is a use case common
to virtually all web applications. What makes this case different however is the high
diversity of the medical data. Hard-coding an HTML input form might be a solution for
small inputs such as a log-in form or even a contact form, but requiring the intervention
of a software developer to update each form quickly becomes inflexible when it comes
to medical data inputs which need constant updates.

These high frequency changes caused by the need to support more and more
types of inputs (e.g. support the addition of information concerning patients with

BUPT

3.1 – Identifying the Business Domain 39

a different chronic condition than patients already in the system) or by changes in
regulations that require medics to obtain and store additional data when it comes to
specific conditions, put additional strain of the way the data is stored in databases and
on the way the inputs are organized.

Because medical information about a patient (or even between various patients
suffering from the same condition) is interconnected in a way that can provide
very useful statistical information, is it important to store the information in a
way that facilitates automatic processing and analytics: e.g. numerical inputs,
stored appropriately in a database, alongside their measurement units can be easily
processed automatically to extract information as opposed to storing a scanned image
of a handwritten note which can only be manually interpreted when viewed by a medic.
This goal aligns with the overall one of reducing medical errors and the rising costs of
delivering health care [52].

As such, an application that can handle these requirements basically becomes
a content management system, but one involving two layers:

1. It stores medical data concerning various patients, collected over time

2. It stores meta-data that describes the structure of the medical data, and, more
importantly, the actual inputs that each medic must provide when filling in a
specific form related to a specific patient.

This two layer approach provides the system with the required flexibility,
allowing the continuous update of the system to be handled by administrators with
medical background (who better understand new requirements as they appear) instead
of an IT background. The complexity of the system also increases, bringing along
technical challenges.

A first step in designing a web solution for medical structured data collection
is to correctly identify the business domain. This allows building a solution that can
also semantically interpret the data it is processing instead of simply storing opaque
input.

3.1.1. Analyzing Medical Input Forms

In the case of monitoring and consulting patients with chronic diseases,
the healthcare legislation governs which steps need to be followed by medics
in Romania [53]. Among them are:

• Which medical conditions are to be monitored

• How often the patient needs to be consulted

• What information needs to be gathered on each initial/recurring consultation

• Classification of risks

• Details concerning medical insurance

BUPT

40 Designing a Solution for the Structured Collection of Medical Data – 3

Fig. 3.1: Legislation detailing organizational aspects of patient monitoring [53]

Fig. 3.2: Legislation detailing the classification of medical risks [53]

Figures 3.1 and 3.2 exemplify such pieces of legislation detailing the coverage
of the initial and active monitoring procedures and also the exact numeric values for
classifying risk.

Web sites targeting healthcare professionals present detailed medical input
forms for chronic diseases, as shown in figure 3.3 which presents a form for the initial
and active monitoring of patients with chronic obstructive pulmonary disease.

3.1.2. Identifying Types of Input

At first glance, all of the medical input forms request textual input. However, a
deeper analysis reveals that some fields only accept numeric values, boolean (yes/no)
values or can even be computed automatically based on other inputs. Separating
these types of input from the usual textual ones is important as it can lead to better
data storage, better semantics and gives way to implement input field relations and
analytics.

The analysis of various sources of medical input forms shows a high occurrence
of free text input fields. These fields range from asking for the input of small pieces
of information (e.g. the state of the patient’s pupils) to complete sentences or even
phrases (e.g. the patient’s case history) and might even be accompanied by detailed
descriptions on exactly what details to provide. Textual inputs that ask for small pieces
of information often present the following extra characteristics:

• The variety of submitted values is low. This allows for the creation of a set of
predefined values which can accompany the input field as suggestions.

• A specific value is provided much more often than others. This allows for treating
that value as a default value of the field.

BUPT

3.1 – Identifying the Business Domain 41

Fig. 3.3: Example of a monitoring form [54]. The form contains various types of inputs grouped
into categories and also organized into the initial evaluation and the active monitoring.

BUPT

42 Designing a Solution for the Structured Collection of Medical Data – 3

Type Characteristic

Text
Varying amount of free text
May contain an extra description
May contain a set of predefined values and/or a default value

Numeric
Accompanied by a unit of measurement
May be calculated from the values of other fields
May be referenced by a calculated field

Boolean Simple yes or no value
May be referenced by a calculated field

Composed A combination of two or more Text, Numeric or Boolean inputs

Table 3.1: Summary of medical input types

In contrast to free text inputs, boolean inputs (e.g. Does the patient suffer
from ...?) require the least amount of typing for providing the necessary information.
They must however be handled with care as to not confuse a no value with an
unknown/not provided value.

Numeric information is also present when detailing the condition of a patient.
Values range from integers to decimals, positive or negative. The fields requesting
numeric inputs often stand out by providing a measurement unit – e.g. Temperature
(°C). A special type of numeric input is one whose value can be calculated by applying
a formula on other numeric inputs from the same form. These special cases provide a
good opportunity for automated optimizations that reduce the amount of input required
while still providing the same amount of information.

The complexity of medical information leads to the existence of more complex
input fields which can be viewed as a combination of two or more “primitive” inputs
(as are those described above) that are semantically linked. A classic example of such
a composed field is blood pressure, which is composed of two numeric fields: Systolic
and Diastolic, both measured in mmHg [55].

Table 3.1 lists a summary of the types of input fields and their defining
characteristics.

3.2. Rapid Prototyping Using XML

The availability of medical data input forms for use as examples allows for
a data-first approach on modelling the domain classes. This involves a first step of
gathering some input forms and storing them as structured data before moving on
to the second step of extracting the domain entity classes from the structured data
(detailed in section 3.3).

For the purpose of easily evaluating the system early on, prototyping has been
employed as a development approach [56]. Prototyping, in general, comes with the
following advantages: [57]

BUPT

3.2 – Rapid Prototyping Using XML 43

• It allows filtering and adjusting the requirements early in the development
process

• It facilitates early feedback from users

• It shields from dealing low-level details not mandatory in the early phases of
development.

Although using a relational database management system is what first comes
to mind when thinking about storing the structured data, using a mark-up language
like XML for prototyping the system comes with an important advantage: no schema⇒
no restrictions on the structure. As such, there is no need to define the entire structure
of the document upfront (like one would do by defining the tables in an RDBMS before
populating them), but, instead, the document can grow and adapt iteratively as the
data is being added and new properties of the input elements are discovered. Also,
the cost of provisioning a database in an RDBMS can be deferred for later stages of
development.

By analyzing medical input forms that deal with monitoring patients with
chronic illnesses, one can observe two distinct types of entities:

• Input Elements – each of the distinct (text/numeric/etc) inputs that the medic
must address

• Input Forms – collections of select input elements, displayed in a specific order
and optionally grouped by various criteria.

3.2.1. Structuring Input Elements

Although the input elements appear to be sub-components of the input forms,
the analysis of multiple input forms reveals a lot of common input elements, as multiple
forms ask for the same information (e.g. When did the patient start smoking?). This
allows for the grouping of the input elements (removal of duplicates) and treating them
as separate entities.

The new input element entities must now be associated a unique identity so
that they can be referenced by the input forms, resulting in a N-N relationship1. For
simplicity, the unique identities will take the form of integers in ascending order and
stored in an XML attribute called id.

Each input element will be stored as a node in the XML document, with the
name of the node indicating the type of the input element, as shown in table 3.2.
Multiple nodes can be grouped together under a logical parent, yielding a tree structure.
This can be easily modeled using XML by assigning the parent node the name group
and placing it’s child nodes below, as be observed in the listing below showing a group
of input elements related to family history: [58]

<group id=”28” label=”AHC” longLabel=”Antecedente heredo- colaterale ” >
<boolean id=”29” label=”HTA” />
<boolean id=”30” label=”DZ” />

1Each input form can reference multiple input elements and each input element be can referenced by
multiple forms

BUPT

44 Designing a Solution for the Structured Collection of Medical Data – 3

<boolean id=”31” label=”Guta” />
<boolean id=”32” label=”Dislipidemie ” />

</group>

Name Characteristic

pr
im

iti
ve

text Short textual input
largeText Medium or large free text input
numeric Numeric values
boolean Yes/No values
calculated Numeric values automatically calculated based on others

group Groups semantically related primitive inputs of any type

combined Complex input element composed of primitive elements

Table 3.2: XML node names of input elements

Besides the id attribute, a few others are also common to all of the input
elements:

• label – stores the name of the input element

• longLabel – optionally stores the extented name of the input element, should the
label be an abbreviation

• description – stores additional information to be presented to the medic.

Text elements can then optionally contain value suggestions, stored as
sub-nodes of the input element node. They can also contain a default value, stored
under the attribute default.

Numeric elements have an optional attribute for specifying the required
precision and also an identifier. This is an internal name given to an element so that
it’s value can be referenced in a formula of a calculated field. What’s also special about
numeric elements, as opposed to free text ones, is that their value can be automatically
interpreted to provide extra information 2. This information can eliminate the need
for the medic to consult various data tables and can also be used to prevent typing
mistakes: presenting a value as abnormal can force the medic to double check it and
notice a typing mistake.

Because the rules for interpreting numeric values are often static and found
in tables, they can be incorporated into the business domain. Structuring them in an
XML document involves creating sub-nodes of type classification. Each classification
contains a set of rules by which to interpret the numeric value.

The need for multiple classifications comes from the fact that a value can
be interpreted in different ways based on other inputs (e.g. a specific value can be
considered normal for an adult, but too high for a child). The rules of each classification
are composed of a name, a condition (a formula that triggers the rule) and an optional

2A simple example of this would be to interpret the provided blood pressure and immediately present
whether it’s a normal value or not

BUPT

3.2 – Rapid Prototyping Using XML 45

color code hinting at the normal/abnormal state of the value. Below is an example
of such a classification for systolic blood pressure [55] in the case of adults. Notice
that the classification itself also has a condition which enforces it’s use only for adult
patients:

<numeric label=” Sis to l i c (mmHg)” precision=”0” identifier=” tensSistol ica ”>
<classification name=”Pacienti peste 18 ani ”

condition=”@patient [’age ’] >= 18”>
<rule name=”Normala” condition=”@value &l t ; 120” color=”success” />
<rule name=”Prehipertensiune”

condition=”120 &l t ;= @value && @value &l t ;= 139”
color=”warning” />

<rule name=”Hipertensiune stadiul 1”
condition=”140 &l t ;= @value && @value &l t ;= 159”
color=”danger” />

<rule name=”Hipertensiune stadiul 2”
condition=”@value >= 160” color=”danger” />

</classification>
</numeric>

Calculated elements are characterized by the presence of a formula which in
turn references other numeric/calculated elements by their identifier, and can also use
the same classification structure as numeric elements. The formula, which is used for
internal calculations, can also be accompanied by a textual description which details
the formula to the medic. This description can be plain text, or it can contain rich
mathematical expressions if written using a mathematical markup language like, for
example, TEX and LATEX.

<calculated id=”152” label=”Ani de fumat” identifier=”smokingYears”>
<formula>(@smokingEndAge > 0 ? @smokingEndAge : @patient [’age ’]) -

@smokingStartAge</formula>
<formulaLabel>$$\textrm{Varsta oprire} =

\ l e f t \{\begin{matrix}
\textrm{Varsta oprire}, & \textrm{Varsta oprire} > 0 \\
\textrm{Varsta curenta}, & \textrm{Varsta oprire} = 0
\end{matrix}\ right . $$

</formulaLabel>
</calculated>

The formula description used in the above example would expand to a clear
description for the medic, as presented by figure 3.4.

Vârstă oprire =

{
Vârstă oprire, Vârstă oprire >
Vârstă curentă, Vârstă oprire =

Fig. 3.4: Rendering of a formula description expressed using LATEX

3.2.2. Structuring Input Forms

In contrast to the complexity of input elements, the structure of input forms
is quite straightforward. Each one contains the following:

BUPT

46 Designing a Solution for the Structured Collection of Medical Data – 3

• An id (conventionally numeric, as in the case of input elements)

• A unique name

• An expansion of the name, should it be an abbreviation

• An ordered list of input elements, referenced by their id

These input forms allow for two types of data acquisition: the initial input,
performed only once for a patient, and the active input, performed periodically. As
such, each of the input element reference must also specify whether it involves an
initial input or an active one. Multiple forms can reference the same input element
[54].

Storing this data in XML yields a document having a structure similar to the
following:
<form id=”1” name=”BPOC” longName=”Bronhopneumopatie obstructiva cronica”>

<input id=”1” init ial=”true” active=”true” />
<input id=”148” init ial=”true” active=”true” />
<input id=”3” active=”true” />
<input id=”4” init ial=”true” />
<input id=”5” init ial=”true” />
<input id=”6” init ial=”true” />
. . .

</form>
<form id=”2” name=”Astm”>

<input id=”1” init ial=”true” active=”true” />
<input id=”148” init ial=”true” active=”true” />
<input id=”3” active=”true” />
<input id=”4” init ial=”true” />
<input id=”5” init ial=”true” />
<input id=”6” init ial=”true” active=”true” />
. . .

</form>

The references between the input forms and constituent input elements can
be observed in figure 3.5.

3.3. Designing Business Domain Classes

Software applications targeting the administration of medical data fall in the
category of Enterprise Applications, described by specialists as “about the display,
manipulation, and storage of large amounts of often complex data and the support or
automation of business processes with that data” [59].

Enterprise applications benefit from a multilayer architecture with clear
separation of concerns. One of these layers is the Domain Model which “creates a web
of interconnected objects, where each object represents some meaningful individual”
[59]. The classes comprising the domain model come in multiple flavors:

• Entity (Data) Classes – only store information

• Behavioral (Business Logic) Classes – perform business logic

The following sections presents models of the domain classes using a standard
UML notation.

BUPT

3.3 – Designing Business Domain Classes 47

Bronhopneumopatie
obstructivă cronică

Anamneza
#1

Fumat (pachete/an)
#148

Alcool (unități alcool)
#3

Antecedente
heredo colaterale

#4

Antecedente
personale patologice

#5

Factori declanșatori
#6

Astm

Fig. 3.5: References between input forms and input elements. Initial elements are referenced
with a dashed arrow, active ones with a normal one.

3.3.1. Modeling Entity Classes

The entity classes need to modeled, in an object-oriented manner, in such
a way as to be able to store all the information organized in XML, as presented in
section 3.2. Because the entity classes are basically used for storing information,
their methods are limited to getters and setters for various private fields.

The structure of the entity classes will be closely related to that of the
originating XML document. As such, there will be a class called InputElement, storing
information about a individual inputs, and a class called InputForm, containing the
details of a form and a collection of input elements.

Modeling Input Elements

Because there are multiple types of input elements, with common as well as
individual attributes, they can be modeled using a class hierarchy, with an abstract

BUPT

48 Designing a Solution for the Structured Collection of Medical Data – 3

InputElement as root.
Figure 3.6 shows the class diagram of the InputElement abstract class,

containing all the common fields. Most of the subclasses then introduce additional
fields, as presented in figure 3.7. Finally, figure 3.8 presents the entire class hierarchy
related to the input elements.

InputElement

- id : int
- label : string
- longLabel : string
- description : string
- typeName : string
- parent : GroupInputElement
- hidden : boolean

+ getId() : int
+ setId(value : int) : void
+ getLabel() : string
+ setLabel(value : string) : void
+ getLongLabel() : string
+ setLongLabel(value : string) : void
+ getDescription() : string
+ setDescription(value : string) : void
+ getTypeName() : string
+ getParent() : InputGroupElement
+ setParent(value : InputGroupElement) : void
+ isHidden() : boolean
+ setHidden(value : boolean) : void

Fig. 3.6: UML class diagram of the input element abstract class. This class contains common
fields such as id, label or description.

Modeling Input Forms

The input forms are basically ordered collections of input elements grouped
into two categories: elements to be displayed when the form is first used for a patient
(initial elements), and elements to be displayed when filling in the form periodically
(activeElements). As can be seen in figure 3.9, forms also have a (unique) numeric id,
a short and an optionally long version of their name 3.

Modeling Value Classes

The classes and class hierarchies presented so far are related to storing the
constructive details of the medical input forms and their comprising elements. Besides

3The long name is essentially the name of the form if the normal name is just an abbreviation, as is
common in medical terms

BUPT

3.3 – Designing Business Domain Classes 49

1 1..*

1

0..*

1

0..*

Classification

- name : string
- condition : string

ClassificationRule

- name : string
- condition : string
- color : string

NumericElement

- precision : int
- idenfitier : string

CalculatedElement

- formula : string
- formulaLabel : string
- identifier : string

CombinedElement

- children : InputElement[]

GroupElement

- children : InputElement[]

TextElement

- suggestions : string[]
- defaultValue : string

BooleanElement

- idenfitier : string

Fig. 3.7: UML Class Diagram of the input element subclasses (getters and setters omitted)

BUPT

50 Designing a Solution for the Structured Collection of Medical Data – 3

parent
1..*

0..1

0..1

1..*

1 1..*

1

0..*

1

0..*

InputElement

BooleanElement

TextElement

LargeTextElement

GroupElement

CalculatedElement CombinedElement

NumericElement

Classification ClassificationRule

Fig. 3.8: UML class diagram of the input element class hierarchy

BUPT

3.3 – Designing Business Domain Classes 51

InputForm

- id : int
- name : string
- longName : string
- initialElements : InputElement[]
- activeElements : InputElement[]

+ getId() : int
+ setId(value : int) : void
+ getName() : string
+ setName(value : string) : void
+ getLongName() : string
+ setLongName(value : string) : void
+ getInitialElements() : InputElement[]
+ setInitialElements(value : InputElement[]) : void
+ getActiveElements() : InputElement[]
+ setActiveElements(value : InputElement[]) : void

Fig. 3.9: UML class diagram of the input form class. Besides an id and name, the input form
aggregates multiple input elements into two groups: initial and active ones.

them, other entity classes are required for storing the actual values that are stored in
the system.

One such class is the Patient class, presented in figure 3.10 with fields storing
general information about a patient. Although instances of this class do not store
medical information, they are referenced in formulas used by calculated input elements
or classifications, the most common properties accessed being the person’s birth date
(for calculating the current age) and sex.

A similar entity class, Employee, stores information regarding each user that
has access to the system. Such a user ca be a medic or a system administrator, the
distinction being stored in form of an enumeration field called role.

Patient

- id : int
- firstName : string
- lastName : string
- birthDate : date
- sex : enumeration
...

Employee

- id : int
- firstName : string
- lastName : string
- role : enumeration
- joined : date
...

Fig. 3.10: UML class diagram modeling a patient and an employee class (getters and setters
omitted)

The actual medical data entered in the system needs to be structured in a
similar way as the input elements and forms. As such, an InputFormValue class would
be similar to an InputForm class, storing two sets of InputElementValue collections,
one for the initial elements of the form and one for the active ones. The class also

BUPT

52 Designing a Solution for the Structured Collection of Medical Data – 3

references the patient involved, the medic that entered the value and stores the date
of the recording.

As can be seen in figure 3.11, the InputElementValue class stores the actual
value, and then references the InputElement class for which the value is intended.
Programmatically, the actual medical value can be stored as a string, decimal,
boolean or date/time value. A secondary field stores the type of the value, using
an enumeration. Combined input elements represent a special case as they need
to store multiple values, one from each child element. To accommodate for this,
InputElementValue can also store an array of self-referenced InputElementValue
elements, only used in the case of combined elements.

1

1..*

1
1

0..*

1

0..*

1

0..*
10..*

10..*

InputElement
InputElementValue

- id : int
- element : InputElement
- formValue : InputFormValue
- stringValue : string
- decimalValue : decimal
- booleanValue : boolean
- dateTimeValue : dateTime
- childValues : InputElementValue[]
- valueType : InputValueType

«enumeration»
InputValueType

String
Decimal
Boolean
DateTime
Collection

InputForm

InputFormValue

- id : int
- form : InputForm
- patient : Patient
- medic : Employee
- added : date
- initialValues : InputElementValue[]
- activeValues : InputElementValue[]

Patient

Employee

Fig. 3.11: UML class diagram related to the medical data classes (getters and setters omitted)

BUPT

3.3 – Designing Business Domain Classes 53

Web Application
Web Application

Introduce
new patients

Fill medical
forms for
patients

Consult
existing
medical
forms

Manage input
elements

Manage
input forms

Medic Admin

Fig. 3.12: Use cases of the web application. The system administrator is responsible for updating
requested input forms and/or their constituent elements while the normal user (usually a medic)
is tasked with entering new medical information about patients.

3.3.2. Modeling Behavioral Classes

With the entity classes in place, the domain model now demands behavioral
classes, the ones that actually perform the business logic. In order to understand what
behavioral classes are actually need, one must study the use cases of the system.

Figure 3.12 presents how the two main actors interact with the web
application:

• The system administrator manages the input forms and their constituent input
elements, adapting them to new requirements originating from the medics or
changes in legislation.

• The medics use the web application to record medical information gathered
at each patient consultation and to retrieve medical information previously
recorded.

As such, the web application can be viewed as a large data store. Literature
on software design presents numerous ways of building data-centric applications,
however one design pattern stands out: the Repository, presented as “mediates
between the domain and data mapping layers using a collection-like interface for
accessing domain objects” [59].

By creating a repository, the actual source and destination of the data is
abstracted away, achieving loose coupling. The domain objects are presented with a
repository instance which resembles a collection, returning the desired entities when

BUPT

54 Designing a Solution for the Structured Collection of Medical Data – 3

queried. Behind the scenes, the repository makes use of a specific strategy to extract
the data from a data store (usually a relational database) and map to into entity
objects.

Figures 3.13 and 3.14 show the sequence of operations when using the
repository to retrieve or store entities (in this case input forms):

• The client of the repository creates a query object which stores information on
the requested operation

• The client then passes the query to the repository which forwards it to an
appropriate method of it’s current strategy

• The strategy (one for operating with relational databases in this example) creates
an appropriate SQL query and executes it against the database.

• The rows resulting from querying the database are then passed to a mapper
which creates appropriate InputForm classes and populates their properties
based on the information in the database rows.

Having a mapping layer prevents the entity domain classes from being tightly
coupled to a specific database structure. This, together with the use of the repository,
makes changing the structure, or even the type, of the database much easier.

3.3.3. Persisting Data to a Relational Database

After using XML to prototype the structure of the system’s data, as described in
section 3.2, the structured data must be stored in a way more adequate for production
use.

Traditionally, Electronic Health Record systems persist their data in relational
or object-relational databases [40]. Such systems fall into the category of Online
Transactional Processing (OLTP) and are generally used for storing and retrieving
individual patient records [40].

Choosing a relational database for storing medical forms and inputs is
motivated by the features offered for ensuring persistence and consistency – CP in the
Consistency, Availability and Partition tolerance (CAP) theorem [60] – both important
for OLTP systems. Relational databases are also easily connected to input data into
data warehouses used for Online Analytical Processing (OLAP) applications. This is
important as EHR data can also be used for other purposes such as clinical and
epidemiological studies or the determination of a population epidemiological profile
[40].

Relational databases operate on normalized data stored in tables (relations)
that follow a strict schema. Storing the data contained by the object-oriented models
presented earlier requires multiple database tables to be created and linked with each
other.

Because the system is designed around various types of input forms and their
characteristics, the rigid database schema needs only to accommodate the properties
of the input elements, few in number. Had input forms been the focus of attention,
without modeling the individual input elements, then the database schema will had

BUPT

3.3 – Designing Business Domain Classes 55

.........
cre

ate
.........

cre
ate

Sq
lQ

ue
ry

(q
ue

ry
)

.....

ex
ec

ut
e(s

qlQ
ue

ry
)

.

ro
ws

...

cre
ate

...

ma
p(

ro
ws

)

.

for
ms

...

ret
rie

ve
(q

ue
ry

)

.

res
ult

...

ge
t(g

etA
llF

or
ms

)

.

res
ult

.
cli

en
t:O

bje
ct

.
rep

os
ito

ry
:R

ep
os

ito
ry

.
str

ate
gy

:SQ
LS

tra
teg

y
.

da
tab

as
e:S

QL
Db

.
.....

.
ma

pp
er:

SQ
LM

ap
pe

r
..

ge
tA

llF
or

ms
:Q

ue
ry

.. .

for
m:

Inp
ut

Fo
rm

.

Fi
g.
3.
13
:
Fe
tc
hi
ng
in
pu
t
fo
rm
s
fr
om

a
re
po
si
to
ry
.
Th
e
st
ru
ct
ur
e
of
ea
ch
in
pu
t
fo
rm

is
pe
rs
is
te
d
vi
a
m
ul
tip
le
ro
w
s
in
a
da
ta
ba
se
.

BUPT

56 Designing a Solution for the Structured Collection of Medical Data – 3

.........
cre

ate
.......

cre
ate

.. .

ma
p(

for
mT

oS
av

e)

.

dt
os

.....

cre
ate

Sq
lQ

ue
ry

(d
tos

)

.....

ex
ec

ut
e(s

qlQ
ue

ry
)

....

sto
re(

for
mT

oS
av

e)

....

sa
ve

(fo
rm

To
Sa

ve
)

..
cli

en
t:O

bje
ct

.
rep

os
ito

ry
:R

ep
os

ito
ry

.
str

ate
gy

:SQ
LS

tra
teg

y
.

da
tab

as
e:S

QL
Db

.
.....

.
ma

pp
er:

SQ
LM

ap
pe

r
..

for
mT

oS
av

e:Q
ue

ry

.. .

dt
o:R

ow

.

Fi
g.
3.
14
:
S
av
in
g
in
pu
t
fo
rm
s
to
a
re
po
si
to
ry
.
Th
e
st
ru
ct
ur
e
of
ea
ch
in
pu
t
fo
rm

is
pe
rs
is
te
d
vi
a
m
ul
tip
le
ro
w
s
in
a
da
ta
ba
se
.

BUPT

3.3 – Designing Business Domain Classes 57

to have been strongly dependent of the structure of each form, thus leading to an
inflexible approach that would have required constant change.

Two approaches have been identified for creating a schema:

• Creating a single table for storing the simple properties of all input elements, as
shown in figure 3.15. This approach leads to the addition of multiple columns
that only apply for some input elements, remaining empty for others. Properties
that exhibit a −N or N−N relationship are implemented with the help of extra
tables.

• Creating a table for all the common properties of input elements and one extra
table for each type of input element for storing additional properties, as shown
in figure 3.16. This approach results in many more smaller tables which do a
better job at isolating data but present overhead when querying.

From the programmatic point of view, the details on how to store and retrieve
the data from a relational database are handled by a specialized repository strategy,
together with appropriate mappers. The paragraphs that follow will look into how to
use a commercially available relational database, Microsoft SQL Server and connect to
it from a Microsoft .NET application using Microsoft Entity Framework.

Microsoft’s Entity Framework is a framework for object-relational mapping
(ORM). It bridges the gap between object oriented programming and the relational
structure of databases by allowing users to work with entity classes while automatically
mapping the data between them and the database tables [61]. Using object-relational
mappers has become one of the most used persistence mechanisms in object-oriented
systems [40].

Microsoft Entity Framework allows for three major ways to obtain the database
entity classes [62]:

• Database First – point Microsoft Entity Framework to an existing database
schema and let it generate the database entity classes

• Model First – create a new model using UI tools and then let Microsoft Entity
Framework generate a database from it

• Code First – write the database entity classes by hand and let Microsoft Entity
Framework generate an appropriate database schema for them.

Having already modeled classes in section 3.3.1, the logical way to proceed
was to create database entity classes and then generate a new database from their
structure. The structure of the newly created database entity classes is presented
in figure 3.17. At the center of the class diagram lies a hierarchy rooted in the
InputElement class. From themetadata of these classes, the object-relational mapping
framework was able to generate a database, the structure of which is presented in
figure 3.15.

The classes used with Microsoft Entity Framework have a similar structure to
the entity classes that are part of the domain model (presented in section 3.3.1) but
they are not identical. Using the same classes, although tempting, would have broken
the single-responsibility principle and contaminates the entity classes with properties

BUPT

58 Designing a Solution for the Structured Collection of Medical Data – 3

ClassificationRules
ClassificationRuleID

Name

Condition

Color

Classification_ClassificationID

Classifications
ClassificationID

Name

Condition

NumericElement_InputElement...

Employees
EmployeeID

Name

Joined

Discriminator

FormInputs
FormInputID

FormID

InputElementID

ShowInitial

ShowActive

HideElementParent

DisplayOrder

Forms
FormID

Name

LongName

InputElements
InputElementID

Label

LongLabel

Description

InputElementTypeID

ParentID

DefaultValue

Precision

Hidden

FormulaIdentifier

Formula

Parent_InputElementID

InputElementValues
InputElementValueID

InputFormValueID

InputElementID

StringValue

DecimalValue

BooleanValue

DateTimeValue

InputElementValue_InputEleme...

InputFormValues
InputFormValueID

FormID

PacientID

MedicID

Added

Type

Medic_EmployeeID

Pacients
PacientID

Name

BirthDate

ValueSuggestions
ValueSuggestionID

Value

ValueSuggestionTextElements
ValueSuggestion_ValueSuggestionID

TextElement_InputElementID

 1-1
Fig. 3.15: Database diagram with flattened hierarchies

BUPT

3.3 – Designing Business Domain Classes 59

BooleanElements
InputElementID

CalculatedElements
InputElementID

Formula

FormulaLabel

ClassificationRules
ClassificationRuleID

Name

Condition

Color

Classification_ClassificationID

Classifications
ClassificationID

Name

Condition

NumericElement_InputElementID

CombinedElements
InputElementID

InputElements
InputElementID

Label

LongLabel

Description

InputElementType

ParentID

Hidden

Parent_InputElementID

CombinedElement_InputEleme...

GroupElement_InputElementID

LargeTextElements
InputElementID

NumericElements
InputElementID

Precision

FormulaIdentifier

TextElements
InputElementID

DefaultValue

ValueSuggestions
ValueSuggestionID

Value

ValueSuggestionTextElements
ValueSuggestion_ValueSuggestionID

TextElement_InputElementID

 1-1

Fig. 3.16: Database diagram preserving input element hierarchies

BUPT

60 Designing a Solution for the Structured Collection of Medical Data – 3

strictly related to the way they are stored in a database. Maintaining a different set
of classes for use with Microsoft Entity Framework, and translating between them and
the entity classes with the help of mappers, helps keep the ORM logic isolated from
the rest of the domain model, also making it easy to replace if necessary.

When it comes to the structure of relational database tables, it is quite different
from the one common in object-oriented data structures. Most notably, parent-child
relationships are implemented using foreign keys and can even require additional
tables, if there are N − N relationships. Inheritance is also not present in relational
databases and must be emulated.

Microsoft Entity Framework makes use of convention over configuration
providing default behaviors for the way it names tables or identifies primary keys
or table links. This allows the code to remain very clean, similar to a plain object:

public class InputElement
{

public int InputElementID { get; set ; }
public string Label { get; set ; }
public string LongLabel { get; set ; }
public string Description { get; set ; }
public InputElementType InputElementType { get; set ; }
public int ParentID { get; set ; }
public bool Hidden { get; set ; }

public virtual InputElement Parent { get; set ; }
}

By default, Microsoft Entity Framework collapses class hierarchies into a single
table, named after the base class. This can be observed in figure 3.15 which lists only
a single, flattened InputElements table which contains columns specific the all the
different input elements. Microsoft Entity Framework also supports using separate
tables for each subclass. This leads to a structure shown in figure 3.16 and triggered
by simply decorating the database entity class with an appropriate attribute:

[Table(”TextElements”)]
public class TextElement : InputElement
{

public string DefaultValue { get; set ; }
public virtual ICollection<ValueSuggestion> ValueSuggestions { get; set ; }

}

The following example query selects all input elements shown in the initial
evaluation of the Asthma input form:

using (var context = new EFPersistence .Context ())
{

var formElements = context .Forms
. F i rs t (f => f .Name.Equals(”Astm” , StringComparison .OrdinalIgnoreCase))
. Inputs .Where(i => i . ShowInitial)
.OrderBy(i => i .DisplayOrder)
.ToArray();

}

Thus, such a request gets converted by the Microsoft Entity Framework into
the following two queries, which are forwarded to the relational database management
system.

BUPT

3.3 – Designing Business Domain Classes 61

Employee

Class

Properties

EmployeeID

Joined

Name

Medic

Employee

Class

Properties

FormEntries

Form

Class

Properties

FormID

Inputs

LongName

Name

FormInput

Class

Properties

DisplayOrder

Form

FormID

FormInputID

HideElementParent

InputElement

InputElementID

ShowActive

ShowInitial

InputElement

Class

Properties

Description

Hidden

InputElementID

InputElementType

Label

LongLabel

Parent

ParentID

TextElement

InputElement

Class

Properties

DefaultValue

ValueSuggestions

LargeTextElement

TextElement

Class

BooleanElement

InputElement

Class

NumericElement

InputElement

Class

Properties

Classfications

FormulaIdentifier

Precision

CalculatedElement

NumericElement

Class

Properties

Formula

FormulaLabel

GroupElement

InputElement

Class

Properties

Children

CombinedElement

InputElement

Class

Properties

Children

Classification

Class

Properties

ClassificationID

Condition

Name

Rules

ClassificationRule

Class

Properties

ClassificationRuleID

Color

Condition

Name

InputElementValue

Class

Properties

BooleanValue

ChildValues

DateTimeValue

DecimalValue

FormEntry

InputElement

InputElementID

InputElementValueID

InputFormValueID

StringValue

InputFormValue

Class

Properties

Added

Form

FormID

InputFormValueID

Medic

MedicID

Pacient

PacientID

Type

Values

Pacient

Class

Properties

BirthDate

FormEntries

Name

PacientID

Sex

ValueSuggestion

Class

Properties

InputElements

Value

ValueSuggestionID

InputElementType

Enum

InputValueType

Enum

FormEntryType

Enum

SexEnumeration

Enum

Fig. 3.17: Database entity classes used with Microsoft Entity Framework

BUPT

62 Designing a Solution for the Structured Collection of Medical Data – 3

SELECT TOP (1)
[Extent1] .[FormID] AS [FormID] ,
[Extent1] .[Name] AS [Name] ,
[Extent1] .[LongName] AS [LongName]
FROM [dbo].[Forms] AS [Extent1]
WHERE N ’Astm ’ = [Extent1] .[Name]

SELECT
[Extent1] .[FormInputID] AS [FormInputID] ,
[Extent1] .[FormID] AS [FormID] ,
[Extent1] .[InputElementID] AS [InputElementID] ,
[Extent1] .[ShowInitial] AS [ShowInitial] ,
[Extent1] .[ShowActive] AS [ShowActive] ,
[Extent1] .[HideElementParent] AS [HideElementParent] ,
[Extent1] .[DisplayOrder] AS [DisplayOrder]
FROM [dbo].[FormInputs] AS [Extent1]
WHERE [Extent1] .[FormID] = @EntityKeyValue1

3.3.4. Persisting Data to a NoSQL Document Database

Although relational databases have become very popular in the last decades,
companies have also been looking at other ways to store and query data. The last
decade has seen the appearance of various database products, which fall under the
umbrella term of NoSQL.

In contrast with relational databases which share a similar structure and are
queried using the powerful SQL language (or dialects thereof), NoSQL products are
much more diverse and are focused on solving more specific problems. By their data
model, NoSQL databases fall into the following categories: [60]

• Key-Value Databases – are the simplest as they only store a map of keys and
values. The only allowed operations are putting a value for a key, retrieving
that value and deleting the value of a key. From the database’s perspective, the
actual value is a blob [60].

• Document Databases – are similar to Key-Value databases but differ in the fact
that the actual value isn’t a blob anymore, it’s a document stored using popular
formats such as BSON, JSON, XML, ... which the database can understand and
can manipulate when responding to queries [60].

• Column-Family Stores – allow storing data with keys mapped to values and then
grouping the values into multiple column families [60]. Similar to relational
databases, column-family stores require the creation of a schema, however
optimizations allow rows to only present values for few of the available columns.

• Graph Databases – allow storing entities and relationships between them, each
with various properties [60].

Key-Value databases, due to their simplicity, are not suited for persisting
complex electronic health records. They can be useful however for storing volatile
data (usually in volatile memory) such as temporary session state when serving a web
application from a cluster of servers.

BUPT

3.3 – Designing Business Domain Classes 63

Column-family stores share similarities to the way relational databases require
a schema to be designed up-front and also share the same weaknesses when dealing
with highly interconnected records. The query languages offered are also usually less
flexible and feature rich than traditional SQL. Where column-family databases have
made a name for themselves is domains that require the storage and processing of
large amounts of data, Big Data.

A popular document database which can be used to store medical forms and
inputs is MongoDB4. Unlike a relational database which stores normalized data, a
MongoDB document can store an entire hierarchy and even allows it’s structure to
vary from document to document. For example, an entire input form model can be
stored in just one document, as shown in the listing below:

{
”_id” : 1,
”name” : ”BPOC” ,
”longName” : ”Bronhopneumopatie obstructiva cronica” ,
” inputs” : [{

” showInitial ” : true ,
”showActive” : true ,
”displayOrder” : 1,
” inputElement” : {
” label ” : ”Anamneza” ,
”type” : ”LargeText” ,

}
}, {
” showInitial ” : true ,
”showActive” : false ,
”displayOrder” : 4,
” inputElement” : {
” label ” : ”AHC” ,
” longLabel” : ”Antecedente heredo colaterale ” ,
”type” : ”Text” ,

}
}, {
” showInitial ” : true ,
”showActive” : true ,
”displayOrder” : 9,
” inputElement” : {
” label ” : ”Spirometrie (%)” ,
”type” : ”Numeric” ,

}
},

]
}

One of the first questions that appears, thanks to the possibility of storing an
entire hierarchy in a document is how to find a balance between a full hierarchy and a
partial one. Storing the details of each input element inside each input form introduces
data duplication and makes updating an input on all forms difficult. Is it more flexible
to store input elements in a separate collection and just reference them in the forms
where they appear, similar to a relational model. In order to avoid querying the input
element collection every time a form needs to be loaded, the input element collection
can be cached in memory.

4https://www.mongodb.com/

BUPT

64 Designing a Solution for the Structured Collection of Medical Data – 3

The hierarchies are much better suited for storing patient records. Thus, all
inputs provided for a specific patient on a specific occasion can be grouped inside a
single document:

{
”_id” : 1542,
”patient ” : {
” id ” : ”4803” ,
” firstName” : ”Ion” ,
”lastName” : ”Popescu”

},
”consult ” : ”2016-04-15” ,
” entries ” : [
”form” : {
” id ” : 1,
”name” : ”BPOC” ,
”longName” : ”Bronhopneumopatie obstructiva cronica” ,

},
”values” : [{

” inputId” : 119,
”inputName” : [”Examen c l i n i c - Aparat respirator ” , ”Palpare”] ,
”value” : ”Transmiterea v ib ra t i i l o r vocale”

}, {
” inputId” : 9,
”inputName” : [”Examene paracl inice ” , ”Spirometrie (%)”] ,
”value” : 70

}, {
” inputId” : 9,
”inputName” : [”Examene paracl inice ” , ”HLG completa”] ,
”value” : [{

”subItem” : ”Hemoglobina (g/ dl) ” ,
”value” : 11

}, {
”subItem” : ”Hematii (x10^{6} / mm̂ {3})” ,
”value” : 4.7

}, {
”subItem” : ”Leucocite (/ mm̂ {3})” ,
”value” : 10000

}, {
”subItem” : ”Trombocite (/ mm̂ {3})” ,
”value” : 265000

}
]

},
]

]
}

By storing the medical inputs regarding a specific patient at a specific time in
a single document, the document is immune to any future changes in the structure
of input elements or forms. Adding/changing or deleting an input element will have
no undesired effect on past entries. Should the database grow to big, documents
can be split up between multiple instances using a technique called sharding. Having
related data about a patient in one place helps avoid the overhead that would have
been encountered when querying data from multiple sources.

An area where storing data as documents is less than ideal is when doing
analytics, complex analysis of data across multiple patients. A solution in this case is

BUPT

3.3 – Designing Business Domain Classes 65

the creation of materialized views [60]. These provide an alternate view of the data,
suited for a specific purpose, but, in contrast to traditional database views, they are
updated periodically, on demand, not on every query. A popular method for creating
materialized views for NoSQL databases is by using the Map-Reduce programming
model [60].

A study shows that MongoDB can be successfully used in a distributed manner
to process large amounts of HL7 messages [63]. By creating a virtual file system they
manage to create a scalable solution that overcomes the limitations of traditional file
systems while using legacy systems that are designed to use the file system.

Conclusions

This chapter focused on investigating ways of architecting an electronic health
record application which is flexible to change while also requiring as less medical
domain knowledge as possible from the developers side.

The main original contribution of this chapter consists of a proposed back-end
architecture which focuses on modeling the data around medical input types. These
are then combined into medical input forms and allow the creation of a configuration
interface in which a medical specialist is able to define new input forms from existing
types without requiring the intervention of a software developer to write new code or
change the database (except in the rare case in which a completely new input type is
required).

Types of input forms were identified by analyzing multiple input forms and
structured in XML with the help of rapid prototyping. The chapter also provided
contributions regarding the data layer, presenting ways to structure the data, based
on input types, in relational as well as document databases.

BUPT

BUPT

4. INTEGRATING MEDICAL STANDARDS

When writing applications which operate in the healthcare industry, the
requirement to interconnect with other systems, at one point, is almost unavoidable.
This chapter presents an analysis of issues identified when adapting an existing
application that deals with electronic health records to common and standardized
practices and also details possible solutions.

An important issue when dealing with health records is how to handle
terminology, especially when interconnecting with systems that use a different human
language. The section Translating Logical Observation Identifiers Names and Codes
deals with how to translate the LOINC laboratory codes into a language in which they
are not yet available. Immediately afterwards, Matching ICD-10 Codes Using Full-Text
Search Engines deals with another very important standard, ICD-10 for diagnostic
codes. This standard has a more widespread use and is translated into numerous
languages. However, searching precise codes is not straight-forward and the section
compares ways of using open-source full-text search engines for matching ICD-10
codes.

The last section, Achieving Interoperability describes how an electronic health
record system, built in a simple manner to solve specific immediate issues at creation,
can be extended to link with medical terminologies and to benefit from openEHR
specifications and existing artifacts built around these specifications. The section
also deals with information exchange using the Clinical Document Architecture (CDA)
standard.

4.1. Translating Logical Observation Identifiers Names
and Codes

Electronic methods of communicating medical information like HL7 messages
or HL7 CDA documents contain a lot of coded information. If each producer of such
messages (e.g. laboratories) were to use their own internal codes, then understanding
the message by the receiver would be problematic without adopting the sender’s codes.
The situation then becomes even more complicated if there are multiple sources [28].

This situation is fixed by the introduction and usage of medical coding and
terminology systems. One such system is LOINC® (Logical Observation Identifiers
Names and Codes) which “provides a set of universal names and ID codes for
identifying laboratory and clinical test results” [28].

As LOINC contains textual descriptions for each code, a prerequisite for using
LOINC in a country is the availability of translations for the terms used by LOINC in
the country’s native language. D. Vreeman describes the challenges of translating
LOINC into Italian [29], placing emphasis on breaking up terms into separate pieces
for independent translation.

BUPT

68 Integrating Medical Standards – 4

This section presents a research into ways to find better, more detailed ways
of reducing the effort required for translating LOINC into other languages. The results
have been published under [64].

The following sections present some considerations on medical terminology
and then go on to detail the process of analyzing the content of the LOINC data table
with the goal of creating an efficient translation strategy.

4.1.1. Analyzing Medical Terminology

An interesting topic when dealing with medical terminologies in multiple
languages is the question of how many times are terms used in their canonical form
and how many times are they derived? In order to answer this question, a study has
been conducted which compares the incidence rate of canonical vs. derived medical
terminology written in English and Romanian. The findings have been published in a
paper [65].

Performing the study required the design and development of a dedicated
service, text4all Term Analysis and Stats1. This service takes the address of a web
page as input and outputs a report about the medical terminology used in the web
page. It performs the following steps: [65]

1. Downloads the HTML document of the web page in question, from the URL
provided by the user

2. Extracts the meaningful text from the document

3. Normalizes the text by converting it to lower-case

4. Compares each word to a terminology dictionary in order to identify medical
terms

5. Searches for medical terms that are derived.

Identifying derived medical terms is done by using a technique called fuzzy
matching, comparing words by using the Levenshtein or Hamming distance. The
matching techniques have incorporated by V. Topac into a dedicated data structure
called FuzzyHashMap [66].

The end report present the total number of words found on the given web page,
the number of terminology found in canonical form (unique and repeating occurrences)
as well as a list of all approximate matching terms identified [65].

Analyzing the content of multiple English web sites which present medical
information for the general public has revealed a ratio of 61.0% terms in canonical
form to 39.1% in derived form (terms are counted multiple times if they appear many
times throughout the text). Performing the same analysis on similar web sites which
present medical content in Romanian leads to results which are almost the opposite:
a ratio of 40.4% terms in canonical form to 59.6% in derived form [65]. The results
are also presented in figure 4.1.

This study shows an important situation to be aware of when setting of to
perform translations of medical terms. Although, in the case of the English language,

1Available under http://www.text4all.net/termanalysis.html

BUPT

4.1 – Translating Logical Observation Identifiers Names and Codes 69

Canonical Form
61.0%

Derived Form
39.0%

(a) English

Canonical Form
40.4%

Derived Form
59.6%

(b) Romanian

Fig. 4.1: Incidence rate of canonical vs. derived medical terminology in natural language [65].
The results in English and Romanian are almost mirrored, with the canonical form being more
commonly used in English while the derived form appears more often in Romanian.

canonical form of terms is more common, other languages, like Romanian, use far
more derived terms.

4.1.2. Observed Data Patterns

An analysis was performed on the values of the LOINC data table with the goal
of identifying patterns which can be used to reduce the number of works which require
translation into other languages. This analysis was performed using version 2.46 of
the English language version of the LOINC table, released on December 26th 2013
and available for download under the official website (https://loinc.org/downloads) in
a variety of formats, including a simple comma-separated value (CSV) file.

Each row in the table is identified by a unique value stored in the first column,
also called LOINC_NUM: e.g. 10092-5. The remaining columns store mostly strings
(enumeration of terms or even sentences) but also numeric or date values. The content
of the LOINC table is summarized in table 4.1.

Measurement Value

Number of rows: 73,115
Number of columns: 48
Number of null (empty) values: 1,904,784
Number of non-string values: 497,721
Number of string values: 1,107,015
Number of unique string values: 261,115
Total length of unique string values: 23,785,626
Average length of unique string values: 91.09

Table 4.1: Summary of the data found in the LOINC table [64]

BUPT

https://loinc.org/downloads

70 Integrating Medical Standards – 4

Because non-string values (e.g. numbers) do not require translations, one of
the first steps taken was to separate them from ordinary string values. After identifying
duplicates, only 261,115 string values would require translation, a number is still pretty
high, keeping in mind that the average length of such an entry is 91.09 characters [64].

The next step involved identifying various patterns that can help in breaking
up larger cells into smaller elements. Because larger cells don’t include complete
sentences but rather enumerations of different elements, they can be split up,
translated individually and reassembled without being dependent on rules of the
English grammar.

Examples of such enumerations are:

• Person name; Point in time; Random; Cardiac rehabilitation Tx plan; Nominal

• Coxiella burnetii phase II; C burnet Ph2; Q fev; C burnetii; Qfever; Coxiella
burnettii; Q fever; Dilution factor; Titer; Titre; Ttr; Titered; Point in time;
Random; Serum; SR; Quantitative; QNT; Quant; Quan; ACIF; FA; Fluorescent
antibody; Immune fluorescence; Fluoresent; Immunoflour; Immunofluor;
Immunofluorescence; IFA; Time Resolved Fluorescence; Anticomplement
Immunofluorescence; TRF; ABS; Antibodies; Autoantibody; Antibody;
Autoantibodies; Antby; Aby; Anti; Microbiology

• Dx.primary; Dx; Interpretation; Interp; Impression; Impressions; Point in time;
Random; Alcohol- substance abuse rehabilitation Tx; Alcohol-substance abuse
rehabilitation Tx; Narrative; Report

• Immune globulin G; Immunoglobulin G; Arbitrary concentration; Point in time;
Random; Serum; SR; Quantitative; QNT; Quant; Quan; ABS; Antibodies;
Autoantibody; Antibody; Autoantibodies; Antby; Aby; Anti; species; spp;
Microbiology

• Immune globulin G; Immunoglobulin G; B burgdor41kD; B burg; B burgdorferi;
Lymes; Burgdorf; Lyme; Bb; Lyme disease; Arbitrary concentration; Point in
time; Random; Cerebral spinal fluid; Spinal Fluid; Cerebrospinal Fl; Spinal
Flu; Spinal Fld; Ql; Ordinal; QL; Qualitative; Qual; Screen; Western blot; WB;
Immune blot; Immunobl; Blt; WBLOT; West blt; West blot; RIBA; Immunoblot;
ABS; Antibodies; Autoantibody; Antibody; Autoantibodies; Antby; Aby; Anti;
Microbiology

As these terms are not related to each other, from a translations point of view,
splitting each value up into its individual atoms results in translating much smaller
terms that also have a bigger chance of being repeated. Cells containing narrative
text can also benefit from being split up, although in this case only at sentence level.

Some values do not require any translation because they only represent
various identifiers or value/measurement unit pairs [64], e.g.:

• 25 mg/dL

• 30 mg/dL

• mU/mL;mcU/mL

BUPT

4.1 – Translating Logical Observation Identifiers Names and Codes 71

• umol/L

• mm[Hg]

Various columns have lead the way to the discovery of more complex patterns.
One of these consists in specifying what has been detected/observed, where, the unit
of measurement, and, optionally, the number of the specimen [64]:

• Lutropin [Units/volume] in Serum or Plasma –1st specimen

• Thyrotropin [Units/volume] in Serum or Plasma –4th specimen

• Adenosine deaminase [Enzymatic activity/mass] in Chorionic villus sample

• Beta cortolone/Cortisol [Mass Ratio] in Urine

4.1.3. Applying Patterns

By splitting the text values apart, chances are that some values will repeat
themselves and thus contribute to the reduction of the amount of text that needs
to be translated, as duplicates only need to be translated once. For the purpose of
splitting the data apart into atomic parts, a C# application has been developed which
applies patterns in a recursive manner.

The first type of patterns to be applied are common delimiters such as ;, – or
:\t. A total of 18 such delimiters where implemented [64]. Among these patterns, one
on them required more attention: the dot symbol, normally used to delimit sentences.
Should entries have simply been split any time a dot was encountered, it would have
generated unacceptable false-positives, like in E. coli [64]. To overcome this, a rule
has been implemented which only performs a split on a dot symbol if the word before
the dot is not an abbreviation (contains at least 4 characters) and the dot is followed
by white-space [64].

All the others patterns are more complicated and require the use of regular
expressions. As shown in figure 4.2, expressions split up the text into groups. In
contrast to simply splitting by a delimiter, which allows the values to be recombined
by joining them using the same delimiter, using regular expressions makes joining the
values back more difficult.

In order to be able to rejoin the values after they have been translated, each
expression is accompanied by a string template which uses %s as a placeholder for
the actual values [64]. This template was chosen as it commonly encountered in the
standard libraries of many languages that deal with string formatting (like the printf()
function of the C standard library).

In the case of figure 4.2, the regular expression splits up 4 individual groups
using mixed delimiters. Each group of text can then be individually translated. After
that, the translations are reassembled using the %s [%s/%s] %s template.

A total of 25 regular expressions2 have been used, like for example: [64]

• ^(.*)([\t]+)(PhenX)$
2Regular expressions form patterns which can be used to search text. The patterns are expressed with

the help of characters and symbols.

BUPT

72 Integrating Medical Standards – 4

Microalbumin [Mass / volume] in 4 hour Urine

Microalbumin [Mass / time] in 12 hour Urine

Microalbumin

in 4 hour Urine

in 12 hour Urine

Mass

volume

time

%s [%s / %s] %s

Fig. 4.2: Splitting a LOINC value into patterns [64]. This shortens the average length of each
time that must be individually translating, also allowing the identification of duplicates and
providing a format used to reassemble the items after translation.

• ^(.*)([]*[\t]+)(NEGATIVE)$

• (.*) \((.*)\) (Ig[A-Z][0-9]*) ([A-Z][a-zA-Z]+)$

• ^(.*) ([0-9.]+) ([^ -:]*)/([^ -:]*)([^a-zA-Z0-9]*)$

In order to benefit the most from using these regular expressions, they are
applied in a recursive manner [64]. Thus, after a pattern splits the text into, for
example, 3 parts, each of these parts is further individually processed using all the
patterns, often resulting into it being split into even smaller parts.

Implementing the patterns in code is simplified thanks to a programming
technique called Metaprogramming [67], using the following steps: [64]

• All the patterns and regular expressions are filled into a C# code template

• Visual Studio’s TextTemplatingFileGenerator is called to process the template
and produce a C# class [68]

• The resulting class is included and compiled along with the rest of the project.

After the values have been split, another filter is applied to separate those that
no longer require a translation. These values are identified by not having more than
one consecutive letter (e.g. 10.5%, A10) [64].

Applying patterns in order to split the text entries into smaller, atomic parts
has resulted into having fewer values that require translations, with these values

BUPT

4.1 – Translating Logical Observation Identifiers Names and Codes 73

also having a much lower average length. The actual numbers are presented in
table 4.2. A comparison between the number of values to be translated and their
average length before and after applying the split operating using the patterns is
presented in figure 4.3.

Measurement Value

Number of values that do not require translation: 7,661
Number of values to translate: 188,646
Total length of values to translate: 5,894,023
Average length of values to translate: 31.24

Table 4.2: Result of applying patterns to the LOINC data [64]

0

50,000

100,000

150,000

200,000

250,000

300,000

before after

(a) String values to translate

0

10

20

30

40

50

60

70

80

90

100

before after

(b) Average length of string values

Fig. 4.3: Comparison of the number of values to be translated and their average length before
and after applying patterns [64]

In order to check that errors have not shown up while performing the text
splits, an application has been developed which reassembles all the text entries and
compares them to the original LOINC data table, similar to a unit-test.

Thus, this section shows that using patterns to divide text entries into smaller
parts which can be individually translated and reassembled is both doable and provides
good results, reducing the amount of text that needs to be forwarded to translators.

4.1.4. Building a Web Application for Performing Translations

After having reduced the number of terms that require translation, it was time
to pilot the translation process. To this end, a web application has been developed
which allows users, mostly medical staff, to contribute translations.

The application relies on a very simple user interface which presents the user
with a term that requires translation. The user is given three choices, as shown in
figure 4.4: [64]

• Save – Provide a translation for the current term

BUPT

74 Integrating Medical Standards – 4

• Does not require translation – Indicate that the current term can be used as-is
without translating (perhaps it’s a world recognized abbreviation)

• Change term – Skip translating the current term, display another one.

Fig. 4.4: Input area for the user’s LOINC translation – localized to Romania [64]

As the terms are chosen at random, eventually, multiple users will translate
the same term. This redundancy is considered a benefit as it can be used to improve
precision and detect any errors. Should a translation for a term have already been
submitted, it is shown to the user together with a rank indicating how many others
have provided the same translation.

In order to make the users more familiar with LOINC, the web application
also allows the users to browse through all the LOINC records. This is done via an
interactive table displaying 50 rows/page and allowing the user to select the columns of
interest. Various abbreviations present are highlighted and expanded on mouse-over,
as shown in figure 4.5.

Fig. 4.5: LOINC table displayed with highlighted abbreviations [64]

The first step in the creation of the web application was to create a relational
database that stores the results of applying the previously described patterns on the
LOINC table. MySQL was used with the schema described by figure 4.6.

The main database table is called TableValues and is responsible for storing
the content of each non-empty cell in the LOINC data table [64]. Each cell is identified
by the LOINC_NUM, stored as a two-part integer and by the column index from the
original LOINC table, stored also as an integer [64].

Cells that contain only non-translatable data such as numbers, dates or
boolean values have the value stored in the row using a corresponding column. Cells
that contain string values which where not further split up simply store a reference to
the actual value found in the StringValues table.

BUPT

4.1 – Translating Logical Observation Identifiers Names and Codes 75

abbreviations

id INT(11)

en_short VARCHAR(32)

en_long VARCHAR(128)

Indexes

arrayform…

id INT(11)

value VARCHAR(10…

Indexes
arrayvalues

id INT(11)

tableValueId INT(…

index INT(11)

stringValue INT(11)

Indexes

languages

id INT(11)

value VARCHAR(16)

Indexes

stringvalues

id INT(11)

languageId INT(11)

value VARCHAR(1024)

Indexes

tablecolumns

id INT(11)

name VARCHAR(128)

Indexes

tablevalues

id INT(11)

number_part1 INT(11)

number_part2 INT(11)

column INT(11)

stringValue INT(11)

intValue INT(11)

dateValue DATE

decimalValue DECIMAL(14,2)

boolValue TINYINT(1)

termsArrayFormatId INT(11)

Indexes

translationlog

id INT(11)

stringValue INT(11)

languageId INT(11)

userId INT(11)

start DATETIME

stop DATETIME

Indexes

translationsuggestions

id INT(11)

stringValue INT(11)

languageId INT(11)

userId INT(11)

value VARCHAR(1024)

added DATETIME

Indexes

users

id INT(11)

facebookId BIGINT(20)

Indexes

Fig. 4.6: The database schema used for the translation of LOINC terms [64]

BUPT

76 Integrating Medical Standards – 4

In the case of cells that contain a value which was split using a specific pattern,
the values table stores a reference to the format used to reassemble the original value
and makes use of anN−N relationship with the StringValues table, via the intermediate
ArrayValues table, to store the actual atomic values found by the patterns [64]. All
individual string values are stored in the StringValues table.

The database also contains a table called Users which is referenced by
TranslationSuggestions, storing all submitted translations, and TranslationLog, storing
metrics regarding when each translation was provided and an estimate on how the
translation process tool [64].

For display purposes, the database also contains a table used for expanding
abbreviations. The data inside was manually collected from the LOINC documentation
[28].

The web application was coded using PHP as the server-side language together
with their PDO classes for accessing the MySQL database in an object-oriented manner
[69]. Development of the website was focused more on the client-side programming
which makes use of asynchronous JavaScript with the help of jQuery in order to provide
a rich and smooth client interface [70, 71]. RequireJS [72] has been used for managing
client-side dependencies between software modules. By caching string values, the web
client minimizes the number of server requests performed while browsing of the data
table.

4.1.5. Results of Piloting the Translation

A number of 12 medical staff and students have accepted an invitation to pilot
the website and translate LOINC terms into Romanian. They have translated a total
of 179 terms, table 4.3 summarizing their results [64].

The time measurement is approximate and is calculate as the difference
between the moment the user is shown the term to translate and the moment the
translation is submitted.

Measurement Value

Number of translators: 12
Number of terms translated: 179
Total time spent translating: 02:31:52
Average time spent translating / user: 00:12:39
Average length of translated English terms: 29.15
Average length of resulting Romanian terms: 35.46
Average time spent translating / English character: 1.74 seconds

Table 4.3: Summary of translating LOINC terms into Romanian [64]

By extrapolating, a team of 20 translators would require about 1154 hours to
translate the entire LOINC table, estimating that each term would be translated by an
average of 2 people [64]. This is an important advantage over simply translating all
table entries individually.

BUPT

4.2 – Matching ICD-10 Codes Using Full-Text Search Engines 77

4.2. Matching ICD-10 Codes Using Full-Text Search
Engines

Although International Classification For Diseases (ICD) codes are freely
available for download in the form of human readable documents, finding the precise
code one is looking for can be a challenging task. In contrast to specialized medics
which only deal with specific types of diseases and can easily get to knowmost common
ICD codes specific to their field, trying to automatically choose the right ICD diagnostic
codes from large amounts of clinical free text is more complicated.

Both automatic and manual assigned of codes can benefit from computational
ways of matching ICD codes. This section presents a study performed with the goal of
analyzing how existing open-source full-text search engines perform when querying
the content of ICD-10 diagnostic codes. The study has resulted a in paper, published as
part of the 14th International Conference on Informatics, Management and Technology
in Healthcare [73].

The study was performed on the tabular format of the International
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) version
2016 [34]. When flattened, this document contains a number of 43 028 entries [73].

4.2.1. Analysis Methods

As shown by [74], natural language processing techniques play an important
role in performing text search queries that are more complicated then finding a simple
word in a sentence. Such techniques are made available for use in the form of
full-text search engines, available either as stand-alone products or integrated in
various databases, commercial or open-source.

One very popular open-source text engine is Apache Lucene™. Its feature
richness and good integration in enterprise Java environments are being adopted in
medical systems and play an important role even when it comes to retrieving medical
images [75].

Using a full-text search engine involves writing a query, either in natural
language or in the form of multiple words accompanied by Boolean operators, e.g.
X and (Y or Z). The engine then executes the query and returns a list of results
composed of the actual text that was matched together with a score which indicates
how well the current result matches the query. The absolute value of the score is not
relevant as it differs from implementation to implementation. The score is only used
for comparing/sorting results. In contrast to normal database string look-ups, full-text
search engines recognize different forms of the same word and are also able to deal
with stop-words [73].

The study aims to minimize the chance of wrongfully choosing between very
similar ICD-10 codes. It analyses which combination of words leads to the entry in
question being matched with a higher relative score than all others. Just looking at the
top two results of each query is enough to identify that one result is being distinguished
by a higher priority.

The analysis was performed using the following engines:

• Apache Lucene – a feature rich, open-source text-search engine library written
in Java

BUPT

78 Integrating Medical Standards – 4

• lunr.js – a full-text search engine written in Javascript which can run inside a
web browser

• PostgreSQL (9.4) and MySQL (5.6) – relational database management systems
which offer full-text search features.

Table 4.4 presents how the same query needs to be constructed for each of the
4 systems analyzed. The dedicated text engines, Apache Lucene and lunr.js provide
object-oriented API’s for populating the data store and executing queries. In the case
of the relational databases, the query is still issued using the SQL language, although
with extra non-standard constructs specific to each database engine.

As an important note, all these full-text search engines analyzed are general
purpose ones. They are not specific to/optimized for medical terms.

Engine Query

Apache Lucene indexSearcher.search(’anemia and kidney’, 2);

Lunr.js index.search(’anemia and kidney’);

PostgreSQL SELECT id, ts_rank(search, to_tsquery(’anemia & kidney’))
AS rank FROM entries_indexed WHERE search @@
to_tsquery(’anemia & kidney’) ORDER BY rank DESC LIMIT 2

MySQL SELECT id, MATCH(text) AGAINST(’anemia kidney’ IN
NATURAL LANGUAGE MODE) AS rank FROM icd10.entries
ORDER BY rank DESC LIMIT 2

Table 4.4: Example queries for D63.1 – Anemia in chronic kidney disease [73]

4.2.2. Results

The full-text search engine of PostgreSQL requires that the text to be searched
be split into a data structure called tsvector, a “sorted list of distinct lexemes, which
are words that have been normalized to merge different variants of the same word”
[76].

Performing such a split provides valuable insight in the way a full-text search
engine internally deals with the text. Analyzing these lexemes reveals which are the
most common words used in the ICD-10-CM entries, as can be seen in table 4.5 [73].

The total number of lexemes found is 6 561 with 2 202 (∼33%) of them only
encountered once and “unspecifi” appearing most often, in 10 730 (∼24%) of all
entries [73]. On average, each ICD-10-CM entry contains 5.33 lexemes [73].

Because the number of entries in ICD-10-CM is quite substantial, an initial
analysis was first performed on a list of common codes as identified by [77]: 456
entries in total, out of which 437 contain more than one word. The analysis involves
extracting the words that compose the description of each code and generating all
combinations of these words. These combinations are then used to construct queries
which are executed against the full-text engine. Each query returns which entries it
matches, together with a numeric score. For the combination of words to be considered

BUPT

4.2 – Matching ICD-10 Codes Using Full-Text Search Engines 79

Lexeme Count Lexeme Count

unspecifi 11664 Hand 1482
Left 4870 Bodi 1478
Right 4797 Level 1458
fractur 2390 Due 1430
Injuri 2212 Foot 1406
disord 1938 muscl 1340
specifi 1704 without 1316
lower 1636 effect 1306
eye 1570 injur 1279
diseas 1500 neoplasm 1217

Table 4.5: Most frequently encountered lexemes in ICD-10-CM (computed from data found in
[34]): unspecifi, obtained from unspecified, appears most often as it is used at the end of most
hierarchies as a placeholder for diagnostics that don’t exactly match any of the other entries.

successful, it should match the current entry in question with the highest score, a score
higher than that assigned to any other entry.

For each common ICD-10-CM entry (excluding those that are only based
on one word), the analysis searches for the minimum amount of words that, when
combined in a search query, cause the full-text search engines to list the desired entry
at the top of the search results, with a greater score than any of the other entries
[73]. Because the score provided for each result by the full-text search engines is
a floating-point value, they were rounded to only 2 decimal places for comparison
purposes.

The results are presented in figure 4.7a. On average, about two words are
needed by the search engines to isolate each entry. For example, in the case of R25.2
– Cramp and spasm, both “cramp” and “spasm” must be provided [73].

There are however cases of highly similar entries where the engines fail to
identify a distinct match and end up assigning the same score to multiple multiple
entries, even if all the words of the entries are used to form the query. An example
of this is M62.838 – Other muscle spasm and its parent entry M62.83 – Muscle spasm
[73]. Table 4.6 details how many entries failed to be distinctly identified.

Engine Indistinct Matches
Number Percent

Apache Lucene 78 18 %
Lunr.js 59 14 %
MySQL 155 35 %
PostgreSQL 120 27 %

Table 4.6: Number of common entries not distinctly identified

A further analysis on the number of common entries that could not be
distinctly identified reveals that 131 (∼78%) contain either the word “other” (∼32%)

BUPT

80 Integrating Medical Standards – 4

Apache Lucene lunr.js MySQL PostgreSQL

1 64 95 44 36

2 219 218 172 204

3 70 64 60 71

4 6 1 6 6

0

50

100

150

200

250

N
u

m
b

e
r

o
f

En
tr

ie
s

(a) Including entries that contain unspecified or other

Apache Lucene lunr.js MySQL PostgreSQL

1 57 68 44 36

2 121 129 108 128

3 24 15 12 16

4 3 4 4

0

50

100

150

200

250

N
u

m
b

e
r

o
f

En
tr

ie
s

(b) Excluding entries that contain unspecified or other

Fig. 4.7: Amount of entries together with the minimum number of words (left) required for
distinct matches in the case of common entries

BUPT

4.2 – Matching ICD-10 Codes Using Full-Text Search Engines 81

or “unspecified” (∼48%). In the case of 43 entries, none of the engines was able to
produce a distinct match [73].

Based on these findings, the analysis was performed again, but only on entries
that do not contain the words “unspecified” or “other”. As shown in figure 4.7b, this
has lead to a decrease in the number of entries that require a query composed of at
least 3 words.

After performing the initial analysis on only a small subset of common ICD-10
entries, it was time to expand it on all entries. This analysis ran into the following
issues with introduces some limitations in the scope of the analysis:

• Some ICD-10 entries contained a lot of words. This lead to a big increase in the
number of unique combinations that needed to be checked for each entry, slowing
down the analysis considerably. As such, entries with more than 15 words were
skipped.

• The MySQL search was very slow for full-text searches, even after tuning the
database configuration parameters. After ten hours of running continuously on
the test machine, the progress was weak so it was skipped.

• Entries containing just one word are not counted as they trivially match.

Engine
Average number of words needed
with/without “unspecified” or “other”
with without

Apache Lucene 2.60 2.38
Lunr.js 2.35 2.24
PostgreSQL 2.64 2.49

Table 4.7: Average number of words needed/match

Engine
Indistinct Matches

with/without “unspecified” or “other”
with without

Apache Lucene 14 % 18 %
Lunr.js 18 % 21 %
PostgreSQL 26 % 32 %

Table 4.8: Number of common entries not distinctly identified

As shown in figure 4.7, the results of Apache Lucene and PostgreSQL are quite
close, with an average of∼2.60 words needed/match in the case of Apache Lucene and
∼2.64 words/match for PostgreSQL. Lunr.js seems to perform better and requires an
average of only ∼2.35 words/match. Excluding the entries that contain “unspecified”
or “other” reduces these averages.

BUPT

82 Integrating Medical Standards – 4

Apache Lucene lunr.js PostgreSQL

1 3056 3727 1477

2 14895 17235 13194

3 12727 11341 11934

4 5111 2133 4272

5 609 102 272

6 3

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

e
r

o
f

En
tr

ie
s

(a) Including entries that contain unspecified or other

Apache Lucene lunr.js PostgreSQL

1 3051 3718 1474

2 12757 15619 11751

3 7616 7750 7559

4 2350 1277 2432

5 217 64 123

6 2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N
u

m
b

e
r

o
f

En
tr

ie
s

(b) Excluding entries that contain unspecified or other

Fig. 4.8: Amount of entries together with the minimum number of words (left) required for
distinct matches in the case of all entries which contain between 2 and 15 words

BUPT

4.3 – Achieving Interoperability 83

Fig. 4.9: Example of an ICD-10 search form showing results in descending order based on the
matching score

Analyzing the number of entries that could not be distinctly matched revealed
that Apache Lucene performed the best with only ∼14% non-distinct matches as
opposed to ∼18% in the case of lunr.js. PostgreSQL was unable to produce a distinct
match in about twice as many number of entries than Apache Lucene. The results are
summarized in table 4.8. In the case of 2 376 entries was neither of the engines able
to produce a distinct match.

The analysis shows that existing open-source full-text search engines provide
good results when searching the ICD-10 codes of medical diagnostics, in English [73].
With an average of about two and a half words required per query, the users’ effort
is reduced and so is the chance of choosing the wrong code [73]. The biggest factor
which explains why some entries were not being distinguishable from others was found
to be the presence of the words “unspecified” and/or “other”.

The engine written in JavaScript, lunr.js, shows good results. Taking into
account that the list of ICD-10-CM codes is only a few megabytes large, this opens
the possibility of performing the search in the client-side code, providing a richer
user-experience by reducing the delay caused by calls to the server [73]. Figure
4.9 presents a user interface in which the user is querying ICD-10 codes by using a
natural language and is displayed results sorted in descending order by their score.

4.3. Achieving Interoperability

This section discusses the implications of taking an electronic health records
solution which is not designed with specific international standards in mind and trying
to make it interoperable with solutions using openEHR or HL7 CDA.

BUPT

84 Integrating Medical Standards – 4

Designing a solution fully according to the openEHR methodology requires
dedicated developers that are familiar with it’s approach and which might not be
available in a team that is only requested to implement a specific subset of EHR
functionality.

The prototype solution described in chapter 3 is an excellent candidate for
analyzing what small changes would be necessary to bring it on the right track
of medical interoperability. The solution is designed to solve a specific use case,
registering health records of patients with chronic illness, in a simple manner.

As forms can easily change, the prototype described takes input forms and it’s
constituent elements into account and models them in a reusable manner. This is in
contrast with simply adding a new column for each new type of data, a practice which
can result in large, inefficient and more and more difficult to work with databases.

4.3.1. Linking openEHR archetypes

Even if an electronic health record solution is not built around the methodology
described by openEHR, accessing openEHR’s rich and freely available archetypes still
provides important advantages both when building a new system and when integrating
it with others:

• Archetypes are meant to be created by domain experts which have a much better
understanding of medical terms than developers

• A lot of archetypes are already available at http://www.openehr.org/ckm/

• Translations into multiple languages are available

• Where appropriate, archetypes contain bindings to standard medical
terminologies.

Ocean Informatics provides an application called Archetype Editor which
enables domain experts to create and edit archetypes, as shown in figure 4.10. It
supports both the Archetype Definition Language (ADL) and it’s XML representation.

An example archetype relating to blood pressure is
openEHR-EHR-OBSERVATION.blood_pressure.v1. It defines the systolic and diastolic
measures as:

ELEMENT[at0004] occurrences matches {0..1} matches { -- Systol ic
value matches {

C_DV_QUANTITY <
property = <[openehr::125]>
l i s t = <

[”1”] = <
units = <”mm[Hg]”>
magnitude = <|0.0..<1000.0|>
precision = <|0|>

>
>

>
}

}
ELEMENT[at0005] occurrences matches {0..1} matches { -- Diastol ic

BUPT

4.3 – Achieving Interoperability 85

value matches {
C_DV_QUANTITY <

property = <[openehr::125]>
l i s t = <

[”1”] = <
units = <”mm[Hg]”>
magnitude = <|0.0..<1000.0|>
precision = <|0|>

>
>

>
}

}

The full paths to the actual quantities are data[at0001]/events[at0006]
/data[at0003]/items[at0004]/value/magnitude and data[at0001]/events[at0006]
/data[at0003]/items[at0005]/value/magnitude with the following English translations:

• at0001 – History

• at0006 – Any event

• at0003 – Blood pressure

• at0004 – Systolic

• at0005 – Diastolic

Because the database schema presented in section 3.3.3 is designed around
input element semantics, these can easily be extended by adding columns that link
them to openEHR archetypes. Three columns are necessary: the archetype id, the
archetype version and the path to the value, as shown in figure 4.11.

As in the case of blood pressure, openEHR archetypes usually include limits for
quantity values. Applying such limits would normally be implemented as constraints in
the database. However, because such constraints affect all rows, implementing them
is not that straight-forward.

The official documentation regarding the Archetype Definition Language [42]
lists multiple ways of expression constraints for integer or real numbers: length
matches |0>..<1000| (allow 0> x <1000), length matches |100+/-5| (allow 100 +/-
5, i.e. 95 - 105). These inputs can be expressed as intervals or lists of discrete
values. The allowed values for the diastolic blood pressure, expressed in ADL syntax
as magnitude = <|0.0..<1000.0|> are expressed in the XML representation of the
archetype as an interval structure:

<magnitude>
<lower_included>true</lower_included>
<upper_included>false</upper_included>
<lower_unbounded>false</lower_unbounded>
<upper_unbounded>false</upper_unbounded>
<lower>0.0</lower>
<upper>1000.0</upper>

</magnitude>

BUPT

86 Integrating Medical Standards – 4

Fig. 4.10: Using the Archetype Editor developed by Ocean Informatics to edit the blood pressure
archetype [78]

NumericElement

- id : int
- label : string
- longLabel : string
- description : string
- typeName : string
- parent : GroupInputElement
- hidden : boolean
- precision : int
- formulaIdentifier : string
- classifications : Classification[]

NumericElement

- id : int
- label : string
- longLabel : string
- description : string
- typeName : string
- parent : GroupInputElement
- hidden : boolean
- precision : int
- formulaIdentifier : string
- classifications : Classification[]
- archetypeId : string
- archetypeVersion : string
- archetypePath : string
- constraint: string

Fig. 4.11: Expanding a numeric input element with information necessary to link it to an
openEHR archetype. The additional information required includes only the archetype’s id,
version and path. An optional constraint string ca also be used to enforce medically relevant
values.

BUPT

4.3 – Achieving Interoperability 87

As shown in figure 4.11, the constraint can be stored as a string property of
the entity. As the ADL syntax is well documented and easily parsed, the constraint
could be stored in the exact same way as in an archetype. Evaluating and applying the
constraint is a task for business logic in the application, and not, although tempting, in
the database. By not writing stored procedures or functions that execute code in the
database context, the solution stays free from being locked up in a specific vendor’s
technology and is also more easily migrated to different data stores, like NoSQL, which
do not offer such programmatic features.

The major advantage of creating a link between an EHR system and openEHR
archetypes is the ability to respond to Archetype Query Language (AQL) queries with
little effort. A query which requests the systolic and diastolic blood pressures that
exceeds a specific amount looks very similar to a SQL query, as shown in figure 4.12.

SELECT

Archetype path obs/data[at0001]/events[at0006]/data[at0003]
/items[at0004]/value/magnitude AS systolic,

Archetype path obs/data[at0001]/events[at0006]/data[at0003]
/items[at0005]/value/magnitude AS diastolic

FROM

EHR id EHR [ehr_id/value=’1234’]

Archetype predicates
indicating what

archetype instances are
relevant to this query

CONTAINS COMPOSITION
[openEHR-EHR-COMPOSITION.encounter.v1]

CONTAINS OBSERVATION obs
[openEHR-EHR-OBSERVATION.blood_pressure.v1]

WHERE

Condition systolic >= 140 OR diastolic >= 90

Fig. 4.12: Archetype query requesting blood pressure over a specific amount [79]

Such a query is easily converted to a SQL query which returns information from
the EHR database. Thus, the party that issued the archetype query is not required to
have any knowledge of the specific schema used by the EHR repository. This allows
the schema to evolve freely, without breaking existing clients.

SELECT *
FROM (
SELECT
CASE [InputElementID] WHEN 95001 THEN [DecimalValue] ELSE 0 END AS systol ic ,
CASE [InputElementID] WHEN 95002 THEN [DecimalValue] ELSE 0 END AS diasto l i c
FROM [InputElementValues]
WHERE [InputFormValueID] = 1234
) AS temp

WHERE systo l ic >= 140 OR diasto l i c >= 90

4.3.2. Linking Medical Terminologies

Linking EHR data to well known and commonly used medical terminologies
is an important step towards achieving interoperability. Medical terminologies map

BUPT

88 Integrating Medical Standards – 4

various data such as laboratory results or disease diagnostics to simple codes which
allow other entities to easily recognize the semantics of the values, independent of the
language used.

The prototype solution described in chapter 3 records individual forms in a
table called InputFormValues which is linked through a parent-child relationship to
InputElementValues which stores all the entries recorded for each form for a patient
at a specific time. As shown in figure 4.13, linking the values to a specific terminology
requires the addition of two extra field in the entity/two extra columns in the database:
the terminology identifier (LOINC, ICD-10, SNOMED, ...) and the terminology code to
which the value is mapped.

InputElementValue

- id : int
- formValue : InputFormValue
- inputElement : InputElement
- stringValue : string
- decimalValue : decimal
- booleanValue : boolean
- dateTimeValue : DateTime

InputElementValue

- id : int
- formValue : InputFormValue
- inputElement : InputElement
- stringValue : string
- decimalValue : decimal
- booleanValue : boolean
- dateTimeValue : DateTime
- terminologyId : string
- terminologyCode : string

Fig. 4.13: Expanding an input element value with information necessary to link it to a medical
terminology. The only additional fields are the terminology’s id and code.

There is a reason for choosing to store the terminology codes for each value
instead of only storing them on the input elements: some terminologies are very
specific about the circumstances in which a value is obtained, allocating multiple codes
for distinguishing on the way a sample is taken, where it was taken from and even at
what moment in time. LOINC is such an example, allocating quite a few codes just
related to the systolic blood pressure, as show in table 4.9.

Performing the actual mapping requires writing code that handles the specifics
of each terminology entry that the system is to support. Because this issue is not
part of the core functionality of the EHR system (it was doing fine recording health
records even without dealing with standard terminologies), it can be viewed as a
cross-cutting concern, similar to logging functionality found in most system. This is
important because it allows using techniques such as meta-programming to introduce
the feature of mapping to terminologies in legacy systems that might otherwise be to
complex or fragile to allow such an extension.

A programming technique called Aspect-Oriented Programming (AOP) enables
the separation of general code from aspects that cross the boundaries of a layer or
object [81]. Aside from simple use cases like implementing logging throughout an
application, the main strength of AOP is that it allows the developer to change the
behavior of methods. Technically, AOP implementations rely on: [81]

• Pre-processing the source code

• Post-processing to add instructions to the compiled binary code

BUPT

4.3 – Achieving Interoperability 89

LOINC_NUM COMPONENT SYSTEM

11378-7 Intravascular systolic Arterial system
20185-5 Intravascular end

systolic.XXX
Circulatory system.XXX

20186-3 Intravascular peak
systolic.XXX

Circulatory system.XXX

24370-9 Intravascular peak
systolic^during MR max
vel measurement

Arterial system.XXX

50402-7 Blood pressure systolic &
diastolic^post transfusion

Arterial system

50403-5 Blood pressure systolic &
diastolic^pre transfusion

Arterial system

8420-2 Intravascular systolic Aorta.abdominal.distal
8421-0 Intravascular systolic Aorta.abdominal.proximal
8422-8 Intravascular systolic Aorta.thoracic.proximal ascending
8423-6 Intravascular systolic Aorta.thoracic.ascending
8424-4 Intravascular systolic Aorta.thoracic.descending
8430-1 Intrachamber systolic Heart.ventricle.left
8431-9 Intrachamber systolic Heart.ventricle.left.outflow tract
8432-7 Intrachamber systolic Heart.ventricle.right

Table 4.9: Example LOINC codes related to the systolic blood pressure [80]

• Special compilers

• Code interception at run-time

AOP has been successfully employed in healthcare systems, as demonstrated
by the Healthlink project in Ireland where developers use the AOP approach to
implement creating and parsing HL7 messages [82]. The design aims to make use of
XML DOM handler classes and introduce the required behavior at appropriate execution
points in the base application. A comparison performed on an application called
HL7Browser shows a reduction in size by 70% (lines of class code) after refactoring the
HL7 functionality, which was scattered throughout the application, to use AOP [82].

In order to map a newly added health record values to a terminology, an
approach would be to intercept the repository method that is responsible for storing
the data. Upon interception, the entire form data is available and is passed to the
library dealing with finding the right terminology codes. After the codes are found, the
library populates the corresponding fields of the InputElementValue class and returns,
allowing the store method to pass updated class instances to the ORM layer for storing
in the database. Figure 4.14 shows the sequence of events.

By linking openEHR archetypes, one gets the benefit of being to use
the archetype term_bindings. Parsing archetypes from an openEHR repository
(https://github.com/openEHR/adl-archetypes) has resulted in identifying multiple
terminology codes, mostly SNOMED, mapped to available archetypes, as displayed

BUPT

90 Integrating Medical Standards – 4

cr
ea
te

id
en
tif
y
te
rm
in
ol
og
y

st
or
e
te
rm
in
ol
og
y

be
gi
nS
to
re
(f
or
m
In
pu
t)

m
od
ifi
ed
fo
rm
In
pu
t

pe
rs
is
t(
m
od
ifi
ed
fo
rm
In
pu
t)

re
su
lt

st
or
e(
fo
rm
In
pu
t)

re
su
lt

PO
S
T
/f
or
m
in
pu
t

re
su
lt

cl
ie
nt
:B
ro
w
se
r

co
nt
ro
lle
r:
C
on
tr
ol
le
r

re
po
si
to
ry
:R
ep
os
ito
ry

te
rm
in
ol
og
y:
A
sp
ec
t

db
C
on
te
xt
:O
R
M

fo
rm
In
pu
t:
Q
ue
ry

Fi
g.
4.
14
:
A
pp
ly
in
g
A
O
P
in
si
de
th
e
re
po
si
to
ry
fo
r
m
at
ch
in
g
te
rm
in
ol
og
ie
s.
W
he
n
pe
rs
is
tin
g
a
fo
rm

in
pu
t,
th
e
re
po
si
to
ry
ha
s
no
kn
ow
le
dg
e

of
te
rm
in
ol
og
y.
Th
is
is
in
je
ct
ed
in
to
th
e
en
tit
y
to
be
pe
rs
is
te
d
w
ith

th
e
he
lp
of
as
pe
ct
-o
ri
en
te
d
pr
og
ra
m
m
in
g
w
hi
ch
al
lo
w
s
in
te
rc
ep
tin
g
th
e

ca
ll
in
si
de
th
e
re
po
si
to
ry
,
ju
st
be
fo
re
th
e
en
tit
y
is
pa
ss
ed
to
th
e
da
ta
ba
se
co
nt
ex
t.

BUPT

4.3 – Achieving Interoperability 91

in table 4.10.

4.3.3. Clinical Document Architecture

D. Baranov has developed an open-source library for creating, parsing and
storing clinical documents, called HL7 SDK and available under Microsoft .NET and
COM technologies [83]. It provides full support for the HL7 CDA Release 2 standard
and was creating mostly by means of code generation from the HL7 CDA R2 XML
schema [83].

The HL7 SDK provides classes that express the structure of HL7 CDA
documents. The classes can be created/composed manually and then serialized as
an XML document which becomes a valid CDA document, or they can be imported
automatically by parsing an XML CDA document. The advantages of using such a
library when dealing with CDA documents are plenty:

• Compile time checks for any errors in the naming of elements

• No need to process XML by hand

• No need to constantly check XML schemas in order to figure out the details of
the document structure.

Figure 4.15 shows an example of how a section of a CDA document, which
records Asthma as part of the Past Medical History, is represented using HL7 SDK
classes.

The common approach, in the case of openEHR solutions, to outputting
documents of different standards, like HL7 CDA, is to make use of openEHR templates.
Figure 4.16 shows Ocean Informatic’s (an openEHR vendor) approach to using
openEHR to produce CDA R2 artifacts. By means of XSL transforms they manage
to generate CDA or CCD documents.

A more generic approach, similar to using openEHR templates, but not
restricting the usage to a system that is built around openEHR, involves the creation
of connectors, as illustrated by figure 4.17. Connectors, in this scenario, are software
components built specifically to consume or generate HL7 CDA documents that are
coming from or are destined for external systems. These documents either contain
external medical data that is to be inputted into the current system or exported
information from the current database for external destinations.

Setting of to create connectors for an arbitrary EHR system must account for
the following:

• A good understanding of the current system, especially software modules which
deal with the underlying database and whether or not these modules are friendly
to extensions

• Solid requirements on what data needs to be exchanged

• Identifying medical terminologies that will be used

• A good understanding of the HL7 CDA standard

BUPT

92 Integrating Medical Standards – 4
LO
IN
C

LA
12
0-
8

N
o
lim
ita
tio
n

S
N
O
M
ED
-C
T

60
62
10
09

B
od
y
M
as
s
In
de
x

S
N
O
M
ED
-C
T

27
19
22
00
9

O
ve
ra
ll
In
te
rp
re
ta
tio
n

LO
IN
C

LA
67
42
-6

B
ed
fa
st

S
no
m
ed

61
49
00
01

C
la
ss
I

S
N
O
M
ED
-C
T

27
27
41
00
3

S
id
e

LN
C
20
5

83
10
-5

H
is
to
ry
/A
ny

ev
en
t/
Tr
ee

/T
em
pe
ra
tu
re

S
N
O
M
ED
-C
T

68
02
70
08

M
od
ifi
ca
tio
n

S
N
O
M
ED
-C
T

27
39
03
00
6

V
is
ua
lA
na
lo
gu
e
S
co
re

LO
IN
C

LA
89
13
-1

A
de
qu
at
e

S
no
m
ed

85
28
40
03

C
la
ss
II
I

S
N
O
M
ED
-C
T

36
25
02
00
0

R
ig
ht
ey
e

LO
IN
C

LA
92
06
-9

Ex
ce
lle
nt

S
no
m
ed

89
32
30
01

C
la
ss
IV

S
N
O
M
ED
-C
T

36
25
03
00
5

Le
ft
ey
e

LO
IN
C

LA
96
03
-7

C
om
pl
et
el
y
lim
ite
d

S
N
O
M
ED
-C
T

11
31
47
00
2

D
ir
ec
t
Li
gh
t
Re
fle
x

S
N
O
M
ED
-C
T

36
39
53
00
3

M
ea
su
re
d
S
iz
e

LO
IN
C

LA
96
05
-4

Ve
ry
lim
ite
d

S
N
O
M
ED
-C
T

11
73
64
00
6

D
es
cr
ip
tio
n

S
N
O
M
ED
-C
T

36
39
55
00
5

Sy
m
m
et
ry

LO
IN
C

LA
96
05
-2

S
lig
ht
ly
lim
ite
d

S
N
O
M
ED
-C
T

12
89
75
00
4

At
re
st

S
N
O
M
ED
-C
T

36
39
83
00
7

In
te
rp
re
ta
tio
n

LO
IN
C

LA
96
06
-0

N
o
im
pa
ir
m
en
t

S
N
O
M
ED
-C
T

12
89
76
00
3

D
ur
in
g
ex
er
tio
n

S
N
O
M
ED
-C
T

36
60
60
00
0

O
ve
ra
ll
In
te
rp
re
ta
tio
n

LO
IN
C

LA
96
07
-8

C
on
st
an
tly
m
oi
st

S
N
O
M
ED
-C
T

12
89
78
00
2

Po
st
-e
xe
rt
io
n

S
N
O
M
ED
-C
T

37
09
96
00
5

H
as
re
so
lv
ed

LO
IN
C

LA
96
08
-6

Ve
ry
m
oi
st

S
no
m
ed

13
44
38
00
1

A
ng
in
a

sy
m
pt
om

C
la
ss
ifi
ca
tio
n
(C
C
S
)

S
N
O
M
ED
-C
T

37
22
78
00
0

To
ta
lG
le
as
on
sc
or
e

LO
IN
C

LA
96
09
-4

O
cc
as
io
na
lly
m
oi
st

S
N
O
M
ED
-C
T

16
24
08
00
0

C
lin
ic
al
D
es
cr
ip
tio
n

S
N
O
M
ED
-C
T

38
49
94
00
9

Pr
im
ar
y
G
le
as
on
gr
ad
e

LO
IN
C

LA
96
10
-2

Ra
re
ly
m
oi
st

S
N
O
M
ED
-C
T

16
24
42
00
9

D
ur
at
io
n

S
N
O
M
ED
-C
T

38
49
95
00
5

S
ec
on
da
ry
G
le
as
on
gr
ad
e

LO
IN
C

LA
96
11
-0

C
ha
ir
fa
st

S
N
O
M
ED
-C
T

16
24
65
00
4

S
ev
er
ity

S
N
O
M
ED
-C
T

38
50
02
00
7

Te
rt
ia
ry
G
le
as
on
gr
ad
e

LO
IN
C

LA
96
12
-8

W
al
ks
oc
ca
si
on
al
ly

S
N
O
M
ED
-C
T

16
24
66
00
3

Tr
iv
ia
l

S
N
O
M
ED
-C
T

38
56
33
00
8

Im
pr
ov
in
g

LO
IN
C

LA
96
13
-6

W
al
ks
fr
eq
ue
nt
ly

S
N
O
M
ED
-C
T

16
24
68
00
2

M
ild

S
N
O
M
ED
-C
T

39
20
17
00
2

Fr
eq
ue
nc
y

D
ou
bl
in
g

Pe
ri
m
et
ry
(F
D
P)

LO
IN
C

LA
96
14
-4

C
om
pl
et
el
y
im
m
ob
ile

S
N
O
M
ED
-C
T

16
24
69
00
5

M
od
er
at
e

S
N
O
M
ED
-C
T

39
21
32
00
6

FA
S
TP
A
C

au
to
m
at
ed

st
an
da
rd
pe
ri
m
et
ry

LO
IN
C

LA
96
15
-1

Ve
ry
po
or

S
N
O
M
ED
-C
T

16
24
70
00
6

S
ev
er
e

S
N
O
M
ED
-C
T

39
72
58
00
8

In
te
rp
up
ill
ar
y
D
is
ta
nc
e

LO
IN
C

LA
96
16
-9

Pr
ob
ab
ly
in
ad
eq
ua
te

S
N
O
M
ED
-C
T

16
24
71
00
5

Ve
ry
se
ve
re

S
N
O
M
ED
-C
T

39
72
82
00
3

Re
ad
in
g
A
dd
iti
on
Po
w
er

LO
IN
C

LA
96
17
-7

Pr
ob
le
m

S
N
O
M
ED
-C
T(
20
03
)

16
30
20
00
7

B
lo
od
Pr
es
su
re

S
N
O
M
ED
-C
T

39
75
24
00
1

Re
tin
os
co
py

LO
IN
C

LA
96
18
-5

Po
te
nt
ia
lp
ro
bl
em

S
N
O
M
ED
-C
T(
20
03
)

16
30
30
00
3

Sy
st
ol
ic

S
N
O
M
ED
-C
T

40
09
13
00
5

S
ne
lle
n
ch
ar
t

LO
IN
C

LA
96
19
-3

N
o
ap
pa
re
nt
pr
ob
le
m

S
N
O
M
ED
-C
T(
20
03
)

16
30
31
00
4

D
ia
st
ol
ic

S
N
O
M
ED
-C
T

40
09
14
00
4

ET
D
R
S
ch
ar
t

LO
IN
C

38
22
2-
6

S
en
so
ry
pe
rc
ep
tio
n

S
N
O
M
ED
-C
T

23
09
93
00
7

W
or
se
ni
ng

S
C
T

41
31
39
00
4

B
ra
de
nS
ca
le

LO
IN
C

38
22
3-
4

A
ct
iv
ity

S
N
O
M
ED
-C
T(
20
03
)

24
61
53
00
2

C
uf
f
si
ze

S
N
O
M
ED
-C
T

41
91
61
00
0

Le
ft

LO
IN
C

38
22
4-
2

M
ob
ili
ty

S
N
O
M
ED
-C
T

24
62
23
00
4

Pr
is
m
B
as
e
D
ir
ec
tio
n

S
N
O
M
ED
-C
T

41
94
65
00
0

R
ig
ht

LO
IN
C

38
22
5-
9

N
ut
ri
tio
n

S
N
O
M
ED
-C
T

25
17
62
00
1

Pr
is
m
S
tr
en
gt
h

S
no
m
ed

42
03
00
00
4

C
la
ss
I

LO
IN
C

38
22
6-
7

Fr
ic
tio
n
an
d
sh
ea
r

S
N
O
M
ED
-C
T

25
17
95
00
7

Po
w
er
of
S
ph
er
e

S
no
m
ed

42
08
16
00
9

N
YH
A
H
ea
rt
fa
ilu
re
cl
as
si
fic
at
io
n

LO
IN
C

38
22
7-
5

B
ra
de
n
to
ta
ls
co
re

S
N
O
M
ED
-C
T

25
17
97
00
4

Po
w
er
of
C
yl
in
de
r

S
no
m
ed

42
09
13
00
0

C
la
ss
II
I

LO
IN
C

38
22
9-
1

M
oi
st
ur
e

S
N
O
M
ED
-C
T

25
17
99
00
1

A
xi
s
of
C
yl
in
de
r

S
N
O
M
ED
-C
T

42
11
40
00
5

V
is
ua
lF
ie
ld
In
de
x

LO
IN
C

39
15
6-
5

B
od
y
M
as
s
In
de
x

S
N
O
M
ED
-C
T

25
18
02
00
5

In
te
rm
ed
ia
te

D
is
ta
nc
e
Po
w
er

S
N
O
M
ED
-C
T

42
13
62
00
4

Pa
tt
er
n
S
ta
nd
ar
d
de
vi
at
io
n

S
N
O
M
ED
-C
T

19
01
90
07

Sy
m
pt
om

S
N
O
M
ED
-C
T

25
18
94
00
3

Ex
er
ci
se
in
te
ns
ity

S
no
m
ed

42
17
04
00
3

C
la
ss
II

S
N
O
M
ED
-C
T

22
25
30
00

Pa
in

S
N
O
M
ED
-C
T

25
21
24
00
9

Te
st
in
g
D
is
ta
nc
e

S
N
O
M
ED
-C
T

42
22
56
00
9

C
F
-
C
ou
nt
fin
ge
rs

S
no
m
ed

41
33
40
00

C
la
ss
II

S
N
O
M
ED
-C
T

25
28
06
00
5

H
um
ph
re
y

S
N
O
M
ED
-C
T

42
26
73
00
1

U
S
S
ne
lle
n

S
N
O
M
ED
-C
T

50
12
10
07

S
pe
ct
ac
le
s

S
N
O
M
ED
-C
T

25
28
86
00
7

Re
fr
ac
tio
n
as
se
ss
m
en
t

S
N
O
M
ED
-C
T

42
28
59
00
7

M
ea
n
de
vi
at
io
n

S
N
O
M
ED
-C
T

57
36
80
09

C
on
ta
ct
le
ns
es

S
N
O
M
ED
-C
T

26
03
69
00
4

In
cr
ea
si
ng

S
N
O
M
ED
-C
T

42
30
83
00
7

G
la
uc
om
a
H
em
ifi
el
d
Te
st
(G
H
T)

S
N
O
M
ED
-C
T

57
46
50
06

Pr
ec
ip
ita
tin
g
fa
ct
or
s

S
N
O
M
ED
-C
T

26
03
71
00
4

D
ec
re
as
in
g

S
no
m
ed

44
34
28
00
4

B
ra
de
n
to
ta
ls
co
re

S
N
O
M
ED
-C
T

58
15
80
08

S
ta
bl
e

S
N
O
M
ED
-C
T

26
09
08
00
2

C
ou
rs
e

Ta
bl
e
4.
10
:
Te
rm
in
ol
og
y
fo
un
d
in
ar
ch
et
yp
es
fr
om

th
e
op
en
EH
R
re
po
si
to
ry
ht
tp
s:
//
gi
th
ub
.c
om
/o
pe
nE
H
R
/a
dl
-a
rc
he
ty
pe
s

BUPT

4.3 – Achieving Interoperability 93
<
ob

se
rv
at
io
n
cl
as
sC
od
e=
”C
ON
D
”
m
oo
dC
od
e=
”E
VN
”>

<
co
de

co
de
=
”1
95
96
70
01
”
co
de
Sy
st
em
=
”2
.1
6.
84
0.
1.
11
38
83
.6
.9
6
”
co
de
Sy
st
em

N
am

e=
”S
NO
M
ED

CT
”
di
sp
la
yN

am
e=
”A
st
hm
a”
>

<
o
ri
g
in
a
lT
e
x
t>

<
re
fe
re
n
ce

va
lu
e=
”#
a1
”/
>

<
/o
ri
g
in
a
lT
e
x
t>

<
/c
od
e>

<
st
at
u
sC
od
e
co
de
=
”c
om
pl
et
ed
”/
>

<
ef
fe
ct
iv
eT

im
e
va
lu
e=
”1
95
0”
/>

<
re
fe
re
n
ce

ty
pe
Co
de
=
”X
CR
PT
”>

<
ex
te
rn
al
O
b
se
rv
at
io
n>

<
id

ro
o
t=
”2
.1
6.
84
0.
1.
11
38
83
.1
9.
1.
27
65
”/
>

<
/e
xt
er
n
al
O
b
se
rv
at
io
n>

<
/r
ef
er
en

ce
>

<
/o
b
se
rv
at
io
n>

O
b
s
e
r
v
a
t
i
o
n

:

H
L
7
S
D
K
.
C
d
a
.
O
b
s
e
r
v
a
t
i
o
n

C
l
a
s
s
C
o
d
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

C
O
N
D

M
o
o
d
C
o
d
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

E
V
N

C
o
d
e

:

H
L
7
S
D
K
.
C
d
a
.
C
D

S
t
a
t
u
s
C
o
d
e

:

H
L
7
S
D
K
.
C
d
a
.
C
S

E
f
f
e
c
t
i
v
e
T
i
m
e

:

H
L
7
S
D
K
.
C
d
a
.
I
V
L
_
T
S

R
e
f
e
r
e
n
c
e

:

H
L
7
S
D
K
.
C
d
a
.
R
e
f
e
r
e
n
c
e
C
o
l
l
e
c
t
i
o
n

C
o
d
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

1
9
5
9
6
7
0
0
1

C
o
d
e
S
y
s
t
e
m

:

S
y
s
t
e
m
.
S
t
r
i
n
g

2
.
1
6
.
8
4
0
.
1
.
1
1
3
8
8
3
.
6
.
9
6

C
o
d
e
S
y
s
t
e
m
N
a
m
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

S
N
O
M
E
D

C
T

D
i
s
p
l
a
y
N
a
m
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

A
s
t
h
m
a

O
r
i
g
i
n
a
l
T
e
x
t

:

H
L
7
S
D
K
.
C
d
a
.
E
D

M
e
d
i
a
T
y
p
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

t
e
x
t
/
p
l
a
i
n

R
e
p
r
e
s
e
n
t
a
t
i
o
n

:

S
y
s
t
e
m
.
S
t
r
i
n
g

T
X
T

R
e
f
e
r
e
n
c
e

:

H
L
7
S
D
K
.
C
d
a
.
T
E
L

V
a
l
u
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

#
a
1

C
o
d
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

c
o
m
p
l
e
t
e
d

V
a
l
u
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

1
9
5
0

A
s
D
a
t
e
T
i
m
e

:

S
y
s
t
e
m
.
D
a
t
e
T
i
m
e

1
/
1
/
1
9
5
0

1
2
:
0
0
:
0
0

A
M

D
a
t
e
T
i
m
e
S
p
e
c
i
f
i
e
d

:

S
y
s
t
e
m
.
B
o
o
l
e
a
n

t
r
u
e

O
p
e
r
a
t
o
r

:

H
L
7
S
D
K
.
C
d
a
.
S
e
t
O
p
e
r
a
t
o
r

 I

I
t
e
m
_
0

:

H
L
7
S
D
K
.
C
d
a
.
R
e
f
e
r
e
n
c
e

T
y
p
e
C
o
d
e

:

H
L
7
S
D
K
.
C
d
a
.
x
_
A
c
t
R
e
l
a
t
i
o
n
s
h
i
p
E
x
t
e
r
n
a
l
R
e
f
e
r
e
n
c
e

X
C
R
P
T

A
s
E
x
t
e
r
n
a
l
O
b
s
e
r
v
a
t
i
o
n

:

H
L
7
S
D
K
.
C
d
a
.
E
x
t
e
r
n
a
l
O
b
s
e
r
v
a
t
i
o
n

C
l
a
s
s
C
o
d
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

O
B
S

M
o
o
d
C
o
d
e

:

S
y
s
t
e
m
.
S
t
r
i
n
g

E
V
N

I
d

:

H
L
7
S
D
K
.
C
d
a
.
I
I
C
o
l
l
e
c
t
i
o
n

I
t
e
m
_
0

:

H
L
7
S
D
K
.
C
d
a
.
I
I

R
o
o
t

:

S
y
s
t
e
m
.
S
t
r
i
n
g

2
.
1
6
.
8
4
0
.
1
.
1
1
3
8
8
3
.
1
9
.
1
.
2
7
6
5

Fi
g.
4.
15
:
Ex
am
pl
e
ob
je
ct
hi
er
ar
ch
y
us
in
g
th
e
H
L7
S
D
K
[8
3]

BUPT

94 Integrating Medical Standards – 4

Fig. 4.16: Ocean Informatics’ approach to using openEHR to produce CDA/CCD artifacts [84].
Their approach makes heavy use of the Extensible Stylesheet Language to transform XML data.

• Manual adjustments from domain experts may be needed where automatic
mapping fails.

As a lot of medical information needed to implement systems might already
be available in the form of openEHR archetypes, a good understanding of openEHR
specifications might prove valuable. As shown in the previous section, using openEHR
archetypes also helps when it comes to linking existing terminologies. Knowledge of
other approaches, such as that of openEHR, is thus helpful even if working with HL7
Clinical Document Architecture documents.

After the inputs are in order, code templates (like Microsoft’s Text Template
Transformation Toolkit (T4)) can be used to generate software components which will
handle specific use cases. Each component will provide a bridge between the external
system and the data store of the current one, either a NoSQL document database, or

BUPT

4.3 – Achieving Interoperability 95

a relational database, in which case an object-relational mapper is normally also used.
By using an SDK like HL7 SDK for creating an object model from CDA documents, the
connectors will be able to completely bypass dealing with any XML data directly, thus
focusing on the domain classes.

Although it requires more time to set up, generating connectors by using code
templates instead of simply creating XSL transforms that map XML documents from
one format into another is a more flexible approach and allows for more complex rules
to be easier expressed in a language that is more familiar to developers.

Generated Connectors

Domain Expert

Code
Templates

CodeDOM

HL7 CDA
Domain

Classes Subset

Manual
Adjustment

Medical
Terminologies

Relational
Database

Document
Database

Object-
Relational
Mapper

External Health System

EHR Documents

HL7 CDA
Document

HL7 CDA
Domain

Classes Subset

External Health System

HL7 CDA
Document

ICD-10

LOINC

SNOMED

HL7
standards

openEHR
specification

Standards

Requirements

Existing
System

Fig. 4.17: Connectors linking systems via CDA documents. Connectors are small software
components built specifically to transform data from one precisely defined source into another.
Building connectors that understand HL7 CDA documents coming from external systems allows
the data to be transformed into the format required by the target EHR system.

BUPT

96 Integrating Medical Standards – 4

Conclusions

This chapter provided important contributions which link the development of a
custom-made electronic health record solution with to existing medical standards and
terminologies.

The chapter began with a study on medical terminology, showing that the
incidence rate of canonical vs. derived medical terminology in natural language is
61/39% in English while the percentages is almost inverted when it comes to Romanian.
Given the fact that the LOINC codes are not translated into Romanian, the chapter
introduced an original study on how to translate such codes more easily, resulting in a
decrease of 65% in the average length of each value that requires translation, together
with a reduction by about 27% of the total number of unique values that need to be
translated.

A further original contribution concerning medical codes consisted of a study on
the possibility of using full-text search engines to match ICD-10 diagnostic codes. With
lots of numeric results, the study showed that search queries were found, consisting
of about 2.6 words/query, for distinctly matching between 74 and 86% of the codes
analyzed, depending on the engine used.

The chapter continued with creating a bridge between chapter 3 and chapter 2
by contributing ways of integrating an existing EHR application with medical standards,
specifications and terminologies. This part focused on linking openEHR archetypes
with the existing model based on input types. Such a link allowed the import of
terminologies directly referenced in archetypes found in open repositories and also
allowed an implementation of the Archetype Query Language using mapping to SQL
so that openEHR aware systems are able to execute queries against the presented
EHR solution.

BUPT

5. DEVELOPING A WEB FRONT-END FOR
ELECTRONIC HEALTH RECORDS

After laying out important considerations on the core architecture of a flexible
approach in building a solution for electronic health records, this chapter deals with the
somewhat different, but equally important aspects of developing the front-end part of
an EHR application.

As web technologies have evolved quite a lot in recent years, allowing the
development of rich web clients that run on a multitude of operating systems and
devices, from personal computers to portable tablets or mobile phones, it is only
natural for such a front-end to be developed as a web application.

The first section, Developing the Web Application starts by identifying the
required UI elements that the application should support. Afterwards it goes on analyze
ways on implementing the user interface. The section compares multiple approaches
and details why developing a rich single-page application is better than using other
approaches such as XForms, or openEHR templates. The main design consideration
in building this as a single-page application is the way the meta-structure of the input
elements in stored and forwarded to the client-side application, which then uses it
build the necessary UI elements on the fly.

The sections that follow deal with evaluating the user interface according
to user-experience guidelines and procedures. A user activity tracking framework
is developed and used to monitor how medics actually interact with a prototype
application. Section Analyzing the Users’ Activity than goes into detail of what can be
learned from the users’ interaction, leading the way for Improving the User Interface
to provide improvements.

5.1. Developing the Web Application

In order to efficiently manage the medical data, the employees (mostly medics,
but also system administrators) are presented with a rich web application, designed by
modern standards. This allows them to always securely connect to the latest version
of the software, from any device inside the medical network, running any modern
operating system.

This section explores how such a web application—which makes use of
everything presented in the previous sections—can be built, taking the user interface,
client-side and server-side programming into account.

5.1.1. Designing the Web Interface

Contrary to most web sites, where a user mostly reads information, web
applications are more concerned with gathering input from users. A web application

BUPT

98 Developing a Web Front-End for Electronic Health Records – 5

that focuses on collecting medical data about patients makes no exception, medics
having to fill in a lot of data for each patient form.

In order to provide a good user experience, the following requirements have
been identified after consulting literature and talking with a medical professional:

• Focus on the medical, clinical aspects and not the software itself as shown by
usability studies comparing the behavior of IT students and medical residents
[85]

• Administrators need to be able to update input forms and their constituent
elements through the web interface, without resorting to writing code

• Input forms must be easy to locate and select

• Inputs must be clearly visible and semantically grouped

• Each form needs to provide a good overview of all inserted values

• Text boxes need to be large enough to allow multi-word, even multi-sentence
inputs

• Numeric inputs should easily be differentiated from text ones, and clearly specify
the unit of measurement required

• Boolean inputs should allow distinction between a no value and a missing (not
entered) value

• Duplicate information should be entered, but filled in automatically if possible

• Contextual help information and longer descriptions should be available where
needed

• Initial form inputs should be easily distinguished from active ones

• Where possible, analytical interpretations of the values entered should be
displayed

• The data input application must be easily integrated into a parent, more larger
application.

The following paragraphs present a proposed web page layout aimed at dealing
with the above issues. The users’ needs are taken into account so as to provider them
with a better efficiency and satisfaction [86].

The pages make use of a popular framework called Bootstrap1. Because this
web application is aimed at delivering practically in an intranet environment (it is not
a public facing website), Bootstrap’s default theme, although less original, provides a
more than adequate choice.

1http://getbootstrap.com/

BUPT

5.1 – Developing the Web Application 99

Fig. 5.1: Editing the Anamnesis (family history) input element. The first required field is the
type of the input element, followed by it’s parent, name and description. Input elements can
also have an implicit value or multiple, commonly encountered, suggested values.

Administrating Elements

The major goal of this solution, when it comes to flexibility, is to allow the
systems administrators to easily update the set of input forms and elements from an
easy to use interface, without having to resort to writing code.

This goal is accomplished by providing an administrative interface composed
of two parts:

• Manage Input Elements

• Manage Input Forms

The first part presents the administrator with all the input elements and allows
for their creating/editing/deletion. Figure 5.1 lists the fields that can be edited when
it comes to adding a new input element. To save space, the fields are placed in two
columns, with the exception of the description which can contain more text.

BUPT

100 Developing a Web Front-End for Electronic Health Records – 5

Fig. 5.2: Configuring the elements that make up an input form, specifying whether they should
appear in the initial and/or active part and also choosing their relative order

Editing the input forms is more straight-forward as it only involves defining
a new/selecting an existing form and choosing the right elements that make it up,
together with the order in which they will be displayed, as can be seen in figure 5.2.

Presenting Input Forms

In order to be easily selectable, the input forms are displayed as tabs at the
top of the page. Upon selecting one, the selected form is distinguishable from the
non-selected ones and it presents the initial and active elements below in a two-column
layout, as can be seen in figure 5.3. The values for the initial evaluation are always
on the left side and those of the active one are on the right.

Each column then displays the appropriate input elements in a vertical layout,
with the label on top of the actual input. This provides more then adequate space for
each input. Scrolling will be necessary as each form contains many inputs, however
this approach was preferred over pagination because if gives a much better overall
view of the data entered.

Input groups can easily be distinguished by their header which uses a darker
background and by the specific icon placed to the left of the name. As the icon indicates,
groups can be collapsed and restored by simply clicking anywhere on their header, thus
allowing medics to easily skip over optional elements, for which they have no value.

Should the web page be viewed on a low-resolution device, such as a mobile
phone or tablet, the layout automatically changes to better fit the content, thanks to
Bootstrap’s responsive design. As shown in figure 5.4, the layout now uses only one
column, make uses of the entire width of the mobile device. The menu is also laid out
vertically as opposed to horizontally in case of the layout used on desktop displays.

Presenting Input Elements

Text elements can have value suggestions. These are presented in the form of
a drop-down button at the right side of the text input. Should the input have a default

BUPT

5.1 – Developing the Web Application 101

Fig. 5.3: Two-column layout showing the selected input form. The elements for the initial
evaluation are displayed on the left and those of the active one are on the right.

value, a button is added also to the right of the input, accompanied by a tool-tip saying
that it adds the default value and what the default really is.

In contrast to text elements which are implemented using an HTML <input />
tag, large text elements are implemented with the help of <textarea></textarea>,
allowing the text to span multiple rows and providing a scroll-bar, if necessary.

Numeric elements can be distinguished first by a different background
color and then by the measurement unit which accompanies most of them. The
measurement unit is displayed as a label at the right of the input, which also has
the text right-aligned, thus easily indicating that only the numeric part of the value
must be provided by the medic. Because numeric values need less space than text
ones, two of them can share the same row.

Similar to numeric elements are the calculated ones, the only differences
between them being that they are not editable and that most of them are accompanied
by a detailed description on the formula used.

Boolean elements use a simple <select></select> tag with three possible
choices: blank (not specified), yes and no. As is the case for numeric, calculated
elements, boolean elements can also be combined into two/row to save vertical space.

Combined elements present the usual label and then list all their child elements
in the row below using a different background color. This proximity indicates that the
elements are connected but does not draw too much attention.

Providing Feedback

Certain numeric inputs can be automatically analysed by simply comparing
their value to different intervals or tables (e.g. the heart rate). Where such
classification data is provided, the interface automatically updates the result when

BUPT

102 Developing a Web Front-End for Electronic Health Records – 5

Fig. 5.4: Layout used on mobile devices for showing the selected input form

BUPT

5.1 – Developing the Web Application 103

(a) Large text input element

(b) Text input element with value suggestions

(c) Numeric input element also showing the
measurement unit

(d) Boolean input element

(e) Calculated input element

(f) Combined input element with 4 numeric sub elements, each with measurement unit

Fig. 5.5: Various input elements

BUPT

104 Developing a Web Front-End for Electronic Health Records – 5

the user changes the value. Should this result also depend on other inputs (e.g. is the
patient also a smoker), than the update is performed automatically also after editing
each of the dependent input.

The feedback displayed is not only as text, but also in the form of a color to
immediately signal if a value is normal or abnormal, even dangerous. This instant
feedback also helps avoid typing errors as the medic can automatically tell that an
extra zero was added because a value, known to be normal, suddenly shows up as
highly dangerous. Figure 5.5e shows the value of ten year risk of having a heart
attack, automatically calculated based on other inputs. The resulting percentage is
also accompanied by a colored background indicating it’s severity. The formula and
color are based on a table found in [54].

Some inputs can have multiple classifications based on different other inputs
(e.g. look in that table if the patient is a teenager or in the other one if the patient
is old). A drop-down allows the medic to select between various classifications. The
system goes even further than that and automatically disables various classification
choices based on the available data (e.g. the system knows the patient is 40, so the
medic won’t select a classification only valid for teenagers).

Action Buttons

In order for users to be able to save the provided inputs, both the left and the
right column have a save button. The buttons are located both at the top and at the
bottom of the page to prevent the user from having unnecessarily scroll to the top just
to press the button.

Fig. 5.6: Action buttons displayed at the top and bottom of the input form. This saves the user
from having to scroll to the top to save changes when they have just reached the end of the
form.

Each input element is designed to allow the user to view it’s previous value
and to store various notes or comments. Because this feature is optional, in order not
to pollute the view, it is provided on demand with the help of two buttons placed after
each input element’s label.

BUPT

5.1 – Developing the Web Application 105

Fig. 5.7: Comments input for an input element triggered by an icon near the label. The icon’s
background signals that a comment is present.

Clicking the buttons triggers the display of new HTML elements containing the
previous value and/or the comments. The buttons change their background from white
to a specific color to indicate that such values are available. In order to expand all the
inputs that contain a previous value and/or comments, appropriate buttons are placed
at the top and bottom, near the save buttons.

5.1.2. Client-Side Development – Single Page Applications

Each web browser makes use of three types of inputs in order to control what
it displays on screen and how the user can interact with it: [71, 87]

1. HyperText Markup Language – contains text in a structured manner,

2. Cascading Style Sheets – define rules for positioning and styling textual
elements,

3. JavaScript – a scripting language which allows coding of interactions between
the web page and the user.

Initial approaches on building web applications involved a 1 to 1 relationship
between each screen displayed to the user and HTML documents (static or dynamic).
Thus, each user interaction with the web page triggered a request to the server which in
turn provided a new HTML document. Although this new document differs only slightly
from the previous one, the entire document still had to travel from the server to the
client each time, generating a lot of round trips. As the HTTP protocol is stateless, the
developer also had to maintain a way of persisting the client state across calls.

The development of client-side scripting languages such as JavaScript, now
supported by every major browser, together with the introduction of asynchronous
calls (commonly referred to as AJAX) have enabled a better approach in which the
client-side scripts request HTML fragments from the server and use them to modify
only part of the HTML document, avoiding a full round trip [71].

This approach has been taken even further to produce Single-Page Applications
(SPA), web pages that request the full HTML document only once and then rely of
heavy use of scripts to update the content displayed to the user. Choosing this path
for building the medical data collection application provides the following advantages
over the classic approach: [88, 89]

BUPT

106 Developing a Web Front-End for Electronic Health Records – 5

• Better separation of concerns – The server-side code handles the business logic
and the client-side code is the only one responsible for the user interface. As such,
UI templates are no longer processed on the server. Furthermore, as long as the
services exposed to the client remain the same, the server code can even be
migrated from one development platform to another without the need to change
the client code

• Client state is much easier to maintain across calls by simply storing the
information as JavaScript variables

• The user experience is enriched by reducing the time the users need to wait
between requests

• Performance improvements

• Ability to go offline for short periods of time without the user noticing

• Client-side logic is easier to test

• Server-side logic is easier to test

The generic advantages presented above also apply to a web application
dealing with medical input forms. The primary one is that performing network requests
in the background greatly improves the user experience by reducing the amount
on time in which the interface is unavailable. The user can simply click an action
button and then continue to perform more work, while the action is performed in the
background.

The fact that the page is loaded only once and not entirely refreshed on every
call allows for client-side state to be preserved as long as the user does not close the
tab hosting the page. This offers the advantage of preserving information between
calls without requiring extra round-trips to the server. This is particularly of use when
dealing with temporary information that is not yet persisted: the medic can enter
some details on one form, navigate to another one and come back to the original form
without loosing the information previously entered, although the save action was not
triggered.

Single page applications also have two important weaknesses:

• The client must have JavaScript enabled

• Search engines expect the content to be already rendered on the server in order
to crawl the web pages

In the context of medical applications, these issues are non-existent. First of,
search engine optimizations are not performed on intranet applications because they
are not available to the general public, as they contain sensitive information. Secondly,
JavaScript is enabled by default on all major browsers and studies show that, in recent
years, only about 1% of users [90] explicitly disabled it. In an intranet environment,
local software policies can also be enforced to always allow the execution of JavaScript
on specific pages.

In the case of solutions based on openEHR, one of the ideal goals is to make
use of operational templates in order to generate artifacts that can be used in building
UI forms [91]. This approach brings the following challenges:

BUPT

5.1 – Developing the Web Application 107

• A link needs to be maintained between form elements and the underlying
template

• The system needs to closely follow the openEHR specifications

• Integration into existing applications not built according to openEHR is difficult

• Generating a new form implies modifying the application and requires executing
a build step. In contrast, a rich single-page application receives all the data
necessary to generate the form at run-time.

Various authors [17, 92] suggest implementing online health forms using
XForms, “an XML markup for creating forms and form-like applications on the Web”
[93]. Although a promising technology, XForms does not enjoy support from web
browsers, requiring extra plugins or specialized software on the client side. Mozilla,
for example, has removed support for XForms in their Firefox web browser starting
with version 192.

HTML 5 forms together with a rich JavaScript client provide important features
for displaying highly customizable forms inside web browsers, without requiring extra
extensions.

Choosing AngularJS

One of the most famous JavaScript libraries for writing single page applications
is AngularJS, developed by Google.

The library not only features a powerful template system, based on
data binding and the Model View Controller (MVC) and Model View ViewModel
(MVVM) patterns, but is also a framework that allows developers to build logical
components and easily link them together with the help of Dependency Injection (DI)
[88]. AngularJS also integrates well with the popular jQuery framework used for
manipulating the Document Object Model (DOM) [88].

These features have made AngularJS a good choice for implementing the
client-side code of the web application. The JavaScript code is organized in a way
that allows it to preserve separation of concerns while benefiting from most of the
framework’s features: [88]

• Controllers – Create a bridge between the user interface and the business model,
forwarding user actions to methods of the model and updating the view model
when the business model signals changes.

• Directives – Encapsulate user interface components that can be reused in multiple
page views.

• Filters – Provide reusable logic for enhancing the way textual elements are
displayed and/or formatted.

• Modules – Define the AngularJS application objects.
2Removal note available at https://developer.mozilla.org/en-US/docs/Archive/Web/XForms

BUPT

108 Developing a Web Front-End for Electronic Health Records – 5

• Services – Provide the main business logic, often by calling API methods on
the server side, but also performing actions such as processing results from the
server to ease their use in the client-side code.

• Helpers – Contain auxiliary functions for processing arrays and strings in ways
not provided by the standard JavaScript library.

Displaying Input Elements

One of the main challenges faced by the client-side development is that of
displaying the appropriate input elements. After being provided by the server with
details on each element that belongs to an input form, the client side JavaScript code is
responsible for generating new DOM elements for displaying each input on the screen.

In the case of an architecture using AngularJS this can be accomplished by
using directives. Directives are very similar to custom controls used in desktop
applications. They allow the grouping of UI logic inside components that can be
reused throughout the web page. This makes them a perfect fit for implementing input
elements, as multiple instances of the same type of input element appear throughout
the input forms.

An AngularJS directive can control its scope, has functions for defining the
logic (before DOM elements are created – to customize what needs to be created,
and afterwards – to set up event handlers and watches) and usually makes use of a
template [88]. One such directive needs to be created for each type of input element.

The listing below illustrates the code and HTML template for the directive
implementing the boolean input element, a simple directive which requires no extra
logic apart from the model binding.

Implementation:

angular .module(’monitoringApp ’)
. direct ive (’ inputBoolean ’ , function () {

return {
templateUrl : urlLocation + ’Templates/inputBooleanTemplate .html ’ ,
replace: true ,
scope: false ,
l ink : function (scope , element , attrs) {
}

};
});

Template:

<select>
<option value=””></option>
<option value=”true”>Da</option>
<option value=” false ”>Nu</option>

</select>

Using the directive involves placing a custom element in the DOM of the web
page and letting AngularJS process it. The custom element also requires various
attributes, the most important of which being the name of the model on which

BUPT

5.1 – Developing the Web Application 109

the two-way data binding operates. Each input element is also given a unique id,
generated from the name of the actual input:

<input -boolean ng-model=” inputsIn i t ia l [29].currentValue”
data-value -array=” inputsIn i t ia l ” data-value - id=”29”
class=”form-control ng- val id ” id=”inputHTAi” name=”inputHTAi” />

Once all the required input directives are written, a façade is needed to isolate
the choosing of the appropriate directive based on the input element entity. This façade
is also implemented as a directive and leverages AngularJS’s $compile service in order
to obtain the actual input directive by processing a dynamically created HTML fragment
in which the name of the desired input directive is inserted. Figure 5.8 illustrates the
steps involved.

Processing Calculated Inputs

Some of the numeric inputs can be automatically calculated based on
information provided in other inputs, thus relieving the medic from having to enter the
same information multiple times. The single-page architecture allows for an instant
update of the calculated value as soon as any of the dependent inputs changes.

These calculated inputs are read-only and, internally, store a mathematical
formula which references other inputs. As an example, the following formula calculates
howmany years the patient has smoked by subtracting the age at which the patient has
started smoking from the age at which the patient has quit smoking (or the patient’s
current age if still smoking):

(@smokingEndAge > 0 ? @smokingEndAge : @patient[’age ’]) - @smokingStartAge

Because the client-side code is implemented using JavaScript, it is easier to
structure these formulas in a way that they can be evaluated using JavaScript’s built-in
eval() function. This allows for simple constructs as well as more complicated ones,
as seen above in the usage of the ternary operator.

In order to make the syntax as easy as possible, so that non-technical
administrators can edit and understand these formulas, the references to other input
fields look just like variables. They are in fact obtained by using the formula identifier
of the input to be referenced and prefixing it with the @ character. This character
is not valid in JavaScript variable names and thus prevents the accidental overlap of
identifiers with built-in JavaScript objects. In a similar way, information about the
current patient can also be referenced via the @patient identifier which behaves like
an array, providing various properties of the current patient.

The process of evaluating the formulas is coded inside an AngularJS service
and involves the following steps:

1. Enumerate all input elements and create hash map of all formula identifiers and
their corresponding element id,

2. Enumerate all input elements and, for each formula identifier, store all elements
that have a formula which references the identifier,

3. For each formula identifier, create an AngularJS scope watch which tracks the
current value of the identifier’s input element,

BUPT

110 Developing a Web Front-End for Electronic Health Records – 5

create

commonElements
result

create

process(’text’)
element

process(’largeText’)
element

process(’boolean’)
element

process(’numeric’)
element

process(’calculated’)
element

process(’combined’)
element

getInputElement

result

mixInputElementWithCommon

displayInput()

result

displayForms:View formInput:Directive compile:Service

formInputView:View

elementFacade:Directive

alt
[text]

alt
[largeText]

alt
[boolean]

alt
[numeric]

alt
[calculated]

alt
[combined]

Fig. 5.8: Sequence of steps taken for displaying input elements. The client side code iterates
through all input elements that need to be displayed and uses individual templates to render
each type of element on-the-fly.

BUPT

5.1 – Developing the Web Application 111

4. Whenever such a watch is triggered by the value being modified, iterate through
all the calculated input elements that depend on the input whose value has just
been changed and re-evaluate the formula.

When a formula is evaluated, it requires an extra pre-processing step before
it is passed to eval(). This step extracts all formula identifiers that start with @, looks
up the input element associated with each one (or special values such as @patient)
and replaces them with the present value of the element. As a security precaution,
the formulas are also cleaned for any function calls so as not to represent a security
issue when passed to eval(). As such, the formula above is converted into e.g.
(33 > 0 ? 33 : 50) - 19 which then leads to the final value of 14.

Evaluating formulas is not only useful in the case of calculated input elements,
but also for classifications. These apply only to individual input elements and contain
formulas which evaluate to a boolean value that determines classification to choose.

The flexibility of this formula system allows for instant feedback on data
ranging from a simple interpretation of blood pressure to more complicated, even
tabular, assessments of risks such as the 10-year risk of having a heart attack,
described in figure 5.9. Automating the process of determining such a value helps
the medic both by relieving the need to consult formulas or tables and by providing
an instant alert should a wrong value be inserted into one of the fields, causing an
unrealistic classification to be displayed.

5.1.3. Server-Side Development – Web API

The most important actions of the web application happen on the server.
Among them are:

• Authenticating & authorizing the client,

• Sending the required information to the client,

• Filtering the input from the client,

• Storing new data,

• Various cross-cutting concerns (logging, auditing, etc.).

Having implemented a rich, single page, client-side application changes the
role of the server from a traditional web server (which outputs HTML to the client) to
a service which can be interrogated by the client. This service still operates using the
HyperText Transfer Protocol (HTTP), but only outputs data, leaving the client to format
and display it in the best way it sees fit.

Because the client side code is written in JavaScript, formatting the server
data as JavaScript Object Notation (JSON) makes it very easy for the client to
consume. JSON is “a text format that facilitates structured data interchange between
all programming languages” [95]. It is easy to work with from any language and it
much less verbose than XML [96], thus requiring far less bandwidth. The listing below
exemplifies how an input element object is serialized using JSON.

BUPT

112 Developing a Web Front-End for Electronic Health Records – 5

Fig. 5.9: SCORE - European High Risk Chart. 10 year risk of fatal CVD in high risk regions of
Europe by gender, age, systolic blood pressure, total cholesterol and smoking status [94]

{
” id ” : 152,
” inputPrefix ” : ”inputANIDEFUMAT” ,
” label ” : ”Ani de fumat” ,
” longLabel” : ” ” ,
” description ” : ” ” ,
”type” : ” calculated ” ,
”parentId” : 148,
”defaultValue” : ” ” ,
”suggestions” : [] ,
” precision ” : null ,
”hidden” : true ,
” formulaIdentif ier ” : ”smokingYears” ,
”formula” : ” (@smokingEndAge > 0 ? @smokingEndAge : @patient [’age ’]) . . . ” ,
” formulaLabel” : ” ” ,
”combinedParentId” : 0,

BUPT

5.1 – Developing the Web Application 113

”combinedChildren” : [] ,
” c lass i f i cat ions ” : nul l

}

Having described the core business logic in section 3.3, what is basically left for
the server-side logic to do is create a bridge between the client and the core business
logic, interpreting the client’s requests and forwarding them to the business layer.

In contrast to traditional web services such as those using the Simple
Object Access Protocol (SOAP), single page applications are easier to integrate
with Representational State Transfer (REST) services. Such services characterize
themselves by being lightweight [97], using unique Uniform Resource Identifiers (URI)
to identify resources and common HTTP verbs to manipulate them [98], as can be seen
in table 5.1.

REST services make use of the fact that the same entity can be represented
in multiple ways and thus gain flexibility by decoupling the representation of an entity
when sent over the wire from the representation of the same entity when stored in
a database [99]. Not suprisingly, REST services are seeing an increasing adoption in
web platforms for healthcare [45, 46, 96, 97, 100, 101, 102, 103, 104].

Verb URI Result

GET /inputforms Retrieves all input forms
GET /inputforms/123 Retrieves the input form with id=123

POST /inputforms Stores a new input form

PUT /inputforms/234 Modifies an existing input form (id=234)

DELETE /inputforms/345 Deletes the input form with id=345

Table 5.1: Example of a RESTful service. Simplicity is achieved by using suggestive URLs to
identify resources and standard HTTP verbs to perform actions against them.

As do most of the technology stacks which target web applications [97], the
Microsoft .NET Framework offers an easy way to create RESTful services in the form
of a framework called ASP.NET Web API, with brings in features such as: [98]

• Convention-based CRUD Actions

• Built-in Content Negociation

• Support for OData

• Self-hosting

The ASP.NET Web API framework allows the creation of controllers which
subclass ApiController and implement methods for each supported HTTP verb. The
methods receive parameters and return various objects which are then serialized to
standard open formats such as JSON or XML [96, 102], depending of the client’s
request.

Figure 5.10 shows the methods implemented by the API controller which deals
with input forms. This class also makes use of data transfer objects in order to isolate

BUPT

114 Developing a Web Front-End for Electronic Health Records – 5

ApiController

InputFormsController

+ Get() : IEnumerable
+ Get(id : int) : FormJsonDto
+ Post(element : FormJsonDto) : boolean
+ Put(id : int, element : FormJsonDto) : boolean
+ Delete(id : int) : boolean

Fig. 5.10: UML class diagram showing the input forms API controller. The controller contains
methods for each HTTP verb that it handles. Request data is provided as method arguments
with the help of model binding.

the class that gets serialized to/from JSON (FormJsonDto) from the business layer
class. The serialization library uses reflection to determine the properties to serialize
and also allows extra configuration with the help of annotations.

Figure 5.11 presents a simplified view of the sequence of operations that occur
when a medic enters a new form for a patient. The client code requests a list of all
input forms. These are presented to the medic which chooses one of them. The client
then requests information about the structure of each input element contained in the
selected input form. Having received a reply, the elements are rendered on the screen
and the medic can start adding data. After the data is added, the medic clicks save
which triggers a POST request that sends the medic’s input to the server.

public class FormJsonDto
{

[JsonProperty(PropertyName = ” id ”)]
public int Id { get; set ; }
[JsonProperty(PropertyName = ”name”)]
public string Name { get; set ; }
[JsonProperty(PropertyName = ”longName”)]
public string LongName { get; set ; }
[JsonProperty(PropertyName = ” inputs”)]
public IEnumerable<FormInputJson> Inputs { get; set ; }

}

Keeping a clean architecture when it comes to implementing the web service
help keep a good separation of concerns between the domain and the application
services. An architecture based on open, standardized interaction protocols is also
implementable in any type of technology stack, preventing vendor lock-in.

5.2. Evaluating the User Interface

Once an electronic health records application is in production, medical
professionals which interact with it are not exposed to it’s inner workings, but instead

BUPT

5.2 – Evaluating the User Interface 115

create

get(getAllForms)

result

GET /inputforms

result

create

get(getInputElements)

result

GET /inputelements

result

create

store(formInput)

result

POST /forminput

result

client:Browser controller:Controller repository:Repository

getAllForms:Query

getInputElements:Query

formInput:Query

Fig. 5.11: Sequence of RESTful API calls. The client code first requests a list of all available
forms. After the client chooses a specific form, the code requests all the inputs elements of that
form. Later, when the form has been filled, the client provides the server with the form inputs.

interact with the user interface. As such it is essential to provide a good user
experience in order to improve productivity by making it easier for users to do their
job.

When talking about user experience, the theory of interaction design
distinguished between: [105]

• Usability goals – concerned with meeting specific usability criteria

• User experience goals – largely concerned with detailing the quality of the user
experience

In contrast to back-end systems, user interfaces often benefit from simple
considerations like, for example, improving the screen clarity and readability by making
screens less crowded. Studies show that this has been proven to increase productivity
by about 20% [106]. Avoiding crowded screens also applies in the case of medical
informatics where “complex tables, lists, charts, and diagrams are inevitable” [107].

Previous studies show that the “lack of good user interfaces has been long
recognized as a major impediment to the acceptance and routine use of clinical

BUPT

116 Developing a Web Front-End for Electronic Health Records – 5

informatics applications” [108, 109]. In the case of early user interfaces, a common
cause for complaint arose from the lack of a guidance to the desired workflow [109].

One of the solutions found was to migrate from the classical tabular way of
organizing forms to a design that preserves the look-and-feel of traditional paper
charts, to the extent that scrolling using the mouse wheel simulates the paper-flipping
behavior. [109].

An important step in the creation of a quality user interface is to perform a
proper evaluation. The usability of a product should be tested early in the development
process in accordance with modern usability practices, such as the user centered
design approach [110].

Among the multiple possible types of evaluations are, as described in [111]:

• Expert evaluation – involves analysts systematically stepping through a user
interface

– Heuristic evaluation – the interface is compared against a set of usability
guidelines and heuristics

– Cognitive walk-through – the user interface is being stepped through for a
task, noticing problems or responses

• Usability testing – involves observing representative end-users while interacting
with the system to carry out tasks

• Clinical simulation – is a type of usability testing conducted in a simulation
laboratory or in real setting to ensure a higher fidelity of the evaluation

• Post implementation surveillance – is a high fidelity evaluation based on the
actual usage of a live system.

In order to learn the navigation behavior of clinicians, studies used “a
sequential pattern analysis method to analyze actual usage recorded in the computer
logs that contain time stamped events” [109]. This method allows for the discovery of
hidden and recurring pattern within large sequences of events [112]. Emphasis is also
placed on making use of actual usage data from the interaction with a live system, as
opposed to laboratory exercises [109].

From a technical point of view, there is an issue with using server logs for
gathering usage information: “data left by many interactive applications in the server’s
log file is minimal and not sufficient for extracting detailed information about the actual
usage of the application” [113].

Information recorded in such logs only normally presents error events or
details about when a specific page was accessed by a user. Should information be
present about various forms that have been filled, it will not include specific details
such as the order in which the inputs have been filled out or whether the user has
encountered any difficulties in doing so [114].

A solution which enables tracking the users’ activity involves recording every
action that the users makes such as where and when the user moves the mouse or what
keyboard keys are clicked. This results in a large amount of data that doesn’t directly
provide any usability information. More abstract information needs to be inferred from

BUPT

5.2 – Evaluating the User Interface 117

it, while also taking various events into consideration which may account for the user
making various pauses [113].

A distinction can be made between two types of interactions with a website:
[113]

• Explicit interaction – the actions performed of which the user is aware of (e.g.
entering text in a form field)

• Implicit interaction – unconscious actions like hesitation before filling a form field
due to uncertainty about the correct answer.

The following sections present ways of performing a qualitative and
quantitative evaluation which, together with the results of applying them on the
developed prototype, have been published under [114].

5.2.1. Heuristics

Usability consultant Jakob Nielsen lists the following 10 general principles for
interaction design: [115]

• Visibility of system status

• Match between system and the real
world

• User control and freedom

• Consistency and standards

• Error prevention

• Recognition rather than recall

• Flexibility and efficiency of use

• Aesthetic and minimalist design

• Help users recognize, diagnose, and
recover from errors

• Help and documentation

Table 5.2 details how the current application design takes these principles into
consideration.

Principle Adoption

Visibility of
system status

The user can assess which inputs are filled and which not at
any moment
Each form also presents a progress indicator both on the top
of the page and on the bottom for better visibility

Match between
system and the
real world

The system is modeled on real-world concepts
The user interface presents medical information
The user interface doesn’t leak technical details

User control and
freedom

The use can change any input on the current form
All inputs are presented on the same page, without the need
for pagination

BUPT

118 Developing a Web Front-End for Electronic Health Records – 5

The save button can be clicked when the user is finished and
does not need to be used after each individual input

Consistency and
standards

The meaning of words is consistent throughout the interface
The medical forms presented are based on domain standards
and legislation

Error prevention Different types of input (text, numeric, yes/no) are clearly
differentiated in order to quickly indicate to the user what is
requested
Numeric inputs signal an error if textual data is entered
Numeric inputs are usually accompanied by measurement
units to prevent confusion and increase consistency
Numeric inputs support automatic classifications with color
codes to indicate the semantic of the value entered

Recognition
rather than
recall

By keeping the entire form on screen, the user can quickly
navigate back to a previously filled input, without requiring
pagination
Each type of input has distinguishing visual features that
make it easy to recognize

Flexibility and
efficiency of use

Accelerators are available to support keyboard navigation
Emphasis is places on the user having to supply as little
information as possible (e.g. the measurement unit is
already shown and the user must only enter the value in
question)

Aesthetic and
minimalist
design

Textual information is kept at a minimum
Details and help messages are only shown on demand to
prevent visual pollution when not needed
Aesthetic considerations are further details in section 5.2.2

Help and
documentation

Inputs support displaying long names to expand
abbreviations, help messages and even detailed
mathematical formulas for calculated items

Table 5.2: Respecting Jakob Nielsen’s principles of interaction design [115].

According to [116], the following criteria of user interface quality can be
considered:

• Speed of user’s work

• Complexity of user’s work

BUPT

5.2 – Evaluating the User Interface 119

• Quantity of user’s mistakes

• Speed of studying

• Subjective user’s satisfaction

5.2.2. Aesthetics

Given the fact that people prefer attractive user interfaces, a solution for
obtaining a good design on a tighter budget involves the use of automatic tools
for the evaluation of interface aesthetics [117]. Existing studies have introduced
mathematical formulas that enable an objective treatment of the aesthetic issues of
graphical user interfaces [118, 119, 120].

The listing below presents such formulas according to [119]:

• Balance

BM = −

∣∣∣∣∣∣∣
nL∑
i
aiLdiL−

nR∑
i
aiRdiR

max

(∣∣∣∣∣ nL∑i aiLdiL

∣∣∣∣∣,
∣∣∣∣∣nR∑i aiRdiR

∣∣∣∣∣
)
∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
nT∑
i
aiTdiT−

nB∑
i
aiBdiB

max

(∣∣∣∣∣nT∑i aiTdiT

∣∣∣∣∣,
∣∣∣∣∣nB∑i aiBdiB

∣∣∣∣∣
)
∣∣∣∣∣∣∣

L, R, T, B – Left, Right, Top, Bottom; aiX – area of object i on side X; diX – distance
between the central lines of the object i on side X and the frame; nX – total
number of objects on the side X

• Equilibrium

EM = −

∣∣∣∣∣∣
n∑
i
ai(xi−xc)

wframe

n∑
i
ai

∣∣∣∣∣∣+
∣∣∣∣∣∣

n∑
i
ai(yi−yc)

hframe
n∑
i
ai

∣∣∣∣∣∣
(xi,yi) – coordinates of the center of object i; (xc,yc) – coordinates of the center
of the frame; wframe – width of the frame; hframe – height of the frame

• Unity

UM =

∣∣∣ − nsize−
n

∣∣∣+
∣∣∣∣∣∣ −

alayout−
n∑
i
ai

aframe−
n∑
i
ai

∣∣∣∣∣∣
ai – area of object i; alayout – area of the layout; aframe – area of the frame;
nsize – number of sizes used; n – number of objects in the frame

• Proportion

PM =

∣∣∣∣n n∑
i

(
− min(|pj −pi|,|pj −pi|,...)

.

)∣∣∣∣+ ∣∣∣ − min(|pj −playout|,|pj −playout|,...)
.

∣∣∣

BUPT

120 Developing a Web Front-End for Electronic Health Records – 5

pi =

hi
wi

;hi ≤ wi

wi

hi
;hi > wi

playout =

hlayout
wlayout

;hlayout ≤ wlayout

wlayout

hlayout
;hlayout > wlayout

{
pj ,pj ,pj ,pj ,pj

}
=

{
, √ ≈

.
,

+
√ ≈

.
, √ ≈

.
,

}

wi – width of the object i, hi – height of the object i, wlayout – width of the layout,
hlayout – height of the layout

• Simplicity

SMM =
nvap + nhap + n

nvap – number of vertical alignment points; nhap – number of horizontal alignment
points; n - number of objects in the frame

• Density

DM = −

∣∣∣∣∣∣∣∣ . −

n∑
i
ai

aframe

∣∣∣∣∣∣∣∣
ai – area of the object i; aframe – area of the frame; n – number of objects in the
frame (the authors assume 50% as the optimum screen density level)

• Economy

ECM =
nsize

nsize – number of sizes used

All of these aesthetic measures are confined “to examining only the dimension
and position of rectangular regions in order to control content effects and to facilitate
interpretation of the data analyses” [119]. The result of applying the formulas is a
numeric value between 0 (worst) and 1 (best) [119].

BUPT

5.2 – Evaluating the User Interface 121

Aesthetics Results

A first step in calculating the measures presented above was to render a
screenshot of the web application showing all the inputs of one input form. This
resulted in a 1643x3265 bitmap which was then processed to extract the coordinates
of all its inner rectangles [114].

As the amount of text displayed along side an empty form is quite low and text
is normally present in the form of labels for each input, the analysis was conducted
once without taking input labels into account and once with them in mind as small
bounding rectangles for each individual word [114]. The results are presented in table
5.3.

Measure With Input Labels Without Input Labels

Balance 0.7704 0.7706
Equilibrium 0.9790 0.9842
Unity 0.4797 0.4776
Proportion 0.7344 0.5601
Simplicity 0.0051 0.0192
Density 0.9353 0.9745
Economy 0.0227 0.0833

Table 5.3: Analysis of aesthetics measures [114]. The two-column layout provides a good score
for a number of measures. Simplicity and Economy are quite low as they advocate displaying
only a few elements on screen, a situation which cannot be accomplished due to the complexity
of medical inputs.

A quick overview shows that the values describing economy and simplicity are
low. This however is of no surprise, as these two metrics decline rapidly as the number
of objects on the screen grows, a situation with is inevitable due to the complexity of
medical inputs.

The score for proportion is above 0.5, however it shows room for improvement
as the value is negatively influenced by the high width/height ratio of most input forms.
Unity is another measure which can be improved, in this case by increasing the margin
of the layout in regards to the whole page and, at the same time, reducing the space
between individual elements, compacting the screen [114].

The chosen layout shows a good balance, avoiding the placement of heavy
objects on only one side. Further improvements can be made by reducing the size of
the header shown at the top of the page, or by adding a footer to balance it better.

Using a two-column layout to present the initial recordings at the same time
as the active ones leads to a very good equilibrium and also contributes to density
having a similar high score.

With the exception of propertion, taking the input labels into account or not
when computing the scores brings very little differences.

Section 5.5.1 discusses ways of improving the aesthetics scores.

BUPT

122 Developing a Web Front-End for Electronic Health Records – 5

5.2.3. Goals, Objects, Methods and Selection Rules

A method for performing quantitative analyses of user interface design is the
classic model of goals, objects, methods and selection rules (GOMS) presented by
[121]. This method enables the analysis of various operations on a specific user
interface in order to find out how much time an experienced user would require to
perform them [122].

The keystroke-level model, one of simpler yet still valuable, GOMS method,
relies on the observation that “the time it takes the user-computer system to perform
a task is the sum of the time it takes for the system to perform the serial elementary
gestures that the task comprises” [122].

The authors of the GOMS method have come up with timings for different
gestures, by means of laboratory experiments. When a keyboard and graphical input
device are involved in solving the task, they found these typical timings to be enough
for conductive comparative analyses as opposed to the much more demanding task of
having to measure the exact time it takes each individual [122].

Each type of action was assigned a specific one-letter mnemonic, as can be
seen in table 5.4. When performing an evaluation, after all the actions needed to
perform a task are identified, each is associated with the specific mnemonic. The
resulting mnemonics are then concatenated to form a string and their durations are
summed up.

Mnemonic Duration Description

K 0.2 sec The time it takes to tap a key on the
keyboard

P 1.1 sec The time it takes to point to a position on
the display

H 0.4 sec The time it takes the user’s hand to switch
from the keyboard to the graphical input
device or vise versa

M 1.35 sec The time it takes the user to prepare
mentally for the next step

R The time it takes the computer to respond
to input

Table 5.4: Timings used by the GOMS model [121]. The actual values differ from person
to person, however the average values found in literature can be used when comparing the
interactions required before and after changing a specific user interface.

Table 5.5 shows the results of performing an analysis of the web application
prototype using the GOMS model for the following inputs:

1. Anamneză Expectorație în cantități reduse

2. Hemoglobina 11 g/dl

3. Leucocite 10000 /mm

BUPT

5.3 – Developing a Framework for Automated User Activity Tracking 123

4. Trombocite 265000 /mm

5. Vaccinare antigripală Neefectuată

Input GOMS Representation Duration
Total Actual Input

#1 HPKHKKKKKKKKKKKKKKKKKKKK
KKKKKKKKKKKK

8.5 sec 6.4 sec

#2 HPKHKK 2.5 sec 0.4 sec
#3 HPKHKKKKK 3.1 sec 1.0 sec
#4 HPKHKKKKKK 3.3 sec 1.2 sec
#5 HPKHKKKKKKKKKKK 4.3 sec 2.2 sec

Table 5.5: Quantitative analysis using the GOMS model [114]. As more text needs to be
provided, the time spent preparing for this task becomes negligible.

The results of the analysis indicate an efficient user interface as the user does
not waste time with secondary actions, spending the most amount of the time entering
the actual information in the input fields. The amount of time spent before starting
to enter data in a field (e.g. required to navigate to a desired input) is constant and
becomes ever more insignificant the more information the user needs to input [114].

A constant delay of 2.1 seconds has been identified when navigating from one
input field to another using the mouse. By displaying all the inputs on the same page
and not hiding them in tabs or various sub window, this delay is kept under control.
In the case of small inputs, it might take longer to navigate to a field using the mouse
than to actually provided the necessary input. The solution to this is to benefit from
the fact that numeric inputs are often placed close to one another and can be reached
via keyboard navigation. Thus, a single key press (taking 0.2 sec) is often sufficient
to move to the next input, resulting in a significant reduction of the delay [114].

5.3. Developing a Framework for Automated User
Activity Tracking

The first step towards towards analyzing the user experience provided by an
interface is to record and log the interactions between the user and the application.
To this purpose, this section presents a developed web framework which transparently
tracks the medic’s actions while using the application and provides information such
as: [114]

• How was the web page rendered on the client machine?

• Where and how often did the user move the mouse?

• What did the user type using the keyboard and in which field?

BUPT

124 Developing a Web Front-End for Electronic Health Records – 5

5.3.1. Existing Tracking Solutions

Traditionally, web pages behave by requesting a new web page from the server
every time a link was clicked. This behavior has led to the development of industry
standard analytics frameworks like Google Analytics3. Such frameworks record when
and by whom a web page is accessed and also provide an the interpretation of the
data to the web site administrator.

Such tracking solutions, however, come with the major drawback of being
designed for public facing web-sites and not intranet applications: [114]

• The recording is handled by an external server that must be reachable from the
client machine. This can be a problem especially if, from a security point of view,
one does not want external services to come in possession of information on the
users’ activities.

• The analytics provided (what pages does a user navigate to, how often does
one return to the website) are mostly targeted at marketing departments, not
user-experience engineers.

The introduction of single-page applications complicates matters quite a bit,
making the task of recording relevant information harder. This is due to the face that,
from the browser’s perspective, the user is still on the same page even if, after clicking
a link, the content of that page changes almost entirely [114].

The solution for this in the case of scripts such as the one provided by Google
Analytics has been to allow the developer to write code that manually notifies the
tracking service that a new page view is being shown to the user: “To track dynamically
loaded content as distinct pageviews you can send a pageview hit to Google Analytics
and specify the Document Path by setting the page field” [123]. The downside to this
approach is that the need to explicitly provide this kind of information increases the
development time proportionally to the number of distinct views.

Other companies offer commercial online analytics that are more centered
on detecting user experience issues: ClickTale®4, ExtraWatch™5, Mouseflow6,
Seevolution®7. Their serivices include: visualizing heat maps showing mouse
movement, replaying the actions in a session and analyzing the completion of forms.

5.3.2. Creating a Custom Solution

Instead of opting for an already available solution, a decision was made to
create a custom one for recording and analyzing the data. This provides the following
benefits: [114]

• The recordings can be stored on the same server used to host the web application
being tested. This in turn:

3http://www.google.com/analytics/
4http://www.clicktale.com/
5http://www.extrawatch.com/
6https://mouseflow.com/
7https://www.seevolution.com/

BUPT

5.3 – Developing a Framework for Automated User Activity Tracking 125

– Protects the privacy of the data which no longer travels to external servers

– Has the same up/downtime as the web application

– Allows for lower latency and lower bandwidth usage

• The type of data being collected is not limited to presets

• The way in which the tracking information is being analyzed can be improved
without having to wait on 3rd parties to update their code.

Creating a framework for tracking user activities on a web page involves two
major steps: recording the events and sending the records to a server for storage
[114]. The sequence of events that take place is presented in figure 5.13.

Gathering Event Data

The main requirement for the custom framework was to correctly handle
single-page applications. As such a decision was taken to perform all data gatherings
on the client side.

Implementing such a feature is quite trivial as current web browsers already
offer JavaScript API’s for listening for a variety of events [113]. The listing below
shows how event handlers registered using jQuery receive information on any mouse
movement, click or key press on a page:

$(’body ’) .mousemove(function (event) {
eventTracker .mousePosition = {

x: event .pageX,
y: event .pageY

};
});

$(’body ’) . c l i ck (function (event) {
eventTracker . logClick (event);

});

$(’body ’) . keypress(function (event) {
eventTracker . logKeyPress(event);

});

Because the moving the mouse creates a lot of events, especially if the users
moves it from one part of the screen to another in a very short amount if time,
recording the position of mouse cursor is only performed every 50ms.

Reading that the mouse cursor was as position (40, 100) does not reveal any
information, by itself. In order for it to be useful, the position needs to be correlated
with whatever element the cursor was hovering upon. The first solution that comes
to mind in this regards is to superimpose the position of the cursor on a screenshot
showing the web page in question. This approach however must be pursued with
caution as the way a web page is rendered depends heavily on the client screen
resolution and also the browser used.

To overcome the problem of where exactly is the cursor positioned in relation
to the web page, the developed framework includes a “screenshot” of how the page is
actually rendered on the client’s browser. This is technically accomplished by using an

BUPT

126 Developing a Web Front-End for Electronic Health Records – 5

open-source library called html2canvas8 to render the current page on a canvas. The
content of the canvas is then exported to a bitmap and sent to the server.

As single-page applications can display multiple views in what is still,
technically, the same web page, a solution was needed to transparently detect when
such a view changes in order to avoid hard coding events. Because the web application
under analysis mostly changes its view when a medic navigates to a different input
form, and different forms contain different amount and type of inputs, the solution
found was to rely on the change of page height to identify a change in the current
view.

As such, whenever the total page height changes, a new recording is started
for the current user. This recording contains the screenshot of the current layout and
also the coordinates of all the visible DOM elements in the current view. In order to
account for the time it takes the browser to actually render the page, time in which the
page height progressively grows until all elements are rendered, a two second delay
is used from the first page height change event to the moment the actual recording is
started.

Sending the Tracking Data to the Server

After the client script gathers information on the user’s actions, the tracking
data needs to be uploaded to the server for persistence.

An easy approach would be to send traditional HTTP requests on each event
with a small payload detailing the action taken by the user (e.g. click x=815;y=231
target=id:SPAN16 [113]). However, because the HTTP protocol is stateless [124], this
approach ends up creating a lot of requests in the process, thus requiring the transfer
of much more data (TCP handshakes, HTTP headers) than the actual intended payload
[114]. Figure 5.12 shows how a 94 byte payload actually requires 388 bytes to be
transferred due to the HTTP headers.

A better solution found involves the use of the newer Web Sockets standard
which “enables two-way communication between a client running untrusted code in a
controlled environment to a remote host that has opted-in to communications from
that code” [125]. This solution works much like a normal TCP connection, keeping
a channel open between the client and the server for the duration of the page being
displayed in the browser.

The web socket protocol is much more efficient when it comes to the data
transferred, adding very little extra overhead when transferring the data after the
initial handshake is completed. This brings the benefit of not affecting the user’s
experience while using the web application while the activity tracking takes place at
the same time.

The records containing the client’s actions are serialized using the JSON format,
easy for both the client-side JavaScript code to create, and for the server-side code
to interpret. Each event is an entry in an array, with properties describing at least
its type of event and the time stamp (milliseconds elapsed since the recording was
started) [114].

8https://html2canvas.hertzen.com/

BUPT

5.3 – Developing a Framework for Automated User Activity Tracking 127

Fig. 5.12: Packet capture showing the overhead of HTTP headers. Sending small amounts of
data at a time requires considerably more bandwidth due to the size of the headers.

As can be seen in the listing below, property names are kept short to preserve
bandwidth, a mouse move (“m”) event contains the new coordinates, a key input
(“k”) event contains the id of the DOM element where the key was pressed, along
with the key’s character code (100 – d); and a screen content changed (“s”) event
contains the new size of the page and the DOM elements that comprise it (each with
id and bounding rectangle). Assigning id’s to each distinct input element has proven
to simplify identifying them [114].

{
” t ” : ”m” , ” ts ” : 1673959, ”x” : 92, ”y” : 1603

}, {
” t ” : ”k” , ” ts ” : 1674762,
”c” : 100, ” id ” : ”inputMURMURVEZICULARi” ,

}, {
” t ” : ”s” , ” ts ” : 1675815,
”w” : 1349, ”h” : 3137,
”e” : [{

” id ” : ”labelinputANAMNEZAi” ,
”x” : 36, ”y” : 343, ”w” : 71, ”h” : 20

}, {
” id ” : ”buttonPrevinputANAMNEZAi” ,
”x” : 111, ”y” : 348, ”w” : 12, ”h” : 18

}, {
” id ” : ”inputANAMNEZAi” ,
”x” : 36, ”y” : 373, ”w” : 582, ”h” : 20

}
]

}

The amount of bandwidth required for transferring the recordings is further
reduced by compressing the (text) JSON documents using the deflate algorithm9. As
compression is more effective, the greater the amount of data that can be scanned for

9https://tools.ietf.org/html/rfc1951

BUPT

128 Developing a Web Front-End for Electronic Health Records – 5

potential duplicates, the JSON entries are stored in a buffer where they accumulate for
5 seconds before the buffer is compressed and sent over the wire. The compression
ratio obtained is about 23% for the average entries and 56% for the initial entries
which contain the screen elements and the screenshot inserted as a base64 string in
the JSON document [114].

If making small changes to a live application (in order to also include the scripts
required by the tracking framework) is not possible, [113] presents a solutions that
uses an HTTP proxy in order to modify HTML pages before passing them on to the
client browser. In their scenario, the proxy also intercepts the tracking data and logs
it; however this method leads to more connections and more bandwidth being used
then my solution presented above.

5.4. Analyzing the Users’ Activity

In order to evaluate the users’ experience in using the resulting web
application, I have uploaded a prototype on a publicly accessible web site and created
a medical scenario detailing information, about a fictitious patient consultation, that
needs to be inputted into the forms.

The scenario, a screenshot of which is shown in figure 5.14, contains
information relevant to two chronic diseases, ranging between textual, numeric and
even boolean inputs. The same scenario was presented to all candidates and it also
included an introductory guide on how to use the application [114].

Twenty medical doctors and residents have accepted the invitation to pilot the
prototype. Their interactions with the web application has been logged in detail and
later analyzed using various methods [114].

5.4.1. Heat Maps

Tracking the users’ eye movements, analyzing what they are focusing at, is an
important method in understanding how a user interacts with something shown on a
computer screen.

Normally, performing such an analysis is difficult as it implies the use of
expensive monitoring equipment and a controlled environment. However, studies
have found that plotting the users’ mouse movements gives a good indication of what
elements the user’s eyes were focusing at [126].

As presented in section 5.3.1, a popular method for visualizing mouse
movement offered by commercial solutions is in the form of heat maps. Heat maps
are 2D plots, overlaid upon the screenshot of the web page, which indicate the relative
time the mouse pointer has hovered over specific areas using color hues.

Based on the position of the mouse, logged by the tracing framework, and the
screenshot of how the web page got rendered on each client browser, heat maps were
plotted by varying the colors’ hue from 0°(red) to 240°(blue) and using a radius of 40
pixels.

When using the default, linear scale, one issue that became immediately
apparent was that a lot of users left the mouse cursor in a stationary point for a longer
period of time [114]. This, as can be seen in figure 5.15a, led to mouse movement

BUPT

5.4 – Analyzing the Users’ Activity 129

fe
tc
h

ht
m
l

in
iti
al
iz
e

ne
w
re
co
rd

in
iti
al
iz
e

w
eb
so
ck
et

in
iti
al
iz
e

w
eb
so
ck
et

re
nd
er

sc
re
en
sh
ot

sc
re
en
sh
ot

re
gi
st
er
ho
ok
s

sc
re
en
sh
ot

lo
ad

pa
ge

st
or
e

st
or
e

no
tif
y

m
ou
se
/k
ey
ac
tio
n

no
rm
al
re
pl
y

cl
ie
nt
:U
se
r

br
ow
se
r:
B
ro
w
se
r

se
rv
er
:H
TT
P

cl
ie
nt
S
id
e:
Tr
ac
ki
ng

se
rv
er
S
id
e:
Tr
ac
ki
ng

da
ta
ba
se
:D
oc
um
en
t

Fi
g.
5.
13
:
S
eq
ue
nc
e
of
ev
en
ts
de
sc
ri
bi
ng
th
e
tr
ac
ki
ng
fr
am
ew
or
k

BUPT

130 Developing a Web Front-End for Electronic Health Records – 5

Fig. 5.14: Example information shown in the user experience evaluation scenario [114]. All
users are requested to input the same information in the pilot, in order to be able to compare
results.

(a) Linear scale (b) Logarithmic scale

Fig. 5.15: Heat maps using a linear and logarithmic scale. They show where the mouse has
remained stationary for the longest periods.

BUPT

5.4 – Analyzing the Users’ Activity 131

barely visible in other areas of the page, because the cursor stationed for far less in
those areas. A solution was to use a logarithmic scale which, as shown in figure 5.15b,
enables an easier distinction between areas in which the cursor was stationed a lot,
was just passing through or did not reach at all.

After analyzing multiple user sessions and comparing the generated heat maps,
it became obvious that users hovered a lot over click-able areas like the navigation
links at the top of the page, or the actual input forms. Figure 5.16 shows the link
between the eye and mouse movement as the user moves the cursor along a line of
text while reading it [114].

Fig. 5.16: Heat map showing the cursor following a text while the user reads [114]

The observation that the mouse is used for navigation from one input to
another, as indicated by the concentration of spots on the heat maps, prompted a
further analysis by super-imposing each heat map with the location of recorded mouse
clicks. As can be seen in figure 5.17, areas where the mouse is stationed for a longer
time are also accompanied by mouse clicks. The users activate the inputs with their
mouse which then remains stationary while the keyboard is used to enter data [114].

A more detailed analysis shows that 78% of inputs are activated using
mouse-clicks with only 22% using the keyboard by means of the TAB key [114]. Figure
5.17 also shows that, by placing the measurement unit on the right side of the numeric
inputs, the user was able to correctly deduce that the text of numeric inputs is aligned
to the right [114].

Fig. 5.17: Heat map also highlighting mouse clicks [114]

BUPT

132 Developing a Web Front-End for Electronic Health Records – 5

5.4.2. Mouse Movement

One type of information that is not visible on heat maps is the chronology of
the mouse movement. Although this is usually viewed as an animation, I was able to
plot the chronological movement in the form of a single image by again using different
hues to indicate the movement’s direction. Apart from that, the starting position is
marked with the big, filled, red circle and the amount of time the mouse is stationed
in a single point is indicated by varying each segment’s width.

(a) Easy to follow (b) Hard to follow

Fig. 5.18: Chronology of the user’s mouse movements

One disadvantage of this method, as highlighted by figure 5.18, is that it can
quickly become to congested and thus hard to read. However, it still managed to show
important information on the flow of the users’ activity on the page.

5.4.3. Input Analysis

As expected and also shown by the GOMS analysis, the majority of time spent
in the application’s user interface involves providing textual input. While the speed of
typing letters is heavily dependent on the user’s dexterity, the order in which the user

BUPT

5.4 – Analyzing the Users’ Activity 133

fills the inputs, along with the ease to find the exact input one searches is important for
boosting productivity by reducing the time spent navigating around the page [114].

In order to visualize the order in which inputs were filled, the analysis looked
at the chronology of each keyboard click and plotted arrows that indicate the temporal
relation between inputs.

(a) Left-to-Right, Top-to-Bottom (b) Mixed order

Fig. 5.19: Order in which inputs are filled [114]

Figure 5.19 presents such plots. In order to indicate the chronological order,
the arrows are colored using different hues, in ascending order (red, yellow, green,
blue, violet). The plots also contain the number of characters entered in each text box.
The majority (90%) of inputs are entered in a left-to-right, top-to-bottom order, as
is natural for the Romanian (and/or English) language [114]. Figure 5.20 details this
percentage. Figure 5.19b presents an example in which some inputs are skipped and
then went back on.

When it comes to the typing speed of the users, calculations where performed
on the duration of each keyboard click as the difference in the time stamp of two
consecutive entries. These results, as exemplified in figure 5.21, also highlight an
important aspect: occasionally, the duration spikes because the user stops to think or
navigate to a different input.

In order to get a better overview of which data entries can be discarded, a
histogram was plotted showing how many occurrences there are of various durations
between inputs, taking the entries for all users into account. Based on it, one can
safely consider that entries taking longer than 2500 ms are caused by other factors

BUPT

134 Developing a Web Front-End for Electronic Health Records – 5

Fi
g.
5.
20
:
D
ir
ec
tio
n
of
na
vi
ga
tio
n
be
tw
ee
n
ad
ja
ce
nt
in
pu
ts
[1
14
].
Th
e
m
aj
or
ity

of
in
pu
ts
ar
e
fil
le
d
in
a
le
ft
-t
o-
ri
gh
t,
to
p-
to
-b
ot
to
m
or
de
r.

N
um
be
rs
in
di
ca
te
ho
w
m
an
y
tr
an
si
tio
ns
ha
ve
oc
cu
rr
ed
fr
om

an
in
pu
t
to
an
ot
he
r
on
e
w
hi
ch
is
to
th
e
ri
gh
t/
bo
tt
om

(f
or
w
ar
ds
)
or
to
th
e
le
ft
/t
op

(b
ac
kw
ar
ds
).

BUPT

5.5 – Improving the User Interface 135

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

M
ill

is
e

co
n

d
s

b
e

tw
e

e
n

 c
lic

ks

Fig. 5.21: Spikes indicating pauses when writing. Longer pauses are often an indication of the
user switching to a different input.

and can be excluded from calculating the average writing speed [114].
The results of analyzing the writing speed, when expressed as

characters/minute are shown in table 5.6.

Measure CPM

Minimum 135.0
Maximum 245.3
Mean 175.2

Table 5.6: Writing speed per minute of all users [114]

5.5. Improving the User Interface

The results of the user experience analysis has highlighted aspects and use
cases that can benefit from improvements. The following sections details ways in
which the issues can be addressed.

BUPT

136 Developing a Web Front-End for Electronic Health Records – 5

0

200

400

600

800

1000

1200

1400

0

4
0

8
0

1
2
0

1
6
0

2
0
0

2
4
0

2
8
0

3
2
0

3
6
0

4
0
0

4
4
0

4
8
0

5
2
0

5
6
0

6
0
0

6
4
0

6
8
0

7
2
0

7
6
0

8
0
0

8
4
0

8
8
0

9
2
0

9
6
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

1
8
0
0

2
0
0
0

2
2
0
0

2
4
0
0

2
6
0
0

2
8
0
0

3
0
0
0

N
u

m
b

e
r

o
f

o
cc

u
re

n
ce

s

Milliseconds between inputs

Fig. 5.22: Histogram of the duration between user key presses [114]

5.5.1. Improving Aesthetics

The aesthetic measures results, presented in section 5.2.2 presented a below
50% score for unity, a measure that “reflects coherence, a totality of elements that
constitute visually one piece” [119]. By increasing the page margin, as the authors of
the measure suggest, from 20 pixels to 100 pixels, the measure of unity is increased
to 0.5672.

The measure of balance presents an above average score of 0.7706. However,
a closer inspection shows that the two components that make up the measure, the
horizontal and the vertical balance, have quite different scores. The vertical balance
has an almost maximum score, due to the two-column layout of the web page, while
the horizontal balance is slowed down by the important amount of space occupied by
the page header.

A solution to this involved compacting the header, as can be seen in figure 5.23,
while also duplicating the form selection tabs at the bottom of the page. To make the
selector tabs at the bottom of the page stand out, the same blue background is used
for the selected item, as the background for the panel header, thus creating symmetry.
This also serves as a shortcut for moving on to the next form without needing to scroll
back to the top.

In order to compact the header even more, the progress bar indicator,
originally placed just before the first input, is merged into the panel header. This

BUPT

5.5 – Improving the User Interface 137

helps fill up unused space in the header while also reducing the number of different
lines of information the user is first shown before the first actual input.

(a) Before

(b) After

Fig. 5.23: Compacting the header and duplicating the form selector. This enables the navigation
to a different form when the user is at the bottom of the page.

The header indicating the name of an input group has been found to be too
large, leading to unnecessary white space between inputs. Due to it’s styling, similar
to labels of inputs, and the left alignment of the text, it has also generated confusion.
The solution found was to reduce the header and center the text. Figure 5.24 shows
a before and after comparison.

BUPT

138 Developing a Web Front-End for Electronic Health Records – 5

(a) Before

(b) After

Fig. 5.24: Centering the input group header. This results in a better visual distinction between
the header and the input labels above and/or below.

5.5.2. Increasing Flexibility

As presented in earlier chapters, one of the main goals of the chosen software
design was to allow non-technical administrative users to easily configure and adapt
data input forms.

This approach can be taken one step further by giving the user the possibility
to rearrange the inputs of a form in a specific manner. By implementing this feature,
the medics no longer need to adapt their way of work to that of the system, but can
also apply changes to the system in order to make it more fit for day-to-day activities.

One easy way to implement the rearrangement of input elements is to use
drag&drop. As shown in figure 5.25, the user hovers the mouse pointer over an input
element or input group and then, while clicking the left mouse button, drags move to
a new location. The web page provides guidance by using a colored horizontal line
to indicate the destination placement. Once the user releases the mouse button, the
input is moved to the new location.

By using GOMS this approach can be represented as: HPKPK with a duration
of 3 seconds.

The new placement of elements can then be persisted using multiple
approaches:

• Temporary, until the page changes – nothing is persisted and the advantages
of single page applications not requiring page reloads so often allows for this
temporary storage of element order by just keeping the variables of the current
page in scope

BUPT

5.5 – Improving the User Interface 139

• Temporary, but until the end of the session – this can be implemented by storing
the customization data in a temporary server-side session

• Persistent, but just on the current machine – the user might want different
settings for different work environments. In order to distinguish between such
environments, the customizations can be stored in localStorage by means of the
Web Storage API10.

• Persistent – should there be a desire to apply the customizations on any login
session, independent of the browser used, the data can be stored in a server-side
database along side other information relevant to the user.

Fig. 5.25: Using drag&drop to rearrange input groups

10https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

BUPT

140 Developing a Web Front-End for Electronic Health Records – 5

Conclusions

This chapter treated a different tier when it comes to electronic health
record application development, the presentation tier or the user interface, providing
important contributions to architecting this part of the application as well as evaluating
it.

The first major contribution of this chapter involved extending the previously
presented architecture built around input types to support generating a user-interface
automatically from the same model, combining web services and modern single-page
applications as technologies. The types of inputs for which user interface elements
are generated range from simple text boxes to complex combinations of elements with
suggested values, measurement units and automatic interpretation of inputs based on
complex rules and linking multiple provided values.

The chapter continued with contributions on evaluating the user interface of an
application prototype that was built. At first, heuristic and aesthetic measures were
applied to the prototype providing reassurance as well as indicating areas that can
benefit from improvements. Later on, a usability evaluation was contributed with a
detailed analysis on the findings discovered after medics and medical students piloted
a test scenario on the application prototype. Measuring the activity of the users
that interacted with the system posed another challenge which lead to an original
contribution regarding the development of an efficient activity tracking framework.

BUPT

6. CONCLUSIONS

In conclusion, the thesis has proved to be a success, providing important and
original contributions to methods regarding the way electronic health record systems
can be designed at both the business and data layers as well as concerning the user
interface.

At the beginning, chapter 2, Medical Standards and Terminologies, presented
an extensive literature study on current methods and standards created to support
developing health related applications.

The chapter started with an analysis of Health Leven Seven’s Clinical Document
Architecture, a standard focused on structuring electronic health information for the
purpose of information exchange. After pointing out the key points of HL7 CDA, the
study also cited various literature opinions on disadvantages and short-comings of
using that standard.

In an attempt to identify other approaches, the literature study continued with
analyzing the methodology of openEHR. This approach favors reusable content created
by medical domain experts. From the technical point of view, it presents how software
should interact and make use of such content (archetypes, templates) but doesn’t
introduce constraints into how the implementation should be created (frameworks,
persistence methods, etc.).

Besides standards and methodologies for managing electronic health records,
the chapter also looked at medical coding systems that are freely available: the Logical
Observation Identifiers Names and Codes (mostly used for coding laboratory results)
and International Classification for Diseases, both used in multiple countries.

Chapter 3, Designing a Solution for the Structured Collection of Medical Data,
presented an original contribution consisting in a new architecture for the business and
data layer of an electronic health record application based on placing the main focus
on modeling the types of inputs that can occur in a medical input form and building
the solution around them.

Such an approach allows focus on the present requirements and still manages
to provide a good separation of what parts of the application require a developer to
work on the code and what parts allow a non-technical domain expert, with medical
training, to perform tweaks and customizations on the business data.

When it comes to persistence solutions, the chapter presented a classical
relational database example, coupled with an object-relational mapper to ease the link
between relational data and object-oriented entities. Besides that, another example
was given which uses a more modern, NoSQL, approach for storing EHR records in
document databases.

The methods described in chapter 3 can benefit from using the standards and
specifications described in chapter 2. In this regard, chapter 4, Integrating Medical
Standards, brought contributions on how an existing electronic health record system
can be integrated with openEHR archetypes for extracting predefined medical rules and
terminology links. It also suggested an architecture for generating code that makes

BUPT

142 Conclusions – 6

use of clinical documents to transfer medical information between electronic health
record systems.

Chapter 4 also emphasized the role of medical coding and terminology
standards. In the case of Logical Observation Identifiers Names and Codes, a system
which has only been translated into few languages, the chapter brought an important
original contribution by means of a study into how these codes can be more easily
translated. The study presented a method which resulted in a decrease of 65% in the
average length of each value that requires translation, together with a reduction by
about 27% of the total number of unique values that need to be translated.

The same chapter also brought an original contribution in regards to
International Classification for Diseases diagnostic codes. In this case it analyzed
how ICD-10 codes could be matched by name using four full-text search engines
(two dedicated ones and two part of relational databases). The results showed the
viability of using open-source full-text search engines for finding precise matches when
searching such codes, indicating the possibility of using about 2.6 words, on average,
for a query that uniquely identifies a code in 86% of cases (best-case scenario).

This thesis also treated an aspect that is quite often overlooked by developers:
building an efficient front-end for an electronic health record application. Chapter
5, Developing a Web Front-End for Electronic Health Records, compared multiple
approaches and proposed and implemented a prototype of a flexible solution based on
passing the information about the structure of each input form and its constituent input
elements from the server to the client side code. The client side code, a single-page
rich-client application, would then use that information to generate the required input
elements on the fly and also link them to the required behavior.

In the case of usability, the chapter contains contributions that analyze multiple
documented ways of user interface evaluation, from heuristics, to aesthetics calculated
from the geometry of a web page. Another original contribution is presented in the
form of describing how to build a simple yet powerful framework that tracks the users’
actions. This framework is put to work in a user evaluation involving multiple medical
doctors and residents, an evaluation which reveals important ways in which the web
application is used and which are the areas for improvement.

The goals set out in the first chapter have been accomplished. With the help of
rapid prototyping, types of inputs have been stored in XML documents as soon as they
have been identified, following the analysis of medical forms. The thesis proposes
a flexible architecture for storing electronic health record inputs and also presents
an implementation of the business and data layer. Another important goal that the
thesis deals with is identifying ways of including medical standards, terminologies and
specifications into an existing solution. When it comes to user interaction, an entire
chapter is dedicated to building and evaluating the usability of a web application aimed
at electronic health records.

On the basis of those presented, the list of claimed original contributions is as
follows:

• A new architecture for the business layer of an electronic health record application
based on placing the main focus on modeling the types of inputs

• Considerations on persisting electronic health records based on the above
architecture using both relational databases and NoSQL

BUPT

143

• Contributions on how an existing electronic health record system can be
integrated with openEHR archetypes for extracting predefined medical rules and
terminology links

• An architecture for generating code that makes use of clinical documents to
transfer medical information between electronic health record systems

• A study on how to make use of patterns in order to reduce the amount of work
required for translating LOINC codes

• An analysis on how ICD-10 codes can be matched by name using full-text search
engines

• A prototype web application that uses metadata transferred from the server to
generate EHR forms on-the-fly

• A heuristic and aesthetic analysis of a prototype EHR web application

• Ways of building a simple yet powerful framework for tracking user activity for
the purpose of usability analysis

• Usability evaluation on a EHR web application combined with improvement
suggestions

As with any research, various directions have been identified which warrant
further studies. Among the first is a deeper dive into ways of automating the analysis of
electronic health data/documents with the goal of being able to automatically generate
connectors that import or export specific information. When it comes to medical
codes, studies into optimal ways of matching them can be extended and compared
for multiple languages besides English. In the case of usability evaluations of health
record applications, recording the activity of users using a production system can
reveal important new insights.

BUPT

BUPT

References 145

REFERENCES

[1] J. H. van Bemmel and M. A. Musen. Handbook of Medical Informatics. Bohn
Stafleu Van Loghum, Houten, The Netherlands, 2000.

[2] Health Level Seven International. Introduction to: HL7 Reference Information
Model (RIM). https://www.hl .org/documentcenter/public_temp_
E D E - C -BA - C E FCB /calendarofevents/himss/ /
HL % Reference% Information% Model.pdf, 2011. Accessed: May
2016.

[3] Ji Hyun Yun and Il Kon Kim. Processing HL7-CDA Entry for Semantic
Interoperability. In 2007 International Conference on Convergence
Information Technology, pages 1939–1944, 2007.

[4] Tuncay Namli, Gunes Aluc, and Asuman Dogac. An Interoperability Test
Framework for HL7-Based Systems. IEEE Transactions on Information
Technology in Biomedicine, 13(3):389–399, 2009.

[5] Mihaela Vida, Oana Lupșe, Lăcrămioara Stoicu-Tivadar, and Vasile
Stoicu-Tivadar. ICT solution supporting continuity of care in children
healthcare services. In 2011 6th IEEE International Symposium on Applied
Computational Intelligence and Informatics (SACI), pages 635–639, 2011.

[6] George I. Mihalas, Dan D. Farcas, Diana Lungeanu, and Mircea Focsa. Building
eHealth National Strategies – The Romanian Experience. In Medical
Informatics in a United and Healthy Europe, pages 33–37. IOS Press, 2009.

[7] Naeem Khalid Janjua, Maqbool Hussain, Muhammad Afzal, and Hafiz Farooq
Ahmad. Digital health care ecosystem: SOA compliant HL7 based health care
information interchange. In 2009 3rd IEEE International Conference on Digital
Ecosystems and Technologies, pages 329–334, June 2009.

[8] Rita Noumeir and Jean-François Pambrun. Hands-on approach for teaching
HL7 version 3. In Proceedings of the 10th IEEE International Conference on
Information Technology and Applications in Biomedicine, pages 1–4, 2010.

[9] HL7 International. Clinical Document Architecture (CDA).
https://www.hl .org/fhir/comparison-cda.html, 2015. Accessed: March 2016.

[10] Alshuler Associates LLC. HL7 Implementation Guide: For Simple CDA Release
2 Documents. http://wiki.siframework.org/file/view/CDAQuickStart.doc, 2007.
Accessed: January 2014.

[11] Mihaela Vida, Valentin Gomoi, Lăcrămioara Stoicu-Tivadar, and Vasile
Stoicu-Tivadar. Generating medical computer-based protocols using
standardized data transmission. In 2010 4th International Workshop on Soft
Computing Applications (SOFA), pages 155–158, 2010.

[12] Marten Smits, Ewout Kramer, Martijn Harthoorn, and Ronald Cornet. A
comparison of two Detailed Clinical Model representations: FHIR and CDA. In
European Journal for Biomedical Informatics, volume 11, pages 7–17.
EuroMISE s.r.o, Czech Republic, 2015.

[13] René Spronk (Editor). HL7 version 3: Message or CDA Document?
http://www.ringholm.de/docs/ _en.htm, 2007. Accessed: May 2016.

[14] Grahame Grieve. Health Intersections. http:
//www.healthintersections.com.au/wp-content/uploads/ / /RIM.png,

BUPT

https://www.hl7.org/documentcenter/public_temp_0E9D15E0-1C23-BA17-0C66E77606FCB023/calendarofevents/himss/2011/HL7%20Reference%20Information%20Model.pdf
https://www.hl7.org/documentcenter/public_temp_0E9D15E0-1C23-BA17-0C66E77606FCB023/calendarofevents/himss/2011/HL7%20Reference%20Information%20Model.pdf
https://www.hl7.org/documentcenter/public_temp_0E9D15E0-1C23-BA17-0C66E77606FCB023/calendarofevents/himss/2011/HL7%20Reference%20Information%20Model.pdf
https://www.hl7.org/fhir/comparison-cda.html
http://wiki.siframework.org/file/view/CDAQuickStart.doc
http://www.ringholm.de/docs/04200_en.htm
http://www.healthintersections.com.au/wp-content/uploads/2011/05/RIM.png
http://www.healthintersections.com.au/wp-content/uploads/2011/05/RIM.png

146 References

2011. Accessed: March 2015.
[15] Mustafa Yuksel and Asuman Dogac. Interoperability of Medical Device

Information and the Clinical Applications: An HL7 RMIM based on the
ISO/IEEE 11073 DIM. IEEE Transactions on Information Technology in
Biomedicine, 15(4):557–566, 2011.

[16] Patricia A. H. Williams, Sarah Gaunt, Grahame Grieve, Vincent McCauley, and
Hugh Leslie. The Development of a National Approach to CDA: Successes,
Challenges, and Lessons Learned from Australia. In European Journal for
Biomedical Informatics, volume 8, pages 37–44. EuroMISE s.r.o, Czech
Republic, 2012.

[17] Thilo Schuler, Martin Boeker, Rüdiger Klar, and Marcel Müller. A Generic,
Web-based Clinical Information System Architecture Using HL7 CDA:
Successful Implementation in Dermatological Routine Care. In Medinfo 2007:
Proceedings of the 12th World Congress on Health (Medical) Informatics;
Building Sustainable Health Systems, pages 439–443. IOS Press, Amsterdam,
Netherlands, 2007.

[18] Health Level Seven, Inc. HL7 Implementation Guide for CDA Release 2: NHSN
Healthcare Associated Infection (HAI) Reports, Release 2. http:
//www.cdc.gov/nhsn/PDFs/CDA/CDAR L _IG_HAIRPT_R _D _ FEB.pdf,
2009. Accessed: January 2014.

[19] Naoki Mihara, Kanayo Ueda, Shirou Manabe, Toshihiro Takeda, Yoshie Shimai,
Hiroyuki Horishima, Taizo Murata, Ayumi Fujii, and Yasushi Matsumura.
Cross-institutional document exchange system using clinical document
architecture (CDA) with virtual printing method. In Digital Healthcare
Empowering Europeans. Proceedings of MIE 2015, pages 444–448. IOS Press,
Amsterdam, Netherlands, 2015.

[20] P. H. Cheng, C. H. Yang, H. S. Chen, S. J. Chen, and J. S. Lai. Application of
HL7 in a Collaborative Healthcare Information System. In Engineering in
Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International
Conference of the IEEE, volume 2, pages 3354–3357, Sept 2004.

[21] Barbara Giannini, Roberta Gazzarata, Patrizia Orcamo, Caterina Merlano,
Giovanni Cenderello, Alberto Venturini, Antonio Di Biagio, Giovanni Mazzarello,
Marcello Montefiori, Marta Ameri, Maurizio Setti, Claudio Viscoli, Giovanni
Cassola, and Mauro Giacomini. IANUA: a regional project for the
determination of costs in HIV-infected patients. In Digital Healthcare
Empowering Europeans. Proceedings of MIE 2015, pages 241–245. IOS Press,
Amsterdam, Netherlands, 2015.

[22] Barry Smith and Werner Ceusters. HL7 RIM: An Incoherent Standard. In
Ubiquity: Technologies for Better Health in Aging Societies, Proceedings of
MIE2006, volume 124, pages 133–138, 2006.

[23] Eduardo Fernandez and Tami Sorgente. An Analysis of Modeling Flaws in HL7
and JAHIS. In Proceedings of the 2005 ACM Symposium on Applied
Computing, SAC ’05, pages 216–223, New York, NY, USA, 2005. ACM.

[24] Eric Browne. openEHR Archetypes for HL7 CDA Documents.
https://openehr.atlassian.net/wiki/display/stds/openEHR+Archetypes+for+
HL +CDA+Documents, 2008. Accessed: March 2016.

BUPT

http://www.cdc.gov/nhsn/PDFs/CDA/CDAR2L3_IG_HAIRPT_R2_D2_2009FEB.pdf
http://www.cdc.gov/nhsn/PDFs/CDA/CDAR2L3_IG_HAIRPT_R2_D2_2009FEB.pdf
https://openehr.atlassian.net/wiki/display/stds/openEHR+Archetypes+for+HL7+CDA+Documents
https://openehr.atlassian.net/wiki/display/stds/openEHR+Archetypes+for+HL7+CDA+Documents

References 147

[25] M. Schweitzer, N. Lasierra, and A. Hoerbst. Observing health professionals’
workflow patterns for diabetes care – First steps towards an ontology for EHR
services. In Digital Healthcare Empowering Europeans. Proceedings of MIE
2015, pages 25–29. IOS Press, Amsterdam, Netherlands, 2015.

[26] Barry Smith. The Rise and Fall of HL7.
http://hl -watch.blogspot.com/ / /rise-and-fall-of-hl .html, 2011.
Accessed: May 2016.

[27] Philip J. Kroth, Shamsi Daneshvari, Edward J. Harris, Daniel J. Vreeman, and
Heather J.H. Edgar. Using LOINC to link 10 terminology standards to one
unified standard in a specialized domain. Journal of Biomedical Informatics,
45(4):674 – 682, 2012.

[28] Clem McDonald, Stan Huff, Jamalynne Deckard, Katy Holck, and Daniel J.
Vreeman. Logical Observation Identifiers Names and Codes (LOINC®) Users’
Guide. Regenstrief Institute, Inc., 2013.

[29] Daniel J. Vreeman, Maria Teresa Chiaravalloti, John Hook, and Clement J.
McDonald. Enabling international adoption of LOINC through translation. In J
BIOMED INFORM 45, pages 667–673, 2012.

[30] Regenstrief Institute, Inc. International – LOINC.
https://loinc.org/international, 2016. Accessed: May 2016.

[31] Hyeoneui Kim, Robert El-Kareh, Anupam Goel, FNU Vineet, and Wendy W.
Chapman. An approach to improve LOINC mapping through augmentation of
local test names. In J BIOMED INFORM 45, pages 651–657, 2012.

[32] Christian Zunner, Thomas Bürkle, Hans-Ulrich Prokosch, and Thomas
Ganslandt. Mapping local laboratory interface terms to LOINC at a German
university hospital using RELMA V.5: a semi-automated approach. Journal of
the American Medical Informatics Association, 20(2):293–297, 2013.

[33] World Health Organization. International Classification of Diseases (ICD).
http://www.who.int/classifications/icd/en/. Accessed: February 2016.

[34] National Center for Health Statistics. International Classification of Diseases,
Tenth Revision, Clinical Modification (ICD-10-CM).
http://www.cdc.gov/nchs/icd/icd cm.htm, 2016. Accessed: March 2016.

[35] Hari Nandigam. Facilitating Quick and Better Text Searching for ICD-10-CM
Codes. iProc, 1(1), 2015.

[36] Shunsuke Doi, Takashi Kimura, Takahiro Suzuki, and Katsuhiko Takabayashi.
Development of Doctors Search Engine based on ICD-10. In 2012 Joint 6th
International Conference on Soft Computing and Intelligent Systems (SCIS)
and 13th International Symposium on Advanced Intelligent Systems (ISIS),
pages 795–798, Nov 2012.

[37] Koray Atalag, Thomas Beale, Rong Chen, Tomaž Gornik, Sam Heard, and Ian
McNicoll. openEHR – a semantically-enabled health computing platform.
http://www.openehr.org/resources/white_paper_docs/openEHR_vendor_
independent_platform.pdf. Accessed: March 2016.

[38] Sergio Miranda Freire, Erik Sundvall, Daniel Karlsson, and Patrick Lambrix.
Performance of XML Databases for Epidemiological Queries in
Archetype-Based EHRs. In Scandinavian Conference on Health Informatics
2012, pages 51–57, 2012.

BUPT

http://hl7-watch.blogspot.com/2011/03/rise-and-fall-of-hl7.html
https://loinc.org/international
http://www.who.int/classifications/icd/en/
http://www.cdc.gov/nchs/icd/icd10cm.htm
http://www.openehr.org/resources/white_paper_docs/openEHR_vendor_independent_platform.pdf
http://www.openehr.org/resources/white_paper_docs/openEHR_vendor_independent_platform.pdf

148 References

[39] Thomas Beale, Sam Heard, et al. openEHR Architecture – Architecture
Overview. http://www.openehr.org/releases/ . . /architecture/overview.pdf,
2008. Accessed: April 2016.

[40] Sergio Miranda Freire, Douglas Teodoro, Fang Wei-Kleiner, Erik Sundvall,
Daniel Karlsson, and Patrick Lambrix. Comparing the Performance of NoSQL
Approaches for Managing Archetype-Based Electronic Health Record Data.
PLoS ONE, 11(3):1–20, 2016.

[41] Thomas Beale, Sam Heard, et al. openEHR Architecture – Archetype
Definitions and Principles. http:
//www.openehr.org/releases/ . . /architecture/am/archetype_principles.pdf,
2007. Accessed: March 2016.

[42] Thomas Beale, Sam Heard, et al. The openEHR Archetype Model – Archetype
Definition Language ADL 1.4.
http://www.openehr.org/releases/ . . /architecture/am/adl.pdf, 2007.
Accessed: March 2016.

[43] Jon Patrick, Richard Ly, and Donna Truran. Evaluation of a Persistent Store for
openEHR. In HIC 2006 Bridging the Digital Divide: Clinician, consumer and
computer. Health Informatics Society of Australia Ltd, 2006.

[44] Li Wang, Lingtong Min, Rui Wang, Xudong Lu, and Huilong Duan. Archetype
relational mapping - a practical openEHR persistence solution. BMC Medical
Informatics and Decision Making, 15(1):1–18, 2015.

[45] E Sundvall, M Nyström, M Sandström, M Eneling, H Örman, and D Karlsson.
REST Based Services and Storage Interfaces for openEHR Implementations.
http://www.imt.liu.se/~erisu/ /EEE-Poster-multipage.pdf, 2010.
Accessed: April 2016.

[46] Erik Sundvall, Mikael Nyström, Daniel Karlsson, Martin Eneling, Rong Chen,
and Håkan Örman. Applying representational state transfer (REST)
architecture to archetype-based electronic health record systems. BMC
Medical Informatics and Decision Making, 13(1):1–25, 2013.

[47] Thomas Beale. openEHR – Integrating with data source systems.
http://www.mz.gov.si/fileadmin/mz.gov.si/pageuploads/eZdravje/Novice/
gradiva_predstavitve_dogodkov/Open_EHR/ _integration-non_EHR.pdf, 2007.
Accessed: April 2016.

[48] Diego Bosca, David Moner, Jose Alberto Maldonado, and Montserrat Robles.
Combining Archetypes with Fast Health Interoperability Resources in
Future-proof Health Information Systems. In Digital Healthcare Empowering
Europeans. Proceedings of MIE 2015, pages 180–184. IOS Press, Amsterdam,
Netherlands, 2015.

[49] Ursula Hübner, Georg Schulte, Björn Sellemann, Matthias Quade, Thorsten
Rottmann, Matthias Fenske, Nicole Egbert, Raik Kuhlisch, and Otto Rienhoff.
Evaluating a Proof-of-Concept Approach of the German Health Telematics
Infrastructure in the Context of Discharge Management. In MEDINFO 2015:
eHealth-enabled Health; Proceedings of the 15th World Congress on Health
and Biomedical Informatics, pages 492–496. IOS Press, Amsterdam,
Netherlands, 2015.

[50] Pernille Bertelsen and Lone Stub Petersen. Danish Citizens and General
Practitioners’ Use of ICT for their Mutual Communication. In MEDINFO 2015:

BUPT

http://www.openehr.org/releases/1.0.2/architecture/overview.pdf
http://www.openehr.org/releases/1.0.2/architecture/am/archetype_principles.pdf
http://www.openehr.org/releases/1.0.2/architecture/am/archetype_principles.pdf
http://www.openehr.org/releases/1.0.1/architecture/am/adl.pdf
http://www.imt.liu.se/~erisu/2010/EEE-Poster-multipage.pdf
http://www.mz.gov.si/fileadmin/mz.gov.si/pageuploads/eZdravje/Novice/gradiva_predstavitve_dogodkov/Open_EHR/9_integration-non_EHR.pdf
http://www.mz.gov.si/fileadmin/mz.gov.si/pageuploads/eZdravje/Novice/gradiva_predstavitve_dogodkov/Open_EHR/9_integration-non_EHR.pdf

References 149

eHealth-enabled Health; Proceedings of the 15th World Congress on Health
and Biomedical Informatics, pages 376–379. IOS Press, Amsterdam,
Netherlands, 2015.

[51] William Van Woensel, Patrice C. Roy, Samina R. Abidi, and Syed SR Abidi. A
Mobile and Intelligent Patient Diary for Chronic Disease Self-Management. In
MEDINFO 2015: eHealth-enabled Health; Proceedings of the 15th World
Congress on Health and Biomedical Informatics, pages 118–122. IOS Press,
Amsterdam, Netherlands, 2015.

[52] Joseph M.J. D’Souza and Inga Hunter. Why should I? – Acceptance of Health
Information Technology Among health professionals. In MEDINFO 2015:
eHealth-enabled Health; Proceedings of the 15th World Congress on Health
and Biomedical Informatics, page 962. IOS Press, Amsterdam, Netherlands,
2015.

[53] Ministerul Sănătății, Casa Națională de Asigurări de Sănătate. Referat de
aprobare a Ordinului ministrului sănătăţii şi al preşedintelui Casei Naţionale de
Asigurări de Sănătate privind aprobarea Normelor metodologice de aplicare în
anul 2015 a Hotărârii Guvernului nr. 400/2014.
http://www.cnas.ro/media/pageFiles/norme_metodologice_cnas_ .pdf,
2015. Accessed: September 2015.

[54] Formare Medicala. Fișa de evaluare inițială/monitorizarea pac. cu BPOC.
http://www.formaremedicala.ro/wp-content/uploads/ / /
FISA-BPOC-evaluare-initiala-si-monitorizare-activa.pdf, 2014. Accessed:
September 2014.

[55] American Heart Association. Understanding Blood Pressure Readings.
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/
AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_

_Article.jsp, 2015. Accessed: August 2015.
[56] Kordon F. et al. An introduction to rapid system prototyping. In Software

Engineering, IEEE Transactions on (Volume: 28, Issue: 9), pages 817–821.
IEEE, 2002.

[57] Albrecht Schmidt and Kjetil Nørvåg. Rapid XML Database Application
Development. In 6th International Conference on Enterprise Information
Systems, 2004. Accessed: September 2014.

[58] Formare Medicala. Fișa de evaluare inițială/monitorizare activă a pacientului
hipertensiv sau/și diabetic cu/fără dislipidemie.
http://www.formaremedicala.ro/wp-content/uploads/ / /
FISA-HTA-DZ-evaluare-initiala-si-monitorizareH-activa.pdf, 2014. Accessed:
September 2014.

[59] Martin Fowler, Dave Rice, Matthew Foemmel, Edward Hieatt, Robert Mee, and
Randy Stafford. Patterns of Enterprise Application Architecture.
Addison-Wesley, USA, 2003.

[60] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled. Addison-Wesley,
Upper Saddle River, NJ, USA, 2013.

[61] Julia Lerman. Programming Entity Framework. O’Reilly, Sebastopol, CA, USA,
2nd edition, 2010.

[62] Daniel-Alexandru Jurcău and Vasile Stoicu-Tivadar. Modern Technologies for
Improving Interoperability in Health Information Systems. In Buletinul

BUPT

http://www.cnas.ro/media/pageFiles/norme_metodologice_cnas_2015.pdf
http://www.formaremedicala.ro/wp-content/uploads/2014/09/FISA-BPOC-evaluare-initiala-si-monitorizare-activa.pdf
http://www.formaremedicala.ro/wp-content/uploads/2014/09/FISA-BPOC-evaluare-initiala-si-monitorizare-activa.pdf
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp
http://www.heart.org/HEARTORG/Conditions/HighBloodPressure/AboutHighBloodPressure/Understanding-Blood-Pressure-Readings_UCM_301764_Article.jsp
http://www.formaremedicala.ro/wp-content/uploads/2014/09/FISA-HTA-DZ-evaluare-initiala-si-monitorizareH-activa.pdf
http://www.formaremedicala.ro/wp-content/uploads/2014/09/FISA-HTA-DZ-evaluare-initiala-si-monitorizareH-activa.pdf

150 References

Științific al Universității Politehnica Timișoara, pages 53–58, 2014.
[63] Eizen Kimura and Ken Ishihara. Virtual file system on NoSQL for processing

high volumes of HL7 messages. In Digital Healthcare Empowering Europeans.
Proceedings of MIE 2015, pages 687–691. IOS Press, Amsterdam,
Netherlands, 2015.

[64] Daniel-Alexandru Jurcău, Vasile Stoicu-Tivadar, and Alexandru Șerban. Using
Modern Technologies to Facilitate Translating Logical Observation Identifiers
Names and Codes. In Proceedings of the 6th International Workshop Soft
Computing Applications (SOFA 2014), volume 1, pages 219–229, Switzerland,
2014. Springer.

[65] Vasile Topac, Daniel-Alexandru Jurcau, and Vasile Stoicu-Tivadar. Incidence
Rate of Canonical vs. Derived Medical Terminology in Natural Language. In
Digital Healthcare Empowering Europeans. Proceedings of MIE 2015, pages
5–9. IOS Press, Amsterdam, Netherlands, 2015.

[66] Vasile Topac. Improving Text Accessibility and Understanding of
Domain-Specific Information. Editura Politehnica, Timisoara, RO, 2014.

[67] Kevin Hazzard and Jason Bock. Metaprogramming in .NET. Manning, Shelter
Island, NY, USA, 2013.

[68] Design-Time Code Generation by using T4 Text Templates.
http://msdn.microsoft.com/en-us/library/dd .aspx, 2013. Accessed:
April 2014.

[69] The PHP Group. PHP Data Objects.
http://www.php.net/manual/en/book.pdo.php, 2014. Accessed: April 2014.

[70] The jQuery Foundation. jQuery. http://jquery.com/, 2014. Accessed:
February 2014.

[71] Adam Freeman. Pro jQuery 2.0. Apress, New York, NY, USA, 2013.
[72] RequireJS – A Javascript Module Loader. http://requirejs.org/, 2014.

Accessed: February 2014.
[73] Daniel-Alexandru Jurcău and Vasile Stoicu-Tivadar. Evaluating Open-Source

Full-Text Search Engines for Matching ICD-10 Codes. In 14th International
Conference on Informatics, Management and Technology in Healthcare, 2016.

[74] Ping Chen, Araly Barrera, and Chris Rhodes. Semantic analysis of free text
and its application on automatically assigning ICD-9-CM codes to patient
records. In 9th IEEE International Conference on Cognitive Informatics (ICCI),
pages 68–74, July 2010.

[75] Wencheng Cui, Mengjia Xu, Huayu Sun, and Hong Shao. Research on
application of Lucene in medical image retrieval system. In 2011 International
Conference on Computer Science and Network Technology (ICCSNT),
volume 2, pages 661–664, Dec 2011.

[76] The PostgreSQL Global Development Group. PostgreSQL 9.4.7 Documentation.
8.11. Text Search Types.
http://www.postgresql.org/docs/ . /static/datatype-textsearch.html, 2016.
Accessed: March 2016.

[77] Quest Diagnostics™. Diagnostic Services ICD-10 Common Codes.
https://questdiagnostics.com/dms/Documents/Other/ICD- -CPT- /

-v - -ICD_ _Common_Codes_-_MI -ONLINE- .pdf,
2015. Accessed: March 2016.

BUPT

http://msdn.microsoft.com/en-us/library/dd820620.aspx
http://www.php.net/manual/en/book.pdo.php
http://jquery.com/
http://requirejs.org/
http://www.postgresql.org/docs/9.4/static/datatype-textsearch.html
https://questdiagnostics.com/dms/Documents/Other/ICD-10-CPT-2012/37783-v1-37783-ICD_10_Common_Codes_-_MI3862-ONLINE-051115.pdf
https://questdiagnostics.com/dms/Documents/Other/ICD-10-CPT-2012/37783-v1-37783-ICD_10_Common_Codes_-_MI3862-ONLINE-051115.pdf

References 151

[78] The openEHR Foundation. Archetype Editor Home.
http://www.openehr.org/downloads/archetypeeditor/home, 2015. Accessed:
April 2016.

[79] Chunlan Ma, Heath Frankel, and Thomas Beale. openEHR – Archetype Query
Language (AQL).
http://www.openehr.org/releases/QUERY/latest/docs/AQL/AQL.html, 2016.
Accessed: April 2016.

[80] Regenstrief Institute, Inc. LOINC® from Regenstrief. https://loinc.org/, 2013.
Accessed: March 2014.

[81] Bruno Sonnino. Aspect-Oriented Programming : Aspect-Oriented
Programming with the RealProxy Class.
https://msdn.microsoft.com/en-us/magazine/dn .aspx, 2014.
Accessed: April 2016.

[82] Jennifer Munnelly and Siobhan Clarke. HL7 healthcare information
management using aspect-oriented programming. In Computer-Based Medical
Systems, 2009. CBMS 2009. 22nd IEEE International Symposium on, pages
1–4, 2009.

[83] Dmitry Baranov. HL7 SDK - Open Source CDA R2 Implementation for .NET
and COM. https://hl sdk.codeplex.com/, 2013. Accessed: May 2016.

[84] Ocean Informatics. Automating the production of CDA R2 artefacts using
openEHR Archetypes and Templates. https://www.hl .org/documentcenter/
public_temp_DFE F D- C -BA - CFCEFA EBE E C /wg/patientcare/
minutes/NEHTA_CDA_Seminar_ .pptx, 2007. Accessed: April 2016.

[85] Aviv Shachak, Sharon Domb, Elizabeth Borycki, Nancy Fong, Alison Skyrme,
Andre Kushniruk, Shmuel Reis, and Amitai Ziv. A Pilot Study of
Computer-Based Simulation Training for Enhancing Family Medicine Residents’
Competence in Computerized Settings. In MEDINFO 2015: eHealth-enabled
Health; Proceedings of the 15th World Congress on Health and Biomedical
Informatics, pages 506–510. IOS Press, Amsterdam, Netherlands, 2015.

[86] Enrique Stanziola, María Quispe Uznayo, Juan Marcos Ortiz, Mariana Simón,
Carlos Otero, Fernando Campos, and Daniel Luna. User-Centered Design of
Health Care Software Development: Towards a Cultural Change. In MEDINFO
2015: eHealth-enabled Health; Proceedings of the 15th World Congress on
Health and Biomedical Informatics, pages 368–371. IOS Press, Amsterdam,
Netherlands, 2015.

[87] Luís A. Bastião Silva, Carlos Días, Johan van der Lei, and José Luis Oliveira.
Architecture to Summarize Patient-Level Data Across Borders and Countries.
In MEDINFO 2015: eHealth-enabled Health; Proceedings of the 15th World
Congress on Health and Biomedical Informatics, pages 687–690. IOS Press,
Amsterdam, Netherlands, 2015.

[88] Adam Freeman. Pro AngularJS. Apress, New York, NY, USA, 2014.
[89] Parth Ghiya. Single Page Applications.

http://www.knowarth.com/single-page-applications/, 2014. Accessed:
August 2015.

[90] Peter Herlihy. Government Digital Service – How many people are missing out
on JavaScript enhancement? https://gds.blog.gov.uk/ / / /
how-many-people-are-missing-out-on-javascript-enhancement/, 2013.

BUPT

http://www.openehr.org/downloads/archetypeeditor/home
http://www.openehr.org/releases/QUERY/latest/docs/AQL/AQL.html
https://loinc.org/
https://msdn.microsoft.com/en-us/magazine/dn574804.aspx
https://hl7sdk.codeplex.com/
https://www.hl7.org/documentcenter/public_temp_DFE89F2D-1C23-BA17-0CFCEFA5EBE5E9C0/wg/patientcare/minutes/NEHTA_CDA_Seminar_05122007.pptx
https://www.hl7.org/documentcenter/public_temp_DFE89F2D-1C23-BA17-0CFCEFA5EBE5E9C0/wg/patientcare/minutes/NEHTA_CDA_Seminar_05122007.pptx
https://www.hl7.org/documentcenter/public_temp_DFE89F2D-1C23-BA17-0CFCEFA5EBE5E9C0/wg/patientcare/minutes/NEHTA_CDA_Seminar_05122007.pptx
http://www.knowarth.com/single-page-applications/
https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/
https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/

152 References

Accessed: February 2016.
[91] Thomas Beale, Sam Heard, et al. The openEHR Archetype Model – openEHR

Templates. http://openehr.org/releases/trunk/architecture/am/tom.pdf, 2014.
Accessed: March 2016.

[92] Rabea Krexner and Georg Duftschmid. Plug-and-play Integration of
dual-model based Knowledge Artefacts into an Open Source EHR System. In
e-Health – For Continuity of Care. Proceedings of MIE 2014, pages 101–105.
IOS Press, Amsterdam, Netherlands, 2014.

[93] Erik Bruchez et al. XForms 2.0.
https://www.w .org/community/xformsusers/wiki/XForms_ . , 2016.
Accessed: April 2016.

[94] European Guidelines on CVD Prevention in Clinical Practice. SCORE - European
High Risk Chart. http://www.escardio.org/static_file/Escardio/Subspecialty/
EACPR/Documents/score-charts.pdf, 2012. Accessed: September 2014.

[95] Ecma International. ECMA-404 Standard – The JSON Data Interchange
Format. http:
//www.ecma-international.org/publications/files/ECMA-ST/ECMA- .pdf,
2013. Accessed: September 2015.

[96] Stefan Kropf, Claire Chalopin, and Kerstin Denecke. Template and Model
Driven Development of Standardized Electronic Health Records. In MEDINFO
2015: eHealth-enabled Health; Proceedings of the 15th World Congress on
Health and Biomedical Informatics, pages 30–34. IOS Press, Amsterdam,
Netherlands, 2015.

[97] Valerio De Luca, Italo Epicoco, Daniele Lezzi, and Giovanni Aloisio. A Web API
Framework for Developing Grid Portals. In International Conference on
Computational Science, ICCS 2011, pages 392–401. Procedia Computer
Science, 2011.

[98] Jamie Kurtz. ASP.NET MVC 4 and the Web API. Apress, New York, NY, USA,
2013.

[99] Sam Newman. Building Microservices. O’Reilly, USA, 2015.
[100] Nafees Qamar, Yilong Yang, András Nádas, Zhiming Liu, and Janos

Sztipanovits. Anonymously Analyzing Clinical Datasets. CoRR,
abs/1501.05916, 2015.

[101] Halgeir Holthe and J. Artur Serrano. ePoint.telemed – An Open Web-based
Platform for Home Monitoring of Patients with Chronic Heart Failure. In
MEDINFO 2015: eHealth-enabled Health; Proceedings of the 15th World
Congress on Health and Biomedical Informatics, pages 74–78. IOS Press,
Amsterdam, Netherlands, 2015.

[102] Pablo Pazos Gutiérrez. Towards the Implementation of an openEHR-based
Open Source EHR Platform (a vision paper). In MEDINFO 2015:
eHealth-enabled Health; Proceedings of the 15th World Congress on Health
and Biomedical Informatics, pages 45–49. IOS Press, Amsterdam,
Netherlands, 2015.

[103] Mani Abedini, Stefan von Cavallar, Rajib Chakravorty, Matthew Davis, and
Rahil Garnavi. A Cloud-Based Infrastructure for Feedback-Driven Training and
Image Recognition. In MEDINFO 2015: eHealth-enabled Health; Proceedings
of the 15th World Congress on Health and Biomedical Informatics, pages

BUPT

http://openehr.org/releases/trunk/architecture/am/tom.pdf
https://www.w3.org/community/xformsusers/wiki/XForms_2.0
http://www.escardio.org/static_file/Escardio/Subspecialty/EACPR/Documents/score-charts.pdf
http://www.escardio.org/static_file/Escardio/Subspecialty/EACPR/Documents/score-charts.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

References 153

691–695. IOS Press, Amsterdam, Netherlands, 2015.
[104] Diego Garcia, Claudia Maria C. Moro, and Lilian Mie M. Cintho. Bridging the

Gap between Clinical Practice Guidelines and Archetype-Based Electronic
Health Records: A Novel Model Proposal. In MEDINFO 2015: eHealth-enabled
Health; Proceedings of the 15th World Congress on Health and Biomedical
Informatics, page 952. IOS Press, Amsterdam, Netherlands, 2015.

[105] Yvonne Rogers, Helen Sharp, and Jenny Preece. INTERACTION’ DESIGN. John
Wiley & Sons, Inc., USA, 2002.

[106] Wilbert O. Galitz. The Essential Guide to User Interface Design. Wiley
Computer Publishing, USA, 2002.

[107] Aaron Marcus, Karl Wieser, John Armitage, Volker Frank, and Edward Guttman.
User-Interface Design for Medical Informatics: A Case Study of Kaiser
Permanente. In Proceedings of the 33rd Hawaii International Conference on
System Sciences. IEEE, 2000.

[108] Constance M. Johnson, Todd R. Johnson, and Jiajie Zhang. A user-centered
framework for redesigning health care interfaces. In Journal of Biomedical
Informatics 38, pages 75–87. Elsevier, 2005.

[109] Kai Zheng, Rema Padman, and Michael P. Johnson. User Interface Optimization
for an Electronic Medical Record System. In Proceedings of the 12th World
Congress on Health (Medical) Informatics, pages 1058–1062. IOS Press, 2007.

[110] Diana Rueda, René Hoto, and Andrés Conejero. Human Factors in Computing
and Informatics: First International Conference, SouthCHI 2013, Maribor,
Slovenia, July 1-3, 2013. Proceedings, pages 122–136. Springer Berlin
Heidelberg, Germany, 2013.

[111] Romaric Marcilly, Andre W. Kushniruk, Marie-Catherine Beuscart-Zephir, and
Elizabeth M. Borycki. Insights and limits of usability evaluation methods along
the health information technology lifecycle. In Digital Healthcare Empowering
Europeans. Proceedings of MIE 2015, pages 115–119. IOS Press, Amsterdam,
Netherlands, 2015.

[112] Alan L. Montgomery, Shibo Li, Kannan Srinivasan, and John C. Liechty.
Modeling Online Browsing and Path Analysis Using Clickstream Data. In
Marketing Science Volume 23, Issue 4, 2004.

[113] Richard Atterer, Monika Wnuk, and Albrecht Schmidt. Knowing the User’s
Every Move: User Activity Tracking for Website Usability Evaluation and
Implicit Interaction. In Proceedings of the 15th International Conference on
World Wide Web, WWW ’06, pages 203–212, New York, NY, USA, 2006. ACM.

[114] Daniel-Alexandru Jurcău and Vasile Stoicu-Tivadar. Evaluating the User
Experience of a Web Application for Managing Electronic Health Records. In
Proceedings of the 7th International Workshop Soft Computing Applications
(SOFA 2016), volume 1, Switzerland, 2016. Springer.

[115] Jakob Nielsen. 10 Usability Heuristics for User Interface Design.
https://www.nngroup.com/articles/ten-usability-heuristics/, 1995. Accessed:
October 2015.

[116] Olga A. Belaya. The metrics for quantitative evaluation of user interface
usability construction methodology. In SPECOM’2004: 9th Conference Speech
and Computer. ISCA Archive http://www.isca-speech.org/archive, 2004.

BUPT

https://www.nngroup.com/articles/ten-usability-heuristics/

154 References

[117] Aliaksei Miniukovich and Antonella De Angeli. Computation of Interface
Aesthetics. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems, CHI ’15, pages 1163–1172, New York, NY,
USA, 2015. ACM.

[118] David Chek Ling Ngo, Lian Seng Teo, and John G. Byrne. A Mathematical
Theory of Interface Aesthetics. In Visual Mathematics, number 8.
Mathematical Institute SASA http://eudml.org/doc/256723, 2000.

[119] David Chek Ling Ngo and John G. Byrne. Another look at a model for
evaluating interface aesthetics . In International Journal of Applied
Mathematics and Computer Science, pages 515–535. University of Zielona
Gora Press, 2001.

[120] Patrick Mbenza Buanga. Automated evaluation of graphical user interface
metrics. Université catholique de Louvain, Louvain-la-Neuve, Belgium, 2011.

[121] Stuart Card, Thomas P. Moran, and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ,
USA, 1983.

[122] Jef Raskin. The Humane Interface. New Directions for Designing Interactive
Systems. Addison-Wesley, USA, 2000.

[123] Google Developers. Analytics for Web (analytics.js) – Single Page Application
Tracking. https://developers.google.com/analytics/devguides/collection/
analyticsjs/single-page-applications, 2015. Accessed: September 2015.

[124] Internet Engineering Task Force (IETF). Request for Comments: 7230 –
Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing.
https://tools.ietf.org/html/rfc , 2014. Accessed: September 2015.

[125] Internet Engineering Task Force (IETF). Request for Comments: 6455 – The
WebSocket Protocol. https://tools.ietf.org/html/rfc , 2011. Accessed:
September 2015.

[126] Mon Chu Chen, John R. Anderson, and Myeong Ho Sohn. What Can a Mouse
Cursor Tell Us More?: Correlation of Eye/Mouse Movements on Web Browsing.
In CHI ’01 Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’01, pages 281–282, New York, NY, USA, 2001. ACM.

BUPT

https://developers.google.com/analytics/devguides/collection/analyticsjs/single-page-applications
https://developers.google.com/analytics/devguides/collection/analyticsjs/single-page-applications
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230

	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Thesis Goals
	Thesis Structure

	Medical Standards and Terminologies
	Health Level Seven Clinical Document Architecture
	Medical Code Systems
	Logical Observation Identifiers Names and Codes
	International Classification for Diseases

	The openEHR Specifications

	Designing a Solution for the Structured Collection of Medical Data
	Identifying the Business Domain
	Analyzing Medical Input Forms
	Identifying Types of Input

	Rapid Prototyping Using XML
	Structuring Input Elements
	Structuring Input Forms

	Designing Business Domain Classes
	Modeling Entity Classes
	Modeling Behavioral Classes
	Persisting Data to a Relational Database
	Persisting Data to a NoSQL Document Database

	Integrating Medical Standards
	Translating Logical Observation Identifiers Names and Codes
	Analyzing Medical Terminology
	Observed Data Patterns
	Applying Patterns
	Building a Web Application for Performing Translations
	Results of Piloting the Translation

	Matching ICD-10 Codes Using Full-Text Search Engines
	Analysis Methods
	Results

	Achieving Interoperability
	Linking openEHR archetypes
	Linking Medical Terminologies
	Clinical Document Architecture

	Developing a Web Front-End for Electronic Health Records
	Developing the Web Application
	Designing the Web Interface
	Client-Side Development – Single Page Applications
	Server-Side Development – Web API

	Evaluating the User Interface
	Heuristics
	Aesthetics
	Goals, Objects, Methods and Selection Rules

	Developing a Framework for Automated User Activity Tracking
	Existing Tracking Solutions
	Creating a Custom Solution

	Analyzing the Users' Activity
	Heat Maps
	Mouse Movement
	Input Analysis

	Improving the User Interface
	Improving Aesthetics
	Increasing Flexibility

	Conclusions
	References

