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ABSTRACT 

 
 This thesis, entitled “Novel Means of Achieving Information Security. Error-
Detection Architectures” encompasses the research of 3 years as part of the PhD 
program, but also represents the continuation of the work started during the 

university and masters programs regarding the IDEA NXT crypto-algorithm.  
The thesis starts by presenting the state-of-the art in cryptography, concepts and 
challenges as well as the current trends. It then presents the asymmetric and 
symmetric cryptographic algorithms as the main techniques used to secure 
important information, with a focus on the IDEA NXT algorithm, the newest trend in 
encryption, and the work carried on as part of this research to improve the speed of 

the algorithm. 
 A major part of the current research is from the testability domain. An 
introduction in this field is made, followed by the presentation of the various 
strategies used (both online and offline) and the different fault models which 
generally affect the well-functioning of a system. Also, the need for fault tolerant 
designs and reliable systems is highlated and details about how to achieve this goal 
are presented as well. Bringing together the need for data security and system 

availability and reliability, a couple of testing architectures were proposed and 
implemented for IDEA NXT and the obtained experimental results regarding the 
performance are presented in detail, in comparison with similar experiments 
conducted for other crypto-algorithms, especially AES. The efficiency of the error-
detection mechanisms is demonstrated by injecting faults into the designs and 
verfying the testing architectures’ outputs.  Finally, future work and directions are 
briefly discussed. 
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Summary,  

With the chosen research topics, the thesis adresses up-

to-date concerns and problems people are dealing each day 
regarding the security of sensitive information and the possibility 
of their data and privacy being invaded. Encryption algorithms 
are presented as a solution for this. 

Also, error-detection mechanism must be used for 
ensuring that the algorithms are fully functional at all times, and 

in case an error is manifesting, it is found as soon as possible as 

to minimize the damage done and reduce the costs of repair. 

BUPT



6 
 

List of Figures 
 
Fig 1 Thesis nucleum – top-down approach ...................................................... 13 
Fig 2 Types of Maintenance ............................................................................ 17 
Fig 3 UML Diagram: relationship between faults, errors and failures [7] ............... 18 
Fig 4 Fault-Error-Failure Chain ........................................................................ 19 
Fig 5 The principle of classical securing ............................................................ 21 
Fig 6 Top-level scheme of IDEA NXT\ .............................................................. 26 
Fig 7lmor64 algorithm .................................................................................... 27 
Fig 8 Key Scheduler of IDEA NXT .................................................................... 28 
Fig 9 A 24-bit Linear Feedback Shift Register.................................................... 29 
Fig 10 Encryption blocks of IDEA NXT [31] ........................................................ 32 
Fig 11 Basic testing approach [39] .................................................................. 34 
Fig 12 ATPG principles [31] ............................................................................ 37 
Fig 13 Sample circuit with stuck-at faults ......................................................... 37 
Fig 14 Binary Decision tree ............................................................................ 38 
Fig 15 Podem-algorithm [9] ........................................................................... 39 
Fig 16 Stuck-at faults example ....................................................................... 41 
Fig 17 Two-input CMOS NOR GATE.................................................................. 42 
Fig 18 Bridging fault models ........................................................................... 43 
Fig 19 Path delay fault example ...................................................................... 44 
Fig 20 Fault masking example [113] ............................................................... 45 
Fig 21 Triple Modular Redundancy [51] ............................................................ 46 
Fig 22 Dynamic recovery example [54] ............................................................ 47 
Fig 23 Components for a Fault Injection Environment [114] ............................... 48 
Fig 24 Hardware Fault-injection ...................................................................... 49 
Fig 25 A typical logic BIST system [6] ............................................................. 55 
Fig 26 Built-In Self-Test architecture [59] ........................................................ 56 
Fig 27 IDEA NXT BIST Architecture based on signature compression ................... 57 
Fig 28 Architecture for test compression [6] ..................................................... 58 
Fig 29 Standard LFSR for IDEA NXT ................................................................ 59 
Fig 30 Modular LFSR for IDEA NXT .................................................................. 60 
Fig 31 Cellular automata (a) general structure; (b) four-stage CA; (c) test sequence 
generated by (b) [38] ................................................................................... 60 
Fig 32 Ones counter as ORA [38] .................................................................... 61 
Fig 33 Transition counter as ORA .................................................................... 61 
Fig 34 A 24-stage Multiple-Input Signature-Register (MISR) ............................... 62 
Fig 35 IDEA NXT Feedback Loop Offline Test Scheme ........................................ 63 
Fig 36 Error-detection architecture for IDEA NXT built with BILBO ....................... 65 
Fig 37- Parity-based test architecture for IDEA NXT's lmid64, part of Datapath and 
Key Scheduler .............................................................................................. 68 
Fig 38 Parity check scheme for the mu4 .......................................................... 69 
Fig 39 Parity-based test architecture for IDEA NXT's lmor64, part of Datapath and 

Key Scheduler .............................................................................................. 71 
Fig 40 Parity prediction scheme for Orthomorphism .......................................... 72 
Fig 41 VHDL-based fault injection techniques [120] .......................................... 73 
Fig 42 Different saboteur types: serial (a) and parallel (b) ................................. 74 
Fig 43 FPGA  a) General structure. b) Internal structure of a CLB configured in the 
‘logical’ way. c) Internal structure of a CLB configured in the ‘memory’ way ......... 76 
Fig 44 Altera DE2 Platform ............................................................................. 77 

BUPT



7 
 

Fig 45 Time comparison between small-bit versions of DES, IDEA, AES and the 
original and modified IDEA NXT crypto-algorithms ............................................ 78 
Fig 46 Time comparison between large-bit versions of AES and the original and 
modified IDEA NXT crypto-algorithms .............................................................. 79 
Fig 47IDEA NXT vs AES base implementation Performance in terms of Hardware 
Area ............................................................................................................ 81 
Fig 48 IDEA NXT vs AES base implementation Performance in terms of Critical Path 
& Throughptut .............................................................................................. 82 
Fig 49 IDEA NXT Offline Architectures Results (for both BIST and Loop 

Interconnection) in terms of Area/Throughput in comparison to the base 
architecture ................................................................................................. 84 
Fig 50 IDEA NXT Loop Architecture Area Results ............................................... 84 
Fig 51 IDEA NXT Offline Architectures Results (both BIST and Loop Testing) in terms 
of Critical Path .............................................................................................. 85 
Fig 52 IDEA NXT Offline Architectures Results (both BIST and Loop Testing) in terms 
of Throughput .............................................................................................. 85 
Fig 53 IDEA NXT BIST Results for induced Area Overhead .................................. 86 
Fig 54 IDEA NXT BIST Results for induced Critical PathOverhead ........................ 86 
Fig 55 IDEA NXT parity-based architectures synthesis results for Max Frequency .. 89 
Fig 56 IDEA NXT parity-based architectures synthesis results for Area ................. 89 
Fig 57 IDEA NXT parity-based architectures synthesis results in terms of Throughput
 .................................................................................................................. 90 
Fig 58 IDEA NXT parity-based architectures synthesis results in terms of 
Throughput/Area .......................................................................................... 90 
Fig 59 Detection Rate for stuck-at-0 defects of the same type injected into the 
parity-based on-line error-detection Architecture built for IDEA NXT ................... 91 
Fig 60 Detection Rate for stuck-at-0 defects of the same type injected into the 

parity-based on-line error-detection Architecture built for IDEA NXT ................... 92 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
  

 
 
 

BUPT



8 
 

 

List of Tables 
 

Table 1 Truth table for Fault-Tree and Faulty–circuits in Fig. 16 .......................... 41 
Table 2 Truth table for Fault-free and Faulty circuits in Fig. 18 ........................... 43 
Table 3 IDEA NXT VS AES BASE IMPLEMENTATIONS PERFORMANCE ................... 80 
Table 4 IDEA NXT FEEDBACK LOOP TEST RESULTS ........................................... 82 
Table 5 IDEA NXT BIST TEST RESULTS ............................................................ 83 
Table 6 IDEA NXT64 parity-based architectures synthesis results ........................ 88 

 
 

 

 

 

 

 

 

 

 

 
 

 

BUPT



9 
 

 
 

 
 

Contents 
ACKNOWLEDGEMENTS ................................................................................. 4 

List of Figures ...................................................................................................... 6 

List of Tables ....................................................................................................... 8 

INTRODUCTION ............................................................................................. 12 

Chapter 1 FUNDAMENTALS OF CRYPTOGRAPHY ................................... 15 

1.1 Basic Notions and Taxonomies Regarding Dependability and Safety of 

Calculations .................................................................................................... 16 

1.1.1 Definition of dependability and security. Attributes ......................... 16 

1.1.2 Threats to the dependability and security of a system ....................... 17 

1.1.3 The relationship between faults, error and failures ........................... 19 

1.1.4 Ways of achieving dependability and security .................................. 20 

1.2 General Notions of Information Security ................................................. 20 

1.3  Modern Criptography .............................................................................. 22 

1.3.1 Public-key cryptography .................................................................... 22 

1.3.2 Symmetric-key cryptography ............................................................ 22 

1.3.3 Symmetric-key algorithms ................................................................ 23 

1.3.4 New Trends and Recommendations in Cryptography ....................... 24 

Chapter 2 THE IDEA NXT CRYPTO-ALGORITHM ..................................... 25 

2.1 A New Generation in Encryption: IDEA NXT ........................................ 25 

BUPT



10 
 

2.2 Mathematical Structure of IDEA NXT .................................................... 26 

2.3 Speed Optimizations for IDEA NXT ....................................................... 29 

2.3.1 Algorithm limitations ........................................................................ 29 

2.3.2 Speedup Solution for IDEA NXT's Key Scheduler........................... 30 

2.4 Hardware Implementation for IDEA NXT .............................................. 32 

Chapter 3 VLSI TEST PRINCIPLES AND ARCHITECTURES: DESIGN FOR 

TESTABILITY .................................................................................................. 34 

3.1 Design for Testability Architectures and Techniques .............................. 35 

3.1.1 Design for Testability Principles ....................................................... 35 

3.1.2 ATPG ................................................................................................. 36 

3.2 Fault Models ............................................................................................. 40 

3.2.1 Stuck-At Faults .................................................................................. 40 

3.2.2 Transistor Faults ................................................................................ 42 

3.2.3 Open and Short Faults ....................................................................... 42 

3.2.4 Delay Faults and Crosstalk ................................................................ 44 

3.3 Fault-Tolerance in Computer Systems ..................................................... 45 

3.3.1 Hardware-based Fault Injection ......................................................... 49 

3.3.2 Software-Based Fault Injection ......................................................... 50 

Chapter 4 TESTING ARCHITECTURES FOR THE IDEA NXT 

ENCRYPTION ALGORITHM ......................................................................... 52 

4.1 Offline Error-Detection Architectures for the IDEA NXT crypto-

algorithm ........................................................................................................ 54 

4.1.1 IDEA NXT Built-In Self-Test Architecture ...................................... 55 

BUPT



11 
 

4.1.2 IDEA NXT Feedback Loop Offline Test Architecture ..................... 63 

4.1.3 BILBO Offline Testing Architectures for IDEA NXT ...................... 64 

4.2 A Parity-based Concurrent Error-Detection Architecture for IDEA 

NXT ................................................................................................................ 66 

4.2.1 Introduction to Concurrent Testing Architectures ..................... 66 

4.2.2 Error-detection mechanism for IDEA NXT's Datapath ............. 67 

4.2.3 Error-detection mechanism for the Key Scheduler ................... 71 

4.3 Fault Injection for IDEA NXT ................................................................. 73 

4.3.1 VHDL-based Fault-Injection techniques ........................................... 73 

4.3.2 Verilog-based Fault Injection Techniques for the Experimental 

Validation of a Fault-Tolerant System ....................................................... 75 

Chapter 5 Experimental results .......................................................................... 75 

5.1 FPGA Devices .......................................................................................... 76 

5.2 Time comparison between different versions of AES, the original and the 

speed-up versions of the IDEA NXT crypto-algorithms ............................... 78 

5.3 Experimental Results of IDEA NXT Off-line Testing Architectures ...... 80 

5.4 Experimental Results for IDEA NXT Parity-Based Test Architecture .... 87 

5.5 Error-Detection Rate for the Concurrent and Offline Testing 

Architectures built for IDEA NXT ................................................................. 91 

CONCLUSIONS ................................................................................................ 93 

REFERENCES .................................................................................................. 96 

List of Publications .......................................................................................... 102 

Conference Proceedings ............................................................................... 102 

BUPT



12 
 

 

 INTRODUCTION 
 
This PhD thesis describes the research activity carried on at the “Politehnica” 

University of Timisoara in the past 4 years. The doctoral program makes a foray in 

the domain of Computer Science, and more specifically the fields of Computer 
Hardware Design and Cryptography, with an emphasis on data security 
mechanisms, encryption algorithms and Built-In Testing techniques for encryption 
algorithms. 

The opportunity of the theme is justified by the fact that start of the new 

millennium stays under the sign of technological development, and the field that has 

grown the most and in the shortest period of time is the one of computers. There is 

no field in the industry that doesn't make use of computers and the new facilities 

that come with the expansion of computer networks and the Internet. The present 

and future in this phase of society evolution, characterised by globalisation, feasible 

due to the extraordinary progress made in science and technology in recent 

decades, belongs to rapid communications made with the help of computers, 

networks of interconnected computers, digital technology, the Internet and GSM 

mobile communications. These systems have the undeniably advantage of the huge 

mount of data that can be shared with a used practically insignificant material 

support and great speed of data transmission in comparison to the amount of data. 

This type of communications has a major drawback at the moment, namely the 

difficulty of ensuring confidentiality of information or avoiding the data interception 

by unauthorized third partys. In the absence of securing such data, extremely 

unpleasant events with unpredictable consequences can be produced. An un-

authorised party can vitiate or change the content of an email, break bank accounts, 

transfer money to other accounts than intended, steal personal card information, 

steal information in the military, scientific, diplomatic fields, etc. 

Security in these areas can be achieved by encrypting the stored data or the 

one being  transmitted through the internet with cryptographic algorithms. Even 

some of the mobile phones can use software that encrypts the call in progress. The 

most widely-used crypto-algorithm at present date is the symmetric bloc cipher, 

AES. However, AES starts to show its weakenesses in recent years, as more and 

more articles describing successful attacks to breaking AES appeared in the past 

years. 

Going through the literature, I discovered a new family of symmetric-

algorithm, built on the structures of IDEA and AES crypto-algorithms, which is 

believed to offer an increased security than AES, since there is no proved attack 

against IDEA NXT at the moment. Other advantage of IDEA NXT is the fact that its 

decryption process is almost the same as the encryption process, which makes it 

perfect to use for systems where bi-directional communication is done.  

Given all of the above, I believed IDEA NXT could successfully become the new 

generation in encryption in a few years, the rightful successor and replacement of 

AES. For this reason I considered appropriate to studyIDEA NXT in more detail and 

to create a hardware implementation of the algorithm (taking as starting point its 
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mathematical structure) which can be run on a FPGA device, so that the algorithm 

could be easily integrated in a crypto-chip. This is the first implementation of this 

kind for NXT, the other two hardware implementations built for it up-to-this date are 

made for ASICs. Once an algorithm is used in a real system, faults inserted in 

different stages of the algorihm’s design or implementation could cause 

malfunctions which could lead to faulty system components or even complete 

system failure. In order to avoid the propagation of such errors for IDEA NXT, I 

believed approapiate to design and implement in hardware a couple of off-line 

(while the system or algorithm is not functional) as well as on-line testing 

architectures (concurrent with the algorithm’s operation) for detecting various types 

of errors that could compromise its well-functioning. The error-detection 

mechanisms are built specifically for the this algorithm and are meant to detect at 

early stages the faults introduces in the design and implementation phases on the 

algorithms, as well as the ones caused by external factors which can somehow alter 

the normal operation flow. 

I imagined this research as a top-down approach, following the flow showed 
by Fig. 1. 

 

 
 

Fig 1 Thesis nucleum – top-down approach 

 

 
The following paragraphs briefly present the content of each chapter of the 

thesis. 
Chapter 1 makes an incursion in the field of cryptography and symmetric 

crypto-algorithms. 
Chapter 2 focuses on the novel private-key cryptographic algorithm, IDEA 

NXT, highlighting its strong points in comparison to similar, well-known symmetric 
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ciphers. A series of optimizations I brought to the fundamental structure of this 
crypto-algorithm, especially regarding its speed are also illustrated. The hardware 

implementation of the IDEA NXT algoritm is also described in a detail manner, as 
well as the one built for the modified version of NXT. 

Notions of testing principles and methods from the literature and the main 
fault tolerance techniques are examined and discussed in Chapter 3. 

Chapter 4 introduces the testing architectures which I designed for the IDEA 
NXT algorithm. This chapter also presents the fault-injection method I used for 
simulating the presence of faults in the IDEA NXT algorithm in order to test the fault 

detection rate of the proposed error-detection schemes. 
Finally, Chapter 5 draws the conclusions of this thesis based on the 

experimental results, marking its original contributions and drawing future directions 
of research. 

 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

BUPT



15 
 

Chapter 1 FUNDAMENTALS OF CRYPTOGRAPHY 
 
Communication systems with interconnected computers are the future in 

global communications. But with the expansion of electronic data processing and 
their transmission through computer networks, the importance given to security 

aspects has increased considerably. The need for security and authenticity occurs at 
all architectural levels of computer networks connected to the Internet to prevent 
unauthorized access to the network, which could lead to deterioration or destruction 
of data. A series of questions also arose: 

 Which is the way to send a message secretly, without it being intercepted by 

a third party? 

 How can the sender of the message be sure that his message will not arrive 
at its destination un-altered? 

 Which is the way to assure that a message comes from the sender he 
expects and that the message comes un-altered? 

A low-level, unprotected solution would be to hide the existence of the 
message itself by writing it, for example, with an invisible ink, or to send it through 
someone you trust. A high-level, scientific solution for all this is to be found in the 

field of Cryptography. 
Cryptography is the science that deals with the transmission of secret data by 

converting data (plain text) into encrypted text (ciphertext) using a piece of 
information called “key”, known only to authorized parties. Today, cryptographic 
techniques can be found both in the public and private sectors, wherever 
processing, transferring and / or storing information is necessary. Cryptography can 
be used to alert the changing content of a document to certify the identity of the 

person who issues a message, to maintain security of online communications or to 
protect important and private data. 

It can be considered that this science began some 4000 years ago, when 
Egyptians wrote enciphered messages on pyramids.  The earliest cryptographic 
system SCYTALE is attributed to Caesar who sent commands to his generals with its 
help nearly 2500 years ago. The system was a very simple one which worked by 

replacing one letter of the alphabet with another (A with D, B with E, etc). “In 1460, 
Leon Alberti created a cipher wheel. In 1585, Blaise de Vignere formally described 
the polyalphabetic substitution cipher. In 1790, Jefferson developed a cylinder 
comprised of 26 disks, each with a random alphabets.” [1]. 

In 1817, Wadsworth invented a polyalphabetic cipher composed of two 
concentric circles (wheels) knows as the Wheatstone disk. Probably the best knows 
cipher of the last century is the Enigma which was used during World War II, 

composed of a number of rotor wheels with internal cross-connections which 
achieved word substitution by making use of a continuous alphabet [2].During the 
interbelic period, things started to advance quickly and solidly in this area, as the 
military field needed extremely secure communications to win their wars. In the late 
1960s, in the IBM Watson Laboratory, Horst Feistel created the U.S Data Encryption 

Standard (DES) and in 1976, Withfield Diffie and Martin Hellman wrote a paper 
called “New Directions on in Cryptography” which changed fundamentally the 

approach to cryptography. They even invented cipher which would gain a great 
popularity – Diffie-Hellman public-key cryptosystem. Nowadays, the widespread use 
of computers, mobile devices, tablets, POS card transactions and the Internet have 
led to an even bigger interest in cryptography, because of the need to protect 
privacy.  
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1.1 Basic Notions and Taxonomies Regarding Dependability 

and Safety of Calculations 

 

 

1.1.1 Definition of dependability and security. Attributes 
 
The field of dependability comes from other related areas, such as fault-

tolerance, trust and safety systems which were intensively studied in the '60s. Due 
to increasing interest in these areas in the 1970 and 1980 decades, the term "trust" 

(reliability) became overloaded and used with a different meaning than originally, as 
a measure of the failures of a system to accommodate various sizes which now will 
classified in safety, integrity, etc. Jean-Claude Laprie used the term “Dependability” 
to encompass all these relational disciplines, in the early 1980s.  

As compared to early days, a keen interest is now manifested in this area. 
Research is undertaken by a number of prominent international conferences, of 

which can be mentioned International Conference on Dependable Systems and 
Networks and the International Symposium on Software Engineering trusted. The 
original definition of dependability encompasses the following non-functional 
requirements: availability, reliability and maintenance, which combines with the so-
called depend threats and failures. This definition was later broadened to 
incorporate safety and security.  

The primary definition of dependability is as follows: "dependability is a 

property that justifies the confidence in a system" [4]. The definition stresses the 
need to justify this confidence. 

Alternative definition, that provides criteria for deciding whether a service is 
reliable, is: “the ability to avoid faults and the failure of system services which occur 

more frequently and in a much more severe than should be tolerated”. Dependence 
between the two systems is the degree to which the first system dependability is 
affected by the other system.  

The concept of dependability has the following attributes: 
• Safety and trust: the continuity of services in the fairness  
• Safety: absence of catastrophic consequences on the users and the environment  
• Integrity: absence of any alterations to the system 
• Maintenance: ability to withstand or repair modifications 
• Availability: the system is prepared for correct functionality 

As suggest the above definitions, only availability and reliability are quantified 
by direct measurements, others are subjective. Trust, for example, can be 
measured by the number of failures over time. When you bring the problem under 
discussion there is a security attribute that should be taken into account, namely 
confidentiality, which means the absence of unauthorized disclosure of information. 
Security is a composite of attributes that require the availability of co-existence (for 
actions authorized) of confidentiality and integrity (with the improper purpose of 

"unauthorized"). It is very important to grasp the difference between the definition 
of privacy (the duty to protect secret information), discretion (limiting the number 
of accesses to the system) and privacy (the ability and right to protect informed 
personal secret).  

Attributes vary in importance according to the application that is intended to be 
achieved given computational system. Also, the extent to which a system possesses 
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the attributes of dependability and security is a relative, because of the unavoidable 
presence of errors, systems are never fully available, reliable or safe. 

In addition to the attributes already discussed a number of secondary attributes 
can be defined, which refine or specialize the primary ones. One such attribute is 
robustness, .ie. dependability vis-à-vis to the external errors, the system equation 
characterizing a specific class of faults [6]. The newly defined notion is particularly 
relevant for security, for which the following secondary attributes can be mentioned: 
• Responsibility: availability and integrity of the identity of the person who made a 
particular surgery 

• Authenticity: the origin and content integrity of a message 
• Non-repudiability: availability and integrity of the identity of the sender, the 

addressee of a message (non-repudiation of origin, namely the reception) 
A fundamental goal of cryptography is to achieve these goals both in theory and 

in practice [3]. 
Dependability and security classes are generally defined by analyzing the 

frequency and severity of errors for the relevant attributes of database applications. 

Variations in highlighting various attributes directly influence's balance techniques 
(prevention, tolerance, removal and provision of error) which will be applied to 
transform the resulted system in a safe and reliable one. Applying security 
measures to a system improves dependability by limiting the number of external 
errors. 

 

 

1.1.2 Threats to the dependability and security of a system 
 
Maintaining the dependability and security of a system unchanged is a 

challenge, because each component can make serious problems. To be able to fight 

against the threat, it must be first located and understood; this presumes grouping 

threats according to their severity, source of origin, the potential route of spread, 
etc. This is facilitated by the development of algorithms to protect the system from 
specific threats. In the development phase, errors can be introduced into the system 
by: [4]  

 
 

 

 
Fig 2 Types of Maintenance 

 
- The environment, the physical phenomena existing  

      - System Developers  
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      - Software and hardware tools used by researchers in the development process  
      - Development and production facility  

During its use, the system interacts with the environment, made-up of the following 
elements:  
      - Environment  
      - Network administrators  
      - Service Users  
      - Infrastructure: The communication links, power sources  
      - Opponents, which may cause altering the functionality or performance of the 

system: hackers, malicious software [5].  
The attribute mentioned earlier, maintenance, involves repairs and modifications 

to the system during its lifetime. Various forms of maintenance are summarized in 
Fig. 2 [6]. 

 

 

 

Fig 3 UML Diagram: relationship between faults, errors and failures [7] 

 
It should be noted that repairing and tolerating errors are related concepts. The 

distinction between error tolerance and maintenance is that maintenance involves 
an external agent such as a repair or test equipment. Reparation can be seen as an 
activity tolerance of errors in a system incorporating the subject system repairs, and 
people carrying out repairs. 

The next sub-chapter describes the main threats which jeopardise the security 
and dependability of systems, and examines ways in which they can be avoided - 

what can be done so that the negative effect on the system can be reduced. The 
three major threats are: faults, errors and failures. 
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1.1.3 The relationship between faults, error and failures 

 
In the definition of fault tolerance there is the presumption that there is a 

specification which describes the correct system behavior.  
A failure occurs when an active, functional system deviates from specified 

behavior. The cause of failure is called error. The error is an invalid state of the 
system, not allowed in the specification of behavioral state of the system. The error 
itself is the result of a fault in the system. In other words, a fault is the root cause 

of failure. This means that the error is only a symptom of a fault. A fault will not 
necessarily become an error, but the same fault can result in more errors. Similarly, 
a single error can lead to multiple failures. 

These concepts are illustrated by a UML class diagram in Fig. 3 [7]. 
Faults, errors and failures operate according to a specific mechanism, known 

as the “Fault-Error-Failure Chain” [4]. As a general rule, a fault, when it is enabled, 
may result in an invalid state caused by an error which in turn can cause another 

error or a failure (which is a noticeable deviation from specified behavior at the 
system boundaries). 

 
 

failure  fault   error    failure                  fault 
event  cause   state    event                  cause 

 

Fig 4 Fault-Error-Failure Chain 

 
Fig. 4 shows the temporal or causal relationship between faults, errors and 

failures. The arrows express that, by propagation, faults can cause errors, which in 

turs, can cause system or component failures. It should be noted that the chain 
propagation and thus instantiation can occur through interactions between 
components or systems, the composition of components in a system and creation or 
modification of a system. 

An example of how errors can affect the functionality of a system is the ATM 

model. A person who want to make a transaction with his card presumes those 
money will get to the destination, without any attacker finding out the personal 
details. That ATM machine is using an encryption algorithm to secure the data which 
is being tranzactioned. If an error would manifest in the algorithm, the security of 
the whole operation would be compromised. Hence, it becomes obvious the need to 
periodically test that algorithm and detect an error as early as possible, so to avoid 
the complete failure of the system when it is too late. The nucleum of this idea was 

built around Heinz Bonnenberg’s thesis [20] about securing VLSI equipments. 
The main role of testing is detection of faults in general, just the presence of 

some specific fault or determination and correction of errors in design or even the 
testing procedure. 

Optionally, the design can be made so that it incorporates testing facilitates. 
During early years, design and testing were separated. The final quality of tests was 
determined by keeping track of the number of defective parts shipped to the 

customer. Defective parts per million (PPM) shipped was a final test score.This 
approach worked well for small-scale integrate circuits [116]. 

During the 1980s, fault simulation was used, but this couldn’t improve the 
circuit’s fault coverage beyond 80%. Increased test cost and decreased test quality 
lead to Design for Testability (DFT) engineering. Various testing methods and ad-

BUPT



20 
 

hoc testability measures were tried along the years to improve the testability of a 
design, but couldn’t go beyond 90% [63]. The most popular method up to date is 

Structured DFT and especially Scan Design, but more details about these notions 
and testing theory fundamentals and examples will be given in Chapter 3. 

 
 

1.1.4 Ways of achieving dependability and security 
 

A system cannot be fully trustable in any conditions and in relation to all 
aspects taken into account [7]. So, in order to be useful, the required dependability 
level and the properties the system is expected to have must be done explicitly. 

Mere knowledge of the threat is not sufficient to maintain a good system in 
operation. Various ways of combating them have been developed in recent years, 
perfectened because with the spread and diversification of threats has increased and 
the number of methods of control. 

The four main methods that result from wrong-error-Failed Chain have been 
presented in Section 2.2.2. These are: prevention, removal, prediction and tolerance 
errors [6]. 

Preventing errors requires preventing errors located within the system. This 
is achieved through the development of sound methodologies and implementation 
techniques. There are some hardware methods that make use of active protection, 

such as "active locks (metal mesh covering the entire system) or detector voltage 
sources - to detect any abrupt changes in the system that may be a "glitch" 
(External wrong fault causing transitions of flip-flops). Passive protection includes 
cycles injecting random "dummy", encryption and memory buses, frequency 
generated internally unstable, however more difficult for an attacker to correctly 
understand the internal functioning of the system and thus develop effective redress 

schemes. Removing errors can be divided into two sub-categories: 

 Removal during development - requires such a process so that 
errors can be detected and removed before the system is used. 
Once put into use, the system must register faults and removed 
during the maintenance cycle. 

 Removal during use. 
Prediction of errors deals with the prediction of the errors which are very 

likely to occur. Fault tolerance involves the development of mechanisms by which 

these systems can provide desired services even in the presence of faults, but 
without these services being somewhat affected. 

Dependability methods aim to reduce the number of failures of a system 
presented to the user. Failures usually appear in time and it is useful to understand 
how that is measured and how often they occur, so that effectiveness of resources 
can be measured. 

 
 

1.2 General Notions of Information Security 
 
Securing information can be treated in two ways. One is the protection of 

processed data from intruders that can occur in various destructive purposes. The 
second relates to protection of information circulating on the means of 
communication [7].  

Cryptography, the science considered secure communications systems the 
information conveyed includes the sub-domains: 
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• Cryptography - the branch of mathematics that deals with information 
security and authentication and Restriction of access to a computer system. In their 

implementation using both mathematical methods (taking advantage, for example, 
the difficulty of factorization large numbers) and quantum encryption methods. The 
term “cryptography” is composed of the Greek words kryptós (hidden) and gráfein 
(write). 

 Cryptanalysis, and cryptographic analysis, dealing with broken processes 
without knowing the encryption procedures used in the encryption stage. It 
occurs on the public channel transmitting secure unruly cryptogram used to 

reconstruct the source processes. The attack on the encryption processes 
can be found at the level of recipients. They can be identified in various 

forms of intelligence infiltration in the state. 
 Steganography in charge of securing private messages by using methods 

such as micropunctul, sympathetic inks, notices in newspapers advertising 
specialty predetermined understood. Such methods, however, belong to the 
past. 

 
 

    Message (M)        public communication channel               Message (M) 
 
 
 

Secure communication channel    Encryption/decryption         Secure communication 
                                            key generation               channel 

 

 

Fig 5 The principle of classical securing 

 
The main classical cipher types are: [3] 
- Substitution ciphers: the process by which each letter or group of letters 

in the message source is replaced by a new letter or group of letters.  
- Transposition ciphers: encryption process, which relies on changing the 

order in which characters appear in the message source. All the rules 
used for this purpose is the cipher key or encryption (such as "Voyager" 
gets "ovayegr 'a trivial rearrangement scheme [8]) 

Conventional systems make use of an encryption key that is turned in one 
clear message visually impaired called Cryptogram, which is transmitted to the 

recipient on a public channel of communication. The public channel is a channel of 
communication understood unprotected especially towards outsiders anyway 
considering that they do not have the necessary decryption key. Only the recipient 
will have the key. 

Fig. 5 presents the principle of safeguarding in a traditional, intuitive form, 
taken from [36]. For a variety of keys, only a couple of them can be used and from 

these only one at a time. As apparent from the figure these keys are generated in a 

particular place and the disadvantage of conventional processes is precisely that 
these keys must be transmitted to all users on the secure channel of communication 
[7]. 

The drawback of the classical cryptosystems is that they cannot mediate 
between the receiver and sender as to verify if a message was transmitter and what 
this message is. Even with the Key management issue, as it is hard to send the 

A B 
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secret key in a secure manner, the user authentication and message integrity can 
be achieved but only the receiver can verify these. 

 
 

1.3  Modern Criptography 
 

1.3.1 Public-key cryptography 
  

Having in mind the afore-mentioned downsides, new directions were 
investigated, emerging from Diffie and Hellman’s research which was mentioned in 
the introduction. They proposed a novel type of cryptosystem which was later called 

public key crptosystem (PKC). 

Before going further to detail on this, it must be said that the basic 
cryptographic building blocks, the atoms out of which all other cryptographic 
constructions are produced are the primitives. The basic symmetric key building 
blocks are considered in [117] to be block ciphers, hash functions and stream 
ciphers, as well as basic public key building blocks such as factoring, discrete 
logarithms and pairings. Modern cryptography then takes these building 
blocks/primitives and produces cryptographic chemes out of them. Besides there 

afore-mentioned building blocks, we must also metion also Message Authentication 
Codes (MAC), which are symmetric-key cryptosystems that aim to achieve message 
integrity. Most commonly used designs fall in one of two categories: block-cipher 
based schemes and hash function based schemes. 

Asymmetric cryptography is a type of cryptography in which the user has a 
pair of keys, one public and one private. Using public key someone can encrypt a 

message that can be decrypted only with the paired private key. Mathematically, 
the two keys are related, but practically they are not derived from one another. A 

very appropriate analogy for the mailbox process presented in [8]. Anyone can put 
an envelope in someone's mailbox but only the mail owner of the envelope has 
access to it. Asymmetric cryptography is also called „public key cryptography”. 

The two major branches of asymmetric cryptography are: 
• Public key encryption - a message encrypted with a public key cannot be 

decoded only using the corresponding private key. It is used to ensure 
confidentiality. 

• Digital signatures - a message signed with the private key can be verified 
broadcaster by anyone with access to this key, thus ensuring authenticity of the 
message [28]. 

Public key encryption schemes are seldom used to encrypt messages but 
more often to secure by encryption symmetric keys for future bulk encryption. 

A major problem in using this type of encryption is the lack of confidence in 
the accuracy and authenticity of public key. -Normally the problem is solved using 
public key infrastructure (PKI) in which one or more persons provide authentic key 
pair. Another approach used by PGP (Pretty Good Privacy) is the concept web of 

trust. 

1.3.2 Symmetric-key cryptography 

 
Symmetric-key cryptography refers to encryption methods in which both the 

sender and receiver share the same key (or, in some cases, in which their keys are 
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different, but related so that can easily be computed). This was the only kind of 
encryption publicly known until June 1976. 

The modern study of symmetric-key ciphers relates mainly to the study of 
block ciphers and stream ciphers and to their applications. A block cipher is a 
modern version of Alberti's polyalphabetic cipher: block ciphers take as input a block 
of plaintext and a key, and output a block of ciphertext of the same size. Since 
messages are almost always longer than a single block, some method of combining 
together successive blocks is required. Several have been developed, some with 
better security in one aspect or another than others. They are the modes of 

operation and must be carefully considered when using a block cipher in a 
cryptosystem [27]. 

The Data Encryption Standard (DES) and the Advanced Encryption Standard 
(AES) are block cipher designs which have been designated cryptography standards 
by the US government (though DES's was no longer used after the AES was 
adopted). Many other block ciphers have been designed and released, with 
considerable variation in quality. Many of them have been broken, such as FEAL. 

Stream ciphers, in contrast to the 'block' type, create an arbitrarily long 
stream of key material, which is combined with the plaintext bit-by-bit or character-
by-character, somewhat like the one-time pad. In a stream cipher, the output 
stream is created based on a hidden internal state which changes as the cipher 
operates. That internal state is initially set up using the secret key material. 

Cryptographic hash functions are a third type of cryptographic algorithms. 

They take a message of any length as input, and output a short, fixed length hash 
which can be used in (for example) a digital signature. For good hash functions, an 
attacker cannot find two messages that produce the same hash. MD4 is a long-used 
hash function which is now broken; SHA-1 is widely deployed and more secure than 
MD5, but cryptanalysts have identified attacks against it; the SHA-2 family is an 

imporved version of SHA-1, but it isn't yet widely deployed, and the U.S. standards 
authority thought it "prudent" from a security perspective to develop a new 

standard to "significantly improve the robustness of NIST's overall hash algorithm 
toolkit" [24].  

 
 

1.3.3 Symmetric-key algorithms 
 

The main advantage of public-key encryption-systems is that it is ideal for 
transmitting information through insecure channels, but on the other side, they are 
much slower than symmetric systems [30]. The later can transmit larger volumes of 
data and can be used as a basis for constructing various encryption mechanisms, 
such as: pseudo-random number generator, function generator leakage scheme 
signature. 

The main symmetric-key algorithms are: Data Encryption Standard (DES), 
International Data Encryption Algorithm (IDEA) [26] - first algorithm proposed to 
replace DES's and Advanced Encryption Standard (AES) known as the Rijndael, 

which is the official successor and Triple DES algorithms DES [19]. Knowledge of 
these algorithms is needed to understand the cipher which makes the subject of this 
thesis. Because DES had become vulnerable because of a too small key length, NIST 
(National Institute of Standards and Technology) recommended the usage of 3DES, 

an algorithm that is essentially applying three times the DES. Although 3DES 
algorithm proved to be strong, it is relatively slow in software implementations, 
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which is why NIST has submitted an application in 1997 with various proposals 
which could replace it. 

The winning proposal was AES, a symmetric block cipher with 128-bit length 
text and key based on Galois Field GF (28), leading to a lower consumption in 
modern computers [9]. In June 2003 the US government decided that AES can be 
used for classified information also. Until the level SECRET, all three standardized 
key lengths – 128, 192 and 256 bit can be used. The TOP-SECRET information 
(highest classification level) can only be encrypted with 256-bit key lengths. Still 
there are numerous attacks demonstrated to it [29]. 

For example, for the extension of keys algorithm, in [10], the energy leaks 
which take place in the cryptosystem were demonstrated through a simple analysis 

of the energy (SPA – Simple Power Analysis). Observing the energy leaks leads to 
inducing the secret cryptographic keys. As SPA attacks are easy to be done and 
extremely efficient, in [11] there were proposed a series of protection measures in 
implementing the cryptosystems on smartcards and other similar devices. 
 

DPA (Differential Power analysis) attacks take secret information from the  

statistical calculations of a set of traces of energy consumption. 
Papers [5],[8],[10],[11], [12] demonstrated attacks against all the above 

algorithms, especially AES, considered the most secure algorithm in early 2000s, 
which was and still is used to protect everything from top-secret government 
documents to online banking transactions. 

In 2001 there was the first single-key attack on the full AES cipher which is 

(very slightly) faster than brute force. It introduces a technique known as biclique 
cryptanalysis to remove about two bits from 128-, 192-, and 256-bit keys [7]. Given 
sufficient time, a brute force attack is capable of cracking any known algorithm. 

There was a new direction of lightweight algorithms, with fast key-
schedulers and substitution boxes (S-boxes) based on purely algebraic construction 

[13]. However the trend is not necessarily the safest, most of published attacks on 
block ciphers algorithms operate with just simple a key programmer, a good 

example being Muller's attack on the Khazad cipher [14]; algebraic substitution 
boxes were just an aid for algebraic attacks – as Courtois-Pieprzyk state in [15]. 

Based on the all this, it becomes clear the motivation to develop a serious 
alternative to the block ciphers. 

 

1.3.4 New Trends and Recommendations in Cryptography  
 

There are organisms that work to improve the resilience of Europe’s critical 
information infrastructure and networks. The best known are ECYPT and ECRYPT2. 
Also, the European Union Agency for Network and Information Security Agency 
released a document [117] which comprise a series of recommendations for 
algorithms, keysizes, and parameter recommendations, addressing the need for a 

minimum level of requirements for cryptography across European Union (EU) 
Member States in their effort to protect personal and sensitive data data of the 

citizens. As a general rule, they consider symmetric 80-bit security levels to be 
sufficient for legacy applications for the coming years, but consider 128-bit security 
levels to be the minimum requirement for new systems being deployed. Thus the 
key recommendation is that decision makers now make plans and preparations for 
the phasing out of what we term legacy mechanisms over a period of say 5-10 

years. In selecting key sizes for future applications they consider 128-bit to be 
sufficient for all but the most sensitive applications.  
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Chapter 2 THE IDEA NXT CRYPTO-ALGORITHM 

 
 

2.1 A New Generation in Encryption: IDEA NXT 
 
In 2001, in Switzerland, at the request of Crypt Media AG, the company 

which has the publishing rights for IDEA, Pascal Junod and Serge Vaudenav initiated 
a new project called FOX which was aimed to be an improved version of both IDEA 
and AES algorithms by combining the speed of IDEA with the security of AES. In 
May 2005 MediaCrypt announced its final form under the name IDEA NXT. 

IDEA NXT Family is a new generation of symmetric encryption algorithms, 
flexible and scalable from AG Mediacrypt to help secure governmental data and 
digital communications. 

As the availability of rich media allows for easy and quick Internet 
downloads, recent reports show that over $3 billion is lost to content piracy each 
year [16].  Most of this piracy has been due to peer-to-peer audio networks, with 

video piracy becoming more popular as bandwidth grows. IDEA NXT can be 
integrated into Digital Rights Management systems and allows for unique dynamic 
recovery capability that protects system integrity. 
  Another trend is to move media content beyond its traditional livingroom 
location, into a home entertainment network and to on-the-go audio/video devices.  
IDEA NXT gives content owners and distributors additional options to secure the 
content for transportation and integration.  It allows for new business models for 

content distribution.  Its flexible and scalable features please both consumers, as 
they are given access to their content, and service providers, by securing that 
content. 

IDEA NXT family consists of two block ciphers that have different sizes, key 

lengths and number of rounds: 
• Standard NXT64 (block of 64 bits, 128 bit key, 16 rounds) that is compatible with 
IDEA and Triple DES 

• Standard NXT128 (block of 128 bits, 256 bit key, 16 rounds) compatible with AES. 
Variations of the cipher can also be constructed out of the Standard Version: 

0-256 bit keys, amaximum of 255 rounds, and Standard tables can be replaced by 
individual tables (sbox matrix permutation) which are successfully used in case of 
attacks by loading new tables in the system, thus creating a dynamic method of 
system recovery. Variable number of keys provides the possibility for each user to 

choose the desired length of password, while the flexibility in the number of rounds 
translates into more secure applications and allows finer adjustment of the user's 
performance and security levels according to applications [16]. 

MediaCrypt published an article [16] which contains a comparison between 
IDEA NXT and AES, the first winning in a couple of extremely important chapters. It 
is more resistant to known attacks, has a stronger key planner and not least, has 
less underlying hardware, one aspect that is becoming increasingly more important. 

The main reaon for which I considered studying this algorithm in more detail 
is the enhanced security it seems to offer, as, to the best of my knowledge, there is 
no proved attck to brake it, unlike AES, for which a number of successful attacks 
were presented in the literature. Also, the fact that for IDEA NXT the process of 
decryption is almost the same as the encryption one (since it is based on a Feistel 
scheme) makes it a perfect fit for situations in which bi-directional data needs to be 
transmitted in a secure manner.  
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2.2 Mathematical Structure of IDEA NXT 
  

The IDEA NXT algorithm is based on the Lay-Masey scheme and the round 

functions are of type Substitution-Permutation Networks (SPNs) based on the 
Feistel scheme. 

The 64-bit version of IDEA NXT represents the 'n-1' times iteration of a 
round function called lmor64, followed by applying a slightly modified function 
called lmid64.  For decrypting,  lmor64  is  replaced  by  lmio64, function which  
uses the inverse of the OR ortomorphism. All these functions, based on the Lay-
Massey scheme have an output on 64 bytes and two input parameters on 64 bits: 

the plain text and a sub-key, also known as round key. 
In the 128-bit version of the cipher, lmor64, lmid64 and lmio64 are 

replaced by elmor128, elmid128 and elmio128.  The major difference is that the 
NXT128 functions use the extended Lay-Massey scheme combined with 2 
ortomorphisms. The ortomorphism represents a Feistel scheme on a single round 
which has the identity function as a round function. 

 

   

Fig 6 Top-level scheme of IDEA NXT\ 

 

The main function of NXT64 is f32, composed of 3 main parts: a substitution 
part, sigma4, a diffusion part mu4 and a round key addition part. The substitution 
part is composed of the sigma8 and mu8 functions which are made of 4, 
respectively 8 parallel calculations of non-linear bijective mapping. A substitution 
box (sbox) essentially is a look-up table filled with predefined values. The diffusive 

part (mu32/mu64) is a linear multipermutation defined of Galois Field GF(28) [13]. 
The key is processed by a Key Scheduler module which performs a four-

layer encryption of its own before providing the obtained key value to the data 
encryption process itself. 

The key scheduling algorithm is composed of four parts: one padding part, 

denoted P, which extends K(k) to ek bits, a mixing part M, one diversification part D 
whose kernel is a linear shift register noted LFSR (Linear Feedback Shift Register) 

and a non-linear part NLx. Because the non-linear part can operate on 64, 128 or 
multeiple of 64 bits, the Key scheduler is said to have three (corresponding) 
versions. 
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Fig 7lmor64 algorithm 

Fig. 8 shows the main operations of the key scheduler algorithm. KS128 
takes the following parameters as input: the key k which is l bits long, 0<=l<=256 
and a round number r representing the number of rounds and return a number of r 
sub-keys of 128 bits length. 

The padding is used to extend the key, if its length differs from the standard 

length of 'ek' bytes, by concatenation with the pad constant. 
The main part of the mixing entity is a Fibonacci- type recursion whose first 

2 elements have pre-defined values: mkey(-2)=0x96A and mkey(-1)=0x76. 

The padding, mixing and diversification parts are efficiently implemented 
when the key length is fixed, for NXT128 on 256 bits. The sequences from the 
output of the LFSR can be pre-calculated and stored in the ROM for easy access to 

them [21]. 
There are three versions of the Key Scheduler algorithm, chosen depending 

on the key length and of the considered member of NXT family.  
The non-linear step is itself made of multiple parts: substitution (which uses 

4 parallel sigma4/sigma8 processes), diffusion (composed of four times mu4/mu8 
functions plus mixing) and mixing. The result is obtained from various combinations 
of XOR operations between the 4 parts obtained by splitting the input vector.  

The diversification part takes the key computed in the mixing part, denoted 
mkey, having ek bits length, the total number of rounds r and the current round 
number, i,  0<i<r, and modifies mkey with the help of a 24-bit LFSR. The mkey is 
seen as an array of [ek/24] 24-bit values mkeyj(24), with 0<=j<=[ek/24]-1 
concatenated with one residue byte mkeyrb(8) (if ek=128) and is modified according 
to (1): 

dkeyj(24) = mkeyj(24) XOR LFSR((i-1)*floor(k/24)+j, r) (1) 

for 0<=j<=(floor)(ek/24)-1;  

dkeyrb(8) value is obtained XOR-ing the most 8/16 significant bits of LFSR((i-
1)*(ceiling)(ek/24)+(floor)(ek/24),r) with mkeyrb(8) /mkeyrb(16) respectively. The 
remaining 16 (8) bits of the routine are discarded [22]. 
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The kernel of the Key Scheduler is the linear shift register denoted LFSR 
(Linear Feedback Shift Register) which takes the total number of rounds 'r' and a 

number of preliminary clocks as inputs and uses an following irreducible polynomial 
over GF(28) for generating the encrypted keys. The remaining 16 (8) bits of the 
LFSR are ignored.  

 

 

  

Fig 8 Key Scheduler of IDEA NXT 

 

In essence DKEY value goes through the substitution layer consists of four 
parallel functions sigma4 (sigma8), a diffusion layer consisting of four parallel 

functions mu4 (mu8) and a mixing layer called mix64 (mix128 respectively).  The 
result goes through a second layer of substitution, then is reduced to 64 (128) by 
two bits of the operation by or-exclusive and final value is encrypted by first lmor64 
function (elmor128), where the value of the sub-key is given by the first half the 
DKEY and then lmid64 function (elmid128), the sub-key is in this case the second 
half of DKEY. The result is a round key 64 (or 128) number of bits corresponding to 

round i. 
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2.3 Speed Optimizations for IDEA NXT 

2.3.1 Algorithm limitations 

   
The IDEA NXT crypto-algorithm was thought to be extremely competitive in 

all the relevant security areas while still having no major speed penalties [2], and it 
can be said it succeeds when compared to its main competitors from the time it was 

created (DES, IDEA, AES). The comparison I made in a previous paper [17] shows 
both the 64-bit and 128-bit key lengths of IDEA NXT performed better in terms of 
throughput than the similar versions of the AES encryption algorithm. I 

implemented the 128-bit, 192-bit and 256-bit versions of the NXT algorithm in a 
pure hardware manner, using the Verilog modeling language, and compared the 
execution times with the execution times of similar implementations of the DES, 
IDEA and AES crypto-algorithms. The results presented in that paper showed IDEA 

NXT performed well on the large versions, but its small-length versions could 
without a doubt be improved, when compared to the widely-used 64 and 128-bit 
versions of AES.  

 
 
 

 

 

 

 

 

 

 

Fig 9 A 24-bit Linear Feedback Shift Register 

 
The hardware implementation of all versions of IDEA NXT takes longer to 

execute compared to DES, IDEA and AES mostly because of the complex Key 
Scheduler and repeated rounds of encryption. So, in order for it to be competitive at 
this chapter also, a solution needed to be found to increase the speed either at the 

entire algorithm level, either at the key generator level, which in turn improves the 
overall speed. 

Our goal was to find a way to speed-up the algorithm without essentially 
modifying its structure. One of the ideas was to improve the way keys are provided 
to the encryption layers, as IDEA NXT's Key Scheduler was proved to be a very 
complex process, translated into clear advantages in terms of security, but with a 

price to be paid in terms of small key agility. The time needed to compute the keys 

is about the time needed to encrypt six blocks of data in case of NXT64 or 12 blocks 
of data in case of NXT128 [13]. 

On a close analysis a time penalty in the diversification layer of the Key 
Scheduler was observed, where a round key (also called subkey) needs 6 clock 
cycles to be generated. The explanation for this is given in the following paragraphs. 

If we consider the 64-bit version of IDEA NXT, with a key length of 128-bits, 
according to relation (1) from Chapter 2.2, 24 bits from the round key are 

X1 2X 3X 4X 24XX0
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processed at each iteration, except for the last iteration in which only 8 bits are 
processed. Since 128 equals 5 times 24 plus the remaining 8, it is concluded that 6 

clock cycles are needed to generate a single subkey. 
The 24-bit LFSR used in the Key Scheduler is represented in Fig. 10. 
A linear feedback shift register is essentially a sequence (ai), i∈N satisfying 

the recursion: 

  ai+n =Σ(cj * ai+j)                                          (2) 

In other words it is as a shift register whose input bit is a linear function of 
its previous state. The most commonly used linear function of single bits is XOR. 
Thus, an LFSR is most often a shift register whose input bit is driven by the 

exclusive-or (XOR) of some bits of the overall shift register value [15]. 

For the case of IDEA NXT, as previously mentioned, the input vector is 

divided into 24-bit vectors, leaving 16-residual bits. The entity takes as input ports: 
the number of preliminary clocks (c), the vector and the total number of rounds (r), 
and generates an output port of 24 bits which will become part of the diversification 
key (dkey). The algorithm uses the following irreducible polynomial over GF(28) for 
generating the encrypted keys: 

 
 24 4 3 1PKS

 (3) 

The algorithm is described formally below: 
 

/ * Initialization */ 
reg = 0x6A || r(8) || NOT (r(8)) 

/* Pre-clocking */ 

for (p = 0; p < c; p = p-1) 
   if (reg AND 0x800000) != 0x000000 then 
 reg = (reg << 1) XOR 0x00001B 
   else reg = (reg << 1) 
end if 
 end for 

Output reg 

 

The LFSR construction assures that the subkey generation process can be 
computed in the encryption as well as in the decryption direction with no speed loss. 

 

2.3.2 Speedup Solution for IDEA NXT's Key Scheduler 

  

Having all this in mind, the next step was to dissect the structure of the 
LFSR and analyze in detail each part of its mathematical structure, to see which part 

introduces the greatest overhead and what component is best to modify in order to 
improve the overall performance. 

Let us denote the polynomial representation of IDEA NXT's LFSR as P(x), its 
equation is defined by relation (4): 
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P(x) = a24
 X24 + ...+a4X4 + a3X3 + a1X + a0        (4) 

 

Since its generator polynom is the one in relation (3), we can consider one 
of its radixes to be: 

 
X24 = X4 + X3 + X + 1   (5) 
 
The process of generating a round key by the Linear Feedback Shift Register 

would mean to shift the register with one position each iteration, so six shiftings 

would be needed for a complete generation of a subkey. This shifting translates into 
multiplying the P(x) polynom by X each clock cycle. 

Our proposal is to not lose 6 clock cycles for the generation of a single round 
key, but to directly provide a round key in a single clock cycle. The solution for this 
is to directly multiply the P(x) polynom with X6 each clock cycle, as follows: 

 
(modulo(modulo(modulo(modulo(modulo(modulo(P(x)X))X)X)X)X)X) = 

P(x)X6 =  a24X30 + a23X29 +a22X28 + a21X27 + a20X26 + a19X25 + a18X24 + ...+ a3X9 + 
a1X7 + a0X6   

 
If we replace X24 by relation (5) we obtain, P(x) would be: 
 
P(x) = a24X30 + a23X29 +a22X28 + a21X27 + a20X26 + a19X25 + ...+ a0X6 + a18X4 

+ a18X3+a18X+a18                              (6) 
 
Thus a18 is the new a0.  
Further replacing X24 with its radix from (5) in all places we can in P(x) we 

obtain a new definition for the Linear Feedback Shift Register's output: 

 
new_reg = {reg[18], reg[18]+reg[19], reg[19]+reg[20],          

                    reg[18]+reg[20]+reg[21],reg[18]+reg[19]+reg[21]+reg[22], 
        reg[19]+reg[20]+reg[22]+reg[23], reg[0]+reg[20]+reg[21]+reg[23],  
        reg[1]+reg[21]+reg[22], reg[2]+reg[22]+reg[23],  
        reg[3]+reg[23], reg[4], reg[5], reg[6], reg[7], reg[8], reg[9], reg[10],  
        reg[11], reg[12], reg[13], reg[14], [15], reg[16], reg[17]};                               
(7)      

 

The above assignation will be used in the round key generation process in 
Fig. 4, each new key being processed in the same way. 

As an intemediar conclusion, this sub-chapter illustrated a method to improve 
the execution time of the IDEA NXT crypto-lagorithm, which works for all versions of 
the algorithm independent of the key and text length. The improvement consisted in 
modifying the LFSR equations used in the round key generation process, as to 

generate one key per clock cycle instead of one key in six clock cycles. The streams 
of pseudo-random numbers which make up the round keys are needed in both the 

encryption and decryption processes of the algorithm, to assure a superior level of 
security. 
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2.4 Hardware Implementation for IDEA NXT 
  

The incresed security IDEA NXT offers and its other advantages discussed in 

the previous chapter are a good indication that this algorithm will start to be widely-
used in the next couple of years, since its main competitor, AES, seems to be more 
vulnerable by day. When this happens, the algorithm will need to be integrated in a 
cripto-chip or other systems to be used in the field, and from here orginated my idea 
to implement it in a pure hardware manner, for FPGA devices. There are only two 
othyer hardware implementations of IDEA NXT up until now, and both are for ASICs, 
making my implementation the first of this kind – built for FPGAs. 

Hardware–based encryption moves the encryption functions inside de hard-
disk drive sub-system or crypto-chip, where the operating system doesn’t reach 
them. In this way, these security-critical compo are protected from kits and 
malware, as stated in [123]. 

For an efficient design of the algorithm, the hierarchical design, which uses 
the concept known as “Divide et impera”, was chosen. Hierarchical design implies, 
besides the sectioning the code into modules as simple as possible, design 

abstractions necessary to assure major, but also different functional targets (speed, 
performance, energy consumption). 

 

 
 

Fig 10 Encryption blocks of IDEA NXT [31] 

 
Having these principles in mind, I have implemented a top-down design 

imagining a “black-box” system (the algorithm itself) which was systematically 
broken down into more specific modules. 

The top-level entity is the “black-box” taking as inputs the round number 
and the plain (or encrypted) text, while giving the encrypted (or decrypted) text on 

the output port.  
I adopted a structural approach to the hardware implementation using the 

Verilog modeling language. This  means that all the components of the algorithm 
are implemented as blocks with input and output signals, which are interconnected 
according to the mathematical guidelines described in [20] as to achieve the 

encryption/decryption processes.  
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IDEA NXT represents the 'n-1' times iteration of a round function called 
lmor64/128, followed by applying a slightly modified function called lmid64/128. 

Fig. 10 shows all the blocks which were defined for the encryption process. 
The main blocks are contained in a multiplexor which has two data entries 

and one command entry. The input signal of the encryption block and the output 
signal of the lmor block are inputs of the MUX. 

The control signal will play the role of address entry. The output will be 
chosen depending on this signal, as follows: at the first iteration the input of the 
encryption block will be used, whereas for the rest of the iterations the output of the 

lmor block will be chosen. The rest of the blocks shown in Fig. 10 are as follows: 
 Data Register – register which holds the result of the last executed iteration 

(this is also the next SIR which will be encrypted) 
 Key Scheduler (KS) – block which produces the key that will further be used 

by the lmor and lmid in the text encryption 
 elmor64/128: transforms a 64 or 128-bit input text and a key into an 

64/128-bit output (these will be implemented as ports) with the help of an 

ortomorphism and the f64 function. It receives at its entry the latest 
iteration from the data register and the key from the KS. This block will 
execute the encryption operation r-1 times, where 'r' is the number of 
rounds. The result is sent back to the multiplexor in order for it to be passed 
on to the data Register. 

 lmid64/elmid128 – encryption block which gets as input the last iteration 

from the Data Register and the key from the KS. Although it receives at 
each iteration the result of the last lmor operation, lmid won't encrypt what 
it receives at the entry until the control signal announces it that lmor 
executed its function r-1 times, and so the finalization operation – lmid- can 
take place. This block doesn't use an ortomorphism. 

 Control Unit – used to calculate the number of iterations executed by lmor, 
so that at the 'r'-th iteration, lmid could be executed. 

The decryption process is very similar to the encryption one, the only 
difference is that elmio64/128 is used instead of lmor64/elmor128 [17]. 

The experimental results showing the Time comparisons between small-bit 
versions of DES, IDEA, AES and the original and modified versions of the IDEA NXT 
crypto-algorithm will be detailed in Chapter 5. 
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Chapter 3 VLSI TEST PRINCIPLES AND 
ARCHITECTURES: DESIGN FOR TESTABILITY 

 
When a crypto-algorithm is used in the field, or integrated in a crypto-chip, 

errors can occur and cause malfunctions. A good example of how errors can affect 
the functionality of a system is the ATM model. A person who want to make a 
transaction with his card presumes those money will arrive at the destination, 

without any attacker finding out the personal details of the card or the transaction. 
ATM machines use an encryption algorithm to secure the data which is being 
transactioned. If an error would manifest in the algorithm, the security of the whole 

operation would be compromised. Hence, it becomes a matter-of-course the need to 
periodically test that algorithm and detect potential errors as early as possible, so to 
avoid the complete failure of the system by only taking actions when it’s too late. 
The nucleum of this idea was built around Heinz Bonnenberg’s thesis [20] about 

securing VLSI equipments. 
The main role of testing is detecting faults in general, confirming the 

presence of some specific fault or determinating and correcting errors in the design 
or even in the testing procedure. Optionally, the design can be made so that it 
incorporates testing facilitates. 

During early years, design and testing were separated. The final quality of 

tests was determined by keeping track of the number of defective parts shipped to 
the customer. Defective parts per million (PPM) shipped was a final test score. This 
approach worked well for small-scale integrate circuits [2]. 

 

 

Fig 11 Basic testing approach [39] 

 
During the 1980s, simulation of faults inside the system was a widely-used 

technique, but this couldn’t improve the circuit’s fault coverage beyond 80%. 
Increased test cost and decreased test quality lead to Design for Testability (DFT) 
engineering. Various testing methods and ad-hoc testability measures were tried 

along the years to improve the testability of a design, but couldn’t go beyond 90%. 
The most popular method up to date is Structured DFT and especially Scan Design, 
but more details about these notions and testing theory fundamentals and examples 
will be given in later in the thesis. 

As was denoted in the introduction of the thesis, any system must be tested 
for the various fault and errors which can occur in the system. It is well know that, if 
a faulty behavior is manifesting in a system, the further it propagates, the more 

damage it does and the harder it is to repair it. Not to mention the cost of repairs 
increases. Electronic testing includes IC testing, PCB testing and system testing at 
the various manufacturing stages and, in some cases, during system operation. 
Testing must point out errors, faults and can also be used to analyze their causes. 

Testing usually implies applying a set of stimuli to the input ports of the 
Design Under Test (DUT) followed by analyzing the responses at the output ports, 
as can be seen in Fig. 11. 
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A VLSI design can be tested at various levels of abstraction, ranging from 
the physical (transistor) level, to the register-transfer level and the architecture 

level [110]. Testing can be done either online – concurrently with the system’s 
operation, or offline – when the system or just a part of it is taking out of operation, 
or a combination of these two, like for example online testing discovers an error and 
offline mechanisms are used for diagnosis of the failed component. 

The main metrics for testing are: 
 Realiability: the probability that the system will operate normally until time 

t: P(Tn>t) = e -ℰt, where ℰ is the failure rate [49]. Since a system is 

composed by various components, the overall failure rate is the sum of all 
individual failure rates of the system’s components. The following key 

concepts must be known: 

 Mean time between failures: MTBF = ∫ e -µtdt = 1/ℰ 
 Repair time: MTTR = 1/ µ, because P (R > t) = e -µt 

 System availability = MTTB / (MTBF + MTTR). 
To test a circuit usually we apply a set of input patterns called test vectors. 

When applying all possible 2n input vectors to a DUT with n inputs we do an 
exhaustive testing, which, if it passes, means that no functional fault affects its 
structure [52]. 
 

 

3.1 Design for Testability Architectures and Techniques 

3.1.1 Design for Testability Principles 

 

In [17] the technological challenges in the VLSI industry are presented. The 

authors highlight the importance of the VLSI testing, taking Moore’ law as a starting 
point. The long-term challenges especially on the nanometer technology encompass 
a large spectrum of testing technology trends, including the development of new 
DFT and DFM (Design for Manufacturing) methods, Device Under Test (DUT), 
Automatic Test equipment (ATE) interface, automatic Test Pattern Generation 
(ATPG), speed testing with increased core frequencies, multi-GHz input / output 
protocols and other means to reduce manufacturing costs and increase reliability 

and yield.  
The yield of a manufacturing process is defined as the number of acceptable 

parts divided by the number of parts fabricated. Methods to keep this metric at an 
acceptable rate are called design for yield (DFY). In order to properly measure 
these, the notions and metrics of system reliability and availability have to be 
properly understood and analyzed. 

Since its beginnings following World War II, reliability theory has grown into 
an engineering science in its own right. The early development is discussed in 

Chapter 1 of Shooman’s thesis [18]. Much of the initial theory, engineering, and 
management techniques centered about hardware; however, human and procedural 
elements of a system were often included. Since the late 1960s the term software 
reliability has become popular, and now reliability theory refers to both software and 
hardware reliability [19]. 

The reliability of a system is given by the reliability of its individual 
components, which is measured by the level of defects, noise level, failure rate [20]. 
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So the conventional approach to reliability is to decompose the system into smaller 
subsystems and units. Then by the use of combinatorial reliability, the system 

probability of success is expressed in terms of the probabilities of success of the 
elements. Then by the use of failure rate models, the element probabilities of 
success are computed. These two concepts are combined to calculate the system 
reliability. When reliability or availability of repairable systems is the appropriate 
figure of merit, Markov models are generally used to compute the associated 
probabilities [21]. Often a proposed system does not meet its reliability 
specifications, and various techniques of reliability improvement are utilized to 

improve the predicted reliability of the design. 
A very structured approach for designs that contain a large amount of 

sequential logic is required as part of a methodical design for testability (DFT) 
approach [26]. Initially, many ad hoc techniques were used for bettering testability. 
DFT ad hoc techniques consisted of making local modifications to a circuit to 
improve testability. Even if the improvements are visible, their effects are local and 
not systematic. Furthermore, these techniques are not methodical, in the sense that 

they have to be repeated differently on new designs, often with unpredictable 
results [27]. Also, because of their ad hoc nature, you cannot predict how long they 
would take to implement.  

The need for a structured, methodical testing process which could easily be 
encompassed in the design flow became evident. Furthermore, structured DFT 
techniques are much easier to automate. The most important structured DFT 

technique is the Scan design. It makes DFT implementation easier to be managed 
and it achieves high fault coverage. 

“Scan design, the most widely used structured DFT methodology, attempts 
to improve testability of a circuit by improving the controllability and operability of 
storage elements in a sequential design” [6]. Usually this is achieved by converting 

the sequential design into a scan design with 3 modes of operation: normal mode, 
shift mode, and capture mode. Circuit operations with associated clock cycles 

conducted in these 3 ways are referred to as normal operation, shift operation, and 
capture operation, respectively. 

In the normal mode of operation no signal is on, so it has ‘1’ logic value and 
the scan design runs in the functional mode. In the shift and capture modes, a test 
mode signal denoted TM is used to operate on all features which can simplify the 
diagnosis, testing and debugging processes or diagnosis tasks, better the fault 
coverage and improve the functioning of the components or tests blocks of the CUT 

[16]. The various modes of operation can be distinguished by integrating more test 
signals or clocks in the design.  

 

3.1.2 ATPG  

 

Test generation is defined in [6] as “the task of producing an effective set of 

vectors that will achieve high fault coverage for a specified fault model, which will 
uncover any defect in a chip”. This task is a very challenging one, and mostly relies 
upon the Automatic Test Pattern Generation (ATPG).  
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Fig 12 ATPG principles [31] 

 

This is a serious alternative to the Design for Testability (DFT) techniques 
discussed in the previously and therefore much effort has been invested in 
improving this technique. The following paragraphs will present the theory behind 
the design of an ATPG and the learning mechanisms which can make ATPG more 
performant. 

 

 

 

Fig 13 Sample circuit with stuck-at faults 

 
 

ATPG is defined in [31] as an electronic design automation method / 
technology used to find an input (or test) sequence that, when applied to a digital 
circuit, enables automatic test equipment to distinguish between the correct circuit 
behavior and the faulty circuit behavior (caused by defects). The generated patterns 
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are used to test semiconductor devices after manufacture, and in some cases to 
assist with determining the cause of failure.  

The metrics for measuring the effectiveness of an ATPG algorithm is given 
by the amount of defects, or faults that are found and the number of test patterns 
which are generated. The test quality is considered to increase with the number of 
fault detections found and test application time is higher with more patterns applied. 
Another metric taken into account is efficiency, and this is different depending on 
the on the fault model under consideration, the type of circuit under test (full scan, 
synchronous sequential, or asynchronous sequential), the abstraction level of the 

CUT (gate, register-transfer, switch), and the test quality. Other advantages of 
ATPG are: it can find redundant circuit logic, it can prove an implementation 

matches another, achieves fault coverage grater then 98%. The testing principle for 
an ATPG is shown in Fig 12.  

 

 
 

Fig 14 Binary Decision tree 

 
 
I applied a custom ATPG method, called Path Sensitization Method to the 

registers used in both datapath and key scheduler blocks of the IDEA NXT hardware 
implementation scheme, to check for stuck-at faults. This method consists of 3 

steps: fault activation (force tested node to negated fault value), fault propagation, 
line justification (justify internal signal assignments made to activate and sensitize 
faults). 

The second and third step might be conflicting if, for example, different 
values are assigned to the same signal and require backtracking. In the sample 
circuit in Fig. 13, took from the above-mentioned block-scheme, if I target B stuck-
at 0, fault activation requires B=1, f=D and g=D. For the fault propagation case, 

there are 3 possible scenarios: paths f-h-k-L, g-i-j-k-L and both. The first path 
requires A=1, j=0 and E=1. The decision here is to what path is best to synthesize. 
An approach would be to sensitize more paths at a time. I tried paths f-h-k-l and g-

i-j-L simultaneously, but it lead to no result, as the D-frontier dissapears.  
Another approach is to do use a backtracking algorithm in order to go to the 

last decision situation and make a different decision. I tried it for the g-i-j-L path, 

where instead of going from j to L I went through K instead. This way, I fould the 
best path to be g-i-j-k-L. 

Decision trees are used to facilitate the implementation and visualisation of 
a backtracking algorithm, like the one in Fig. 14 and in the worst case scenario, they 
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must go through the whole tree to prove a fault is un-testable. Such algorithms 
capable of searching an entire binary tree are called complete. 

 

 
 

Fig 15 Podem-algorithm [9] 

 

A different approach for an ATPG algorithm is the one which that makes 
decisions only at primary inputs not at the internal nodes of the circuit. The PODEM 
algorithm described in [38] was designed and constructed based on this notion and 
makes decisions only at the primary inputs. 

This algorithm checks at each step of the ATPG search process if the fault 
which is looking for is excited and if it is it goes on checking if there is an X-path 
from minimum one fault-effect in the D-frontier to a primary output, where an X-

path is a path of “don’t care” values from the fault-effect to a primary output [6]. If 
no X-path exists, it means that all the fault-effects in the D-frontier are blocked. In 
the opposite case, PODEM will choose the best X-path to propagate the fault-effect. 
In case the target fault wasn’t yet excited, the first steps of PODEM will be to excite 
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the fault. The normal flow of PODEM as well as its recursive variant are shown in 
Fig. 15. 

For the recursive-PODEM, the search starts by picking an objective, and it 
backtracks from the objective to a primary input via the best path. Controllability 
measures can be applied in this case to choose the best path. At each step, new 
primary inputs will be assigned logic values. If the target fault becomes unexcited or 
the D-frontier gets emptied it means that somewhere a bad decision was taken, and 
it needs to be undone. 

The backtracking mechanism assures that the most recent decision is 

reversed, if needed. If this reversal causes a conflict, the recursive algorithm will 
proceed in backtracking to earlier decisions, until the point where no more reversals 

are possible. At that time the fault is determined to be undetectable [6]. 
 

3.2 Fault Models 

 
Because of the multiple types of VLSI errors, it is difficult to generate tests 

for real defects. Fault models are necessary for generating and evaluating a set of 
test vectors [6]. Many fault models have been proposed [7], but, unfortunately, 
there is no single fault model which can act like a template for all possible defects 
that might occur. In consequence, a combination of different fault models is often 

used in the generation and evaluation of test patterns. 
Fault modeling can be viewed as generalizing the real physical conditions of 

defects across the abstraction levels for a system [48], [49]. Various fault models 
were proposed, which can be structured after the typical system development 
abstractions [50]: 

 Faults at algorithm level 

 Register transfer level 

 Gate level 

 Transistor level 

 Layout level 

Fault models must be handled at the appropriate level, as one cannot check 

for algorithmic errors at the tranistors level, for instance. So the fault simulation 
together with test vector generation must be done from the highest abstraction 
level, followed by an evaluation of the coverage in the lower levels and then deal 
only with the faults at those lower abstraction level which were not yet discovered, 
(top-down approach). Fault models at various abstraction levels are detailed some 
more in the following section. In order to evaluate the various types of faults and I 
used a simple circuit took from the hardware implementation I created for IDEA 

NXT, as it is detailed in the following sub-chapters. The sample circuit was used to 
both test the hardware implementation and to help decide which is better to use 
further in the testing experiments I needed to perform in this thesis. 

 

3.2.1 Stuck-At Faults 

 

The simplest and most-used fault model at gate level, one which was also 
used in the experiments conducted for this research, is the stuck-at fault model.  
This fault affects the state of logic signals on the inputs, outputs, sources, internal 
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gate outputs and inputs of a circuit, making the correct value on an affected signal 
line to appear stuck at a constant - 0 or 1 logic – value denoted as stuck-at-0 

(SA0) and stuck-at-1 (SA1). The example circuit took from the hardware IDEA NXT  
 
 

 

Fig 16 Stuck-at faults example 

 
 

Table 1 Truth table for Fault-Tree and Faulty–circuits in Fig. 16 

 

 

 

implementation is given in Fig. 16. The red dots in the circuit represent points on 
the lines where faults reside. As can be seen from the figure, a faulty line is 
permanently set to 0 or to 1. Also, a fault can be at an input or at an output of the 
gate. 
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Its truth table for the faulty circuits for all possible single stuck-at faults is 
given in Table I. The grey entries in the truth table are the points where the circuit’s 

output response was different from the fault-free one, meaning that the 
corresponding inputs are valid test vectors which can detect stuck-at faults. Test 
vectors 011 and 100 can detect 10 faults and 001 and 110 can detect the rest 8 
faults, obtaining a 100% stuck-at fault coverage. 

This fault model also works for sequential circuits, but high coverage is more 
difficult to obtain than for combinational circuits, because in a sequential logic circuit 
it is necessary to generate sequences of test vectors, so DFT techniques are 

frequently used to ease circuit test generation, as stated in [9]. 
The defects which are not covered by stuck-at fault models can also be 

detected with the so-called N-detect single stuck-at fault test vectors, a notion 
defined in [10]. In the N-detect set of test vectors, each single stuck-at defect is 
detected by minimum N distinct test vectors. They don’t also cover all possible 
defects so other types of fault models need to be used as well. 

 

 
3.2.2 Transistor Faults 

 
Like the name says, there are applied to transistors in the CMOS logic 

circuits, which can be stuck-open (stuck-on) or stuck-short (stuck-off) at the 
switch level. For explaining this concept I will reffer to the CMOS NOR gate with 2 

inputs in Fig. 17, took from the Data Register in the IDEA NXT hardware model. If 
N2 would be a stuck-short fault, it would produce a conducting path between VDD 
and Vss for the test vector 00 [6].  

 

Fig 17 Two-input CMOS NOR GATE 

 
This produces a voltage divider at the output Z which can be interpreted as 

wrong logic level  by the gate inputs. But the short-on faults can be detected by 

monitoring the  power supply current during steady state, IDD0. 
 

3.2.3 Open and Short Faults 

 
Stuck-open and stuck-shorts faults cane also occur in the wires 

interconnecting the transistors of a logic circuit to form gates. A set of test vectors 
which can achieve an increased coverage of stuck-at and faults, will also be able to 
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detect some of the wire Open Faults. There are also fault which are not as easy to 
detect, like a resistive open, which affects the signal path delay propagation. 

A short between two transistors or connections between them is called a 
bridging fault. One bridging fault model is known as the wired-AND/wired-OR 
as the logic values were models as logical AND / OR on the shorted wires. In case of 
a wired-AND, the two shorted lines will be at 0 logic if one of the lines has 0 logic 
value, and the wired-OR means that the resulted signal will have the 1 logical value 
if one if the lines is 1. 

In conclusion, the bridging fault can be modeled with an extra AND / OR 

gate, as can be seen in Fig. 18, which was adapted from [11]. 
 

 

 

Fig 18 Bridging fault models 

 
 

Table 2 Truth table for Fault-free and Faulty circuits in Fig. 18 
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This fault model however was initially created for the bipolar VLSI, so a new 
type of bridging needed to be designed for the CMOS VLSI. That type was called 

dominant bridging fault, in which one driver is supposed to dominate the logic 
value two shorts [13]. The dominant bridging fault is not as easy to detect as is 
predecessor because the erroneous behavior can be seen only on the dominant 
shortened net, instead of both nets (as can be for the wired-OR/wired-AND). If we 
analyze Table II, we can affirm that a set of test vectors which are able to detect 
bridging faults, can also detect all wired-AND and wired-OR bridging faults. 

 Another, derived fault model, tailored for particular cases of a resistive 

short was also designed and it is called dominant-AND/dominant-OR bridging 
fault, in which one driver dominates the logic values of the shortened nets, but only 

for some logic values. A set of test vectors which are able to detect all dominant-
AND/dominant-OR bridging faults will also be able to detect all wired-AND / wired-
OR bridging faults on that circuit [14]. 

 

3.2.4 Delay Faults and Crosstalk 

 
A circuit is said to be error-free when not only a fault did not occur, but also if 

the correct logic signals are being propagated along the lines. A delay fault causes 
excessive delay along a path such as the total propagation delay does beyond the 
specified limit [6]. The 3 main delay fault models are: 

 Gate-delay fault 

 Transition fault –  both appear when a time interval taken from a transition 
from the gate input to output goes beyond a certain range 

 Path-delay fault – which is the sum of all gate delay along a signal path. The 
problem which can appear here is that there can be a really large number of 

paths. 

 

Fig 19 Path delay fault example 

 
The NAND-OR circuit took from the IDEA NXT Data Register illustrated in 

Fig. 19 can be used to explain the concepts introduced above. The integer values on 
each gate represent the fault-free delays and v1, v2 are test vectors used to test 

the path delay from input x2 to through the NOR and AND gates until output y. If 

we consider the transition between the test vectors to happen at t=0, then with all 
the delays on the gates the transition should be propagated at the output at t=7. If 
a fault would have occurred sometime along this process, the transition time at the 
output would have been > 7. 

However, with the size of components decreasing day by day, even reaching 
nanotechnologies, the cross-coupling capacitance and inductance between 
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interconnections increases, creating crosstalk side-effects which may ultimately 
cause the chip to function erroneously. There are 2 main types of side-effects [15]: 

crosstalk glitches and crosstalk delays. Glitches are in fact pulses caused by 
coupling effect in interconnected lines, when for example a transition is applied to a 
line with strong driver and other lines have weaker signals. Crosstalk delay is cause 
by the same effect but can appear even if the line signals have close values, but 
have big loads. If a circuit with gate and interconnection delays also has crosstalk 
delays, the total circuit’s delay increases considerably. Traditional delay fault models 
are not enough for these delay fault types, so various techniques, like physical 

design and analysis tools need to be used in conjunctions with conventional ones. 
Because of the multiple types of VLSI errors, it is difficult to generate tests 

for real defects. Fault models are necessary for generating and evaluating a set of 
test vectors [6]. Many fault models have been proposed in [7], but, unfortunately, 
there is no single fault model which can act like a template for all possible defects 
that might occur. In consequence, a combination of different fault models is often 
used in the generation and evaluation of test patterns. 

 

3.3 Fault-Tolerance in Computer Systems 

 
Once a fault is present in a system, it must either be dealth with, by 

checking what caused it and fixing or replacing the faulty components, or ignored 
and the system is let to operate in its presence, with the non-faulty components 
doing the job. Fault-tolerant computing is defined in [43] as the art and science of 
building computing systems that continue to operate satisfactorily in the presence of 
faults or as  the property that enables a system to continue operating properly in 
the event of the failure of (or one or more faults within) some of its components. If 

its operating quality decreases, the decrease is proportional to the severity of the 

failure, as compared to a npn-tolerant designed system in which even a small failure 
can cause total breakdown. Fault tolerance is particularly desired in high-availability 
or life-critical systems.  

 

 

Fig 20 Fault masking example [113] 

 
A fault-tolerant design helps a running system to operate as expected, or 

potentially at a lower level, instead of failing completely, when some components of 
the system become erroneous and fail. This concept usually describes computer 
systems which are implemented in such a manner as to continue to work as 
functional as possible, maybe slower or with a reduce rate or longer response times 
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in the presence of faults or failed parts. So, even if components or whole parts of 
the system become non-operational, the system itself will not fail completely, 

regardless if the problems appear in hardware or are caused by something in the 
software. A parallel can be done in the automobilistic field another when a motor 
vehicle can be designed so it would continue run even if one of its tires is punctured 
[58].  

A lot of work has been done in the field of fault tolerance for the last 20-30 
years, which concluded with building of a number of fault-tolerant machines. Fault-
tolerant computing is a key factor in transportation, communication, e-commerce, 

aircrafts, internet transactions and more. As novel industries and technologies 
emerged, such as reconfigurable computing, mobile computing, parallel scalable 

computing, updated fault-tolerance schemes need to be developed in order to be 
up-to-date. 

A fault-tolerant system must support one or multiple fault-types such as:  
 transient, intermittent or permanent hardware faults 
 software and hardware design errors 

 operator or function software errors 
physical damage. 
Fault-tolerance is usually achieved by applying predefined sets of design and 

analysis methodologies to build systems with increased dependability and 
availability.  

Most fault-tolerant designs are designed for recovery from random faults 

which appear in hardware components. The general approach is to partition the 
system into modules which behave like fault-containment regions. For every module 
a protective redundancy component is added so that in case the module becomes 
faulty or stops operating, others can take its role. Special mechanisms are added to 
detect errors and implement recovery. There are two main techniques used for 

hardware fault recovery: fault masking and dynamic recovery [115]. 

 

Fig 21 Triple Modular Redundancy [51] 

 
Fault masking is a structural redundancy technique that completely masks 

faults within a set of redundant modules [43]. A couple of modules which have the 
same structure execute the same set of functions whose results are used in 

BUPT



47 
 

removing errors in a faulty module by submitting the output to a voting process. 
The most well-known fault-masking technique is Triple modular redundancy (TMR) 

in which the voting circuit is triplicated. A TMR system is considered to have failed 
when errors emerge from two modules belonging to a redundant as in this case the 
vote becomes invalid. 

Dynamic recovery is used in the corner case when only one form of 
computation is running at a time and it might require automated self-repair. This 
technique also partitions the system into modules each having it own redundancy 
spare to protect it from failures [57]. Besides this other specific mechanisms are 

used for module fault detection, switching out an erroneus module, switch in a 
spare, and performing the necessary restoration software functions like rollback, 

initialization, restart or retry. This is done either by special hardware or separate 
processors. An example is given in Fig. 22. 

In the software area the same principles of static and dynamic redundancy 
are applied and their specific adaptation is similar to the one used for hardware 
faults. One such approach, N-version programming, uses a form of static 

redundancy in distinct programs (versions) perform the same functions and their 
outputs participate in the voting process. 

 

Fig 22 Dynamic recovery example [54] 

 

However, the data being voted could have discrepancies so the various 
versions are analyzed by an initially-agreed and if they prove faulty, they are 

rejected so that in the end, only the good versions remain. Another dynamic 
technique makes use of recovery blocks in that software programs are partitioned 
into various code blocks and a series of acceptance tests are executed after every 
block; in case an acceptance test fails, a spare “recovery” block gets executed. 

Another method for verifying the dependability of a SUT (system under test) 
is Fault injection, which implies inserting faults into the system and verifying its 
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behavior when a fault occurs. The definition given in [55] is “the validation 
technique of the dependability of fault tolerant systems which consists in the 

accomplishment of controlled experiments where the observation of the system’s 
behavior in presence of faults is induced explicitly by the writing introduction 
(injection) of faults in the system”. 

Fault injection techniques can be grouped into five main categories [56]: 
Hardware-based fault injection: This is performed at physical level by 

injecting voltage turbulences (power supply disturbances), laser fault injection, 
changing the circuit’s pin values or inserting environment parameters (heavy ion 

radiation, electromagnetic interferences) 
Software-based fault injection: This technique aims to reproduce at 

software level the faults that could be produced in hardware. 
Simulation-based fault injection: This is performed by injecting faults in 

high level models (using distinct description but mostly VHDL models). This way, the 
system is evaluated at early stages, when just one of the system’s models is 
available and at various abstraction levels. A good and robust system must be 

designed so that the different abstraction layers are interoperable and testing / 
validation processes are seemingly and effortlessly integrated. 

 
 

 
 

Fig 23 Components for a Fault Injection Environment [114] 

 
Emulation-based fault injection: Represents a viable alternative for the 

simulation-based fault injection, as it reduces the time spent on the simulation. For 

circuit emulation and speeding-up the simulation process it makes use of Field 

Programmable Gate Arrays (FPGAs). A circuit is studied in its real environment and 
then emulated on a board, keeping in mind real-time interactions. 

Hybrid fault injection: This fault injection method is a possible way to 
assess the consequences of hidden bugs, which makes use of the advantages from 
both the software and hardware techniques, to discover problems from both areas. 

An example of a basic Faults Injection environment is showed in Fig. 23.  
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The Fault injection’s role is, in essence, to check if the response of a system 
is identical to what was specified, when various errors and faults are present in the 

system. Fault injection techniques have two main functions:  
 removing faults (by correcting potential fault tolerance deficiencies in the 

system); here the aim is to have the highest possible fault coverage, in both 
quantity and fault types 

 forecasting faults (by evaluating the coverage distribution of the system, 
namely the factor and latency) 

 

 
 

3.3.1 Hardware-based Fault Injection 

 
Hardware-based Fault Injection can be made either with contact, and is 

called pin-level injection (probes, socket-injection) or without contact, like heavy ion 

radiation and electromagnetic interference. 
 

 

Fig 24 Hardware Fault-injection 

Some advantages of this technique are presented in [43]: 
 Hardware fault injection is able to access memory locations which otherwise 

could not be reached. For example, the Heavy-ion radiation method can 
inject fault into VLSI circuits at locations which are impossible to reach by 

other methods. 

 It works best in systems which need high time-resolution for hardware 
monitoring and triggering. 

 Injecting directly faults into hardware circuitry is, in many situations, the 
only viable options for estimating with accuracy coverage and latency. 

 It mainly injects faults with low perturbation. 
 This technique is most appropriate for low-level fault models. 
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 Not intrusive: No modification of the target system is required to inject 
faults. 

 Experiments are fast and can be run in near real-time, allowing for the 
possibility of running a large number of fault injection experiments. 

 The main disadvantages are their high costs and the fact that they are 
harder to control [121]. 
The main tools used for achieving hardware fault tolerance are: RIFLE, 

FOCUS, MESSALINE, MARS. A general example of a hardware fault tolerant system 
is shown in Fig. 24. 

 
 

3.3.2 Software-Based Fault Injection 
 
If hardware malfunctions are the most disastrous, software faults are the 

most frequent. Fault injection techniques are possible solution in finding common or 

hard to find bugs. It mainly consists in modifying the software running on the 
system in such a way that the system’s state can be changed as well to fit the 
programmer’s understanding of the system. There is a wide range of faults that can 
be injected, from erroneous error conditions and flags, register and memory faults 
to dropped or replicated network packets. These faults can also be injected into 
simulations of complicated systems, where the implementation details are hard to 

understand, but the interactions and communications are easier to be followed, or 
directly into running systems, to study the effects.  

Faults can be corrupted memory or registers, missing messages, responses, 
erroneous disk reads, bad timings, etc. A simulation means running the system with 
a certain fault and examining its behavior in the presence of that fault. These types 
of simulations are time consuming because they comprise all operations and details 

of the system. After a simulation has taken place and results were analyzed, the 

faults which the system has successfully taken care of are cataloged and the 
performance of the design in measured depending on the number and magnitude of 
these faults.  

These simulations can either be non-intrusive, or intrusive in case time is a 
key factor, in which case fault injection mechanisms will interrupt the functioning of 
the system, and cause produce outputs that are not very reliable as they would not 
happen if the injection scheme was not present. This happens because the injection 

mechanism functions on the same system as the software under test. 
Advantages of software-based fault injection mechanism: 

 This technique can be applied to both applications and operating systems, 
something that is difficult to achieve with hardware fault injection. 

 Fault-injecting experiments can be performed in near real-time, which 
means that a large number of experiments can be run in a relatively small 

amount of time. 
 The best results are obtained when running the fault injection experiments 

on the real hardware that is executing the real software so that any design 

error that may be hidden in the hardware or software is rapidly found. 
 Does not require any special-purpose hardware; it has a low complexity, low 

development and low implementation cost. 
 No model development or validation required. 

 Can be adapted for novel classes of faults. 
 

Of course, this mechanism also has a series of limitations: 
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 Reduced set of injection instants (only at assembly instruction level). 
 It’s not able to inject faults in locations un-accessible to the software. 

 The source code must be changed in order to accommodate the fault 
injection mechanism, which means that the code that is running while the 
fault scheme is taken place is not the exact which will be implemented in the 
field. 
Fault-tolerant design involves more than just reliable hardware and 

software. Many issues can be avoided if planning is made in advanced, having in 
mind all the “what if..?” scenarios.  

More details about fault injection techniques and how they were applied in 
this research will be given in the next chapter. 
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Chapter 4 TESTING ARCHITECTURES FOR THE 
IDEA NXT ENCRYPTION ALGORITHM 

 
The previous chapter introduced various types of errors which can occur in 

VLSI circuits and the fault models which are necessary for generating and evaluating 
a set of test vectors for the circuit under test, to asses its correct functioning or to 
discover errors at early stages. 

Many fault models have been proposed [7], but, unfortunately, there is no 
single fault model which can act like a template for all possible defects that might 
occur. In consequence, a combination of different fault models is often used in the 

generation and evaluation of test patterns. 
Searching for defects at gate and transistor levels made me realize this is 

just the tip of the iceberg. In a complex algorithm such as IDEA NXT, defects can 
propagate at all levels, and the approach must cover all levels, starting with the 

most extensive one – the algorithm abstraction level itself.  
A hardware implementation of the algorithm offers increased speed of 

execution and superior key strength, but its integration into a circuit or a chip must 
also assure integrity, confidentiality and non-repudiation alongside the sine-qua-non 
request of security [25]. Brian Gladman affirmed that „it is relatively easy to build 
an encryption system that is secure if it is working as intended and is used correctly 

but it is still very hard to build a system that does not compromise its security in 
situations in which it is either misused or one or more of its sub-components fails 
(or is ’encouraged’ to misbehave)” [123]. 

The costs of repairing a faulty cryptographic system is quite high and would 
also represent a problem for its developer. In addition to the probability of faults 
affecting a crypto-chip, they are prone to malicious attacks. Crypto-systems usually 

protect important and sensitive information, such as keys stored in Automatic Teller 

Machines or Payment services. As has already been proved in various papers - [4], 
[17], [51], [52] - there are many different types of attacks that can compromise the 
encryption process even in the case of a hardware implementation of a 
cryptographic algorithm, as stated in [52], [53] and [54]. Attackers can inject faults 
into crypto-chips and cryptographic cores, which can lead to permanent faults by 
modifying the underlying semiconductor layer [55], [25]. I can mention particularly 
linear and differential cryptanalysis and fault attacks [56], [57], [58]. A successful 

attack on such a system translates into serious financial implications for the user. By 
injecting faults into a cryptographic unit, enough information can be obtained to 
reduce greatly the efforts to reaching the secured data, as shown in [60]. Novel 
techniques such as side-channels, timing of module’s operation or fault injection 
represent serious security threats for system’s security. 

Side-channel attacks [61] require just the observation of power, thermal 

and electromagnetic radiation, whereas faults can be injected into designs by 
multiple mechanisms, as described in [18]: 

 Physical injection of an error through a focused laser beam 

 Inject a glitch by rapidly varying the clock frequency 
 Insert a spike into the module’s power supply by carrying the supply’s 

voltage 
 Overheat or freeze the unit so that the existing defect will manifest by itself 

Injected faults are transient faults, meaning that they leave no trace 
regarding the failure actions provoked to the algorithm; at the next round of 
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encryption of the algorithm, the fault will not manifest itself, by its effects already 
reside in the modified state. 

Earlier this year, at the request of a financial institution, Kaspersky Lab's 
Global Research and Analysis Team performed a forensics investigation into a cyber-
criminal attack targeting multiple ATMs in Eastern Europe. During the course of this 
investigation, it was discovered a piece of malware that allowed attackers to empty 
the ATM cash cassettes via direct manipulation [118]. 

At the time of the investigation, the malware was active on more than 50 
ATMs at banking institutions in Eastern Europe. Based on submissions to VirusTotal, 

it was believed that the malware has spread to several other countries, including the 
U.S., India and China. 

Besides these malicious attcks, crypto-algorithms are also prone to intrinsec 
errors, to defects which can occur at design or implementation level, which can 
periclitate the well-functioning of the algorithm once it is used in the field. It is also 
important to be able to differentiate between a malicious attack and ones provoked 
by functional problems, because these two distinct types inccur different means of 

dealing with them. 
My main interest in the current research was to assure the correct 

functioning of the IDEA NXT crypto-algorithm in its useful time, and this can be 
achieved by detecting a faulty behavior as soon as it occurs. I conclusioned that in 
order to take the necessary measures to backfire a faulty behavior of the algorithm 
and assure the correct functioning of the system in which it is integrated as soon as 

possible, every encryption module should include mechanisms for error detection. 
Due to all this I came up with the idea of imagining a couple of error-detection 
architectures specifically designed for the IDEA NXT crypto-algorithm, ahead of 
time, forseeing its future integration in cripto-chips or other devices, for the reasons 
I exposed in the previous chapters. Once IDEA NXT will have an extended usage, it 

will become imperative to assure its correct functioning at any moment of time, by 
detecting at early stages any errors which could have been manifesting in the 

algorithm. 
The protection of encryption modules can be performed either using external 

test modules, such as the Automatic Test Equipment (ATE) or internally, on-chip, 
with the help of build-in techniques. The first solution achieves higher fault 
coverage, but it is more costly, so generally on-chip, Design For Testability (DFT) 
solutions like Built-In Self Test and Scan Chain are preferred.  

As mentioned in the previous chapter, there are two main types of testing 

strategies: online or concurrent, which detects errors while the system is running, 
and offline testing, which doesn’t need the crypto-chip to operate when it does 
verifications. In my research I investigated both online approaches, based on 
computing the output parity of the algorithm, as well as different kinds of offline 
error-detection strategies, because I intended to cover an area as large as possible, 
for as many types of defects as I could.  As stated in [45] the best protection is 

achieved using both online and off-line techniques, as the combination of the two 
covers a greater area of defects.  

The test strategies I investigated will be presented separately in the 
following sub-chapters, describing both the theoretical aspects as well as the 
original variants constructed for IDEA NXT.  

This following paragraphs will introduce a series of non-concurrent test 
architectures I designed for the novel family of crypto-algorithms, IDEA NXT. The 

proposed error-detection schemes are capable of verifying the integrity of a crypto-
chip in an autonomous, non-concurrent manner. One of the testing solutions 
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consists of stimulating the algorithm with test vectors and verifying the correctness 
of the output after a number of encryption or decryption iterations were run and the 

other one evaluates the response by compressing the results obtained after a 
predefined number of encryptions into a signature. The proposed test schemes offer 
a good trade-off between the length of the test process and the storage 
requirements for the correct responses. These originals off-line testing architectures 
were first introduced in a paper [57] which I presented at the ICSTCC IEEE 
conference, for which I was nomited for Best Paper Award of the Young scientists. 

Foremost, the thesis also introduces a hardware architecture for online self-

test in the context of the IDEA NXT crypto-algorithm. From the many techniques 
and solutions presented in the literature for increasing Built In Self-Test (BIST) 

capabilities, after a careful analysis of these approaches, I decided to focus my 
attention on solutions based on parity-based error detection. In this sense I 
designed and implemented a complete parity-based test architecture for IDEA NXT.  

The solution I propose doesn't interfere in any way with the algorithm's 
structure, as there is a complete separation between the functional and testing 

channels. The proposed solution is the first of this kind for the IDEA NXT crypto-
algorithm. I evaluated the performance of the proposed test strategy with different 
redundancy levels and, formulated recommendations for the concurrent detection 
strategy based on the obtained experimental results. 
 

4.1 Offline Error-Detection Architectures for the IDEA NXT 

crypto-algorithm 

 

  The off-line test technique assumes that the entire digital system or just a 
part of it is “taken out of service” [10] so that the test process can take place. 

Because the hardware overhead is quite small (the system doesn’t have to be kept 
in its normal operating mode), this technique allows for an extremely high coverage 
of the device’s area.  
  Off-line test can be used in conjunction with online test for fault localization 
[24]. If a fault was detected with online testing, the off-line testing can be used to 

detect the exact location of the defect or the components to which it spread. 
Because of the way in which they are applied, off-line techniques are generally used 
for detecting faults at a larger set of locations. For this technique to function, the 
system’s state needs to be controllable, so off-line techniques are used in idle cycles 
or after a system repair. 
  Off-line schemes can be implemented using either Built-In Self Test (BIST), 
its customized variant Built-In Logic Block Observer (BILBO), Scan Design or 

Multiple-Input Scan Register mechanisms. I constructed different architectures using 
each of these possibilities, in order to compare them and find the most efficient and 
appropriate solution. Each of them will be presented in detail in the following sub-
chapters. 

     Before designing the fault-tolerant architecture, I started studying a couple 
of strategies for minimizing the aliasing probability, which can appear in signature 

compaction strategies. The solution I provide is to increase the number of output 
vectors that will be checked for errors. 
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4.1.1 IDEA NXT Built-In Self-Test Architecture 

 

 The starting point of the investigations for constructing an offline architecture 
was the typical built-in-self-test scheme in Fig. 26. This structure seemed fit for 
IDEA NXT because in its hardware – block construction, just a single register is used 
for the Datapath, as well as one register for the Key Scheduler, as in the typical 
scheme in Fig. 26. 

  Logic built-in self-test (BIST) is defined in [33] as a design for testability 
technique in which a portion of a circuit on a chip, board, or system is used to test 
the digital logic circuit itself.  

Logic BIST has become the main testing technique for many applications in 

the aerospace / defense, automotive, banking, computer, healthcare, networking, 
and telecommunications industries where there is a need for a self-testing of on-
chip, on-board systems to improve the dependability of the whole system, as well as 

the ability to perform remote diagnosis [33]. There are two main types of BIST: 
online – performed when the circuit is operating, and can be done concurrently or 
non-concurrently [34] - and offline – performed when the circuit is not running, so it 
doesn’t detect any real-time errors.  

Offline BIST can also be of two types itself: functional and structural. 
Functional tests are based on the functional specifications of the CUT and usually 
target functional or high-level fault models. Structural offline BIST tests are 

designed after the structure of the functional circuit. Structural offline BIST 
techniques can be divided into two categories [23]: 

 external BIST, in which test pattern generation and output response analysis 
is achieved by a separate architecture than the one under test 

 internal BIST, in which the functional storage elements are converted into 
test pattern generators and output response analyzers. 
 

 

Fig 25 A typical logic BIST system [6] 

 

Structural offline BIST has a couple of advantages compared to conventional 
scan [35]: 

 BIST can run tests on the board or system at any time without needing a 
human tester. 
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 Because BIST implements the majority of testing directly on-chip, the error 
root can be easily found on the chip; most faults are detected on the fly, 

with no need to model them in software 
 At-speed testing, another feature of BIST, can be used to detect many delay 

faults. 
 Test costs are significantly lower because of the reduced test time, tester 

memory requirements and investment costs. 
As seen in Fig. 25, the BIST system is composed of a Controller, which 

decides which operation is to be done when and by whom, a Test Pattern Generator 

(TPG) for feeding test patterns to the Circuit Under Test (CUT) and an Output 
Response Analyzer (ORA) which eventually analyses the outputs of the CUT and 

decides if an error was introduced in the system or not. 
The next paragraphs will present the basic concepts and design rules of logic 

BIST, Test Pattern Generation and Output Response Analysis techniques including 
ones count testing, transition count testing, and signature analysis, as they are  
used in the testing architectures I developed  which will be presented later on in the 

thesis. 
 
 

 
 

Fig 26 Built-In Self-Test architecture [59] 

  
Our  proposed offline BIST error-detection architecture assumes to use a 

Multiple In Fig. 26 a typical structured offline logic BIST system is illustrated. The 
test pattern generator (TPG) automatically generates test patterns to be driven to 
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the inputs of the circuit under test (CUT). The output response analyzer (ORA) 
then compacts the output responses of the CUT into a signature. Specific BIST 

timing control signals, like clocks or scan enable signals, are generated by the logic 
BIST controller for coordinating the BIST functioning along the CUT, TPG and ORA. 
Once the BIST functioning completes, a pass/fail signal shows the final result of 
testing. It also compares the resulted signature with an embedded golden signature, 
and usually makes use of diagnostic logic for faults diagnosis. The storage elements 
in the TPG, CUT, and ORA must be initialized to known states before the self-testing 
took place so that only known values are passed on from the CUT to the ORA, as 

unknown values can corrupt the compressed signature and cause the malfunctioning 
of the BIST design. It can be concluded that the tested circuit must be designed 

with additional BIST-specific rules. 
  

 
 
 

Fig 27 IDEA NXT BIST Architecture based on signature compression 

  

Input Signature Register (MISR) compaction mechanism for evaluating the output of 
the encryption by comparing it to a so called “gold signature”, which is a hardwired 
value obtained by simulations of the IDEA NXT algorithm, in conjunction with a 
counter for keeping track of the number of encryption rounds that were executed. 
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The output resulted after a run of the encryption algorithm round is compacted, 
encompassing all the previous encryption outputs. 

As can be seen in Fig. 27, the Output Response Evaluator takes as inputs 
the Datapath’s output as well as the value of a Counter holding the number of 
encryption rounds that are to be performed. The number of rounds to be executed is 
determined by means of simulations. When the counter reaches this value, the ORA 
unit cheks if the result is the expected, correct one, and if so gives the error signal a 
value of '0', otherwise it considers there is a fault in the system and sets the error 
signal. 

  Test compression is a technique that compresses the deterministic test data 
set (stimulus and response) stored on automatic test equipment (ATE) with the help 

of new hardware added on the chip, before the scan chains. The automatic test 
equipment (ATE) is a machine that is designed to perform tests on different devices 
referred to as devices under test (DUT). An ATE uses control systems and 
automated information technology to rapidly perform tests that measure and 
evaluate a DUT. It has limited memory and input/output channels and a small 

bandwidth which causes the test speed to be low as well, hence the need to 
speedup testing. An architecture for general test compression is illustrated in Fig. 
28.  

 

 

Fig 28 Architecture for test compression [6] 

   
The test set can be generated for instance with an ATPG. As opposed to 

BIST, the test vectors generated with ATPG are applied completely non-changed to 
the circuit. This technique reduces the data size stored on the test equipment 10 or 
even 100 times, which leads to reduces memory and reduced test time. Bits which 
haven’t got a value assigned to them are usually “randomly filled” with 1/0 by the 
ATPG, but in the case of stimulus compression, those values are left as “don’t’ care”. 

This makes the test vectors easier to compress and the resulting test patterns will 
remain unchanged after decompression. Vectors in which not all bits are assigned 
values to are called test cubes.  

Response Compaction  is a technique used to minimize the test data volume 
replied back to the tester is test. This differs from test response compression in that 
it can be lossy, while the other must be lossless. This compaction can be made in 
time or space dimensions and can be linear or nonlinear. Example of time 

compaction techniques are X-compact [48], X-blocking, X-masking, as well as 
OPMISR [49] and convolutional compactor [50] as combined time-space techniques. 
Both Test Compaction and Test Compression are beginning to be successfully 
integrated in design flows, especially embedded hard cores, and they rival with BIST 
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due to their good results and small costs. The Test Control Unit (TCU) in Fig. 28 has 
the role of supervising the test process with respect to both the Datapath and the 

Key Scheduler, also deciding when the evaluation of the obtained signature must 
take place. The encryption process takes as inputs a special test key on 128 bits.  
  In my implementation, because of the LFSRs contained within the Key 
Scheduler, I provide the key generation unit with the all-zero vector during self-test 
operation, allowing the 6 24-bit LFSRs to effectively stimulate the round key 
generation logic. As for the 64 bits of plaintext to be processed they are generated 
by a dedicated Test Pattern Generation unit.  

  I implemented three versions for the TPG: using a counter, a LFSR and a 
Cellular Automata, all on 8 bits each, in order to evaluate the area overhead and 

latency degradation incurred by each of the three approaches. As for the previous 
design, the outputs of the Datapath are grouped into a feedback interconnection 
which permits the output of the current iteration to serve as input to the next 
iteration and also as an encryption output stored in the output register.  
 

4.1.1.1 Implementation of Test Pattern Generator 

The most commonly used structure for generating pseudo-random number 
for test patterns in TPGs is the Linear Feedback Shift Register (LFSR).  There are 
two main types of LFSR:  

 standard or external-XOR LFSR, where all XOR gates are fed sequentially 

into one another and end up as the input to the least (or most, either is 

correct) significant bit of the LFSR.  

  modular or internal-XOR LFSR where XOR gates feed into different registers 

within the LFSR, and are not sequential (the XORs are inside the shift reg.  

 

 
 

 

 

 

 

 

Fig 29 Standard LFSR for IDEA NXT 
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Fig 30 Modular LFSR for IDEA NXT 

 
Fig. 29 shows a standard LFSR scheme, constructed for the LFSR used in the 

IDEA NXT algorithm, which has the characteristic polynomial of degree 24, f(x)= 

1+x+x3+x4+…+x24. Fig. 30 shows a modular LFSR constructed for the same 
characteristic polynomial. 

If I would consider a simple 3-bit LFSR, the only primitive polynomials for 
degree 3 are 1 + x2 + x3 and 1 + x + x3 (they are reciprocals of each other, 1011 
and 1101. So there are 2 possible representations for the primitive polynomials 1 + 
x2 + x3 and 1 + x + x3 (they are reciprocals of each other, 1011 and 1101), but the 

second proved to generate better speed.   
Since there are two primitive polynomials and two different implementation 

strategies, we therefore have four unique ways of implementing the LFSR.  In fact, 
each of these implementations can differ according to which register is the most 
significant bit (either way will have 2n-1 states, but with different sequences). 

A modified, so-called complete LFSR can be used for exhaustive testing 
(applying 2n exhaustive patterns to an n-input CUT). Exhaustive testing guarantees 

that all detectable, combinational faults (those that don’t transform a combinational 
circuit into a sequential circuit) will be detected. This technique is applied only to 
circuits where the number of inputs is small, otherwise becomes ineffective as it will 

take too long to execute. 
 

 
 

Fig 31 Cellular automata (a) general structure; (b) four-stage CA; (c) test sequence generated by (b) [38] 

 
 
 The techniques presented below are derived from a standard LFSR structure 

and are targeted at reducing the number of necessary test patterns: 

 Pseudo-random pattern generator (PRPG) reduces test length but also 
the overall fault coverage. This technique was integrated in the second 

X1 24XX0 X2 X3 X4
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error-redection test scheme, which will be presented in the next sub-
chapter. 

 Weighted LFSR, first introduced in [37] modifies the maximum-length 
LFSR to produce an equally weighted distribution of 0’s and 1’s at the input 
of the CUT. It skews the LFSR probability distribution of 0.5 to either 0.25 or 
0.75 to increase the chance of detecting faults that are difficult to detect 

using just a 0.5 distribution.  

 Cellular automata (CA), first described in [38] is a collection of cells with 
forward and backward connections. As can be seen in Fig. 31, each cell of 
the CA can only connect to its adjacent neighbors, the connections being 

described as rules. The CA-based PRPG can be programmed as universal CA 

for generating different orders of test sequences [39]. 
 As stated before, for the first BIST testing architecture for the IDEA NXT, the TPG 
was constructed using a counter, a plain LFSR and a Cellular Automata, to see which 
is the best to use or if there are major differences in electing one solution or the 
other. 

 

4.1.1.2 Implementation of Output Response Analyzer 

 

  The Output Response Analyzer can either be implemented by means of 
one’s counting, parity checking or signature analysis – which can be implemented 
by several Single Input Signature Registers (SISRs) or a Multiple Input Signature 

Register (MISR).  
 

 

Fig 32 Ones counter as ORA [38] 

 
 

 

Fig 33 Transition counter as ORA 

 
An Output Response analyzer comes in handy when using BIST techniques, 

because one cannot store all output responses on-chip, on-board, or in-system. An 

ORA compacts all responses into a signature and compares the result with a golden 
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signature for the fault-free circuit which can be stored outside the chip or even on-
chip. Output response analysis techniques are called Output response Compaction or 

Compression [40].  
There are three main types of such techniques: transition count testing, 

ones count testing and signature analysis, the latter two being used in the test 
architecture I designed for IDEA NXT. 

Ones count testing technique counts the number of 1’s in the circuit’s 
output bit stream and verifies it against the signature’s one’s count. Assuming all 
faulty sequences are equally likely to occur as the response of the CUT, the aliasing 

probability or masking probability (probability that the signature of a bad circuit will 
be the same as a good circuit) in using ones count testing is pretty significant. 

Transition Count Testing uses a D flip-flop and an XOR gate connected to 
a One’s Counter to count the number of transitions in the output data stream [16]. 
It is similar to One’s Count Testing with the difference that its signature is defined 
as 0-to-1 and 1-to-0 transitions. 

 

 
 

 

 

 

 

 

 

Fig 34 A 24-stage Multiple-Input Signature-Register (MISR) 

 
Signature analysis is the most used response compression technique and 

is based on cyclic redundancy checking (CRC) [41]. Signature analysis was 
introduced in [42] and was first developed by Hewlett-Packard to test equipment in 
the field in the late 1970s. 

There are two main types of signature analysis schemes:  
 serial signature analysis for compacting responses from a CUT having a 

single output, also called signal-input signature register (SISR) which is 
in essence a CRC code generator a cyclical code checker 

 parallel signature analysis for compacting responses from a CUT having 
multiple outputs, also called a multiple-input signature-register (MISR) 
– it is generally used to reduce the amount of hardware required for 
compressing a multiple bit stream; its functionality regarding the aliasing 

probability remains unchained for this implementation [43]. An example of 
MISR, adapted for IDEA NXT’s characteristic polynom (f(x) = 

1+x+x3+x4+...+x24) is illustrated in Fig. 34. 
  In the end, after balancing the advantaged and disadvantages of all these 
possibilities, I chose to implement the ORA with Multiple Input Signature 
Register, as it will take two inputs: the value of the counter saying when the 
comparison must take place, and the output of the datapath as value to compare 

with the signature. 
  The testing strategy, as already stated, can be applied to a single encryption 
round or to the entire algorithm, requiring, in the latter case a complete run of all 
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the 16 rounds. The advantage of the first solution is that the designer can select as 
many rounds of the algorithm as needed for execution during the test process thus 

offering flexibility to the test strategy. 
 

4.1.2 IDEA NXT Feedback Loop Offline Test Architecture 

  
  The second testing architecture I propose is a Built-in Self-Test Design for 

Testability (DFT) solution in which input vectors are generated at each round of the 
IDEA NXT algorithm and the output responses are validated through a feedback 
interconnection by the system in which the algorithm is running. The repeated 

execution of the algorithm is managed in conjunction with a counter for verifying 
the final signature. This test approach was also applied to the AES [59] crypto-
algorithm in [60] based on the concepts from [61]. 

 

   

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 35 IDEA NXT Feedback Loop Offline Test Scheme 
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  This offline BIST scheme I constructed can be depicted in Fig. 35. It is 
composed of a Test Pattern Generator (TPG), which generates stimuli vectors for the 

IDEA NXT Datapath. These stimuli are applied to the design for rendering evident 
different types of faults that can possibly affect the crypto-core and the result is 
verified with the help of a dedicated Output Response Analyzer built around a MISR.  
  The test architecture includes, as before, a Test Control Unit, which 
supervises the test process driving the ORA into accepting the responses generated 
at the circuit’s output, one multiplexor (MUX), which selects between the 64-bit data 
block input, the round output (generated at each iteration by function lmor64) and 

the Datapath’s final result (which will be lmid64’s output). By using a multiplexing 
layer, we can run the tests either at algorithm level or just at the round level.  

The result from the MUX is stored into a simple register delivering the partial 
processed block to the Datapath unit. The results from the Non-Linear step (NL64) 
of the Key Scheduler will serve as input for the Datapath, and the result obtained 
after the Datapath algorithm is run, on 64 bits, will be fed to the ORA for 
verification. The result of the IDEA NXT core also serves as input for the next 

encryption round, so if it is erroneous the fault will be propagated and amplified by 
the system for the next rounds, regardless if it will manifest in the next round or 
not.  

If a fault is manifesting in the system, it will be detected by evaluating the 
signature associated with all the output responses generated for the input stimuli 
that were fed into the algorithm. The test architecture is responsible for evaluating 

the output vectors by compressing the results into a fixed-size vector called 
signature. The output is stored into a register, as can be seen in Fig. 35.   

The proposed offline test architectures have the benefit of reducing the test 
flow length while introducing little hardware overhead as the experimental results 
reveal. The proposed test architectures can also be applied to the decryption 

process with almost no modifications, as just the round keys have to be generated 
in reverse order. 

 

4.1.3 BILBO Offline Testing Architectures for IDEA NXT 

 
McCluskey and Abramovici in [44] and [45] did an extensive study of 

architectures which incorporate logic BIST techniques into a circuit’s design. They 
categorize them as follows: 

 Architectures for which no special structures added  to the circuit under test 
 Architectures which incorporate scan chains into the design 
 Architectures which configure the scan chains for test pattern generation 

and output response analysis 
 Architectures which use the concurrent checking (or implicit test) circuitry of 

the design [51]. 

The first categories of BIST architecture make use of a pseudo-random 

pattern generator as well as a single-input signature register (SISR) or multiple-
input signature register (MISR) in the validation of sequential and combinational 
CUTs with simple structures. Hewlett-Packard used this architecture in the 1970’s 
for board-level fault diagnosis, and I did as well for the first two error-detection 
schemes we constructed. 

An architecture that includes scan-chains in the designs is a LSSD on-chip 

self-test scheme in which the test scan chain is comprised of LSSD shift register 
latches and is connected to the scan output of the internal scan chain. Pseudo-
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random numbers are shifted into the combined scan-chain and the final result – a 
signature – is compared in the SISR with a pre-computed fault-free signature to 

generate a pass/fail error signal [6]. 
The most widely used BIST architecture that uses register reconfiguration is 

the Built-In Logic Block Observer (BILBO). This can be incorporated only in CUTs 
that can be divided into blocks or modules with their own input and output registers 
or storage which are redesigned to act like PRPGs for test generation or MISRs for 
signature analysis [47]. This type of register is called built-in logic block observer 
(BILBO). The BILBO can operate as one of the 4 below (at a time):  

 PRPG 
 MISR 

 Parrallel load 
 Shift register 

 
 
 

 
 

 

Fig 36 Error-detection architecture for IDEA NXT built with BILBO 
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BILBO is a test-per-clock BIST approach since a new test pattern is applied 
to the CUT and a new output response is compacted during each clock cycle of the 

BIST sequence. 
BILBOs are usually used for testing RAM memories, ROM memories and 

other circuits where I/O registers can be reconfigured like mentioned above. In the 
case of BIST Architectures using concurrent checking, the circuit is used to verify 
the output response during offline testing. 

After implementing the first two error-detection schemes presented above, I 
considered it appropriate to investigate the replace the regular BIST with a BILBO 

inside the offline test architectures, to see which technique gives the best results. In 
this sense, I designed an architecture extremely similar to the one in Fig. 35. The 

Key Scheduler part remains the same; as for the datapath design, the Test Control 
Unit is still there, as well as the counter counting the number of iterations that have 
passed until the comparison between the compacted signature must be analysed. 
The main difference in this scheme is the usage of a PRPG instead of the register 
where the result of lmor64 is stored at the end of each encryption round and a MISR 

instead of the second register, where the result of the lmid64 is stored (at the last 
iteration step). The PRPG will act as test pattern generator as it will provide 
sequences of pseudo-random numbers which will act as stimulus vectors directed at 
the input of the algorithm. 

 For the BILBO error-detection scheme, the Output Response Analyzer is no 
longer needed, as the MISR will be used to compact the algorithm’s output - the 

signature - and to analyze this signature to conclude if an error infiltrated in the 
algorithm or not, in the same way as above. The TCU has the role of supervising the 
testing process, verifying the testing sequence and checking that the final signature 
has reached the MISR in order for the comparison with the known-correct value to 
take place. 

The offline architecture build with BILBO is illustrated in Fig. 36. As will be 
evident in the chapter providing the simulation results after running all the error-

detection algorithm I propose, the design with BILBO introduces a significant 
overhead in terms of area, so the plain BIST solution seems to be a better approach 
when constructing a testing architecture for the IDEA NXT crypto-algorithm. 

 

4.2 A Parity-based Concurrent Error-Detection Architecture for IDEA 

NXT 

4.2.1 Introduction to Concurrent Testing Architectures 

Concurrent checking schemes are designed to detect a high percentage of 
all the possible errors that can occur during DUT’s normal operation, which can be of 
various types: single errors, double errors, unidirectional errors, transient defects.  

Typically, faults are modeled at the logic level by means of stuck-at defects 

since the failure (effect of fault activation and propagation) can be easily detected in 
terms of logic levels, unlike path delay defects that affect the propagation latency of 
the signals through the DUT. Moreover, a single fault can cause different types of 
errors to occur [58] and therefore, the designer is expected to design the test 
architecture as general as possible. 

To the best of my knowledge no verification mechanisms have been 
implemented for the IDEA NXT crypto-algorithms family, nor offline or concurrent. 
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My goal was to increase the reliability of crypto-systems in which this algorithm is 
used, by creating a class of concurrent, self-testing architectures. 

The fault detection principle I used is the non intrusive concurrent error 
detection mechanism from [64] based on the output’s parity prediction. A parity 
detection mechanism is constructed around a DUT’s module for which the output 
parity is checked against a predicted parity bit for that respective unit. This 
mechanism, similar to the one used of the AES algorithm [62] in [63], was first 
described in a paper [47] which I presented at the SOFA conference in 2014. In my 
implementations, as revealed in the experimental results chapter, I evaluated 

different levels of redundancy with respect to the number of parity bits.  
The two extreme cases for the number of parity bits are single-bit parity and 

duplication. In single-bit parity, all output bits of the circuit are protected collectively 
by a single parity line. Duplication leaves the original circuit intact, incurring the 
additional cost of circuit’s duplication for verifying the correctness of the original 
copy. In this context, the single-bit parity case is relatively inexpensive, as no 
redundancy is introduced. I used a reduced number of parity bits for my parity-

checking architecture, analyzed in 3 distinct scenarios: 1 bit of parity associated 
with 4 bytes of the data processed by all units of the algorithm, 1 bit of parity 
protecting 2 bytes from the unit and 1 bit of parity associated with each byte. 

The output parity prediction for a particular module consists of a mechanism 
for anticipating the parity of the output based solely on the module’s input. By 
verifying the equality between the predicted parity and the actual parity of the 

output the architecture will detect any odd number of errors affecting the result of 
the protected module, while remaining completely independent from the DUT.  This 
type of error detection fits well with the notion of integrated circuits that are 
designed to be totally self-checking with respect to a set of faults, as we can verify 
each stage and component of a cryptographic algorithm in the proposed manner. 

As mentioned before, I constructed two concurrent architectures - for the 
Datapath and the Key Scheduler of the IDEA NXT algorithm in order for the whole 

algorithm to be checked for possible errors. The error detection mechanism will be 
described in detail in the following sub-chapters. 

 

4.2.2 Error-detection mechanism for IDEA NXT's Datapath 

As already described in the second chapter of the paper, IDEA NXT’s 
Datapath consists of running (r - 1) iterations of the round function denoted as 

lmor64, followed by the application of a slightly modified version of it called lmid64. 
The concurrent architecture for the Datapath’s lmid64 is shown in Fig. 37. Both the 
IDEA NXT Datapath and the Key Schedule unit are designed to incorporate parity 
prediction modules. Ideally, the parity prediction channel would be completely 
decoupled from the modules it protects. In this manner, based only on input parity, 
the predictor is capable of anticipating the output parity. However, the completely 
decoupled solution is not always achievable as a reasonable tradeoff between error 

detection and complexity.  
The concurrent testing scheme was constructed by adding two parity bits to 

the data block, denoted xlp and xrp each associated to the two 32-bit halves of the 
data block (denoted xl and xr in the diagram). Similarly, two parity bits were added 
to the 64-bit round keys used in the encryption process, denoted by rk0p and rk1p. 
  The difficulty of predicting the output parity appears in the case of the more 
complex operations, like sigma4, which consists of substitution boxes, and mu4, 

respectively, which uses complex operations in the GF(28). Regarding the parity 
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prediction for the sbox instances, this is a complex problem due to operation’s non-
linearity. The same observation is valid also for the orthomorphism (ortho) used in 

the lmor64 function of the encryption as well as the inverse orthomorphism used by 
the lmio64 function of the decryption process.For these complex operations we 
created a series of parity prediction modules which re-compute the value of the 
parity bits after operation's execution. A custom solution, tailored to the operation's 
specific implementation needed to be built for each of the prediction modules and 
will be presented in the following paragraphs.  

 

 

  
 
 

Fig 37- Parity-based test architecture for IDEA NXT's lmid64, part of Datapath and Key Scheduler 

 
 

  The prediction units are represented with dashed lines in Fig. 37 and Fig. 38 
and their purpose pertains to generating the parity bits after execution of an 
operation for which the output parity cannot be predicted from the input parity. In 
such a case, it is investigated the input of the respective module for predicting the 
output parity. However, it must be assureed that no error occurred along the 
Datapath affecting the input to the respective module and, thus the module’s input 

correctness using the parallel parity channel must be verified.  
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  For this reason verifier modules  are  added , whose error indicator are 
combined together for allowing to signal any discrepancy between the data lines and 

their associated parity bits. 
  As can be seen in Fig. 37, we created a testing scheme which operates in 
parallel with the algorithm's structure. The parity channel follows the exact same 
operations of the protected architecture for as long as the output parity can be 
predicted from the input parity. It is the case for the XOR modules. 

The parity prediction of the sigma4 module and of the sbox unit introduces 
irregularity into the parity-based verification architecture. Sigma4 is composed of 

four sbox-es, taking as inputs 8 bits of data, and in consequence, for the case of 
using 1 parity bit associated to 4 bytes of data, calculating the parity of the 

operation is reduced to calculating the parity of each substitution box. Due to the 
transformation’s non-linearity, the output parity bit cannot be expressed in terms of 
sbox input bits and thus is realized by embedding an additional look-up table inside 
the module.  

 

 

 

 
 

Fig 38 Parity check scheme for the mu4 

 
The sigma4 output parity bit is obtained by summing up all the individual 

parity outputs. Since the parity bit is generated by predictors, as already explained, 

the sigma4 inputs are to be checked against errors by means of a verifier unit. 
Inside the verifier, sigma4’s input parity is computed by operating on all 32 bits with 
an XOR tree, obtaining a single parity bit which is then checked against the 
predicted parity bit run through the parity channel. After sigma4 execution, the 
parity bits must be recomputed from the current state in order for them to be 
reinserted into the parity channel. 
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The prediction for mu4 requires a dedicated output parity prediction unit as 
it is an irregular operation. However, since the transformation can be described in 

terms of the linear XOR operators, unlike the case for sbox, the output parity of the 
mu4 module can be express mathematically in terms of the input bits, based on 
function’s internal transformations. The calculation of its parity bit was obtained by 
XOR-ing the bits from the four 8-bit-length outputs operation takes four 8-bit inputs 
  The scheme of the parity predictor we constructed is shown in Fig. 38. The 
xalpha unit multiplies the degree-8 polynomial associated with its input i, by the 
monomial x, operation performed modulo P(x), where P(x) is: 

P(x) = x8 + x7 + x6+ x5 + x4 + x3 + 1          (1) 

  The xc unit is similar to xalpha, the only difference is that it is using a 
different polynomial for multiplication, multiplication performed modulo P(x) from 
equation (1):  

c(x) = x7 + x6 + x5 + x4 + x3 + x2 + 1        (2) 

  Another parity prediction module was implemented for the orthomorphism. 
The irregularity of this operation is visible in its defining equation from [2]:  

y(64) = lmor64(xl(32)||xr(64)) = OR (xl(32) XOR f32(xl(32) XOR xr(32), rk(64)) || (xr(32) XOR 
f32(xl(32) XOR xr(32), rk(64))   (3)   

  When employing 1 parity bit or more for each half of the ortho input, the 

output parity can be predicted right from the input parity due to operation’s simple 
linear expression. Nevertheless, if using a single parity bit for the units input, the 
parity of the output cannot be predicted from input parity, requiring a dedicated 
predictor that generates the parity of the output using the input bits. If there were 
no XOR operation or if an XOR were applied symmetrically to the two halves, the 

parity of the outputs would be straightforward, but because of the XOR operation, a 
module for parity calculation was needed.  

  Fig. 40 illustrates the parity prediction scheme which was created for the 
orthomorphism. If we denote ar and al the two halves of the input to the 
orthomorphismm and bl and br the respective output halves, then the parity bit of 
this operation, denoted ap, can be calculated like this: 

ap = Parity(ORTHO(al, ar)) = Parity(ar XOR (ar XOR al)))  

                = Parity (ar) XOR Parity(al) XOR Parity(ar) = Parity(al)       (4) 

  This is the simplest parity prediction module in the entire scheme. As the 
orthomorphism is included in both Datapath and Key Scheduler, this parity predictor 

module will also be used in the error-detection scheme for the KS. 
   

 

 

 

 

 

 

 

BUPT



71 
 

 

 

Fig 39 Parity-based test architecture for IDEA NXT's lmor64, part of Datapath and Key Scheduler 

 

   

4.2.3 Error-detection mechanism for the Key Scheduler 

 

  IDEA NXT's Key Scheduler is mostly composed of the same operations as 
the Datapath, this is why the general testing architecture is very similar to the one 
we constructed for the Datapath, as can be seen by analyzing comparatively Fig. 39 
and Fig. 37.  When using 1 parity bit for each 4 bytes we will associate two parity 
bits for the round key, rk0p and rk1p, and only one parity bit for the data, denoted 
xp., where xp = Ʃxi (xl, xr denoting the two input halves for the Key Scheduler). The 

first parity bit of the error-detection scheme is calculated by doing an XOR between  
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the two halves of the input data bytes and summing up the results of this for each 
round: 

xp =  Ʃa = Ʃ (xl XOR xr)          (5) 

  The output is furthered XOR-ed with rk0 and so the new intermediate parity 
bit will be the sum of these results: 

 
 Ʃb = Ʃa XOR Ʃrk0p = xp XOR rk0p       (6) 

For the sigma4 and mu4 operations we can use the sbox and mu4 parity 

predictors which I already developed for the Dapatah error-detection scheme. After 
a parity bit is calculated for each of them, we must check for correctness with a 
verifier module to see if the parity data is correct. Three verifiers are used in the 

scheme. For the complementation operation, which takes place during key 
generation process, the parity bit doesn't change its value. 

 
 

 

Fig 40 Parity prediction scheme for Orthomorphism 

    
  An element which appears in the Key Scheduler but not in the Datapath is 
the LFSR. Calculating the parity for the series of pseudo-random number generators 
is not a trivial task, and in consequence a Parity Predictor needed to be constructed 
for it also. A parity bit is generated for each group of 8 bits generated by each of the 

6 24-bit LFSRs and they are combined correspondingly to assure the necessary 
parity data bits. Mention should be made that only 8 bits of the final LFSR are used. 
For the case of 1 parity bit associated to 32 data bits, out of all 128 bits generated 
through LFSRs, 4 parity bits are generated whereas for a redundancy level of 1 
parity bit associated to 1 data byte, 16 parity bits are generated for the LFSR 
output. 

  All these parity predictors work together to achieve the common goal of 

calculating the parity at the algorithm’s output so as to detect any odd number of 
errors affecting the result of the protected module (for a detected odd parity).  
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4.3 Fault Injection for IDEA NXT 

 
The main purpose of testing architectures is finding faults and other means by 

which the system under test’s integrity could be compromised. This being said, the 
effective 

eness of such an architecture can be measured by the number and/or variety 
of faults and defects it finds, and the moment in which those defects are found (the 

sooner they are discovered, the less time and money will take for the system’s 
repair).  Once such an architecture is designed, it is useful to test its effectiveness in 
an early design stage, before using it in a real system. One technique which 
validates the dependability of an error-detection scheme is fault injection.  

4.3.1 VHDL-based Fault-Injection techniques 

 

Fault injection was defined in [119] as the validation technique of the 
Dependability of Fault Tolerant Systems, which consists in the accomplishment of 
controlled experiments where the observation of the system’s behaviour in presence 
of faults is induced explicitly by the written introduction (injection) of faults in the 
system. As already stated in Chapter 3.3 of this thesis, there are three ways of 
injecting faults in a hardware system: hardware implemented fault injection, 
software implemented fault injection and simulated fault injection. 

 

 
 

Fig 41 VHDL-based fault injection techniques [120] 

 
The goal was to inject stuck-at-0 and stuck-at-1 defects into the testing 

schemes I built for the IDEA NXT. Since the error-detection architectures I build for 
the IDEA NXT crypto-algorithm were modeled in a hardware description language, I 

considered appropriate to investigate in more detail the simulated fault injection 
techniques. Simulation-based fault injection is a widely-used experimental technique 
for evaluating the dependability of a system during the design phase. An early 
diagnosis allows saving costs in the design process, avoiding redesigning in case of 
error, and thus reducing the time-to-market, as stated in [119]. Another strong 
point of these techniques compared to others is that those based on simulation offer 
both high observability and controllability of all the modelled components [121]. 

There are two main types of simulation fault injection techniques, as can be 
seen in Fig. 41:  

 using simulator commands to modify the value of the model signals and 
variables without altering the VHDL code 

 changing the VHDl (or Verilog) code using mutants of the system 
components / adding saboteurs between different components to alter the 

values of one or more input signals [120]. The technique of the sabouteurs 
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and mutants is also used for evaluating the fault tolerance algorithms and 
methodologies designed for quantum systems. 

Using the first technique mentioned above, faults can be injected on either 
signals or variables; on signals both transient and permanent faults can be injected, 
but on variables one can only inject permanent faults, as can be depicted from the 
two pieces of pseudocode below [120]: 

 

Step 1. Simulate_Until [injection instant] 
Step 2. Modify_Signal [name] [faulty value] 
Step 3. Simulate_For [fault duration] 
Step 4. Restore_Signal [signal name] 
Step 5. Simulate_For [observation time] 
 
Fig. 42 a) Transient Fault Injection on Signals 

 

Step 1. Simulate_Until [injection instant] 
Step 2. Assign_Variable [variable name] [fault value] 
Step 3. Simulate_For [observation time] 
 
Fig. 42 b) Permanent Fault Injection on Variables  
 

 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 

Fig 42 Different saboteur types: serial (a) and parallel (b) 

 

Saboteurs are VHDL components inserted into a design to simulate fault 
injection by modifying signals’s values; they remain inactive otherwise. There a 
various types of saboteurs:  

 serial simple - interrupts the connection between an output (driver) and its 

corresponding receptor (input), modifying the reception value 
 serial complex - interrupts the connection between two outputs and their 

corresponding receptors, modifying the reception values 
 parallel - added as an additional source of a given signal [121]; 

implementing them is more complex and also they allow for fewer types of 
faults to be injected, so they are not as widely used as the serial ones 
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 bi-directional serial simple/complex or parallel – these were introduced in 
[120].  

The internal architecture of the saboteurs can be behavioural (a process 
whose sensitivity list contains the control and input/output signals) or structural 

(based on the use of multiplexers) [120]. 
Mutants are the names given to components which replace the original 

components of a design when wanting to simulate the behavior of that component 
in the presence of faults. If a mutant component is not activated, then the 
component behaves normally. This technique can be used in three distinct ways: 

 adding saboteurs to structural model descriptions 
 modifying structural descriptions by replacing subcomponents (i.e. replacing 

a NAND gate by a NOR gate, if-clause by a case-clause)  

 modifying syntactical structures of behavioural descriptions  
A common way of injecting permanent faults is to use VHDL’s configurations, 

where mutant architectures can be binded to components for simulating fault 
injections, respectively binding non-altered versions of the atchitectures to 
components. The implementation of transient faults by means of mutants technique 
requires to carry out dynamic instantiation. A possible solution to achieve this is to 
use guarded blocks, as discussed in [122]. A guarded assignment is an assignment 

expression on a signal, conditioned by a boolean expression called guard which, if it 
is true, the assignment is executed and if not, a null assignment is generated. 
 

4.3.2 Verilog-based Fault Injection Techniques for the Experimental 

Validation of a Fault-Tolerant System 

 
The VHDL concepts above needed to be adapted for the Verilog language in 

which the error-detection schemes were implemented. This was mostly a four-step 
process, as described below: 

1. Transform the design so that all components would become low-level 
elements such as logic gates and buffers 

2. Calculate the number of primary gates and the number of stuck-at faults 

which could be injected in each testing scheme in order to see what number 
of injected faults could be considered a suitable sample which would confirm 
the correctness and efficiency of the design 

3. Set the above calculated number of input and / or output gate ports to value 
‘0’ or ‘1’ to simulate stuck-at-0 and stuck-at-1 faults; the gates would be 
chosen randomly  

4. Check the output of the mutant architectures to verify their effectiveness in 

discovering faults 
 
 
 

 

Chapter 5 Experimental results 
 
            The previous chapters of this thesis focused on presenting the theoretical 
aspects of the this research, as well as the state-of-the-art in the domains of 

interest (cryptography and testing mechanisms). The following paragraphs aim to 
analyze in an experimental manner the theoretical topics presented beforehand, 
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namely the speed improvement brought to IDEA NXT, the error-detection 
architectures built specifically for this crypto-algorithm and the fault injection 

techniques used to demonstrate the efficiency of these architectures. 
 

 

5.1 FPGA Devices 
 

In order to evaluate the performance of the proposed speed improvement 
resulted from the changed I applied to IDEA NXT’s Key Scheduler, which was 
presented in Chapter 2, I implemented the IDEA NXT algorithm in Verilog and 
synthesized for the Altera Cyclone II EP2C35 FPGA, using the Quartus II tool.  

FPGAs are dedicated integrated circuits defined in [18] as an aglomeration 
of programmable logical blocks and programmable interconnections in a regular 
structure which goes by the name “FPGA fabric”. 

 
 

 

Fig 43 FPGA  a) General structure. b) Internal structure of a CLB configured in the ‘logical’ way. c) 
Internal structure of a CLB configured in the ‘memory’ way 

 
The device's architecture is composed of the so-called logic elements or 

configurable logic blocks (LE or CLB) which encompass both combinational logic (i.e. 
gates) as well as sequential logic (flip-flops and latches) connected through 
programmable interconnections, like Fig. 10 a) shows. CLBs are surrounded by 

input-output blocks (IOBs). These ports are in general programmable in order to 

offer input, output or bidirectional signals, but also facilities like low-power or 
hyperspeed. 

All FPGAs need to be programmed. The configuration information is stored 
with the help of three technologies which determine the type of FPGA: SRAM, 
antifuse and flash, the disadvantage of the first being the fact that the device must 

be configured each time it is turned on [94]. 
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Such a device must be designed at various levels of abstraction in a so- 
called a “Hierachical design” [18]. Starting from the requirements, refining the idea 

to many levels of detail, the designer must reach an architecture which can then be 
extended in logical implementations. Fig. 44 illustrates the block diagram of the DE2 
platform. 

 
 

 
 
 

Fig 44 Altera DE2 Platform 

 
For maximum flexibility, the connections are made through the FPGA 

Cyclone II device, so the user can configure the FPGA to implement any system 
design. The platform comes with a facility of the control panel which allows the user 
to access numerous components on the board through a USB connection from a 
host computer. The platform contains a serial EEPROM chip which stores the 

configuration data for Cyclone II, the configuration being loaded automatically in the 
FPGA each time I apply voltage to the board. By using Quartus II it's possible to 
reprogram the FPGA in any moment and to change the non-volatile data stored in 
the EEPROM. 

The 18 switches are used as data inputs for the circuit. Each switch is 
connected directly to a pin of the FPGA. When the switch is in the “DOWN” position 

(the nearest to the board) it supplies a Low voltage level (0 volts) to the FPGA, and 
when it is in the “UP” position it has the logical level “1 (3.3 volts). There are also 
27 controllable LEDs, located above the 18 switches and 8 leds situated above the 4 
“toggle switch” buttons. Each LED is acted upon directly by a pin as follows: a high 

logic level lights the led while a low level quenches it. The pin assignation can be 
found in Altera DE2's datasheet. The board also includes 2 oscilloscopes which 
produce clock signals of 27MHz and 50MHxz. 

The LCD module is built in a LSI controller, which has two 8-bit registers, 
one for instructions (IR) and one for data (DR). IR stores instructions like deletion of 
the display or the cursor movement, as well as addressing information for DDRAM 
and CGRAM. The DR register temporarily stores data which will be displayed, 
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represented by codes of 8-bit characters. The LCD has 2 lines of 16 characters each, 
the maximum number of characters which can be displayed being 128. In the tables 

below it ius shown the relation between the DDRAM addresses and the positions on 
the liquid crystal display. 

 

5.2 Time comparison between different versions of AES, the 
original and the speed-up versions of the IDEA NXT 

crypto-algorithms 

 
A general version of the IDEA NXT crypto-algorithm with the LFSR modified 

as described in Chapter 2 was implemented in Verilog and synthesized for the Altera 
Cyclone II FPGA, using the Quartus II tool, as stated earlier. The synthesis results 
are presented below. For the compilation and simulation of the implementation 
altera’s Modelsim tool was used. 

 

 

Fig 45 Time comparison between small-bit versions of DES, IDEA, AES and the original 
and modified IDEA NXT crypto-algorithms 

 
Modelsim is a widely-used logic simulation tool for verification and 

debugging of digital circuits. Altera provides a version of ModelSim software, which 
includes libraries for Altera's FPGA devices [20]. The simulation permits the 
visualization of the signal’s binary values as waveforms which are low if the value is 

‘0’ logic and are high if the signal’s value is ‘1’ logic. 
In order to evaluate the performance of the proposed speedup solution, I 

compared this implementation with the hardware implementations of the original 
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64, 128 and 256 -bit versions of IDEA NXT I had proposed in a previous paper [17] 
and also with the similar implementations of the AES, DES and IDEA crypto-

algorithms [17]. 
As Fig. 45 shows, there is a significant speed improvement in the 

algorithms’s critical path when considering smaller text and key lengths (64-bit, 
128-bit respectively). The modified version of NXT64 is 12% faster than the original 
version of NXT64, whereas the 128-bit modified version of the algorithm shows a 
speedup of 8% when compared to its unmodified version, and reaches the execution 
time of the 128-it version of AES. The 128-bit versions of DES and IDEA crypto-

algorithms are clearly left behind in terms of execution times, being 8%, 
respectively 9% slower than the modified IDEA NXT 128. 

When large key and text sizes are considered, the speed-up is not as 
significant as in the smaller length versions, but nevertheless I obtained a 9% 
improvement compared to the original NXT256 version, as it can be depicted from 
Fig. 46. 

 

 

 

Fig 46 Simulation comparison between large-bit versions of AES and the original and modified IDEA 
NXT crypto-algorithms in terms of critical path 

 
This sub-chapter illustrated a method to improve the execution time of the 

new family of crypto-algorithms, IDEA NXT, which works for all versions of the 

algorithm independent of the key and text length. The improvement consisted in 
modifying the LFSR equations used in the round key generation process, as to 

generate one key per clock cycle instead of one key in six clock cycles. The streams 
of pseudo-random numbers which make up the round keys are needed in both the 
encryption and decryption processes of the algorithm, to assure a superior level of 
security.  
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5.3 Experimental Results of IDEA NXT Off-line Testing 
Architectures  

 

  This section covers the implementation aspects for the testing strategies 
that were presented beforehand, as they were applied to the 64-bit IDEA NXT 
encryption/decryption process. The encryption, decryption and the dual architecture 
performing both the encryption and decryption were modeled using the Verilog 
hardware description language. The IDEA-NXT encryption architecture was extended 

with the offline test architectures presented in this thesis and the designs were 
synthesized and implemented using Xilinx ISE 14.7, for the Xilinx Virtex 4, 

XC4VSX35 Field Programmable Gate Array (FPGA) [63]. The synthesis and 
implementation steps were performed with maintaining the designs’ hierarchy. The 
metrics of interest were considered to be:  the area requirements (total number of 
Slices used), the critical path length (and consequently the maximum clock 
frequency) as well as the throughput, which is calculated according to the formula 
below: 

Throughput [Mbps] = data block size in bits * maximum frequency / (number of 

rounds)     (2) 

   
 

Table 3 IDEA NXT VS AES BASE IMPLEMENTATIONS PERFORMANCE 

   

Crypto-algorithm 
 

Area 
[slices] 

Critical 
path [ns] 

Throughput 
[Mbps] 

IDEA NXT64 Virtex original 
encryption architecture 

4705 39.33 101.68 

IDEA NXT64 Virtex enc-dec 
architecture  

4749 41.04 91.71 

AES encryption 
2079 7.65 1520.89 

IDEA NXT64 Virtex modified 

encryption architecture in 
[120] 

 
4690 

 
30 132 

IDEA NXT64 ASIC encryption 

architecture in [120] 
9562 231 924 

 
   
  The results obtained for the hardware implementation of the IDEA NXT 

algorithm (the one where the speed-up was performed) will be presented first, then 
the same metrics will be analyzed in respect to the offline error-detection 

architectures, then to the parity-based testing architectures, in order to see how 
much overhead was induced with the testing modules which I added and conclude if 
the proposed architectures’ designs are well constructed or need to be further 
optimised.With respect to the basic IDEA-NXT architectures (encryption, decryption 
and dual designs) the implementation results for the architecture presented in [64] 
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of the  widely-used AES crypto-algorithm were offered as reference. AES is also a 
symmetric cipher with 128 bits for the input data block and keys on 128, 192 and 

256 bits. 
As can be observed in Table IV, when a complete encryption-decryption 

process is run the area requirements grow, as well as the length of the critical path 
and in consequence the throughput is diminished. However, the value with which it 
grows is not that significant. 

The obtained results were also compared with similar hardware designs of 

IDEA NXT which were presented in [120]. Their designs were synthesized using 
Spartan-IIE and Virtex-II Pro FPGAs. The hardware utilization in their case is much 

less in the Spartan design because it is only designed for one round and would 

require 16 clock cycles to fully encrypt/decrypt the data once data and round keys 
have been loaded. The one-shot Virtex design can easily be compared to our 
implementation of IDEA NXT encryption and also to the encryption/decryption 
design because it also has sixteen combinational rounds and needs only one clock 
cycle to complete the process [120]. In table IV it can be observed that their Virtex 
implementation has a larger throughput, because of the larger critical path, but also 

a larger design space than ours, so what they gain in speed they lose in area 
requirements.  

 
 

 
 

Fig 47IDEA NXT vs AES base implementation Performance in terms of Hardware Area 
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Fig 48 IDEA NXT vs AES base implementation Performance in terms of Critical Path & Throughptut 

 
 
 
 

Table 4 IDEA NXT FEEDBACK LOOP TEST RESULTS 

 

 Area 

[slices] 

Critical 

path 

[ns]         

Throughput 

[Mbps] 

Area / 

Throughput 

NXT base 

architecture 

4705 39.33 101.68 46.27 

Round-level 

NXT feedback 

loop testing 

4769 40.07 99.82 47.77 

Area overhead: 1.36% 

Critical path overhead: 1.86 % 

Algorithm-

level  NXT 

feedback loop 

testing 

4836 40.99 97.56 49.56 

Area overhead : 2.87% 

Critical path overhead: 4.22% 

 
 

Analyzing the critical path length of the encryption, IDEA NXT proves to be 
slower than the AES counterpart. The difference in terms of area overhead by 
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comparison to AES comes mainly from the fact that the IDEA NXT is far more 
complex, more than two times larger in terms of the number of slices occupied on 

the FPGA.  
  As far as the throughput is concerned, there is a significant difference 
between AES and NXT, as can be seen in Fig. 48, because of the great difference of 
critical path (the inverse of the maximum frequency) of the two; however, the 
difference between the entire encryption-decryption process versus the plain 
encryption is not that significant. 
  Table V shows the area overhead as well as the latency degradation for both 

the round-level and the algorithm level feedback loop testing methods with respect 
to the base IDEA NXT architecture. The area overhead is not significant, as it is 

under 3% in both cases while the latency increase is under 5%. 
The experimental results for the test architecture based on TPG are depicted 

in Table VI. It can be observed that the area overhead of the BIST solutions (with 
TPG implemented as Cellular Automata, Counter and LFSR) is higher than the one 
introduced for the feedback loop testing architectures, incurring an overhead of just 

5.2%, respectively 5.3%. The critical path degradation ranges between 5.3% for the 
implementation of the TPG as a counter to 6.2% for when the TPG is implemented 
using a LFSR. 

  
 

Table 5 IDEA NXT BIST TEST RESULTS 

 

 Area 

[slices] 

Critical 

path [ns]         

Throughput 

[Mbps] 

Area / 

Throughput 

NXT base 

architecture 

4705 39.338 101.68 46.27 

Round-level NXT 

Cellular 

Automata  

testing 

4950 41.744 95.82 51.65 

Area overhead:  5.20% 

Critical path overhead: 6.11 % 

Round-level NXT 

Counter testing  

4959 40.844 97.93 50.63 

Area overhead:  5.39% 

Critical path overhead: 3.82% 

Round-level NXT 

LFSR testing 

4950 41.777 95.74 51.70 

Area overhead:  5.20% 

Critical path overhead: 6.20% 
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Fig 49 IDEA NXT Offline Architectures Results (for both BIST and Loop Interconnection) in terms of 
Area/Throughput in comparison to the base architecture 

 
 

   
 
 

 
 
 

Fig 50 IDEA NXT Loop Architecture Area Results 
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Fig 51 IDEA NXT Offline Architectures Results (both BIST and Loop Testing) in terms of Critical Path 

 
 
 

 

    

 
 
 

Fig 52 IDEA NXT Offline Architectures Results (both BIST and Loop Testing) in terms of Throughput 

BUPT



86 
 

 
 

Fig 53 IDEA NXT BIST Results for induced Area Overhead 

 

 

 
 

Fig 54 IDEA NXT BIST Results for induced Critical PathOverhead 
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As can be seen from the experimental results in Table VI, IDEA NXT’s critical 
path’s length is larger than AES’s. The modules inside the key generation unit are 
responsible for the largest portion of the algorithm’s critical path’s length; namely: 2 
layers of sigma4, an additional mu4 stage, a complete lmor64, followed by lmid64, 
besides several other XOR layers, as can be seen from Fig. 49-54. 
  I also defined a composed metric: Area divided by Throughput, in order to 
evaluate the efficiency of the error-detection schemes’ implementations. This metric 

was chosen to be able to classify the implementation with respect to both the area 
requirements and the execution performance. The higher the obtained score for this 

metric the more efficient the usage of the FPGA resources is obtained for the 
respective design. As can be observed in Tables V and VI, all IDEA NXT testing 
designs perfomed better in comparison to the NXT base architecture, even though 
the difference is not that large (~5% in all cases). 

In both the online scheme presented here as well as the experiments 

conducted for the offline architectures, I could not compare myself to other error-
detection schemes for IDEA NXT as there were none I found in the literature at the 
moment of writing this thesis, so I went ahead and compared the values obtained 
for our testing architectures to the ones obtained for the NXT base architecture 
synthesis design on FPGA.  
  Figures 49-54 display in a graphical manner the experimental results 

comprised in Tables V and VI for all offline architectures built for the IDEA NXT 64 
algorithm in regards to the chosen metrics as well as the introduced overhead in 
terms of area and critical path relative to the base version of the algorithm (which 
has no error-detection modules attached).  
  The best solution for implementing the BIST architecture in terms of critical 

path induced seems to be using a Counter as TPG instead of cellular Automata or 
LFSR; this is also obvious when having in mind that a counter is has the simplest 

structure of the three variants and takes the lest logical elements on the board; the 
other two are more complex and take more time due to their more complex 
operations taking place inside. The critical path of the single round-level feedback 
loop testing is clearly taking less time than letting all iterations of the algorithm run, 
but as can be seen in Fig. 54, the difference in critical path overhead between the 
two is just 50%, which is acceptable. The same can be said when analyzing these 
two architectures performance in terms of introduces area overhead, whereas in 

case of the three BIST error-detection architectures, the differences in area 
overhead are neglijable. 
 

5.4 Experimental Results for IDEA NXT Parity-Based Test 

Architecture 

 

  The following paragraphs will analyze the experimental results obtained by 
synthesizing the on-line test architecture I designed for the IDEA-NXT64 algorithm. 
Apart from the parity-based error detection approach that associates 1 parity bit to 

each group of 4 bytes of the encryption process, I also evaluated the performance of 
the constructed architecture when using more redundancy bits. More precisely, I 
investigated the effect of using 1 parity bytes for each pair of 2 bytes as well as 
using 1 parity bit associated with each byte of the Datapath and Key Scheduler.   

BUPT



88 
 

 Besides the increased error detection capability associated with higher 
redundancy levels, because of the particular aspects of the IDEA NXT64 algorithm 

as well as of the concurrent error detection architecture, the higher the redundancy 
level of the architectures the faster it performs, at the expense of a larger design, as 
the experimental results reveal. 
   

 

Table 6 IDEA NXT64 parity-based architectures synthesis results 

 

IDEA-NXT  

Architecture 

Max 

Frequency 
[MHz] 

Area 

[Slices] 

Throughput 

[Mbps] 

Throughput/Area 

[Mbps/Slices] 

Base 37.517 5189 150.068 0.029 

Parity Checked 
1 bit 

34.732 6045 138.928 0.023 

Parity Checked 
2 bit 

37.368 6064 149.472 0.025 

Parity Checked 
4 bit 

37.474 6070 149.896 0.025 

   
   
  The architecture employing 1 bit of parity for each group of 4 bytes has the 

largest critical path compared with the solution employing 4 bits of parity for the 
same data size, as evident from Table VII. 
  The reason for the degradation of device’s performance with reduction of the 

redundancy level, is partly due to the complexity associated with the verifier 
modules and, for the case of 1 parity bit, because of the parity prediction for the 
ortho module, depicted in Fig. 55 - Fig. 58. More precisely, for all implementations 
involving more than 1 parity bit associated to the 32 bits processed by ortho, as 
evident from equation (1), the parity of module’s output can be directly predicted 
based solely input’s parity. In consequence, the implementations using 2 and 4 bits 

of parity for the 32 bits processed by the ortho module, the final verifier unit 
checking the correctness of parity bits is not required. 

Apart from this the higher the number of parity bits, the smaller the height 
of the XOR tree used inside the verifier module and thus the faster the parity 
verification. More precisely, when using a single bit of parity for a group of 32 bits, 
the verifier unit contains an XOR tree of height 5, whereas when a parity bit is 
associated with a byte, the XOR tree has a height of only 3 logic levels. The latency 

associated with the verifier modules justify also the faster performance of the 4 
parity bit design compared to the 2 parity bit solution. 
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Fig 55 IDEA NXT parity-based architectures synthesis results for Max Frequency 

 

 

Fig 56 IDEA NXT parity-based architectures synthesis results for Area 
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Fig 57 IDEA NXT parity-based architectures synthesis results in terms of Throughput 

 

 
 

 
 

Fig 58 IDEA NXT parity-based architectures synthesis results in terms of Throughput/Area 
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  As can be seen from Table VII, the effect of increasing the redundancy level 
over the area of the design is consistent. With respect to the combined metric 

Throughtput/Area, the 2 parity bit and 4 parity bit architectures have similar scores, 
also higher than the score for single parity bit design. This is the reason that IDEA 
NXT64 is better verified concurrently for errors by employing either 2 or 4 parity bits 
associated with each group of 4 bytes processed by the algorithm. 

 

5.5 Error-Detection Rate for the Concurrent and Offline 

Testing Architectures built for IDEA NXT 

 
Figures 57-61 show the error-detection rate for the BIST Error-Detection 

Schemes I have built for IDEA crypto-algorithm in the cases where 2, 10, 100, 250 

and 500 faults have been injected in the architectures. It can be observed that in all 
cases the fault detection rate is above 99% when more than 200 thousands 
simulation of the algorithm have been performed. 

 

 

Fig 59 Detection Rate for stuck-at-0 defects of the same type injected into the parity-
based on-line error-detection Architecture built for IDEA NXT 

 
For the parity-based concurrent architectures I ran simulations for the cases 

where 1, 10, 100, 250, 500, 800 and 1000 stuck-at-0 defetcts were inserted 
inserted into the design and verified the error-detection rate after all algorithm 

rounds were run. The results are shown in fig. 59. The error-detection rate is best 
when 1 defect is injected into the concurrent architecture where bit of parity is 
associated with 4 bytes of the data processed by all units of the algorithm, reaching 
100%. The case where 1000 defects of the same type are injected into the 
algorithm has the lowest detection rate in all 3 types of parity-based testing 
architectures, but it is still over 90% in all cases. 
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Fig 60 Detection Rate for stuck-at-0 defects of the same type injected into the parity-
based on-line error-detection Architecture built for IDEA NXT 

 
In fig. 60 it can be depicted the error-detection rate for the cases where 1, 

10, 100, 250, 500, 800 and 1000 stuck-at-0 faults have been injected in the 

Feedback Loop Interconnection scheme and all 3 BIST-based error-detection 
schemes. The best results are obtained for the Loop Inteconnection rate, which 

reached 99.9% for the case where 1 defect is injected into the design, and the 
overall detection rate is above 99.3% which is a more than acceptable percent. 
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CONCLUSIONS 
 

This research was concentrated on two main areas: cryptography and error-
detection mechanisms. 

The thesis starts with the problem of secure testing of cryptographic 

algorithms, focusing on hardware implementations of the new trends in 
cryptography. It gradually introduces the problem by first making an incursion in 
the cryptographic domain, the definitions of the basic taxonomies regarding 
dependability and safety of calculations and detailing crypto-algorithms theory and 
classification. It also introduces the next generation in encryption, the IDEA NXT 
algorithm, then it proceeds with original hardware implementations for it and the 

improvements which I made in the algorithm’s structure in order to obtain better 
performances in terms of speed. 

IDEA NXT was proven to be one of the most complex and secure crypto-
algorithms at this moment [2] and so efforts to bring improvements to it are 
completely justified. Also, IDEA NXT raises the bar for designing encryption 
algorithms, providing a high level of algorithm individualization based on personal 
adjustment of the key and plain text lengths. 

The particularities and mathematical structure of the IDEA NXT crypto-
algorithm were presented also, analyzing the complexity of its non-linear operations 
and the role played by the LFSR in the key generator algorithm. This offered an 
opportunity for improvement, as a speed-up of the algorithm was build from here, 
improving the algorithm’s overall performance. The encryption and decryption 
datapaths were design for a hardware implementation, as well as the key generation 
unit. 

Once the algorithm is used in securing complex system and crypto-chips, 
the issue of assuring its continuous well-functioning appears. The next step of the 

research was to find ways to test the algorithm in its environment and find potential 
faults errors as soon as they appear, so that the cost of the repairs is small and the 
algorithm can be again functional in no time.  

The second part of the thesis starts with an overview of the testing theory in 

general and VLSI testing in particular, in order to understand the concepts and the 
work performed in the field so far. It presents the main defects and fault models 
which can affect a device at every level of design, from gate to whole circuit level. 
The stuck-at model was detailed as representative for the lower-level defects, while 
bridging and shorts defects, as well as the fault models which derived from there 
were briefly discussed as alternatives for the cases not-covered by the stuck-at 
fault.  

After consolidating the problematic of fault modeling, the thesis follows with 
introducing some fault tolerance concepts. A design must be trustable and 
dependable during its functioning or integration in a chip or higher-level system and 
so it must be continuously or periodically tested for errors. Hence a fully justified 
review of the design for Testability Architectures and Techniques was made, with a 

focus on scan design, boundary scan and test generation techniques. The challenges 
faced by the testing community are reminded and Logic BIST methodology is 

introduced as an appropriate solution for secure testing. The various implementation 
methods, including the LFSR-based approaches for test pattern generation and 
output response analysis which was later used in the custom error-detection 
architectures I built for the IDEA NXT hardware implementations, were presented 
along with a concurrent, parity-based online test architecture build for detecting the 
presence of faults in the IDEA NXT crypto-algorithm while the algorithm is running. 

BUPT



94 
 

From the multiple  offline BIST error-detection architectures I proposed, the LFSR-
based solutions proved to be the more efficient in terms of coverage and area 

overhead.  
In order to validate experimentally the custom testing architectures built for 

IDEA NXT I injected stuck-at faults into the designs using the technique of mutants 
(I built mutant architectures of the Verilog components which would simulate the 
behaviour of those components in the presence of faults). 

The personal, original contributions of this research are highlighted in 
the following paragraphs: 

 A speed improvement made to the pseudo-random key generator of the 
IDEA NXT encryption algorithm, achieved by modifying the way keys are 

processed when they reach the third layer of the Key Scheduler, denoted 
Diversification, which uses a stream of pseudo-random values produced by a 
24-bit Linear Feedback Shift Register (LFSR). The proposal is to change the 
rules of the LFSR as to process six bytes per clock cycle instead of one byte 
per clock cycle as was the case in the original structure, so to not lose 6 

clock cycles for the generation of a single round key, but to directly provide 
a round key in a single clock cycle. The solution for this is to directly shift 
the linear shift register with six positions at once. The experimental results 
performed on both my software and hardware implementations of IDEA 
NXT, showed a speedup of 10% when the modified version of the algorithm 
was used. 

 The design of a parity-based testing architecture, that is completely 
independent from the algorithm itself, and which works for all versions of 
the algorithm, independent of the key and text length. It mainly consists of 
generating and processing a series of parity bits for both the Datapath and 
the Key Scheduler and checking their value at every step of the algorithm, 

by verifying the outputs of the Parity-predictor modules (built for complex 
operations where the output parity cannot be determined based on module’s 

input parity) against a checker scheme – if the parity bit was incorrect, an 
error had been introduced at that stage. The proposed design was validated 
by implementing the error detection architecture in the Verilog hardware 
modeling language and synthesizing it for three different redundancy levels. 
The efficiency of the proposed solution was demonstrated by analyzing the 
obtained results in terms of area, frequency and throughput. The parity-
prediction scheme is the first of this kind for IDEA NXT. 

 The design of a series of non-concurrent test architectures for IDEA NXT. 
The proposed error-detection schemes are capable of verifying the integrity 
of a crypto-chip in an autonomous, non-concurrent manner. One of the 
testing architectures consists of stimulating the algorithm with test vectors 
and verifying the correctness of the output after a number of encryption or 
decryption iterations were run and the other one evaluates the response by 

compressing the results obtained after a predefined number of encryptions 
into a signature. The first solution is a particular Built-in Self-Test Design for 

Testability in which input vectors are generated at each round of the NXT 
algorithm and the output responses are validated through a feedback 
interconnection by the system in which the algorithm is running. The 
repeated execution of the algorithm is managed in conjunction with a 
counter for verifying the final signature. The second offline testing 

architecture evaluates the output of the encryption by comparing it to a so 
called “gold signature”, which is a hardwired value obtained by simulations 
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of IDEA NXT. The output resulted after a run of the encryption algorithm of 
a single round is compacted, encompassing all the previous encryption 

outputs The test schemes I propose offer a good trade-off between the 
length of the test process and the storage requirements for the correct 
responses. 
The thesis is based on two PhD reports submitted and presented in the 

Computer Science and Engineering Department of Computer and Automation 
Faculty, the Politehnica University of Timisoara: 

 Andreea Bozesan, PhD Report I, Politehnica University of Timisoara, 

September 2014 
 Andreea Bozesan, PhD Report II, Politehnica University of Timisoara, 

December 2014 
As for the future research in the domain of crypto-algorithms  and error-

detection architectures I forsee the following possible directions: 
 Extending the speed improvement brought to IDEA NXT as to find an 

alternative to the use of LFSRs and also improve security. 

 Extending the simulation framework to support bridging and gate fault 
simulation models, not just the stuck-at. 

 Building a general framework for a signature-based concurrent checking 
mechanism adaptable to encryption algorithms which are built on the same 
principles. 

 Constructing a general framework for offline error detection which can easily 

be adapted for all symmetric algorithms. 
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