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Abstract 
Computer Vision is the scientific discipline of obtaining information from 

two- or three- dimensional images with the help of computers, theories and 
algorithms. It includes fields of Artificial Intelligence, Signal and Image processing 
and Robot Vision, and is a growing and active fieid of research. Businesses have 
invested a lot of money into intelligent machine vision, industrial robotics and 
automation technology. The proposed solution of this thesis deals with industrial 
appiications of de-palletizing or robotic bin picking. Picking a known or unknown 
object out of a bin with an industrial robot is called the "bin picking problem". In 
detail, this thesis presents a novei solution for object localization, which is the most 
challenging part in the whole process of bin picking. Object recognition and object 
localization has a long history in two-dimensional image processing. The use of 
distance data provided by laser range sensors offers the possibility to find objects in 
three-dimensional (3D) scenes. Many of the known solutions of industrial 
automation processes are limited to simply shaped objects or objects with specific 
features. However, the handiing of objects with complex shapes, without any 
specific features, is still an unsolved problem in the fieId of robotic automation. 
During the last decade, range image sensors for industrial environments were 
commercialized. They can robustly obtain distance information of a scene and 
provide their data within milliseconds to allow real time range image processing. 
Therefore, 3D imaging algorithms and range data processing need efficient 
implementations. 
In this thesis, a pose estimation approach is proposed to determine the coarse 
position and rotation of a known object. Therefore, an object model is put into a 
virtual scene and a range laser sensor simulation creates a virtual representation of 
this object. The virtual appearance of this object is compared to a scene acquired by 
a laser range sensor. This innovative idea for 2.5D object localization handies every 
kind of object without the need of preprocessing, expensive feature extraction or a 
learn process for new objects. 
After the pose estimation, the position and rotation of the object candidates are 
refined with an improved registration algorithm. The registration of range images is 
an important topic in computer vision, with many appiications such as reverse 
engineering, mobile robot navigation and industrial visual inspection, among others. 
A highiy efficient variant of the most commonly used algorithm — the Iterative 
Closest Points algorithm — finds the exact position and rotation of a known object in 
a scene. This research will outiine an enhanced concept for robotic bin picking, 
demonstrate the results and put them into action. 
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Cuvinte cheie: 
Vedere artificială, achiziţia de imagini tridimensionale, senzori 3D, imagini 
virtuale 3D, modelare, timp de întârziere, triangulaţie, estimarea poziţiei, 
rafinarea poziţiei, algoritmul ICP, algoritmul progressive mesh. 

Rezumat, 
Lucrarea elaborează noi soluţii pentru aplicaţii industriale de tip de-
paletizare şi extragere robotizată din recipiente, bazate pe vedere 
artificială, care au ca scop extragerea unui obiect cunoscut sau necunoscut, 
dintr-un pachet cu obiecte, cu ajutorul unui robot. Pentru identificarea 
scenelor tridimensionale, se analizează utilizarea senzorilor 3D, bazaţi pe 
timpul de întârziere, respectiv pe triangulaţie. Estimarea poziţiei se 
realizează prin compararea imaginii 3D virtuale, obţinută prin modelare, cu 
imaginea 3D reală, obţinută cu senzori 3D, în două faze ale modelării 
scenei: estimarea poziţiei şi, respectiv, rafinarea poziţei. Rafinarea poziţiei 
estimate se bazerază pe algoritmul ICP (Iterative Closest Points) şi pe 
propunerile de modificare a acestuia, în scopul minimizării erorii. Apoi, este 
oropusă şi analizată combinarea algoritmului cu reţele progresive 
(progressive mesh) cu algoritmul ICP. In final, sunt măsurate precizia şi 
performanţele sistemului, sunt prezentate metodele de testare a estimării 
poziţiei, respectiv a rafinării poziţiei, precum şi concluziile, bazate pe 
măsurări, tabele şi grafice. 
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11 Chapter 1 Introduction 

Chapter 1 Introduction 

1.1 Motivation 

Picking an object out of a bin has been a learning process for mankind from 
early on. Imagine a 2-year-old baby taking his favorite toy car out of a box full of 
toy cars of different shapes, sizes, and colors; it is easy for the baby. At first glance, 
everyone takes this for granted. An unsupervised recognition and localization of an 
unknown object in a cluttered environnnent is still an unresolved problem in the fieid 
of robot Vision. Nowadays, robots get more and more involved in industrial 
processes because they are superior to man regarding the requirements of strength, 
speed and endurance. Robotic automation processes have become very successful 
in the last few years, and offer a huge fieId for research. This dissertation deals in 
part with the well known "bin picking problem" [1], [2]. It is also known as the de-
palletizing problem, which occurs in nearly every industrial sector. Robotics has 
dealt with this task for a long time, but there are oniy a few solutions suitable for 
special appiications. This dissertation focuses on object localization, which is the 
most challenging task in the whole process of bin picking and, especially, the use of 
range data vision systems that are able to find objects in a three-dimensional (3D) 
scene with high accuracy. With the availability of fast, non-contact 3D sensors and 
image processing with cheap standard personal computers, 3D vision is becoming 
more practicai for industrial appiications. Solutions for simple objects and non-
complex environments have been developed and realized before [3], [4], [5], but 
systems with general usage are often needed in industrial appiications. 

1.2 The problem 

The determination of the position and orientation in six degrees of freedom 
(DOF) of objects with different forms and shapes is still a challenging task. For this 
reason, a general solution for the bin picking problem is hard to find. The goal of 
object recognition and localization is to find instances of a given collection of objects 
in a scene, which are acquired by a sensor. Recognition means ''what" needs to be 
found. Often in other research areas, most known solutions are limited to simple 
objects with rigid shapes; sometimes to a few simple kinds of objects [1], [2]. 
Robotic bin picking appiications, e.g. depalletization of an object, are often uniform 
and rigid; nevertheless, the separation of known objects in the input data can be a 
complex step. ^ 
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12 Chapter 1 Introduction 
Furthermore, the determination of the exact position and rotation of an 

object Is essential in the process of robotic bin picking. Moreover, object localization 
is most criticai and very time consuming in the bin picking process. To meet the 
requirements of industrial appiications, the calculation tinne factor is the nnost 
important and, as such, has become a major difficulty in robotic bin picking. 
Furthermore, 3D range sensor data results in a high computaţional complexity. 
Assuming that the processing time for one 3D point in the input data takes one 
millisecond, it therefore takes up to several minutes just to load and process the 
data in the computer. This is inadmissible in most industrial appiications and, as a 
consequence, object localization is a very important part of this thesis. 

Integrating distance sensors in industrial environments leads to many new 
problems including sensor inaccuracies or outiiers in the input data. This also 
depends on the measurement methods of these sensors. Outiiers lead to false 
detection in many of the aiready known algorithms for object localization, so less 
robustness is another problem for robotic bin picking. 

1.3 The solution 

This dissertation proposes an object localization system, divided into two 
steps. The first step introduces a model-based scalable algorithm to find a coarse 
pose (position and orientation) of an object in a scene without the need of 
segmentation or feature extraction. This pose estimation includes a sensor 
simulation for coarse object localization. With the help of this sensor simulation, the 
appearance of virtually arranged objects is calculated. The resulting virtual 3D data 
are compared to the object's appearance in the real scene. The algorithm matches 
the geometry of a given model with the range image of a scene by minimizing the 
difference of the object's geometry. Because of this, the system is able to handie 
nearly all kinds of objects without any feature extraction. This universality is offset 
against high computaţional cost. Therefore, well known algorithms from the fieid of 
computer graphics are integrated to Increase the performance. Depending on the 
position accuracy needed, the complexity of the object, the density of points in the 
data sets and the process time of the system can be adjusted to the requirements of 
the appiication. The pose estimation results in a number of pose candidates. In the 
foilowing refinement step, these candidates are matched with an improved Iterative 
Closest Points (ICP) algorithm [6]. The refinement step in the hierarchical system 
finds the exact transformation of the model and scene data set using Progressive 
Meshes inside the iterative calculations of the ICP algorithms. This reduces its 
complexity by comparing oniy the reduced representation of an object model to a 
scene data set. The obvious advantage is an increasing performance, but another 
profound effect is the improved robustness against outiiers. The position and 
cnentation of the best candidate in the refinement step is transformed in the robot 
coordinate system, so an industrial robot can pick this object and transfer it to the 
target position. 
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13 Chapter 1 Introduction 
1.4 The Gaps and Contributions of this Dissertation 

The proposed system will be used in industrial robotic bin picking and 
includes — besides object localization — an adequate sensor selection, an 
application-invariant localization algorithnn, a robot control interface, a grasp point 
definition and a collision avoidance strategy. The further proposed flexible coarse-
to-fine object localization has the potential to meet different requirements and cover 
a high percentage of appiications in robotic bin picking. It does not use any 
segmentation algorithms, but uses a mode-based alignment algorithm in a 
hierarchical system. 

The algorithm is implemented independentiv from the data source. New 
sensor concepts with higher resolution can be modeled and integrated without any 
problem. AII real range sensors deliver data with measurement errors, occiusions, 
and noise [7]. To increase the accuracy, this work will take these additional features 
into consideration. 

The object localization is not limited to oniy one object because a proposed 
database can store as manv obiects as needed. Consequently, the object 
recognition process can be included in the localization step. The proposed solution 
includes a rudimentary solution for many kinds of objects. The pose estimation 
algorithm does not need anv features extraction because of its universality. The 
system is also able to include feature-based approaches in the pose estimation. 

New computaţional improvements in computer hardware, like parallel 
computing on Multi-Core processors and graphical processing units (GPU), enable 
the sensor simulation to overcome many performance problems in the pose 
estimation step. The fast implementation includes improvements in the refinement 
step. The complexity of the original ICP algorithm in the refinement step depends 
mainly on the number of points in the data set. With the proposed multi-resolution 
ICP, the computaţional complexity of the algorithm is reduced to a fraction of the 
process time compared to known ICP registration implementations. 

The scalabilitv of this system offers a great potential for the future. Starting 
with the coarse pose estimation, the required accuracy can be achieved by adjusting 
the step width in the position and orientation. Furthermore, the complexity of the 
object localization depends also on the chosen algorithm and the form and 
complexity of the object. The main problem of the algorithm is the high 
computaţional cost of using complex object models and sensors with high 
resolutions. Depending on the appiication and the available computaţional power 
used, the trade-off between process time and accuracy can be adjusted by the 
number of pre-calculated poses and pose candidates in the pose refinement. In the 
pose refinement, the use of Progressive Meshes leads to a better accuracy and 
robustness of the whole system. 

This thesis does not include robot control and robot collision avoidance 
issues, even if, in some cases, these topics belong to a bin picking system. Most 
industrial robots provide interfaces, programming languages or tools, like working 
space monitoring, to handie these problems in robot controlling. 
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8 Chapter 1 Introduction 
In some appiications there exist much better algorithms for object 

recognition and object locallzation than the proposed algorithm of this thesis. This is 
especially true for objects with non-complex and easy-to-detect features. One 
example is introduced in the pose estinnation (Section 3.6.2). In nnost appiications, 
the surfaces of the objects are opaque and do not contain significantly large portions 
of high frequency with respect to the sensors. The proposed pose estinnation 
algorithm wlll also succeed, but it will require additional process time. Nevertheless, 
the pose estimation can handie nearly every kind of object without further feature 
detection. The algorithm usually considers objects with three rotational and three 
translational degrees of freedom. But for featureless objects with arbitrary degrees 
of freedom (for example uniform cubes and cylinders), this algorithm cannot find 
the correct orientation in one or more degrees of freedom. Furthermore, the tests 
and results described in this thesis are based on rigid objects. This thesis also does 
not address issues related to deformable, non-rigid or generic objects. Nevertheless, 
the algorithm can be extended to non-rigid objects as shown in [8]. 

Despite the automatic adjustments for parameters in the algorithm, this 
system has a huge potential for optimization. Each new appiication will require 
another parameter setting, which then ailows optimization of the system in its 
entirety. 

1.5 Outiine 

The foilowing chapters are organized as foilows: 

A general overview of the solution is presented in Chapter 2. The basic 
working principie is explained and the steps of the hierarchical system are defined. 
An introduction to range images, the data acquisition and their appiications is given. 
Chapter 2 discusses several related approaches in the fieid of robotic bin picking and 
their relationship to one another. 

Based on the overs/iew, Chapter 3 then goes into the detailed description of 
the pose estimation process. Several methods are proposed for the sensor 
simulation in the pose estimation process. An example for a fast image-based pose 
estimation is given. 

Chapter 4 proposes the combination of Progressive Meshes and the Iterative 
Closest Points algorithm of the pose refinement step. The ICP algorithm is presented 
in detail, along with the improvements of ICP. This chapter presents the main 
contributions of this thesis. 

Chapter 5 gives a detailed description of the tests and results of each single 
step of the system. The core algorithm of the pose refinement step is compared to 
other state-of-the-art algorithms. The implementation details are proposed and 
experimental tests prove the potential for a robotic bin picking system. 

The last chapter concludes this work with a summary. The contributions and 
limitations of this work are discussed and future capabilities and improvements are 
proposed. 
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15 Chapter 2 Overview and State of the Art 

Chapter 2 Overview and State of the Art 

2.1 Solution Overview 

An overview of the solution is shown in the Figure 1. The object localization 
is separated into pose estimation and refmement. Because the refinement process 
has a high computaţional cost, a pose estimation is introduced in order to reduce 
the number of possible poses. This hierarchical object localization is related to 
hypotheses and verification approaches [2], or a two step coarse-to-fine algorithm 
[9]. 

Figure 1 Hierarchical object localization and recognition 
The oven/iew shows the separation of the pose estimation and pose refinennent. The acquired 

range data is compared to the result of the object pose simulation and the best pose 
candidates are refined afterwards. 

Looking at the pose estimation, the input data from the range sensors is 
compared to the simulated range data. Therefore, a simulated sensor transfer cad 
aided design (CAD) models to a simulated 2.5D range image representation, taking 
the properties of the simulated laser range sensor into consideration. The pose 
estimation delivers a virtual range image of the pose of an object representation by 
comparing the shape appearance of every single object in the simulated scene with 
the real scene. Because of this, the object localization includes the object 
recognition and is able to handie nearly all kinds of objects without any feature 
extraction. The result of the pose estimation is used to define the start positions for 
the pose refinement. These two data sets are aligned with the Progressive Mesh-
based Iterative Closest Points algorithm (PMICP) in the pose refinement step. The 
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10 Chapter 2 Overview and State of the Art 
determined transformatlon vector of each simulated object is transformed to the 
global coordinate system and transferred to an industrial robot to pick up the object. 
A short outiine of the proposed system is given in the foilowing sections. 

2,1.1 Overview of the Pose Estimation 

The purpose of the object pose estimation is to find adequate coarse 
positions of an object in 2.5D range data. This pre-selection is made to decrease the 
number of candidates for the refinement process. For this reason, the acquired data 
from the range sensor is compared to a simulated scene. One of the contributions of 
this thesis is the fact that features of real range sensors are taken into consideration 
to adapt the simulated range sensor to real range sensors. 

Figure 2 Sensor simulation 
The CAD model is put into a virtual scene with a defined pose. The sensor model acquires a 

virtual range image. The virtual range image is stored in a database. 

The components of the object pose estimation are shown in Figure 2. The 
object pose simulation creates a virtual range image (VRI) with the help of a 
simulated sensor and a virtual scene, therefore, placing a CAD object model in a 
virtual scene. In most industrial appiications, CAD-models of the objects aiready 
exist. If not, the object model can be created manually. In any case, the object has 
to be known as a CAD-model. A common format to store CAD-models relies on 
triangulated points. This triangulated mesh is stored in the often used and very 
common STL (Structured Triangle List) file format. A big advantage of a triangulated 
mesh representation is the simplified calculation in the sensor simulation. The CAD-
based object model is used to generate virtual range images with the help of the 
simulated range sensor. The sensor models adopt all properties of the real sensors. 
Most industrial range sensors deliver a contour so a linear movement is also 
necessary for the sensor simulation to get a full 2.5D range image. To compare the 
results from simulation to the real image acquisition process (Figure 3), the 
resolution of the data in the moving direction shouid be similar. 
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11 Chapter 2 Overview and State of the Art 

Figure 3 Sensor data acquisition 
This figure shows the process of data acquisition for a real range image. 

Therefore, the properties of the scanning process of the objects in the scene 
nnust be known. This includes the distance between the ground and the sensor and 
the direction of scanning. Moreover, all parameters and properties of the sensors 
must be known to fornn an adequate sensor model. In section 2.2.2, range sensors 
are introduced are introduced to highiight their characteristics and them to the 
sensor model. With its simulated geometric configuration, the sensor model 
determines the distance between the object and the laser source according to the 
measurement principie. If a CAD-model is put in the measurement range of this 
virtual sensor and the virtual sensor is moved over this model in parameterized 
steps, a virtual 2.5D range image is produced in this virtual scanning process. This 
virtual range image (VRI) contains one surface of the 3D-Model, and shows this 
surface of the model; the surface normals are orientated towards the sensor. For 
every possible position and orientation of the object model, a VRI is produced. The 
process of virtual scanning is very time consuming, therefore, it is necessary to 
generate all range images offline. This VRI is indexed with a known position and 
orientation of the model in the sensor measurement space and stored to a 
database, otherwise known as the VRI database. This contains scanned models in 
the form of range images for defined positions and orientations. Depending on the 
appiication, the positions and orientations, the system needs exorbitant space to 
store these range images. In most cases, the degrees-of-freedom are limited and 
oniy VRIs of defined step widths are stored in the database. In general, though, this 
process must be done for all required positions and orientations for every kind of 
object. A VRI is generated for every position of every object in the scene. These 
positions differ onIy by steps of a few millimeters, depending on the resolution of 
the real sensor and the size of the real object and the scene. For every position, 
there exist three possible rotation directions for the object. Due to the limit of 
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12 Chapter 2 Overview and State of the Art 
computer power and storage, the proposed simulation is limited to "coarse" or 
"rough" poses. The number of the coarse poses in the database mainly depends on 
the stipulated accuracy, the desired robustness, the sensor resolution and the 
resources of the systenn. The step of object recognition is integrated by comparing 
VRIs of different kinds of objects to the real scene in the same way. Every VRI is 
compared with the real scene with a defined error function returning an error value. 
If the error value is low, the VRI matches with the scene. Because of the fact that all 
VRIs are compared to the scene, each VRI receives an error value. All of these error 
values of VRI pose candidates must be lower than an error threshold, which 
depends on the complexity of the simulated object, the used sensor (with its sensor 
errors), outiiers and invalid points. The simulated object poses with the lowest error 
values are selected for pose refinement. 

2.1.2 Oven/iew of Pose Refinement 

In the previous section, the coarse pose estimation creates an error value 
for every pose. The best VRI candidates were chosen and used as inputs for the 
pose refinement to find the best matching candidate. A procedure for matching two 
range images (VRI and scene) to identify two sets of corresponding 3D points is 
presented by [10]; utilizing a quaternion-based non-linear optimization method for 
this purpose. If the corresponding 3D points are assigned to each other correctiy in 
the data sets, this method produces the correct transformation matrix, including 
translation and rotation. If no transformation is known a priori, the Iterative Closest 
Point (ICP) algorithm [6] provides a method to find the correct correspondence of 
the 3D points in the data sets. The Iterative ICP algorithm is a common registration 
method used to transform the view of an object to another view of the same object 
or another. Important works for the classical and most commonly used the Iterative 
Closest Point (ICP) algorithm are [11], [12]. Due to the slow convergence speed, 
ICP was improved by many researchers [13]. As the name aiready implies, ICP is an 
iterative algorithm which determines its parameters with the help of a mathematical 
minimization. The algorithm searches for each point in one data set, the closest 
point in the other data set, and uses the corresponding point pairs to compute the 
relative transformation between the scans. The algorithm minimizes the mean 
square error of the point distance in several iteration steps. This process is repeated 
iteratively until the relative position of the scans converges. To abort the iterations, 
a threshold or a maximum number of iterations is implemented. One iteration of ICP 
is separated into three steps. At first, every point of one data set is assigned to the 
Euclidean closest point in the other data set. The elements of the normalized 
eigenvector of the largest positive eigenvalue of the constructed matrix (including 
the cross-correlation matrix) correspond to the elements of the unit quaternion 
representing the best rotation. With the help of the chosen energy function, the 
result is a rigid transformation in the used coordinate system. An iteration step 
finishes by appiying the resulting transformation to one data set. The algorithm 
converts monotonousiy to a local minimum. Therefore, the knowledge of an 
approximate iniţial solution is important for the success of the method, which is 
done by the pose estimation. ICP is one of the most popular registration algorithms 
and real time implementations [13], [14] show the potential of the ICP algorithm. In 
this way the ICP algorithm is used for every VRI candidate. The resulting error value 
after appiying ICP is calculated. The best VRI candidate is selected and the object 
coordinates in the sensor coordinate system are used as the final result in the object 
localization step. This pose refinement is introduced in detail in Chapter 4. 
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2.2 Range images 

If you think about the history of plctures and photos, you wouid agree that 
pictures play an important role in our life. Especially when one considers motion 
pictures or videos, one is flooded with information almost daily. For human beings, 
it is easy to understand pictures — we easily separate and recognize objects in a 
scene, extract important information from it and create a context and a story for 
ourselves within milliseconds. Even with the incredible growth of computaţional 
capacity and power in the last years, computers are not able to understand images 
in every context. One of the main problems in the research fieid of image 
understanding — compared to the human data acquisition process — is the lack of 
three-dimensional (3D) data. We are able to estimate depth easily by using the 
information given by motion or the disparity between the two images seen by our 
eyes. The flexibility and capability of human beings in face detection is still a secret 
and challenging task in related fieids of research like artificial intelligence and 
computer vision. Human beings are able to recognize a person from a picture taken 
from a view from which they have never seen this person before. In the same way, 
we have no problem in recognizing and picking up an unknown object from a 
cluttered environment. Consequently, the interest in range images for high-end 
research projects and appiications has increased dramatically in the last decade. An 
image provided by a common camera depicts the intensity distribution of the scene 
without any 3D data. One way to capture 3D information is the ability to directiy 
acquire range images with laser range sensors. These sensors deliver a discrete 
representation of the surface in the scene, which offers a greater chance for 
computers to increase the level in image understanding. This thesis focuses on close 
range laser sensors, but range imaging also deals with data acquired from radar, 
sonar or stereo vision. Many other fieids of research deal with range images. This 
work compares three-dimensional data with 2.5D range images. 2.5D data is 
characterized by the fact that for every image point in the X-Y plane, oniy one 
distance value exists. Some authors use the term ''3D" for range data. In this work, 
the terms ''3D" and ''2.5D" are different due to the fact that the proposed sensor 
simulation converts 3D models to 2.5D data. 

2.2.1 Fieids of research of range images 

Systems that simultaneousiy acquire scene information, localize themselves 
in the scene and use this information to build maps have become popular in the last 
years under the keyword simultaneous localization and mapping (SLAM). This active 
fieid of research is driven by the mobile robotic community [15]. There exist many 
desirable aims for SLAM, up to appiications that need free navigation in unknown 
environments like the current Mars expeditions or DARPA Grand Challenge [16]. In 
many cases, range sensors are needed to acquire range images of the environment 
[17], [18], [19]. 

Range images of architectural elements and sculptures [20], [8], paintings 
and other archaeological objects provide data for archival documentation. This can 
be used for a variety of research, conservation, archaeological and architectural 
appiications, for fabricating accurate replicas as well as for interactive museum 
displays and Virtual 3D applications[21]. This can be extended to acquisition and 
modeling of archaeological artifacts and architectural historical buildings in the fieid 
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of photogrammetry. 

In the same way certain buildings in a town are acquired and recognized for 
projects like[22], the task of produclng detailed terrain maps [23] or 3D cIty models 
for City planning, visualization and landscaping has become important in recent 
years. Consequently, acquiring 3D representation of buildings (up to whole towns 
[24]) is an active fieid of range imaging [25]. Geographic information and 3D 
models of environments are interesting for military purposes as well as commercial 
maps [26], for navigation or other appiications like Google Earth [27]. 

Even forensic analysis [28], crime scene investigations [29] or traffic 
accident reconstructions [30] belong to the fieId of range image appiications. Many 
car manufacturers need detailed 3D information in car crash tests. For example, 
documentation of traffic accidents is getting more and more important in judiciar/ 
cases. 

In medicine, image processing systems have been more accepted in the last 
few years. These systems are often used for evaluation as well as digital images. 
The data are produced by Magnet Resonance Tomography (MRT), Computer 
Tomography (CT), Positron Emission Tomography (PET) or from classic radiographs, 
ultrasonograms and range images acquired by stereo vision or range sensors [31]. 
In telesurgery or endoscopic surgery, the determination of the body position and 
surgery tools are implemented using range measurement systems [32], [33]. 

This fieid is highiy related to many other appiications in virtual reality [34]. 
Extraction of Computer-aided Design Models (CAD-Models) from range images is 
often used in reverse engineering [35]. Industrial systems measure tolerances of 
manufactured parts [36], [37] or industrial robots find the positions and sizes of 
objects to guide them to target positions, e.g. for manipulation purposes. An almost 
classic appiication in the industry for laser range sensors is the measurement of the 
volumes and geometries of products of (endiess) production lines [38]. The 
geometry and volume of the sealing mass of car windows in the automobile industry 
is checked with the help of laser range sensors in 2D[39], directiy after being 
appiied by the corresponding device. 

2.2.2 Range data acquisition 

One important contribution to the proposed system is the fact that the 
proposed sensor simulation takes properties of commonly available laser range 
sensors in consideration. Therefore, it is necessary to introduce different types of 
range data measurement principles in this section. This section focuses on 
measurement principles of laser sensors available for industrial environments. The 
properties, measurement principles, the setup, operation modes of available laser 
range sensors are introduced in [40]. 

The evaluation of depth information from different sources is a very popular 
fieid of research in data processing [41]. Many fieids of business and science, such 
as the automobile industry, medicine and physics, are interested and involved in it. 
Depth information results from a number of different sources — they vary from a 
simple distance measuring system to complex 3D scanners for any size of objects. 
The non-contact approach is the most important aspect of visual range 
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measurement methods. This ailows for the measurements of substances which may 
be hot, chemically aggressive, sticky or sensitive, provided that sufficlent light is 
reflected back from the surface. There is no possibility of any damage or wastage to 
the object. In addition, they are relatively fast and economical. On the other hand, 
Visual non-contact methods are vulnerable against transparency and multiple 
reflections. Different methods exist for the visual data acquisition and even range 
data is obtained in many different ways. In general, the range data acquisition is 
separated into two categories — active and passive range imaging, respectively 
[42]. In the passive method, no special light is required except for the ambient light 
for illumination. The most common data sources for industrial appiications are still 
passive camera systems. Cameras provide a two-dimensional projection of a scene, 
so no depth information can be obtained without any further processing [43]. The 
most common passive range imaging technique is stereovision. Sensors using other 
techniques like structure from motion, focus/defocus, shading and photometric 
stereo [41] are either not commonly available for industrial appiications or not 
suitable for real time range acquisition. The basic concept of stereovision is 
triangulation: when knowing the baseline and the angle between the two cameras, 
the distance to the object can be determined with the displacement of objects in the 
two images. These systems are required to solve the so-called correspondence 
problem. The solutions of the correspondence problem try to determine which pairs 
of points in two images are projections of the same point in the real worid. Usually 
this is a very complex problem and the solution is computationally expensive[41]. 
Most common depth measurement systems use two or more cameras (i.e. multiview 
Vision) to acquire distance information. Unfortunately, many camera-based solutions 
for range data acquisition have problems with their robustness [41] and sensitivity 
to lightning conditions. More information can be found in [44], [4]. 

In active range imaging, a dedicated and well defined light source (e.g. laser 
light source) is used in cooperation with a visual capture device. In [40] non-contact 
industrial laser range sensors are introduced. At the moment, these active sensors 
are superior to other industrial measurement methods regarding their accuracy, 
costs and robustness compared to stereo camera systems [2]. The well known 
methods "time-of-flight" (TOF) and "triangulation" are part of the active methods. In 
the active triangulation scheme, the scene is illuminated by a laser source from one 
direction and viewed by a sensor from the other direction. TOF measures the time of 
a reflected laser puise to determine the distance to an object. The advantages of the 
active methods are the production of dense sampling points and the high robustness 
and precision compared to the passive methods. However, additional light sources 
must be added in the scene and the methodology does not correspond to human 
stereo vision. Figure 4 shows the variety of different measurement technologies. 
TOF and phase measurement methods are long range technologies (over 1 meter) 
and triangulation-based methods belong to close range methods. Most long range 
measurement sensors are used for surveying and mapping in architectural and 
cultural heritage, geodesic laser scanning, archaeological heritage conservation, and 
the 3D Scanning of buildings. 
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Industrial 3D 
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Figure 4 Industrial 3D Range sensors 
Industrial range sensors are separated into two measurennent principles. The triangulation can 

be realized as passive stereo vision and laser triangulation methods. Time of flight methods 
send out a pulsed or nnodulated signal to measure distance infornnation. 

Active close range 3D sensors are often used in quallty management, 
reverse engineering, visualization and 3D modeling, and have become one of the 
major aspects of computer vision and robotics. This work focuses malnly on laser 
range sensors, which deliver two-dimensional contour distance data. Depending on 
an industrial appiication of the sensors, different measurement ranges have to be 
selected. Therefore, a direct comparison of the properties is hardiy possible. The 
choice of the measurement range, rather, plays a subordinate role for the data 
representation in this thesis. Distance sensors provide simple distance values. But 
besides distance values, the intensity values are provide by many sensors and couid 
possibly help to identify the properties of the surface [45]. The Intensity values of 
the points are often used for the filtration of the point clouds and for the detection 
of sensor errors [46]. To increase the accuracy of the scans, the measurement rates 
often have to be decreased and, if possible, the distance between the object and 
sensor has to be reduced. A short overview of possible data acquisition devices 
available in the market is presented in [40]. The next sections briefly describe the 
different principles of depth measurement and laser range sensors that are aiready 
available in the market for industrial environments. 

2.2.2.1 Active time-of-flight laser range sensor 

Time-of-flight (TOF) laser distance sensors measure the distance between 
the object and the light source along a light beam. Time-of-flight (TOF) systems 
send out a light beam towards an object. The light is diffusely reflected by the 
surface and a part of the light returns to the receiver. The time that light needs to 
travel from the laser diode to the object surface and back is measured. When the 
light puise is emitted a high accuracy stopwatch is started. The light puise travels to 
the target and back to the receiver. When the light puise arrives, the stopwatch is 
stopped and the time of the flight is calculated. With the known speed of light the 
distance to the object is determined. 
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n 
n m 

Figure 5 Pulsed TOF measurement principie 
The transmitted signal is reflected by the object. The delay between transmitted and the 

reflected signal results in the distance. 

Figure 5 shows the TOF configuration. In practice, the active light source 
and the receiver are located very closely to each other. Illumination and observation 
directions are approximately collinear, so this avoids shadowing effects. 

The existing methods relying on the principie of TOF can be separated in the 
foilowing categories [47]: 

• Pulsed time-of flight 

• Annplitude Modulated Continuous Wave 

• Frequency Modulated Continuous Wave 

In the case of pulsed TOF, the travel time is directiy proporţional to the 
distance traveled, taking into account the velocity of light in the involved medium. 
This velocity may be easily derived from the velocity of light in a vacuum. This 
distance measurement is possible since the speed of light is known very precisely: c 
= 2.99792458 * 10® m/s. 

The total time needed by the signal to travel from the source to the scene 
and back is calculated using the foilowing equation: 

d = 
cAt 
2n 

2.1 

It appiies here: c is the velocity of light and At is the time taken by the 
signal to travel from the source to the object and back. The involved medium is 
integrated as the refraction index n. The equation contains a factor of Vi because of 
the way to the object and back. Theoretically, the accuracy of the depth measuring 
is independent of the distance of the object to the camera and oniy depends on the 
precision of measuring the travel time. But precision in the millimeter and sub-
millimeter range requires puise lengths of a few picoseconds and the associated 
electronics. Mainly, the puise rate influences the maximum range for TOF sensors. 
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To send out a new puise, the receiving unit has to wait for the last echo arriving 
from the object. Some long range sensors use the pulsed TOF method to measure 
distance up to a few kilometers for cartographic mapping [48]. At ranges of a few 
kilometers and above, a different problem arises: at such distances the amount of 
reflected photons that reach the detector Is very small. The sensitivity of the 
receiving unit and the power of the emitted light puise are limited in all real range 
sensors. This leads to a limitation of the range of the sensors. 

A variation of the time-of-flight distance measuring is the measuring of the 
phase shift. This method effectively measures the difference between emitted and 
received signals. A continuous wave (CW) laser emits light continuousiy and, 
therefore, is called a CW-laser. 

Transmitter 

Receiver fWV 
Figure 6 Phase shift TOF measurement principie 

According to the difference in the phase between the transmitted and received signal the 
distance to the object can be determined. 

The distance information is extracted from the received signal by comparing 
its modulation phase to that of the emitted signal. 

With 

2.2 

the distance can be calculated in consideration of equation 2.1: 

d = -S^T - ^ 'Bl — 4nn 411/1 2.3 

The range of phase measurement TOF sensors depends on the wavelength 
of the modulated signal so the resolution of these sensors can be improved if signals 
with short wavelength are used, That said, this leads to a reduced maximum range 
of phase shift measurement. The maximum unambiguous detectable phase delay is 
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a full cycle of the modulation period. For phase shifts over 360°, however, an 
unequivocal determination of the distance is not trivial, which means that the 
maximum useful measurable distance is half of the distance traveled by light during 
one period. This continuous wave can be modulated in the amplitude or the 
frequency. An amplitude modulated continuous wave (AMCW) is often a sinusoid 
wave and this wave is modulated in amplitude by varying the power. Frequency 
modulated continuous wave (FMCW) distance measurement is achieved by 
measuring the phase of the modulation of the transmitted light. 

The reflected wave must arrive with adequate quality to calculate the right 
distance. Sometimes this problem leads to non-valid measurements in realized 
industrial sensors. Phase shift measurement has a higher precision than that of 
convenţional TOF measuring. In practice, a combination of these two procedures is 
often used. This method is typically used for measurement distances of a few tens 
of meters. The TOF principie implies a distance measurement in one dimension 
along a laser beam. To acquire a full surface most industrial laser range sensors 
"scan" the surface by a defined displacement of the laser beam. Most of the 
available TOF laser sensors provide a two-dimensional contour scan. Therefore, the 
beam is moved incrementally with a parameterized angle step width and that results 
in a radial distance contour. For each angle, a distance value is measured. If the 
scanning sensor itself is moved perpendicular to the laser beam fan, a full surface 
can be acquired. Other sensors consist of many laser emitting and receiving units in 
one sensor system [49], [50] in order to acquire a full range image. TOF sensors 
provide big advantages regarding the accuracy and resolution of measurement 
ranges up to lOOm. One of the major advantages of TOF is that it is free from the 
corresponding problems of passive triangulation and the range ambiguities of the 
passive triangulation. They are, however, less accurate, especially for close range 
measurements. The accuracy is between a few millimeters and two or three 
centimeters, depending on time measurement and on the distance between the 
object and the scanner (object distance). The basic problem of the TOF system is 
the realization of a high accuracy time measurement at the current state of 
realization. 

2.2.2.2 Triangulation-based sensors 

The principie of triangulation is based on simple geometrical constraints. An 
active triangulation system consists of a light source and a receiving unit. In the 
case of laser triangulation a laser diode emits a laser beam with a defined angle 
toward the object. The surface of this object reflects this beam to the receiver. The 
distance from the sensor to the object is geometrically determined from the 
recorded angle and base length. The base length between the laser source and the 
receiving unit is known from calibration. Depending on the resulting dimension, the 
active triangulation methods can be separated as foilows: 

• Single Spot Triangulation 

• Sheet of Light Triangulation 

• Coded Light Triangulation 
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There are triangulation-based sensors existing that deliver one-dimensional 

(ID), two-dimensional (2D) and range image (2.5D) data. 

Single Spot Laser Triangulation is based on simple trigonometric equations. 
A laser spot is projected onto the object. The scene is recorded with a CCD array. If 
the distance changes to the laser, the position of the reflection in the CCD array also 
changes. Due to geometric relations, the changed distance can be calculated the 
other way round. 

Figure 7 Triangulation principie 
The distance x to object is calculated with the help of geometrical constraints and the known 

distance between camera and llght source. 

Figure 7 shows the tangent law: 

2.4 

After appiying the addition theorem of tangent and dissolvinq the equation 
to X this leads to 

^ _ ̂  taii(a) tan(yg) 
l-tan(a)tan(>?) 2.5 

with tan(a') = -^ and tan(̂ ) = ** ̂ ^̂  (see Figure 7). 
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The equation can be written as: 

jr = D 

, ^ 

^ / 

D / 

2.6 

Figure 7 shows the configuratlon for a reflected laser spot and a CCD-array, 
which can be used for determining a one-dimensional distance value. The accuracy 
(usually ~1:1000) depends on the distance between the laser and receiving unit and 
the object distance. Active triangulation is usually used in measuring a range of 0.1-
5m [40]. For larger distances, the distance between the laser and receiving unit 
must be increased. This leads to a vulnerability of occiusions. Measurement times of 
less than lOms are common, ailowing real-time study of moving or vibrating 
objects. The angle range is important too — smaller angles lead to bad sampling 
and large angles lead to occiusions, so the angle of emitted beams ranges usually 
between 15®-30®. To get the range image data (2.5D) of an object, a single beam is 
scanned over the scene. Therefore, oniy one range value is acquired for each 
position of the arrangement. To acquire an image of size mxn, just as much 
integrations and measurements are necessary. Single spot triangulation is a 
triangulation technique, but the use of onIy one sensing element often reduces the 
speed for 3D scanning. Active triangulation can also be extended to a laser line and 
CCD-matrix, resulting in a two-dimensional distance array. 

Figure 8 2D Triangulation principie 
The 2D extenslon is characterized by the fact of the camera and the sheet of llght which is 

sent out to the scene. 
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Figure 8 shows a thangulatlon system to acquire a fully two-dimensional 

profile. A camera captures the projected line. With the help of the geometric 
configuration the distance can be acquired. For each column X, in the camera 
matrix, the geometrical considerations (Equation 2.6) of single spot triangulation are 
appiied. The reflection of a stripe of light, which is generated, for example, by 
passing a laser beam through a lens, is analyzed by a CCD matrix camera. For a full 
2.5D image, many measurements are needed, while the system is moved relative to 
the object. This system needs no internai moving parts like scanning TOF sensors. 

A further method of triangulation sensors belongs to structured or coded 
light techniques. A coded pattern — such as a gray coded or phase-coded pattern — 
is used to illuminate the scene for acquisition. In some industrial appiications, 
structured light approaches are realized [51]. For the acquisition of 3D scenes, no 
scanning or moving profile sensors are required, so this method is usually faster 
than other 3D scanning techniques. 

Figure 9 Structured light data [52] 
By changing the light pattern m time the scene can be fully reconstructed by many camera 

images. The position of the camera and the light source is known before. 

An example of structured light acquisition is shown in Figure 9. With the 
help of the curvature of the projected lines, 2.5D Information is calculated. One of 
the most Important disadvantages of structured light approaches is the sensitivity to 
ambient light and the limitation of the measurement range. A detailed description of 
structured light can be found in [53]. With the help of stereo cameras or the 
solution of structured light sensors, distance values can be determined [44]. In the 
last few years, the accuracy of structured light range data acquisition has increased 
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up to iMm [52]. More and more companies offer some promising solutions. 
Unfortunately, this measurement technique still suffers from ambient light 
influences, complex calibration and the lack of a ready-to-use solution for industrial 
environments. Therefore, the focus is on laser triangulation range sensors. 

Several 2D triangulation-based laser range sensors are available for 
industrial appiications which are reviewed in[40]. Most of these are close range 
sensors with a laser stripe source and a camera inside a fixed frame without the 
need of calibration. Furthermore, a special high speed camera can be used In 
combination with a laser source. The optimal setup for the desired appiication must 
be found and calibrated to create such a 3D laser system. 

2.2.2.3 Geometrical triangulation setup 

The principie of the triangulation Is extended in common laser range 
measurements using a high-resolution CCD/CMOS camera and a line projecting 
laser. With this extension, a complete height profile of an object can be determined 
with the help of a camera from the displacement of a laser line. The height 
Information of the object can be calculated from this laser displacement. To get the 
correct distance values of such a camera system, the exact geometric construction, 
the environment and parameters shouid be known. This chapter Introduces the 
commonly used camera/laser source setups and thelr influence to measurement 
accuracy and calibration. In general, the closer the camera Is to the object, the 
more precise are the measurement accuracy and the resolution, respectively. With a 
closer distance to the object, a high-quality sultable camera lens Is needed. This is 
important for small field-of-views for achieving a good vislon measurement with 
Sharp images and low distortion. Considering the geometric setup of the camera and 
the laser, the camera and the laser shouid be mounted so that the laser illuminates 
the object from one direction, and the camera views the object from another 
direction. In additlon, if the camera looks at the object in a small angle (see Figure 
10), the measurement pixei range Is too small. This leads to a lesser height 
resolution in general. The larger the angle of the camera, the larger Is the measured 
range in pixels. Smaller angles lead to bad sampling, and large angles lead to 
occiusions. In most cases, the angle ranges from 15® to 65°, referring to Figure 12 
(reversed ordinary setup). 
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I 

Figure 10 Angle of Triangulation setup (Reversed Ordinary) 
The setup can be changed by changing the angle between the camera and the light source in a 

2D triangulation. 

The geometric setup between the laser and camera Is probably the most 
important influence factor on the measuring precislon and height resolution of the 
camera system. Mounting the camera and the laser in the right way depends on 
different requirements and environmental characteristics. At first, the object Itself 
Influences the setup by Its surface features. The types of objects range from 
transparent, glossy or matt in every color and wlth different shapes. Additionally, 
the type of measurement plays an important role because common distance 
measurements can be combined wlth gray-scale and scatter measurements. Each 
measurement requires defined resolutions and reglon of interests. Accordlng to 
[54], in order to counter these different types of requirements, there are at least 
four main principles for mounting the camera and the laser. 
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Figure 11 Ordinary setup 
The camera is placed on top of the object and the light source emits the laser line in a defined 

angle rotated around the orthogonal axis of the transportation direction. 

The ordinary setup shown in Figure 11 achieves the nnaximunn height 
resolution. In this setup the cannera is placed over the object, perpendicular to the 
direction of nnovement, and the laser projects a laser line from the side. This 
geometry gives the highest resolution but suffers from nniss-register, i.e. the laser 
line in the camera image moves to a different Y coordinate if the distance value 
changes. This requires a higher computaţional complexity to reconstruct the 
distance measurement information. 

I 

Figure 12 Reversed Ordinary setup 
The laser sends out the laser beam orthogonal to the transportation plane. 

In the reversed ordinary setup (Figure 12) the laser is mounted over the 
object. The camera is located in the same direction, but is moved with a certain 
angle while looking at the projected laser line. This measuring setup has a good 
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height resolution and does not suffer from miss-register, so this setup is the most 
common one used. This setup is similar to the ordinary setup, but the placement of 
the laser and the Ranger has been switched. 

FIgure 13 Specular setup 
The laser beam and the camera have full reflection. 

The camera and the laser are mounted opposite to each other. Through the 
high intensity of light emitted by the laser, the specular setup (Figure 13) is useful 
for dark or matt object surfaces. As a disadvantage, occiusion areas arise in front of 
and behind the object. The setup offers a lesser height resolution and is often used 
for surface analysis applications. 

Figure 14 Look away setup 
The camera and laser are looking from the same side. 

As with specular, the look away setup is not suitable for range measurement 
apphcations. The camera and the lighting are mounted on the same side (Rgure 
14). A strong light source is needed and ocdusions also occur with this setup but 
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this setup avoids reflections and can be used for surface analysis and inspections. 

The most important factor Is the geometric setup, i.e. the distance between 
the laser and receiving unit and the object distance for the measurement accuracy. 
For large distances to the object, the distance between the laser and receiving unit 
must be increased. In turn, this leads to a vulnerability of occiusions. Therefore, 
triangulation-based sensors are commonly used in close range environments of up 
to l-2m. 

2.2.2.4 Extrinsic calibration for triangulation-based laser range sensors 

The task of the extrinsic calibration process is to find the transformation 
between these two coordinate systems, and is described in this section. The 
required intrinsic camera calibration is supposed to be known before [55]. To obtain 
calibrated measurements (e.g. coordinates and heights in millimeters), the 
calibration algorithm has to transform the point Information from the sensor 
coordinate system (row, column, profile number) to worid coordinates (X,Y,Z)[56]. 
This transformation depends on a few factors, for example, the distance between 
the camera and the object, the angle between the camera and the laser, and the 
properties of the lens. The distance and the angle are variable to ensure flexibility 
for many appiication cases. The calibration is done exemplarily for a reverse 
ordinar/ setup (see Figure 12) and the position of the camera is not fixed for the 
measurements. The angle of the camera is measured from the normal transport 
direction to the axis through the center of the lens. The previous sections show how 
the height profile Information of the laser line can be acquired from the camera. 
These values do not contain the actual height of the object but the height of the 
laser line as a number of pixels. The points along the laser line are given as X 
coordinate according to Figure 10. The X axis must have the same direction for the 
sensor image coordinate systems and the worId coordinate system. The location of 
the point in Z (distance to the camera) must be calculated by the brightest pixei in 
one column of the picture. The location of a point along the transport direction (Y 
coordinate) is represented by the sequence number of the measurements. 

The calibration process connects the height profile acquired from the camera 
with the real size of a reference object. The used reference object is shown in Figure 
18 laying on a conveyor belt. One measurement results in a profile. This original 
profile is an idealized rectangle (left in Figure 15) of the rectangular reference 
object. Depending on the geometric setup, the resulting measurement consists of a 
deformed profile. 
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Original profile Deformed profile 
wîthout calibration 

Restored profile 
with calibration 

Figure 15 Reference object profiles 
The deformed profile (in the middie) Is restored (right) to the same shape of the original 

profile (left). 

The calibration corrects the distortion between the heights and width of the 
measured profile to the object in its real height and width. The calibration algorithm 
consists of different steps and has to be done oniy once for the setup. If the camera 
has to be nnoved for any reason, the calibration measurements must be made again. 
If an unknown object is scanned with the calibrated setup, the measurement results 
are multiplied with the scaling factors and the object is represented correctiy. 

To correct the distortion, two scaling factors are calculated. The calibration 
process [57] consists of the foilowing steps: 

• The reference object is put in the camera's fieid of view and the image is 

acquired 

• The profile of the laser line is extracted 

• The scaling factors are calculated 
The calibration method bases itself on a rectangular calibrating object with 

known height and width. 
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Outiiers Object 

1 . 

Conveyor belt 

Figure 16 Outiiers in reference object profile 
Outiiers occur from occiusions as well as non reflection on the object surface. 

After the image is acquired, the height profile is extracted. Therefore, the 
maximal brightness value for each column in the image is selected. The profile is the 
array of the X position with the maximum gray-scale level in every column. A signal 
filter must be appiied to this signal to be able to determine the object size robustly. 
The original measurement signal also contains some outiiers. These outiiers lead to 
wrong edge detections because of their high gradients, and occur in the recognition 
process of the laser line. In some cases, the algorithm cannot determine the right 
value in the column because the laser line is hidden from the camera view, so a 
completely incorrect height value will be determined because of other reflections. If 
the minimum brightness threshold of the laser line is not reached, the X value in 
this Y column is set to the maximum value, which is shown in Figure 16. The 
derivation values of these outiiers are possibly higher than the derivation values of 
the edges. For this reason, a measurement filter that filters the outiiers from the 
signal is necessary. A median filter is a very good non-linear digital filter for 
extreme outiiers and is often used in signal and image processing. A window is used 
to select n values from the signal. The values in the window are sorted into 
numerical order. The number of window values is always odd, so the center value 
(median value) of the window is selected as the resulting output value. If the edge 
of the rectangular signal is not smoothed, the median is an edge-preserving filter. 
Another advantage of the median filter over averaging filters lies in its non-linearity. 
The height of the outiier does not have any influence on the result value. A ten-
times greater value of the outiier provides the same result as one with a thousand-
times greater value. A standard median filter is implemented in the calibration with 
a window size of 17 values. With this window size, an outiier width of up to eight 
pixels can appear without any consequences for the measuring. This leads to a 
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smoothed measurement signal of the reference rectangle, as shown in Figure 15. 

To be able to determine the object width, the edges of the rectangle must 
be detected and then their distance must be calculated in the first step. The signal is 
treated as a mathematical function. The high height difference at the edge of the 
rectangle can be determined with a derivation. The gradients at the edges are very 
high, so the edge can be determined by the derivation of the signal and by appiying 
a threshold for the minimum and maximum gradients. 

a) Width calibration 
PixeI difference X 

A 
f 

Derivation 

b) Height calibration 

Average height 
PixeI 
difference Y 

Figure 17 Edge detection in height profiles 
The calibration object provides the pixeI difference in a) height and b) width. 

After the edges of the measurement signal are known, the object height is 
determined. The calibration algorithm averages the signal between the two detected 
object edges. To avoid possible rounded corners or signal delays, the algorithm 
rejects a fixed number of pixels at the boundaries of the mean average value 
section between the edges. The result is the absolute height of the laser line 
between the two object boundaries. For the determination of the object height, the 
lower object boundary still must be detected. The reference object is removed from 
the view of the camera so that the laser beam is projected on the bottom of the 
conveyor belt. The height value of the same measurement section is determined in 
the same way and the height of the bottom of the conveyor belt is measured. After 
thiS; the calibration factors can be determined as foilows: 
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^ _ objecl\vidth{inmm) 

Colcih jinf^il^erof pixels{X) 

^ objectheightiinmm) 

Cahih fjnfjilyf^rof pixels{Y) 

The calibration factor defines the width and height of a pixei to the 
corresponding millimeter units. By multiplication with the calibration factors, the 
camera distortion disappears and the object profile can be reprocessed true to scale 
and independently of the camera position. 

2.2.2.5 Range data acquisition with triangulation-based range sensors 

A laser range sensor acquires range data by using triangulation, which 
means that the object is illuminated with a laser line from one direction. The object 
is captured by the camera from another direction. The result of one measurement is 
a height profile, containing one value for each measured point along an object 
surface. Each time the camera makes a measurement, one profile of the object is 
recorded and stored. If the object is moved from measurement to measurement, 
the entire object can be scanned. In most of the appiications, the object is placed on 
a conveyor belt and is moved in a linear way. The height profiles of the object are 
recorded piecewise (Figure 18). After that, the profiles are merged together into a 
complete 3D model. This process is shown in Figure 18, with a reversed ordinary 
setup. 
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a) Profile scanning 
Ui 

\ 
b) Profile collection 

c) 2.5D range image 

Figure 18 Object scanning 
a) the measurement setup for profile scanning. b) Collecting the profiles along the 

transportation axis (Y) leads to a full 2.5D range image (see c). 

The result is a collection of profiles, where each profile contains one profile 
at a certain location along the transportation direction. The term ''scan" here is a 
synonym for a collection of profiles acquired by the camera. The camera sends the 
profiles to a computer, which then stores the profiles and processes the profile data 
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for the appiication. 

Here, the left-handed coordinate system Is placed in such a way that Y is 
the transportation direction (Figure 18). The speed of transportation is connected to 
the acquisition speed of the camera. Therefore, the accuracy in Y depends nnainly on 
the camera shutter speed and the speed of transportation. The camera shutter 
speed is often controlled by the exposure time parameter, which can be adjusted, 
for example, in the parameter file of the camera. The higher the exposure time, the 
higher the total amount of light falling on the image sensor is. If the scanning 
process is as slow as possible, the minimum of the resolution is limited by the laser 
line width, so most appiications achieve a Y-resolution of about O.lmm. The 
resolution in X is mainly defined by the camera characteristics; namely, the chip 
resolution and optics such as the distance resolution. 

The distance resolution in Z depends on the angle between the laser and the 
camera. If the angle is very small, the location of the laser line does not change 
very much in the sensor images, even if the object varies a lot in height. 
Nevertheless, if the angle is large, a small variation in height wouid be enough to 
move the laser line in the camera image (Figure 10). That said, a large angle leads 
to occiusions, which occur when there is no laser line for the camera to detect in the 
sensor image. This happens in two different ways: the first type of occiusion is the 
''camera occiusion". This happens when the laser is hidden by the object. A ''laser 
occiusion" occurs when the laser cannot properly illuminate parts of the object. 
Adjusting the angles of the Ranger and the laser can reduce the effect of occiusions. 

To make the best measurement, the laser line and the camera lens shouid 
be optimally adjusted. In addition to the geometric order of the measurement 
system, the characteristics of the camera play an important role in the analysis of 
the measuring precision for the X and Z coordinates. Therefore, in many industrial 
appiications special high speed cameras (like RANGER E55 from Sick AG, 
www.sick.de^ are used [58]. 

2.3 State of the art in robotic bin picking 

Object localization is often used in industrial fieids such as depalletizing or 
robotic bin picklng[59]. The process of bin picking is commonly separated into 
different steps, which are shown in Figure 19. First, a visual capture device takes a 
picture of the scene. In many cases, cameras are used for image acquisition, but 
more and more range sensors are available in the market to provide three-
dimensional data with a high resolution. Second, the most important component of 
the bin picking problem is the algorithm to recognize and localize the objects in a 
scene. The object localization results in the position of an object. 
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Object localization 

Pick up the object 

Transport to target position 

Figure 19 Parts of bin picking 
The process of bin picking is started with data acquisition. If the object is localized the robot 

pick up the object and transport it to the target position. 

In order to pick up the object with the gripper, the robot has to know the 
exact position and orientation (spaţial pose) of the object. The spaţial poses of the 
objects in a scene are transformed into the robot's coordinate system and are 
transferred to the robot controller. Additionally, an adequate grasp point must be 
defmed. After that, the system has to detect collisions with the surrounding 
environment and find a way to guide the robot to the target position where the 
object is to be placed. After this step, the robot picks up the object and transfers the 
object to the target position. AII these steps are repeated iteratively for each object 
in a scene. 

The bin picking problem has different levels of requirements and solutions at 
the current state of the art. The main problem is the performance of the included 
object recognition and localization. In spiţe of the availability of features, the search 
of an object in a scene with all six degrees of freedom couid be separated into the 
foilowing levels: 

Find representations of known, rigid objects 

Find representations of known, rigid objects with (seif-) occiusions 

Find representations of known, non-rigid objects 

Find representations of known, non-rigid objects with (seif-) occiusions 

Find representations of unknown, rigid objects 

Find representations of unknown, rigid objects with (seif-) occiusions 

Find representations of unknown, non-rigid objects 

Find representations of unknown, non-rigid objects with (seif-) occiusions 

Most of the known solutions of object recognition and localization deal with a 
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priori known objects. Many of the known solutions are limited to simply shaped 
objects or objects with specific features. The most developed and well known 
situation is defined by the first level: finding known rigid objects in a scene is a 
solvable task, even if these objects are partially occiuded. Major problems occur 
when the objects in the scene are non-rigid or deformable [8]. In addition, if these 
objects are unknown to the object recognition and localization algorithms, the 
abstraction level and power of such an algorithm are sinnilar to a human brain. The 
level of the proposed solution in this thesis deals with explicitly known rigid objects, 
but can also extended to limited, non-rigid objects. AII problems with unknown 
objects are reduced to the problem of object separation. Due to this, the 
combination of separation, recognition and localization of an unknown deformable 
object in a cluttered box, is the most desirable, supreme discipline in the case of 
robotic bin picking. 

''Bin picking" is a term often used in the research activities of robotics. 
Unfortunately, oniy a few approaches cover the whole bin picking process [60], [2], 
[3], [4], [44], [61], [62], [51]. To classify previous work concerning the bin picking 
problem, these parts are used to separate known solutions. The foilowing list 
classifies the solutions for comparing different solutions in related work. 

• Data acquisition 

• Reference representation 

Kind of correspondences 

• Matching algorithm 

Other classifications depend on the focus of the author and their topic. 
Campbell and Flynn [9] add surveying methods of object recognition to their 
classification results of complexity and recognition rates. Matabosch et al. [63] 
compare registration methods by the kind of correspondences, matching algorithms 
and registration strategies. 

The type of data acquisition is a very important component of this work. The 
input data influences the object representation as well as the foilowing steps in the 
process. 

The first step in robotic bin picking is data acquisition. The first decision a 
researcher has to make is to select the form of input data from the scene. Gray 
value images with two-dimensional (2D) data are made with cameras. This 2D data 
acquisition is often used in industrial environments [44], [64]. In different range 
image appiications many further methods belong to 2D Template Matching [18], 
[65], [66]. This work is based on range data (2.5D) data is created with the help of 
range sensors. Data structures for 3D surfaces arise from moving 2D sensors[67] 
but also from 3D distance sensors. Most appiications use line sensors [68], which 
are moved on externai axes. 2.5D data is characterized by a 2D-array of distance 
values, i.e. every pixei represents a value for the distance between the sensor and 
the object. This kind of data acquisition is getting more attractive in industrial 
appiication because of the growing number of range sensors in the market. Rangê  
sensors shouid not be mixed with real sensors delivering real three-dimensional 
(3D) data as they are very sparse and also very expensive. Therefore, onIy a very 

BUPT



36 Chapter 2 Overview and State of the Art 
small number of appiications can take advantage of them [69]. 

In many object recognition and localization systems the acquired image is 
connpared to a nnodel. The reference or nnodel representation can be stored in the 
system in different ways, ranging from low level features in 2D in̂ iages to high level 
3D CAD-models. In the approach by [70], 3D-Models are projected in the image 
plane and compared to the image of the scene in order to estimate a possible pose. 
The proposed pose estimation extends this approach to range images. Industrial 
laser range sensors are modeled to transfer a Computer-aided Design (CAD) model 
to a 2.5D range data representation. This virtual range data is compared to the real 
range data of the scene. Therefore, efficient data structure[39], [71] and object 
representations are needed. To keep the representation as simple as possible, point-
based object representations store a collection of points. Wheeler [12] uses this kind 
of model because of its efficlency and universality. 

Objects can be described by a list of features characterizing their shape, 
orientation or appearance Local features like vertices, edges and more complex 
features are grouped in Local Feature Sets. Many approaches try to find the 
matching feature vector [72],[73], and if this feature vector is found, objects in the 
scene can be Identified and their pose estimated with alignment [74]. This 
representation can be used if the objects have view-independent features, but fails 
with convex featureless objects. 

The first category is known as modehbased object representations, One 
group of the high level geometric model-based object representations is known as 
generalized cylinders, introduced by Binford [75]. Furthermore, parameter-based 
representations like geons and superquadrics [76] belong to this group. 
Parameterized surface-based representations are characterized by a function 
defined with parameters describing their surface and their pose. Well known 
examples are polygon meshes and NURBS [77]. 

The second category of object representations is called appearance-based, 
Appearance-based object representations consist of a set of global object attributes 
or features [2], and benefit from their computaţional efficiency. However, the 
advantage of model-based object representations is their robustness against noise. 
In addition, they can be generally used. 

View-based models are often used in 2D object recognition and localization 
systems, A collection of images is acquired from different views of the 3D object and 
stored in an image set, and a full three-dimensional object representation is rebuiit 
with these images. Approaches using view-based models are often combined with 
view-based feature extraction [78], or use global features [79]. The disadvantages 
of view-based models are sensitivity to illumination changes and variations in 
cameras [12]. Approaches can be classified by the type of correspondences that are 
compared to each other. This is a typical classification in model-based object 
recognition [72], [12]. 
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Possible classes are: 

2D image to 2D model comparison[80] 

3D image to 2D model comparison [12], [70] 

• 2D image to 3D model comparison [81] 

3D image to 3D model comparison [12] 

Within each class, there exist many possibilities for comparison. In the class 
of 3D to 3D, on the one hand, it is possible to extract high level features and 
estimate high level descriptions like parameter-based superquadrics from 3D images 
in order to compare their parameter with the parameter from the 3D-model. This is 
known as a bottom-up approach. On the other hand, the 3D model can be degraded 
to extract low level features like edges or corners, which are compared to the 3D 
image. This is a so-called top-down approach. 

A huge number of approaches are made to estimate a 3D object's position 
by extracting points [74], lines[82], vertices and other features from 2D-Images 
[83]. 

Dickinson [80] describes techniques in 2D character recognition and 
transfers the results to 3D object recognition. A good overview is also given by 
Zitova [84] for 2D image registration. 

Mataboscha et al. [63] provide a survey of the range image registration 
process. They separate coarse pose estimation and pose refinement. The well 
known Iterative Closest Point [6] is introduced in Chapter 4. 

The most criticai and time consuming part in the bin picking process is 
object localization. Many surveys for object recognition and localization can be found 
from the last few decades [85], [80], [1], [83], [86], [87]. Campbell and Flynn [9] 
show free-form object representations and recognition techniques developed in the 
1990S . 

Many approaches exist to solve this for a small group of objects. Even this 
object localization is very important to the robotic bin picking problem but, 
unfortunately, oniy a few approaches cover the whole process. A few solutions aim 
at solving the bin picking problem for a group of objects [88], [44],[89], [2], [4], 
[90], [3], [91], [92], [93], [62], [61]. A selection of solutions for the whole bin 
picking process is introduced in the foilowing paragraphs. 

OnIy a small number of papers include the whole process for bin picking. 
Brady et al. [87] give an overview of solutions concentrating on object localization 
from the early 1980s to 1988. Kak and Edwards [1] surveyed the state of art of bin 
picking in 1997. They focused on feature-based methods and optimal tree search 
algorithms. 

One of the early papers related to the bin picking problem was published bV 
Ikeuchi et al. [4] in 1983. Surface orientation histograms are matched to histograms 
of simulated orientations of CAD-models (represented as unit sphere projections by 
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Extended Gaussian Image (EGI)). These surface orientations are calculated from 
multiple views of a convex object. An experimental setup evaluated the resuits with 
a process time of one minute for a few torus-shaped objects. 

Bolles and Horaud [94] introduce the grouping of features. They extracted 
features from range images and object models. These features are partitioned in 
subsets of features with ''intrinsic properties". To find the pose of an object in the 
scene, the features are compared with the help of an ordered tree and a ''grow a 
match" strategy to decrease the processing time. This algorithm is evaluated in an 
industrial appiication called 3DP0, using local edge-based features. This paper 
discusses the bin picking process and offers an overview of related work in this 
decade. 

Rahardja and Kosaka [44] extract features of complex industrial objects 
from Intensity images. These features are separated into so-called seed features 
and supporting features. At first, regions are extracted and verified with a priori 
knowledge (2D appearance of the objects) to get seed features. The depth of the 
objects in the bin is determined with stereo vision. An iterative process searches the 
space of the corresponding seed features to find the position of the grasp point. 
Rahardja and Kosaka give an orientation error of less than 7mm and a rotational 
error of 10° within a processing time of 1.5 minutes on a SUN sparc 1000 server. 

Hashimoto and Sumi [3] propose an object recognition system that uses 
range images and intensity images. The process is separated Into two parts. First, 
information from the range image is used to estimate the rough position of the 
object. A template of the object shape is matched with the representation of the 
object in the binarized range image. An intensity image verifies the resuits of the 
estimation and refines the position to get an accurate pose with contour matching. 
The depth of the scene is determined with a structured light stereo vision system. 
Experiments with box-like objects (600mm to 400mm) have shown that the 
accuracy of object position has been smaller than 30mm. The recognition process 
takes about 5 seconds with an unknown computer system. 

In the paper of Boughorbel et al. [62], an imaging system works with range 
image and intensity image data to find accurate object positions and to solve the bin 
picking problem. The geometry of the objects is either reconstructed from the range 
data or given in the form of CAD models. The objects in the scene are modeled with 
a pre-segmentation and parameter recovery of superquadrics object representation. 
A camera validates the position and provides additional information for tracking the 
robot arm. The authors give no information of the experimental resuits. 

Katsoulas [2] describes a robotic bin picking system in his PhD Thesis. He 
focuses on a model-based object localization system. The model uses geometric 
parametric entities of deformable superquadrics and is compared to scene data, 
which is preprocessed by edge detection in the input range data. The comparison 
algorithm performs maximization of the posterior parameters of all known objects to 
recover the object. Kasoulas proposes a variety of advantages in robustness, 
accuracy and efficiency. He reported a total processing time of over 100 seconds 
with a 2.8Ghz Pentium4 PC for one scene. 
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Chapter 3 Pose Estimation 

In this chapter the sensor simulation and the pose estimation algorithms are 
explained in detail. The object model is transferred to a virtual range image with the 
sensor simulation and compared to the range data acquired by laser range sensor, 
which are introduced in the last chapter. 

3.1 Object model representation 

The object model is a mathematical description of a three-dimensional 
object, and is described with a defined data representation. This data structure 
mainly contains the geometry and the texture Information of the object model. 

The most common representation for object models is a polygonal mesh. 
Polygonal meshes are a collection of unstructured simple polygons such as triangles 
or quadrilaterals. One common form of polygonal meshes is the triangle mesh. 
Three points in the model coordinate space (vertices) and define a triangle. A list of 
triangles (triangle mesh) defines the geometry of the model. Additionally, every 
triangle in this structure contains further Information like face normals, texture and 
reflection parameters, which are used to improve the performance of the process. 
There are more advantages of this object model representation. First, this kind of 
representation is well known and easy to understand. Triangle meshes are convex 
[95] and because of this, simpler rendering algorithms in computer graphics can be 
used. Figure 20 shows an object that is modeled with triangles. 

The precision of the object depends on the number of triangles used to 
model the object. If the number of triangles is too small, the real object does not fit 
to the model anymore. Even if this issue can be a disadvantage, the reduction of 
triangles raises the performance and yieid to a hierarchical approach. This scalability 
between accuracy and performance is one of the main contributions of this work and 
will be described later (Section 3.5). 

The second advantage is the fact that the representation is common in 
different disciplines. The proposed system uses the computer aided designed (CAD) 
models stored in the structured triangle list file format (STL). The proposed system 
aims to simulate Industrial parts, where in many cases the geometry is not known at 
all. Often there exist CAD-models of the target objects, so the decision to use a 
polygonal mesh-based object model representation suggests itself. This 
representation is converted because the sensor simulation in this work uses data 
structures for graphics processing units (GPU), which are encapsulated in the 
libraries of Microsoft DirectX© or OpenGL©. These libraries provide interfaces for 
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importing the vertices of triangles. The scale-dependent triangle lists are bullt from 
the vertices and face normals. The results are meshes of triangles, which are 
described in Section 4.4.1. 

The simplicity of intersection tests is a further advantage of this object 
model representation. The intersection tests of the sensor simulation can be reduced 
to a simple ray-triangle intersection test by dividing the object into single triangles. 

3.2 Sensor model simulation 

Sensor models shouid adopt all properties of the available sensors for the 
industrial appiications introduced in the previous sections. The sensor simulation 
must be separated in TOF laser distance sensors and the triangulation-based laser 
sensors because both measurement principles deliver different range images, even 
when they are observing the same scene. The characteristic of triangulation-based 
laser distance sensors is the fact that their receiving device is not placed in the 
same position as the laser, which sends a laser line to the scene. Due to this 
displacement, most depth images of triangulation-based laser distance sensors 
suffer from occiusions. This is the most important difference of triangulation-based 
sensors compared to scanning TOF laser distance sensors. Moreover, all the 
required parameters and properties of the sensors must be known. This requirement 
can be met in many important situations but, on the other hand, there are some 
restrictions. The sensor simulation workspace is defined in a right-handed 
coordinate system, similar to the coordinate system of the scene scanning process. 

Sensor model 

object model 

Figure 20 Virtual scene 
The virtual scene consists of a sensor model and the object model. 
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In most workspaces in the research fieid of computer graphics, the distance 

to an object in an image is aligned to the Z coordinate axis (see Microsoft DirectX©, 
OpenGL© and Z-buffer techniques [96]). The sensor model for the TOF sensor 
contains the light source and the model of a perfect receiving unit. Therefore, the 
sending aperture and receiving unit has no greater size than zero. The sensor is 
reduced to a theoretical point in the 3D space. In this optimum case, every other 
point in the workspace forms exactiy one line with the receiving unit. This is one 
fundamental difference to the real scenario. The object is placed in the sensor 
simulation workspace in the sensor's view port/ frustum (see next section). AII 
range sensors that deliver a distance profile are moved over the object in order to 
get distance maps [97], which is also necessary for the sensor simulation. To 
compare the results from simulation to the real images, the resolution of the data in 
the moving direction and step resolution shouid be similar [98]. Therefore, the 
properties of the scanning process of the objects in the scene must be known. This 
includes mainly the distance between the ground and sensor and the direction of 
scanning. This setup is defined and used as the standard sensor simulation setup in 
the foilowing sections. 

3.2.1 Distance map sensor model 

This model can be used for unknown sensors or all sensors that cannot be 
modeled because of their complexity. This simulation results in an equidistant depth 
map of the scene. 

Figure 21 Distance map sensor model 
The distance map sensor model Is an array of one-dimensional distance in small distance to 

each other. 

This sensor model delivers for every X and Y coordinate one distance value 
in a Cartesian coordinate system (Figure 21). The implementation of such a sensor 
model can be fully supported by extremely fast and commonly used algorithms. The 
simulation is reduced to the Z-buffer/Depth-buffer [96] calculation of a virtual 
scene. Especially, the usage of GPU-based hardware fits to this task almost 
perfectiy. In computer graphics 3D programming with software development kits 
like Microsoft DirectX© (www.microsoft.com/directx), the Z-buffer of virtual 
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cameras is defined by a frustum. 

Znear 

Figure 22 Frustum of virtual cameras 
The frustum defined by a rectangle pyramid includes the field of view of virtual cameras. 

The shape of the frustum is a rectangular pyramid (Figure 22). The distance 
betv\̂ een the camera and the scene Ẑ ear is defined by the sensor position in the 
virtual coordinate system. In this case, this is initially set to zero, which means that 
the scene begins immediately in front of the camera. The distance Zf̂ r between the 
camera and the maximum distance point of the scene can be set to infinity but, in 
most cases, the limit can be set by knowing the physical limits of the real laser 
sensor. The boundaries are defined by the maximum number of lines m in X and Y. 

3.2,2 Sensor model of Time-of'flight sensors 

Time-of-flight (TOF) sensors measure the distance between the object and 
the light source along a light beam. This beam is moved incrementally with a 
parameterized angle step width in the orientation of X (see Figure 20). The result is 
a radial distance. For each angle, a distance value is measured, and to ensure the 
comparability between different sensor data, these values are converted into 
Cartesian coordinates. 
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Figure 23 TOF sensor simulation 
The sensor model sends out laser beams in the coordinate system of the sensor. 

In Figure 23, a sinnulated sensor nneasurement is shown. This model is 
characterized by the sensor coordinate systenn. The simulated light beanns start in 
the origin of this coordinate system and the distance values are calculated between 
this point and the closest point to the object. The angle steps can be found in the 
rotation Ry of the light beam. A commonly used industrial TOF sensor like the SICK 
LMS400 (www.sick.com) can be modeled in this way. The real sensor delivers each 
angle step width, start angle and the distance. These properties are adapted to the 
sensor model as well. 
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Zfar 

Figure 24 3D TOF sensor frustum 
The sensor is moved along the sensor path and records the data in the sensors fieid of view 

between Znear and Zfar 

This Figure 24 describes the volunne of the sensor sinnulation in the model 
coordinate system. The sensor model is incrementally moved in the direction of the 
Y coordinate axis along the sensor path. The minimum distance to the sensor 
defines the Ẑ ear plane, and the maximum distance value defmes the Zf̂ r plane. With 
the view angle o, the sensor frustum is defined as a frustum of a rectangular 
pyramid. The resolution of the resulting depth image/distance fieid defines the 
number of rays starting in the camera's point of view. Rays are produced with a 
normalized length in one line of the distance field. According to the principie of real 
laser distance sensors (see Section 2.2.2), one scaniine is separated into angle 
steps in the scan direction X. 
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Figure 25 TOF angle resolution 
The sensor sends out one beam per defined angle. The number and the angle step width are 

parameters of the sensor model. 

The sensor coordinate system is defined as shown in the Figure 25. The 
sensor determines the distance in direction of the Z coordinate axis. One line of rays 
is defined to be in the direction of the X coordinate axis. For one line with n 
distance, values n rays are created. The direction of each ray is calculated with the 
help of the angle a. For every step, the normalized direction vector for X, is 
calculated with the following equation: 

^DIRiXi) = 
Zfar *COS(a) 

yj 
^far 

3.1 

The Y coordinate is fixed to the position of the sensor in the scene and is 
constant for one scan line. Zf̂ r is also constant in this consideration. The origin of 
the rays is equal to the sensor position in the scene: 

"^pos = 

2 

yj 
^near 

3.2 

The perspective view of the sensor sinnulation has a range of 

a = ± 3.3 

where n is the number of distance values in one line and Aa is the constant 
angle step width. If the angle a is zero, the ray is orthogonal to the X coordinate 
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axis and parallel to the Z coordinate axis. The direction of the ray is towards the 
object. For every scan line a spread of rays is calculated depending on the needed 
resolution in X. Every ray is tested for its intersection with the object in scene. 

The proposed sensor nnodel is related to a real TOF sensor. To acquire a full 
three-dimensional distance image, the sensor nnodel is moved virtually in the 
direction of Y, as shown in Figure 26. The step width depends on the appiication 
requirements. The resolution in Y is connected to the resolution of hardware 
encoders in different appiications. This ensures the compatibility between the real 
sensor setup and the sensor simulation. To find the correct relation between the real 
dimensions and the model coordinate system, the setup must be calibrated. 

system. 

Figure 26 Movement step resolution 
The simulation results in equidistance movement lines for each scan. 

The Figure 26 shows a resulting distance image in the sensor coordinate 

The transformation to the model coordinate system is: 

SCS 
^MCS = 

1 0 0 Vpos^ 
O 1 o Vpos 
o o 1 Vpos 
0 0 0 1 

3 . 4 

3.2.3 Sensor model of Thangulation sensors 

Triangulation-based laser sheet of light sensors consist of a stripe projector 
to emit a laser line to the object. A camera grabs the projected line, and with the 
help of the geometric calculation, the distance can be acquired according to Section 
2.2.2. With its simulated geometric configuration, the sensor model determines the 
distance between the object and the laser source in the same way. The distance is 
calculated for every maximum value in the camera's column index. This results in a 
distance vector for every projected and acquired laser line. The output data is a 
distance profile. The resolution in X is fixed by the resolution of the CCD-Chip in the 
real sensor. Therefore, the model must deliver exactiy the same data. For this 
implementation, the amount of received light in each pixei of the camera must be 
calculated. Multiple reflections of the emitted laser light must be considered 
additionally to the main reflection on the object in real sensor setups. Consequently, 
the amount of light of each (multiple) inter-reflected laser light beam with shadows 
and refractions for each pixeI must be calculated. This leads to a very complex 
simulation of real triangulation sensors [99], and is otherwise known in computer 
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graphics as global illumination [100], In most real time rendering algorithms, 
simpler illumination model simulations are used such as flat shading, phong shading 
or gouraud shading [101]. Therefore, the trade-off between performance and 
accuracy is changed to increase the performance of the sensor simulation. The 
triangulation simulation in this thesis uses a trick and changes the approach of 
triangulation without the loss of accuracy or by producing incorrect resuits. Similar 
to the TOF sensor simulation, the triangulation simulation separates the emitted 
sheet of light into single beams. These beams are produced according to Figure 25 
in a laser projection plane. For the triangulation sensor model, the discrete laser line 
angle step's width at the maximum distance must be at least two-times greater than 
the pixel-wise projection in the camera coordinates to ensure that this simplification 
resuits in a distance surface. According to the Nyquist-Shannon-Theorem, the 
sampling frequency of the camera must be: 

^yPixel X A^ceTe'" ^ ^XZn^ cos(a) 
3.5 

This requirement can be easily met because the angle step width can be 
calculated before the triangulation simulation. For each laser beam, the intersection 
point with the object representation in the virtual scene is determined. This 
intersection point is checked again if the camera is able to see it. Therefore, the line 
between the intersection point and the center of the lens is analyzed if there are any 
occiusions by scene objects. 

Camera i ax is 

C a m e r a y ax i s 

Figure 27 Laser line projection in the camera's CCD chip 
The separated laser beams in the sensor model are related to the camera pixei, where It 

intersects a models surface. 
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Figure 27 depicts the projection of the laser lines in the camera's fieid of 

view. If any object is in the fieid of view of the camera, the laser line stops at a 
certain position. This is the intersection point, where the laser intersects a triangle 
of the object in the virtual scene. Foilowing that, the intersection points are 
projected to the camera chip and the related pixels are determined. In Figure 27, 
the pixels are shown as yellow rectangles, The displacement of the pixels in each Y 
column is proporţional to the height of the object in the scene according to 
triangulation principie in Section 2.2.2.2. If the intersecting point with the highest Z 
coordinate cannot be projected to the camera CCD chip plane, the related distance 
value in the height profile is marked as invalid. With known extrinsic parameters 
(respectively the distance between the camera and the laser and the angle between 
them), the distance to the object can be determined. The laser is virtually mounted 
in the similar coordinate system as shown in Figure 24. The position of the virtual 
camera depends on the appiication. For most cases, the camera is in the same 
quadrant of the coordinate system shifted in transportation direction as shown in 
Figure 24. AH invalid distance values in a complete surface scan represent the 
shadow or self-occiusion. 

Figure 28 Occiusions in triangulation simuiation 
This figure shows a virtual scan result of a triangulation based sensor model. The black regions 

represent the occiusions, where the camera cannot see the laser line. 

The occiusions in Figure 28 are in transport direction Y because the camera 
and laser source are set up like described above. The occiusions are the important 
difference between TOF and triangulation-based sensors. 
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3.3 Virtual Range Image simulation 

The purpose of simulating a distance sensor is much related to fieids in 
computer graphics. For example, rendering is a process that generates an artificial 
image of a scene with a computer program. To produce a two-dimensional image 
from a three-dimensional virtual scene, it is necessary to have a camera (or eye), a 
light source (e.g. the sun) and a model (or object). Rendering is in general a 
computationally intensive process because it has to take many mathematical and 
physical restrictions and principles into consideration. According to [100] there exist 
more or less 4 different methods for producing an image from a virtual scene. 
Rasterization converts objects to an image by appiying 3D to 2D transformation and 
divides the result in image pixels without consideration of the physical principles of 
light sources. This method is very fast and efficient. Radiosity takes the finite 
element method for rendering scenes with purely diffused surfaces. Ray casting is a 
very fast method, which is very similar to ray tracing. Ray tracing is one of the most 
promising and often used methods for obtaining neariy realistic images. The 
principie of ray casting and ray racing is the analysis of rays of light between the 
camera, the objects and the light sources. Ray casting defines rays that are virtually 
sent out from the point of view — the camera. If the ray intersects with an object on 
its way into the scene, the intersection point defines the resulting color in the 
image. Simplified ray casting uses the color defined by the texture of the object. 
The main difference between ray casting and ray tracing is the determination of the 
resulting pixei value. In addition to ray casting, reflected rays from other objects in 
the scene can also change the value of this pixel. This approach has some 
advantages compared to other methods of rendering. Ray tracing enables effects 
like shadows and complex reflections. Especially, the shadow effect is very 
important for the laser sensor simulation. Unfortunately, ray tracing has high 
computaţional costs depending on the level of details and complexity of the scene. 
To get a realistic image, this method has to analyze every possible ray of light in the 
scene, but this process is extremely inefficient and is not necessary in many 
appiications at the moment. 

Most of the methods for virtual image production are supported by hardware 
or, more specifically, Graphical Processing Units (GPUs). The GPU is the core of 
commonly available graphic cards for personal computers and can be equipped with 
user specified code via software development kits. Today, GPU supports fast 
perspective transformations, depth buffer extraction, rasterization and several ray 
casting/ray tracing techniques. Furthermore, many processors (CPUs) of personal 
computers offer specific instruction sets for parallel data processing, with a single 
machine instruction like Streaming SIMD Extensions (SSE, www.intel.com) or 3D-
Now!(www.amd.com) [102]. One key aspect of distance measurement is the 
determination of the intersection point between a ray (laser) and the object surface. 
It is very important to have a high performance for virtual range image (VRI) 
simulation. For example, for each emitted laser beam of the TOF sensor model, one 
intersection test shouid be made much faster than in reality. The TOF sensor system 
fits almost perfectiy with ray tracing systems to acquire realistic images. With this in 
mind, several solutions for object mesh intersection tests are discussed in the next 
section. 
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3.3.1 Polygonal mesh intersection 

The intersection of 3D objects is still a challenging task in connputer graphics 
because of the requisite performance for increasing the requirements of computer 
games and scientific appiications. In many scenarios, the nnesh intersection can be 
reduced to a ray-object or even to a ray-triangle intersection test. A lot of research 
has been carried out since Glassner [103] introduced intersection calculation issues. 
To speed up the ray-scene intersection process, mainly additional data structures, 
such as ghds, octrees, bounding volume hierarchies, or BSP trees are used. (see 
[103], [104] for an overview). 

3.3.1.1 Triangle normals intersection method 

To prove the concept and have a basis algorithm as a reference, a very 
simple method is created to calculate the intersection. For every pixei of the 
resulting distance fieid with the defined resolution, one ray is created, as described 
in Section 3.2.1. Every created ray is intersected with the planes, which are defined 
with the three points of every triangle. In the second step, every intersection point 
is checked to see if it lies inside the triangle. This is realized by solving the equation 
of the parametric form of the triangles and the line: 

( Sensorpositiori] 
Sensorposiîioni 
Sensorposuion^ 

V Sensorposition\' 
Sensorpositioni 

ySensorpositiori'^ ^ 

'cos{angle _ start(i * angle _ st€pwidth)f 
Sensorpositioni 
1 

3.6 
{ ( f / \ \ 

y\i + 
. V 2 i 

- >'1< - >1/ 
V U2;, ) / 

* V 

Due to the requirement to be a proof of concept solution, this procedure is 
not very efTident, but it shows the function of the sensor simulation. Therefore, this 
solution is used as reference and basis oniy. 

3.3.1.2 Moller/Trumbore ray intersection 

To compare the performance to a more efficient ray-triangle implementation 
in C/C++, a slightiy modified intersection test function, based on the work of [105] 
is implemented. Moller and Trumbore proposed a non-SIMD algorithm for fast ray-
triangle intersection tests. Their main contribution is that they do not calculate the 
plane equation, but use a series of transformations to translate the triangle to the 
origin and transform it to a unit right angled triangle. The ray direction is changed to 
align in the direction of the X-axis. The barycentric coordinates and distance can be 
calculated according to the foilowing equation: 

With 
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yii - y\i 
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where Ei and E2 are two non-parallel vectors in the triangle plane. Moller 
and Trumbore proposed: 

Q*E2 
P*T 
Q*D 

3.9 

with 

T = 
^ Sensorposition\ ^ 

Sensorposition2 
^SensorpositioriT, ^ 

y\i 3.10 

P = 
cos{angle_sîarî(i * angle _sîepwidth)y 
Sensorposuion2 
1 

xE2 3.11 

Q = TxE^ 3.12 

This results in the distance to the triangle and the intersection point 
coordinates inside the triangle. More details can be found in their paper [105]. 
Because they do not have to consider storing the plane equation, this is a very fast 
algorithnn for this intersection test. Some other approaches show the potential of 
this algorithm [106], [107], [108], and this algorithm is used to check if the current 
ray of the sensor simulation intersects with any triangle of the object. This leads to 
a slightiy better performance of the sensor simulation and still offers many further 
improvements like a bounding box calculation and backface culUng[\09]. 

3.3.1.3 Fast mesh intersection with axis aligned bounding box 

For ray tracing tasks, the usage of axis-aligned bounding boxes (AABB) is 
quite common in computer graphics. Simple AABB intersection tests compute the 
distances to each of the six planes defined by an axis aligned bounding box around 
the mesh [110]. 

For the pose estimation, an axis-aligned bounding volume is used to decide 
if the ray shoots in the direction of the model before an intersection test is made. 
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The bounding volume is aligned with the axis of the moders coordinate system. The 
AABB contains the full object model and is defined by 8 points. This is shown in 
Figure 29. 

Figure 29 Axis Aligned Bounding Box 
The Axis Aligned Bounding Box test enhances the performante by rejecting regions out of 

view. 

Many further improvements for AABB tests are shown ln[104], [111]. For 
example, AABB-based backface culling, as introduced by Woo[109], determines 
whether the polygon of a graphical object is visible to the camera, which leads to a 
test of three planes instead of six. The intersection test for the pose estimation is 
made with the SIMD-supported function of Microsoft DirectX©, which is described 
later in the implementation (Section 5.3). To ensure the compatibility and optimize 
the performance, the AABB is converted to a triangle list beforehand. Due to the 
presence of this axis aligned bounding box (AABB), the intersection test integration 
is very simple and efficient because of the fact that the DirectX© mesh intersection 
function includes presumably many new improvements as proposed in [111]. 

3.3.2 Virtual Range Image representation 

The purpose of pose estimation is the comparison of real range images 
(RRI) and simulated virtual range images (VRI). To satisfy the contribution to 
simulate the sensors as good as possible, the resulting data of the sensor simulation 
must fit to the acquired data. Because of this, the representation of the VRI is 
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similar to the representation of the RRI described in the next section. 

M ={mi] and = (v/, vy, c, ,/;),/= 0 , 1 , . . 3 . 1 3 

Each point in the VRI consists of X, Y, and Z coordinates in a Euclidean 
coordinate system. The number of points N, depends also on the resolution of the 
simulated sensor and the number of scans in the direction of X. The intensity value I 
is set by the simulation, but oniy if the real sensor is able to deliver the intensity 
and the properties of the object material are known. The red VRI in Figure 30 shows 
a low density VRI in contrast to Figure 28. The density of points depends on the 
resolution of the sensor simulation. Sensor models with a high resolution deliver a 
detailed representation of the object surface with a huge number of points. 
Therefore, all VRI representations are stored in a relaţional database. For each VRI, 
the points themselves and additional parameters are stored in one database entry. 
The VRI points are indexed with the pose parameter of the object, i.e. the 
translation and rotation in the virtual scene. The database offers fast queries for 
more than one process. Parallel database queries are needed so that it is possible to 
distribute the pose estimation and pose refinement steps over different computers. 
Distributed computing is one key feature of the bin picking system in this thesis. 
Therefore, the input for the object pose estimation and comparison is given by a 
data set of points in a Euclidean coordinate system, delivered by the database 
interface. This also includes a speed up in performance and reduces the 
requirements of free memory for one estimation step. 

3.4 Real Range Image representation 

In general, a range image consists of a simple list of points. The smallest 
part of a 3D scan is a scan point. This abstraction has the great advantage that the 
representation of the sensor data is completely independent from the selected laser 
sensor. Additionally, an intensity value I is delivered by many range sensors and 
can be assigned to every point. To compare the range image representations, the 
distance data must be transformed to a worid coordinate system. For every sensor, 
the introduced calibration method can be used to calculate the corresponding units 
in millimeters. For the introduced range sensors, the X values are given by the 
resolution and the provided measurement range and the Z values are given by the 
distance. A point in range images is generally defined in the foilowing way: 

P = \pj\ and P j = ( X j , \ j , Z j J = j 3.14 

The introduced sensors deliver information of a height profile with: 

Pa 3.15 

For this reason, a point differs from a height profile by the missing Y 
coordinate, and in most cases by the additional intensity value I. The missing 
information for the Y coordinate of a laser line can be assigned from externai 
sources such as robot axes and incremental encoders, or by manual calibrations. In 
most instances, the X-axis corresponds to the worId X-axis according to Figure 24. 
The distance to the sensor corresponds to the Z-axis. A Y value can independently 
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be assigned to every point. In the simplest case, Y is incremented if the sensor is 
orthogonally moved to the X Z plane. The movement in Y can be made with an 
independent resolution. In this case, the Y coordinate is equal in the data structure 
for each laser line. A 2.5D range innage is constructed with the sequential storage of 
laser lines. The number of points N in one range image depends on the number of 
entries n, as a sensor can resolve in X direction and the number of scans in direction 
of Y. The sensor acquires a 2.5D surface. For each X and Y position there exists one 
distance value Z. There are well known data structures in the connputer graphics 
sciences for 3D range innages. The nnost general and often used data structure is the 
storage of unordered point clouds. These data structures couid be used in simple 
regression methods up to the complex 3D registration and reconstruction algorithms 
of modern image processing[17], [112]. The main goal of these complex algorithms 
in computer graphics is the reconstruction of surfaces from given point clouds. 
Unfortunately, these reconstruction algorithms are very inefficient in most cases, so 
the point cloud representation of the acquired real range image (RRI) is suitable to 
the pose estimation. For the pose refinement, the point clouds are converted from 
small parts of the RRI to a surface representation. 

3.5 Object pose estimation and comparison 

Each data set acquired by the laser range sensor is a surface with a huge 
amount of data points. The simulated object pose (VRI) must be found in the 
appiication scene (RRI). The VRI consisting of the surface's representation of the 3D 
model is compared to the real range image (RRI) of the scene made by the sensor. 
One example is shown in Figure 30. 

Figure 30 Object correlation: 
According to the step width the VRI objects are virtually put in the real scene for pose 

evaluation. 
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The appiication example in Figure 30 shows an appiication of bin picking for 

automotive component suppliers. It is characterized by the fact that the objects are 
often of the sanne shape. In this appiication, the pose estimation can be limited to a 
fixed increment of AX, AY and AZ, which depends mainly on a priori knowledge of 
the object position in the scene. For example, in the case of the door joints in Figure 
30, it can be assumed that the distance Z does not have to be changed in major 
steps because all the door joints are lying on the bottom of the box. The process of 
coarse pose estimation is a preliminary search for a best-matching object pose. In 
general, different VRIs for different kinds of objects are compared to the RRI in the 
same way. Therefore, the object classification is integrated in the step of object 
localization. The VRI, consisting of the surface's representation of the 3D model, is 
compared to the real range image (RRI) of the scene made by the sensor. One 
advantage of this pre-selection of matching positions is the fact that all VRIs can be 
calculated offline and stored in a database. Due to this, the process for the coarse 
pose estimation can be summarized in the foilowing way: 

• The RRI is delivered by the sensor 

• AII VRI in the database (one for each possible pose) are compared to the 
RRI 

• The best VRI candidates are selected for pose refinement 

Because all VRIs are compared to the RRI, each VRI gets an error value. 
The VRI candidates with the lowest error values are selected for pose refinement. 
The number of best matching VRIs can be limited by an error-threshold or a fixed 
number of VRI candidates or a combination of both. The error threshold depends on 
the object size and the increment size. It can be determined by taking the VRI 
candidates within the best 10-20% of all error values in the coarse pose estimation 
process. The aim of coarse pose estimation is the reduction of possible solutions 
that will be found in the pose refinement. The pre-selection results in a few VRI 
candidates. These candidates are delivered to the pose refinement process, starting 
with the best matching candidate. The alignment of the VRIs to the RRI data can be 
done in different ways. The next sections introduce different possibilities. 

3.5,1 Brute Force Pose Estimation 

The position and orientation of the object is estimated by range data 
comparison. The goal of the coarse pose estimation is the pose estimation of all 
visible objects in the RRI. Figure 30 shows the determination of the best matching 
VRI in RRI. The Brute Force Pose Estimation compares every VRI to the RRI with a 
defined error function. The error function returns an error value. If the error value is 
low, the VRI matches with the RRI. Due to the fact that all VRIs are compared to the 
RRI, each VRI gets an error value. The VRIs with the lowest error values are 
selected for pose refinement. The error value is the scalar that specifies the level of 
the correlation between VRIs and the RRI. In the first implementation of this 
system, the error function is defined as: 
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The error value is calculated for each pixei of the object in the VRI, and is 
defmed as the mean of the difference between every distance value Zi of the 
simulated object and the distance value Z2 of the scene. The error depends mainly 
on the positions X, Y, Z and the rotation around the axes Rx, Ry, Rz of the simulated 
object, and the limits of degrees-of-freedom of the object. The error value is always 
higher than zero, except for the perfect match of VRI and RRI if the remaining 
sensor error is taken out of consideration. In the real worid, the perfect match is 
nearly Impossible because of the inaccuracy of sensor measurement and errors of 
bounding pixels. Outiiers or invalid points must be filtered in the preprocessing 
steps, and this error function provides a rate of how good the pose of the model 
matches with the real image in the distance measurement. 

//Moving all poses over the surface 
For all positions in X 
For all positions in y 
For all positions in z 
For all rotations in Rx 
For all rotations in Ry 
For all rotations in Rz 
For all distance values in object surface 
SumError = Zii-Zi2 

Next distance value 
Next rotation step 

Next rotation step 
Next rotation step 

Next position step 
Next position step 

Next position step 

Figure 31 Brute Force Pose estimation Pseudo Code 
This Pseudo Code example shows the inefficiency of a brute force matching with a high 

complexity. 

This implementation compares all poses in the VRI database to every 
possible position in the scene's data set. Figure 30 shows a translation of the VRI 
over the RRI scene. With a certain step width, the simulated VRI for this position is 
loaded from the database and put in the RRI scene to compare these 
representations according to the error function. This algorithm offers the foilowing 
advantages. Appearance-based comparison can be used for every kind of object and 
any type of sensor independent from the resolution of the data. Additionally, it does 
not use any feature detection. Most known algorithms use features for object 
recognltion [113] and localization in any form. The problem with these algorithms is 
the fact that they must be parameterized for every new object that needs to be 
leamt. Features that can be hidden by other objects or features are not found in the 
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scene for any other reasons. 

Since all poses and positions in the sensor fieid of view of a CAD object are 
stored in a database, the simulation takes the exact appearance representation of 
the simulated object in consideration. Once more, it is important to mention that 
this also includes the position of the object in the sensor fieId of view because this 
leads to a more exact VRI representation explicit with, for example, seif occiusions. 
These seif occiusions result from the setup and position of the virtual sensor 
compared to the object. This leads to a high number of very sinnilar VRIs in the 
database but increases the accuracy. 

On the other hand, the brute force search over all poses and positions is 
highiy computationally expensive. The maximum complexity is 0{kxD0FxN) for k 
objects for the error calculation in equation 3.16. In many appiications it is possible 
to limit the DOF to at least three. 

Nevertheless, this algorithm is used in the evaluation tests as a reference 
test to show the accuracy and resolution in contrast to the other introduced 
algorithms in the next sections. 

3.5.2 Advanced iterative pose estimation 

The proposed brute force pose estimation tries to match the position and 
orientation of the VRI with the RRI in defined steps of DOF resolutions. In pose 
estimation, all the poses of the object are created beforehand and stored in the 
database. The opposite of this is the advanced iterative pose estimation that creates 
the poses of the CAD model within the pose estimation process. The pose is 
changed iteratively to find the best alignment. 

In every iteration step 

The pose of the 3D model is changed 

• The VRI is created 

• The VRI and the RRI are compared 

The error value is used to define a minimization problem of the alignment 
process. Figure 32 depicts the iterative extension of this principie. 
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Data acquisition Object pose 
simulation 

Comparison 

Figure 32 Advanced iterative pose estimation 
The iterative pose estimation refmes the pose step width for each degree of freedom 

iteratively. 

The error depends mainly on the positions X, Y and Z and the orientations 
Rx/ Ry/ Rz/ so the equation 3.2 can be written as: 

Here, Z is the projection of the 3D nnodel to a 2.5D range image made by 
the sensor simulation. The projection function of the real sensor is assunned to be 
identical to the projection function of the simulated sensor. By varying the values of 
X, Y, Z, Rx, Ry, and R̂  in smaller steps compared to the pose estinnation, the error is 
minimized. The implennented search optinnization algorithm foilows the maximum 
gradient in the six-dimensional error hyperspace for each DOF individually. The 
iteration is stopped if a specified threshold for the error value or a maximum 
number of iteration steps is reached. This algorithm is related to the optimization 
technique called hili climbing [114], which belongs to the family of local search. 
Hov^ever, this algorithm is also vulnerable to wrong alignments because of local 
minima. In this thesis, oniy a basic search algorithm is used, but this minimization 
process can be accelerated appiying minimization methods like simplex minimization 
and other minimization algorithms such as Monte Carto methods, This approach was 
planned to be integrated in the refinement step, but the performance of the sensor 
simulation is much slower than the proposed registration algorithm. 

3.5.3 Accelerated brute force pose estimation 

To improve the performance of the brute force pose estimation process, the 
comparison is extended with a common algorithm in signal processing. This cross 
correlation is generally used to measure the correlation between two signals — 
especially in image processing correlations that are calculated between sliding tv\/o-
dimensional search windows (template) and the image. These matching functions 
onIy rely on the intensity values. One of the best known methods is so-called "block 
matching". Block matching is a commonly used process in regions-based 
approaches for the solution of the correspondence problem in stereo vision. Even if 
it belongs to the area-based approaches it is, nevertheless, local; surrounding one 
pixei of a significant region in the image. The procedure of block matching for stereo 
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Vision is very simple in first approximation. Every picture is subdivided into blocks, 
which are then compared with blocks in the other image. The tennplate is moved 
pixel-wise over the other image and a quality value is calculated from a matching 
metric. Hence, the cross correlation determines how similar the two signals are. The 
cross correlation for two-dimensional signals I1J2 's defined as: 

CC(A, y) = ^ / ] (x. v) /2 (x - w, V - r) •̂ ̂ ^ 
JC, V 

where u,v is the shift of the pattern in the image h. This cross correlation 
couid be used to compare a pattern with an image. The comparison of two blocks is 
usually based on the similarity of the intensity values (but not limited to them). 
Unfortunately, this procedure is mainly not invariant to lighting changes in the 
image (see [115]). The corresponding pixei lies in the center of this block. The 
papers of Roma [116] and Brown et al. [117] give an overview of different matching 
metrics for the calculation of the similarities between the blocks, one popular 
example is Least Square Matching. The basic concept of Least Square Matching is 
the minimization of the sum of the squares of the gray value differences between 
the pixels in the two sizable blocks. Sufficient texture in the blocks with a 
bandwidth-limited signal leads to good approximation values at convergence within 
less iterations [118]. Another possible matching metric is given by the normalized 
cross correlation (NCC). Using the normalized cross correlation (NCC), 

NCC(x,y) = - 3.19 

most of the disadvantages of the two-dimensional cross correlation can be 
overcome. The mean of signal /j and I2 is taken into consideration. Since the cross 
correlation is related to the convolution process, the calculation can be made in the 
frequency domain to increase the speed of the calculation process. To calculate the 
NCC in the frequency domain, the signals must be normalized, as described in 
[115]. In the implementation of Matlab (www.mathworks.com), the normalized 
cross correlation is limited to two-dimensional signals (images). The resulting cross 
correlation coefficient is high at this position where the pattern fits to the image. 
Figure 33 shows the peak in the cross correlation ''surface" at the position of the 
best matches. 
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Figure 33 Cross correlation result 
The normalized cross correlation Is an efficient way to find the best position of a representation 

in the scene. 

This test is made for one object in the scene and one pattern with a fixed 
distance to the sensor and fixed rotation. These restrictions make this solution by 
itself nearly useless for pose estimation in common industrial appiications. However, 
in combination with the already introduced ''brute force" pose estimation, the 
performance is increased dramatically. In this case, the process can be modified; for 
every rotation step, the VRI is created and used as a cross correlation template. The 
advantage of cross correlation calculation Is glven by the performance of the 
frequency domain calculation for large patterns and images. The two-dimensional 
cross correlation can be further extended to an n-dimensional cross correlation to 
deal with all degrees of freedom [119]. 

3.6 Feature-based object localization 

3.6.1 Feature correspondences 

A feature is a distinctive part of an object that heips to identify the object 
and determine its pose. Features range from simple edges to high level features in 
2D image object recognition and localization. Additionally, they couid be invariant to 
image translation, scaling, rotation; or they couId be partially invariant to 
illumination changes and affine or 3D projection llke the Scale Invariant Feature 
Transform (SIFT) developed by Lowe [113]. With the extracted features, an object 
can be localized by the search of oniy the representation of this feature in a scene. 
The most significant features of an object are selected because they can be very 
well identified in a scene representation. On the other hand, the feature is very 
specific and depends on the kinds of objects in the appiication, so the feature-based 
approaches often suffer from the lack of universality. 

Because features mostJy do not consist of single pixels, features are usually 
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extracted by the different processing layers of the image processing. If the points 
with identifying gray value and extracted features like edge poirits, lines or even 
regions are merged together, the ambiguities can be solved easier and faster In 
correspondence analysis. This well known fieid of image processing offers nunnerous 
methods of features detection in 2D innaging, but a basic problem of feature-based 
methods is still the skilful selection of a suitable detector and criteria for an 
automatic, objective quality assessment. 

Correlatioii 
cost 

pixels 

points 

contours 

regions 

objects 

Deleclion costs 

Figure 34 Feature correlation 
With an increasing complexity of features the correlation costs are increased. 

In Figure 34, common features are arranged with their qualities in relation 
to the correspondence analysis. The reliability and simplicity of the feature with 
major Information content are better because of their smaller number, but the 
computaţional costs are therefore higher. For many appiications, the selection of the 
right features is extremely important and can be made according to the foilowing 
criteria [120]: 

Reliable extraction 

High Information content 

Perspective Invariance 

Robustness against occiusions and noise 

Universality 
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Feature-based procedures can be roughiy separated in intensity or pixel-

based methods, edge-based, comer-based methods and feature extractions of 
higher complexity. Point- or intensity-based methods can make a correlation 
between the intensity of every single pixei or the position properties of points to find 
correspondences. In the case of the pixel-based methods in image processing, the 
feature with the smallest information content is selected as an allocation feature 
a pixeI with his intensity value /(x,y). Ordinarily, the number of intensity values in 
a picture is very small in comparison with the pixeI numbers, so a direct assignment 
is almost not possible (uniess there are very small pictures). Most pixel-based 
methods have problems in different illuminations. Nevertheless, most approaches 
use other methods because a pixel-based method has very high computaţional 
costs. 

Many feature-based methods work with edge detection, which is a common 
method of image processing related to image segmentation. An edge is, by 
definition, a discontinuity in the image separating different areas. These edge-based 
methods are inspired by biological stereo vision [121]. There exist a large number of 
image processing operations that make it possible to recognize edges, including the 
well known edge detection of Canny [122]. A comprehensive summary of common 
edge detections can be found in [123]. 

[124]: 
Image operators to locate edges in images couid be separated like this 

• Simple local operators 

• Template-matching operators 

• Optimal edge operators 

• Morphological operators 

Parameterized edge models 

A huge amount of edge operators exist for feature-based correspondence 
analysis. Some important high level interest operators use the results of edge 
detection methods and other methods extract feature points (Moravec-Filter [125], 
Harris corner detection [126]). With these corner detection algorithms, the 
maximization of the gray-scale value differences in directions all around the point is 
attempted. One example is the usage of the endpoints of recognized edges whose 
quality is computed by the form, size and position of the edge segments, as 
discussed by Dhond and Aggerwal in [127]. Tomasi and Birchfieid [128] use regions 
in images that are extracted through segmentation. Like most feature-based 
methods, this reduces the match sensitivity to depth discontinuities. Modem 
algorithms are extended to scale invariant features and many other improvements 
[129], [130]. Based on this, SIFT features have a great success in interest point 
detection [131]. However, the main drawback of feature-based methods is that they 
are limited to good-natured object with features for 2D image processing. The area 
between the features remains unconsidered and must be processed in further steps. 
A fundamental other approach for the disparity calculation pursues surface-based or 
area-based techniques. These techniques match the corresponding regions with 

BUPT



Chapter 3 Pose Estimation 63 
very similar appearances. Uniike feature-based techniques where in a preprocessing 
step point, lines or regions are extracted, area-based methods use a cost function-
based directiy on the gray value in the images or distances. A disadvantage of 
feature-based nnethods lies in the fact that features nnust be extracted and must 
exist in a sufficient number in the input data. Therefore, area-based methods can be 
used with every kind of data reliably, but suffer from a smaller convergence range 
as well as smoothing effects in object discontinuity, which leads to a localization 
inaccuracy. 

3.6.2 Example for feature-based object pose estimation 

In many appiications of industrial robotic bin picking, it is possible to reduce 
the complexity of the pose estimation process by feature-based object localization. 
Features are often used in camera-based systems [132] to detect specific parts of 
an object. This object localization is being further extended to 3D range data object 
localization problems[133]. There exists a variety of appiications where feature-
based localization is the first choice. Therefore, this section gives an example for a 
feature-based pose estimation appiication for robotic bin picking. 

Figure 35 Brake disk appiication example 
The brake disks in the box must be found in the range image and picked up by a robot. 

In Figure 35 the distance values are represented as gray values in the 
picture. Darker pixels represent closer distance values, and objects with brighter 
pixels are farther away. This picture shows brake disks lying in a bin. Most of the 
brake disks are arranged planar, so the object localization is an easy task for 
feature-based localization. The proposed object localization finds the best matching 
brake disk in the bin. To find the hole in the middie of each brake disk, this section 
describes a fast and simple algorithm. The first part of the algorithm is based on 
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commonly used 2D image processing methods. Therefore, two circles with a fixed 
radius must be found that represent the topmost ring of each brake disk. There 
exist many different methods such as contour-based matching or Generalized Hough 
transform (GHT) to find the known pattern in an image [134]. In this appiication 
[135], a commonly used library PATMAX© from COGNEX fwww.coqnex.com) finds 
the best matching brake disk in the image by taking orientation, scale and occiusion 
into consideration. The matching algorithm requires the number of objects to be 
known as well as the template form of the object. The search can be minimized 
because of the rotational invariance and the given maximum slope of the objects in 
this appiication. The library delivers the best matching templates in the image with 
positions X and Y and information about their similarity, scale and slope referring to 
the template. Additionally, the coverage is determined so that occiusions can be 
found very easily. AII these results are taken into consideration for one quality value 
which is calculated for each found brake disk. 

Flgure 36 Template matching 
The template given by the circle representation provides four regions to form the front plane of 

the brake disk. 

The object position X Y in the image coordinate system is similar to the 
center point Xo, Yq in the object coordinate system. Around the center point of the 
chosen disk, four small regions (4x4 pixels) between the two circles are used to find 
the orientation of that disk. The regions are shifted by 90 degrees within the two 
circles (in the object coordinate system: iAY). Inside these rectangular 
regions, the median gray values are extracted. 

^^^^median ~ ^ 

\ 

2 r ' . 
3.20 
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For each 4x4 region r the median is calculated with the equation 3.20. The 

value r =0,2 define the two regions in direction of X in the Figure 36; r =1,3 define 
the regions in direction of Y in the Figure 37. If the brake disk is planar all sensor 
distance values are in the same plane. With these four points this plane is fully 
defmed and the orientation is calculated with the direction vectors: 

' Xo+AX ' ' Xo-AX ^ 

Vx = >'0 -

JiO),„edian, 

' Xo 
yo+AK - KO-AK 

median > median , 

3.21 

3.22 

The cross product of this direction vectors delivers the orientation of the 
plane, given by the four points representing the brake disk: 

3.23 

Each gray value is assigned to a specific distance value. The distance Z to 
the sensor can be recalculated with the help of this gray value. 

Orientation 

Object Reference Point 

Figure 37 Object orientation determination 
The orientation of the brake disk is calculated from the normal vector of the plane formed by 

the four regions. 

With the known depth d of the brake disk, the object reference point {ORP) 
can be calculated with the foilowing equation: 
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ORP = 

X 

Y 

r=0 

3.24 
V7 

The ORP is transformed into the robot coordinate system, so the position of 
the object is known for the robot or the pose refinement step. The proposed solution 
combines well known algorithms of 2D innage processing with 3D range data fronri a 
laser distance sensor to find a successful solution for this appiication. Furthermore, 
this feature-based pose estinnation gives the results to the pose refmennent step for 
better accuracy. Depending on the objects and their features, it couid be far more 
feasible to find an easy feature-based solution, but this wouid increase the cost and 
complexity for the installation and adaptation to the specific appiication in robotic 
bin picking. 
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Chapter 4 Pose refinement with ICP 

The term ''pose refinement" is used when the iniţial position and rotation of 
an objec± in a scene is roughly known. A very common problem in range image 
processing is the reconstruction of 3D models of real worid objects. Hereby, data 
sets of points are available in different orientations or views of the real object and 
shouid be merged together. It is the task of the registration algorithm to find the 
relative position and orientation of a data set of points A to another data set of 
points B. The registration can be defined as: 

"7/76 determination of a geometrical transform that aligns points in one view 
of an object with corresponding points in another view of that, or another, object'' 

The proposed solution uses the registration approach to find the exact 
match between the real range data set and the model range data set. Therefore, 
corresponding points must be found and matched with a pairwise rigid alignment 
technique. The algorithm is based mostly on a minimization process of the distance. 
The literature gives examples of the most relevant registration algorithms [136] and 
Iterative Closest Points algorithm (ICP) is the most important and fundamental 
registration algorithm. The ICP algorithm and its variants are approaches often used 
in registration tasks. The ICP was introduced by BesI & McKay in 1992 [6] and in 
parallel by Chen & Medioni[137]. It belongs to the 3D to 3D registration process 
[23] and, generally, determines a transformation between two or more object 
representations [8] based on the distances of the closest points of these data sets. 
Due to the exhaustive search for the closest point, several improvements on the ICP 
method have been developed[138], [13], [139]. Oniy compatible and view point 
independent feature points are extracted in [140] to reduce the number of points. 
Therefore, many approaches try to extract features from the range data that can be 
used for matching, as shown in[141]. These strategies are advantageous in terms of 
better performance and also in terms of the robustness if features are available in 
range data. There are many other feature-based ICP approaches that can be found 
in the literature [31]. In this chapter the algorithm is generally described and some 
appiication fieids were introduced. The chapter describes the algorithm in detail and 
shows some expansions and improvements. An innovative fast variant of ICP is 
introduced and evaluated in the foilowing. 
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4.1 Fieids of appiications of Iterative Closest Points 

algorithms 

The registration of point data is found in many different areas of daily life. In 
the next sections, some examples are shown for the usage of the ICP algorithm in 
different areas. The appiications are not limited to the foilowing appiication areas. 
Even further appiications in the areas of education/study, games, e-commerce and 
more are possible. 

4.1.1 Medicina 

Registration methods support doctors attending to the diagnosis and 
therapy of patients. 3D data fronn different image sources (MRT + PET) are merged 
with registration nnethods. The connbined result is used to fight against cerebral 
tumors or to support surgery. Depending on the appiications, different methods of 
graphical data registration are used. The registration of graphical data plays a nnajor 
role in different systems. Image data must be transformed by: 

taking from different image sources to each other 

• taking from one point of view to another point of view 

• taking at different times 

• taking to compare different patients 

In this context, the ICP algorithm plays a major role. For example, Feldmar 
et al. [142] use an extended ICP algorithm. They used a non-landmarked approach 
and extended the data with an additional dimension to include the intensity. These 
methods were proven for the comparison of MRT brain photos or for the detection of 
heart ischemia. 

Another variant of ICP is used by Stewart, Tsai and Roysam [143] to 
register retinal pictures. The so-called Dual Bootstrap ICP registers small segments, 
based on the qualities of the blood systems, and appiies the transformations to the 
overall picture. The appiications in medicine or biometrics [144] are various. Many 
further medical appiications are reviewed in the work of [145]. 

Jain, Chen and Demirkus [146] use ICP to align and match fingerprints by 
extracting level 3 features of pores and ridges in the fingerprints. These features are 
automatically extracted using wavelet transform and Gabor filters and are locally 
matched using the ICP algorithm. 

4.1.2 Engineering 

In computer graphics, the registration of three-dimensional data is also a 
major topic of research. CAD models of solid objects are produced with the help of 
sampling or scanning (reverse engineering). Here especially, laser distance sensors 
are used. The ICP algorithm is often used to align the acquired data of two- or 
three-dimensional object scans. 
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An interesting approach proposed by Gutmann and Schiegel [147] is the seif 

localization of mobile robot agents. Two-dimensional laser scans are taken by a 
mobile robot. A general term for mobile robots is ''SLAM" (Simultaneous Localization 
and Mapping). The resulting transformation of the registration yieids the position of 
the mobile agent. An often cited approach comes from Lu and Milos [18], and is 
used in further developments and provides stable localization [147], [17], [148], 
[149]. 

Another appiication is the digital reconstruction of cultural objects. The 
sculpture of Michelangelo's David was digitized by a complex procedure [150] by the 
University of Washington. For this purpose, many parts of small laser scans of the 
sculpture were brought together again to produce a complete model. Kari Pulli [20] 
uses a modified variant of the ICP algorithm to arrange the single scans. With these 
methods, a full model can be put together automatically. Further improvements in 
accuracy are made with ICP-based non-rigid alignment by Brown [8]. 

4.1.3 Photogrammetry 

Photogrammetry is a scientific discipline that deals with the passive 
reconstruction of models in topographic mapping and measurement. 

Huber [151] describes an appiication for 3D map construction of areas and 
buildings using a variant of ICP from different scans of distance sensors with a long 
range, resulting in a three-dimensional map. In this appiication, a large amount of 
data arises with all sorts of resolutions and dimensions. With the help of the 
registration, large maps merge from single scans. In [27], map matching uses ICP 
to refine the multilevel surface maps for the extraction of building and city 
reconstruction. 

4.2 The Iterative Closest Points algorithm 

The ICP algorithm was developed by BesI and McKay [6] and in parallel by 
Chen and Medioni [137]. The appiication of the ICP algorithm is not restricted to a 
representation of an object. Points, lines or triangle sets, implicit curves/areas and 
parametric curves and areas couid be used as geometrical representations of the 
objects. Matching methods can generally be distinguished according to the result in 
transformation. The transformation of the ICP algorithm is part of the class of the 
rigid transformations that oniy moves and rotates the object. The ICP registration is 
a rigid transformation that maps one object to another as well as possible. In 
general, this is a complex task because the correct mapping between the points is 
not known beforehand. As the name aiready implies, ICP is an iterative algorithm, 
which determines the result with the help of a mathematical minimization. 
Therefore, the knowledge of an approximate iniţial solution is important for the 
success of the method. An iteration of ICP is separated into four steps (Figure 38). 
Initially, the corresponding points in each data set must be found. Every point of the 
scene is then assigned to the Euclldean closest point of the model. With the help of 
a minimization function, an alignment transformation can be calculated, and the% 
algorithm minimizes the mean square error of the point distance in several iteration 
steps. An iteration step finishes by appiying the resulting transformation to the 
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scene and recalculating the distance error between the data sets. To abort the 
iterations, a threshold or a maximum number of iterations can be implemented. ICP 
converges monotonousiy to a minimum. The next section introduces the base 
algorithm of ICP. It starts with mathematical basics foilowed by expansions and 
modifications of the ICP algorithm. 

4.2,1 Model and scene 

The set of points of the model is defined as: 

M = [mi} with mj = (jc,, , ) , / = 0,1,.. JV̂  4.1 

The set of points of the scene is defined as: 

P = \pj] with py =(jCy,>y.ZyX;=0,l,...yVy 4.2 

Model M can consist of points, line segments, parametric curves, implicit 
curves, triangles, parametric surfaces or implicit surfaces. The representation 
becomes important at the calculation of the distance values, where all these 
representations are re-converted back to point representations again. Therefore, the 
model and scene data sets are assumed to be points in the Euclidean space in this 
thesis. 

4.2.2 Point correspondence and distance function 

Every point of scene p, must be assigned to one point of M. Due to simplicity 
purposes, the number of points in the two sets of points is assumed to be equal in 
the foilowing equations. BesI and McKay [6] describe in their work an assignment of 
P and M with the smallest distance. The distance is calculated with the help of the 
Euclidean distance: 

d(pj.M) = Tmn{pj£f\\mi, pj ||) ^. 3 

This Includes m.eM where M can be a set of points, lines or curves. The 
function always provides the point with the smallest distance to the point p/ of the 
scene P. The resulting point correspondences calculated with the distance function 
are summarized in: 

Yi, =C{pi,M) 4.4 

C is the closest point operator, p is the transformed point set per iteration k 
and M the point set of the model. Finding the smallest distances in every iteration 
step is the most complex and time-consuming function of the ICP algorithm. This 
operation has a complexity in the not optimized implementation of O(N^xN^). This 

fact leads to an unintentionally high calculation time if the set of points are very 
large. 
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4.2.3 Closest points error minimization 

The distances of all points of the model M and the transformed scene must 
be minimized. This reflects the foilowing error function 

4.5 

J 1=0 

The transformation T can be separated in a translation t and a rotation R. 
This leads to: 

Different strategies can be separated Into direct and indirect methods with 
(closed and not closed form) solutions to find the minimum of E{Rj). 

Four methods for the closed form transformation calculation can be used 
[152]: 

The transformation estimate under the use of the unit quaternions 

The transformation estimate by means of the singular value reduction of a 
matrix 

The transformation estimate with the help of orthogonal matrices 

The transformation estimate with dual quaternion 

They have examined and compared the closed methods. The best known 
and most important transformation estimate employs the method of unit 
quaternions, which is explained in the foilowing section. 

4.2.4 Quaternion-based approach according to Horn 

Rotations can be described very effectively with the help of quaternions, 
making sequences of rotations extremely simple. In addition, no reflections in 
solution appear. BesI and McKay [6] uses the quaternion-based approach introduced 
by Horn [10]. With the unit quaternion: 

with 9rid ql-^q^ -^gj ^gj =Othe rotation is shown in the foilowing: 
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2 2 2 2 

2(̂ 1 ̂ 3 - ) 2(̂ 2̂ 3 + ) 
2 2 2 2 

4.8 

Substituting this in the error function mentioned above, which has to be 
minimized, this results in: 

4.9 

With the translation vector 

4.10 

the vector 

Q = 4.11 

describes the current situation of the registration process. The closed fomn 
solution, which is used in this work, was originally proposed by Sanso[153]. It 
agrees with the solution introduced by Horn [10], which is briefly shown here. The 
required rigid transformation is represented by the fornnula: 

T{pj) = R{pj)-^t 4.12 

The rotation nnatrix is usually a matrix of the dimension 3x3. The translation 
vector t is a vector of the quantity 3, and the solution of the problem is separated 
into two tasks — the calculation of the rotation nnatrix R and calculation of the 
translation of vector t. With the ''center of mass" of the given set of points 

i V 

i=i 

4.13 

/=1 

4.14 

the relative point data ţjrn and p̂ are calculated. With this result the 
covariance matrix can be buiit: 
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Np 

Z p M = z 
i=] i=] 

4.15 
.P/'", l'MpMm 

With help of the covariance matrix the anti-symmetrical help matrix 
A is bullt according to: 

Z^PM ^FM 
4.16 

The cyclic components of the anti-symmetrical help matrix turns into the 
vector: 

A = 
«23 

4.17 

and a symmetric matrix Q is buiit: 

<1, 
) = 

^PM L^PM ^PM 

4.18 

The term is hereby the multiplication of the sum of the main 

diagonals of the covariance matrix and an identity matrix in (trace of the 
covariant matrix). The elements of the normalized eigenvector of the greatest, 
positive eigenvalue correspond to the elements of the unit quaternion (Equation 4.7) 
representing the target rotation. The associated rotation matrix R can be calculated 
after equation 4.19. With a known rotation matrix R the translation vector t is 
calculated as: 

4.19 

The transformation for the new scene is given by Formula 4.12. 

Summarizing the ICP algorithm, an iteration of the method contains the 
steps according to Figure 38. After initialization, the corresponding closest point mj 
to every point Pj must be found. After that, the algorithm calculates the 
transformation from Yi, ) by minimizing the square error between the points 
of the scene and the corresponding points of the model. 
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INIT ICP ERROR 
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Figure 38 Iterative Closest Points 
The process of ICP can be separated into several iterative steps after the initialization. The 

alignment is calculated in each iteration step from the corresponding points and appiied to the 
data set. 

This transformation is appiied to all points of scene P, and this process is 
repeated iteratively up to the point where it reaches a threshold. Otherwise, the 
iteration starts again. For exanfiple, if the error difference is less than a certain 
bound, the iteration is stopped. The choice of a threshold value is dependent on the 
qualities of the objects involved. Alternatively, a maximum number of iteration steps 
also interrupt the minimization process. 

The iteration stop criterion couid be extended to many other possibilities 
[IIL [154], [155]: 

• Fixed number of iterations 

• Absolute error threshold 

Error difference threshold 

• Pose change threshold 

• Complex error criterion 

In general, all of these iteration stop criterions can be implemented 
simultaneousiy. Whenever one of these criterions is met, the iteration stops. The 
algorithm converges monotonous, as proven by BesI and McKay [6], and the 
alignment accuracy is defined by the minimum of the standard square error. If the 
iterative minimization always converges towards a local minimum, it is not 
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necessarily the global minimum. Therefore, the choice of a suitable iniţial start 
position is an important factor for scene P and model M to find the global minimum. 
The major problem of the base algorithm is the high number of iterations finding the 
correct transformation. This leads to a time-consuming registration system. The 
introduced ICP algorithm of BesI and McKay [6] has been modified and improved 
several times. Some of the most popular and efficient results of further approaches 
are shown in the foilowing sections. 

4.3 Modified ICP aigorithms 

The ICP algorithm of BesI and McKay [6] does not perform particularly well 
in some cases if an optimal transformation has to be found between two surfaces. 
There exist different scenarios where the ICP method has profound problems and 
arrives at oniy bad or incomplete solutions. Special attention has to be placed on the 
choice of the iniţial position. The ICP algorithm is vulnerable to the convergence to 
local minima, which do not have to correspond to the global solution. A good iniţial 
solution is particularly important if a smaller surface shouid be transformed 
completely on a part of a bigger surface. 

The ICP algorithm works well if the point sets have sufficient overlapping 
and continuous surfaces. Overlapping surfaces cause problems because the 
calculated transformation is no longer identical with the actually desired 
transformation. In this case, the unmodified ICP algorithm cannot provide the 
desired result. The weaknesses of the ICP algorithm concerning these problematic 
cases cannot be eliminated completely. Numerous variants have been developed 
that work substantially better in such cases, as well as also improving the 
performance and precision. Furthermore, the base algorithm is vulnerable to outiiers 
in the point data, which destroy the guaranteed convergence of ICP [156]. Many 
extensions exist to increase the robustness against outiiers in scenes and models. 
The biggest problem of the ICP algorithm is the time-consuming calculation of the 
transformation due to the exhaustive search for the nearest point [13]. Therefore, 
most approaches, expansions and comparisons concentrate on the acceleration of 
the algorithm itself. 

According to [13], the ICP algorithm can be separated into the foilowing 
variants: 

Selection: Selection of points from one or the two sets of points 

Matching: Finding corresponding points to the selected points 

Weighting: Add weights of the point pairs 

Rejecting: Excluding some of the point pairs 

Minimizing: Assigning and minimizing an error metric to the corresponding 
points 

AII these variants are described as foilows. 
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4.3.1 Selection 

To enhance the speed, a reduction of the used points is logically consistent. 
BesI and McKay [6] use all points of the scene to find the closest point in the model. 
A reduction of the points brings a great improvement in the time intensive 
correspondence search given by large sets of points of the scene. Turk and Levoy 
[138] use unifornnly distributed samples of points. Oniy 1-5 percent of the complete 
set of the points are sufficient to reduce the costs drastically without any effects on 
accuracy. Masuda et al. [139] change the selected points at every iteration step 
randomly. Additionally, this increases the robustness because a bad iniţial selection 
causes the algorithm to not necessarily converge. Normal-space sampling selects 
points to cover a uniform distributed spectrum of the point's normals [13]. In 
contrast to the described selection of points, some approaches use a selection of 
points with special features[157]. Gobin et al. [158] select the points from the set of 
the scene due to the correspondence of the intensity values. These are provided by 
the used laser scanner and search for the next respective neighbor in the model set 
of points. Sharp et al. [159] add curvature and moments of a point beside further 
characteristic qualities for the reduction of the vulnerability of outiiers in the data. 
The experiments of [13] show that there are no great differences in convergence 
with varying selection methods (uniform sampling [138], random sampling [139], or 
normal-space sampling [13]). Nevertheless, the selection of points dramatically 
increase performance without (or at least minor) a loss of convergence quality [41]. 
As a consequence of this, the core ICP refinement algorithm in this thesis will 
extend this by using an optimized sub-sampling of points for every iteration step 
(Section 4.4). 

4.3.2 Matching 

When finding corresponding points, there is the possibility to search the 
closest points directiy, as shown in BesI and McKay [6]. This method is very 
complex, because all points of the scene and the model must be compared to one 
another. The complexity has to be valued with O(N^xN^) and is the most time-
consuming step of the whole ICP algorithm. This complex method can be improved 
by many different methods [33]. Simon [11] describes a high increase of the speed 
by using k-d trees and closest point caching, as was suggested by Zhang [160] and 
improved by [161]. The use of a k-dimensional binary tree search permits excluding 
big regions in the search space [162]. At every decision in a tree node, one side of 
the hyper plane can be rejected. Compared to the base algorithm, the use of a 
suitable tree search reduces the required time by more than 90 percent[ll], [163]. 
Simon combines further methods such as closest point caching with the tree search, 
and these have been proven in additional articles[164] and[163]. Especially when 
large point data sets exist, the use of a binary selection tree is important. The 
complexity can be reduced to in comparison with the brute force 
search in [6]. In his comparison studies, Zinsser [163] comes to essentially the 
same result. The search with a k-d tree requires less than 10 percent of the time 
that is needed for a complete search. 

Other possibilities for matching strategies can be found if not using the 
closest point as the corresponding point. The matching of suitable points can also be 
improved by other methods such as projection methods. An example of a projection 
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method is so-called ''normal shooting"[137]. Therefore, Chen and Medioni find the 
intersection of orthogonal lines from each point in the set of the scene with the 
destination surface. 

With depth pictures, it is probably better to project the starting point along 
the principal axis of the camera. Blais and Levine [165] describe this as 'Yeverse 
calibration". 

Instead of using the intersection point at the projection procedures for itself, 
the closest point can be searched close to the intersection point. For example, it can 
be used only by that closest point, where its normal differs oniy around a certain 
angle [20]. In addition to all these methods, compatibility properties can be 
considered as a type of quality. A typical quality is the color of the point [37]. The 
methods of ''normal shooting compatible" and "reversed calibration" converge very 
well in the tests of Rusinkiewicz and Levoy [13]. The profound effect compared to all 
methods can be found by the acceleration of the k-d tree search [166], but includes 
the generation of the kd-tree before the ICP algorithms starts. 

4.3.3 Weighting 

Weighting of the correspondences is important in reducing the influence of 
worse correspondences and to avoid systematic errors at data acquisition under 
certain circumstances. The weighting primarily increases the improvement on the 
robustness. In addition, the convergence is accelerated because outiiers at the point 
pairs can influence the quality of the solution. The base algorithm gives every pair a 
constant weight (factor) of 1. In their approach, Turk and Levoy [138] give an 
isotropic weighting to every point pair, which calculates itself at the orientation of 
the assigned points. If the normals of the points are oriented in the same way as 
the sensor's principie axis, these points get a higher weighting value. These 
weightings especially increase the robustness of ICP with defective input data. Dorai 
et al. [167] weight the point pairs in accordance to their reliability in the 
adjustment. The value of the weights can also be connected to the distance values. 
This method is very similar to the exclusion of point pairs with too large distances. 
No major advantages have been recognized by Rusinkiewicz and Levoy [13] while 
analyzing the weighting of points in their tests. In comparison with the original 
"constant weight" (weight =1) by BesI and McKay [6], no weighting is significantly 
better. Further, increasing the noise in the data does not change the resuits. 
Therefore, no explicit weighting was included in the proposed Progressive Meshes-
based ICP introduced later in this thesis. 

4.3.4 Rejection 

Rejecting point correspondence is the best method to eliminate outiiers at 
the correspondences. Outiiers have a bad influence when determining the optimal 
transformation. Some approaches [165], [20], [13], [168] pursue a simple strategy 
by excluding point pairs when the distance between their points is larger than a 
specified threshold. Specifically, a certain percentage of the point pairs with the 
greatest distance are usually removed and unwanted outiiers are filtered out. If a 
slower convergence under certain circumstances is not important, this method has 
minor disadvantages and can be used at all times. A simple threshold for the 
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rejection of point pairs is given through the addition of multiple standard deviations 
to the mean value; so, large deviations can be simply rennoved. Correspondences 
that are located at the edge of a surface can be additionally excluded [138] if the 
surfaces are relatively flat and snnooth. Dorai et al. [167] exclude correspondences 
by comparing them with the respective neighbor correspondences; taking their 
distance and orientation into account. Rusinkiewicz and Levoy [13] connpare three 
methods of rejection of point pairs with the base algorithm. If 10 percent of the 
point pairs with the largest distances are rejected, an improved convergence 
behavior arises. A sinnilar behavior can be achieved by rejecting the point pairs — 
the distances of which exceed a 2.5-tinnes standard deviation. The method of Dorai 
et al. [157] also influences the convergence behavior in a similar way. The use of 
rejections has nearly no effect on the convergence speed, but it is a good way to 
increase the robustness and accuracy of the registration. 

4.3,5 Minimizing of point-to-point metrics 

Before determining the optimal transformation, the choice of the 
minimization metric is important. If the well known Euclidean metric is used to 
minimize the distance between two points, several closed form solution procedures 
can be used. One of these procedures is the unit quaternion method of Horn [10], 
as described in Section 4.2.4. Further methods such as SVD, orthonormal matrices 
or dual quaternions have been examined in [152], Furthermore, other optimization 
strategies like non-closed form solutions for the minimization of the distances at the 
point to point metric couid be used [169]. Examples for an indirect solution are 
search methods (e.g. gradients or simulated annealing, physical system simulation 
[170], [171]). These open form solution methods are opposite to the closed form 
solution methods that analytically calculate the transformation directiy from the 
point pairs. Lorusso et al. [152] compare the algorithms in closed form with the 
point to point metric. In this work, they conclude that the methods bring the same 
results in precision and speed. As stated in [13], the difference between the 
solutions is not significant. AII of them converge approximately in the same time ( 
0{n ) with similar constants) and have similar precisions (the floating point 
precision) and stabilities against outiiers. 

4.3.6 Minimizing of point-to-plane metrics 

Another possibility is the usage of the point-to-plane metric. Here, the 
distance of the points is defined by the distance between a point and the plane, as 
explained in Chen and Medioni [137]. The error metric is defined as: 

4.20 

where the normal n, of the point correspondence mi is integrated. The 
determination of the transformation between the two data sets is given by the 
minimization of the alignment error. In general, the solution of the point-to-plane 
minimization is non-linear and is usually solved using standard non-linear least 
squares methods [172]. Seeger et al. [173] have tested three different solution 
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methods to minimize the distance. Compared to the SVD (singularity value 
reduction) and the complex Levenberg-Marquardt algohthm, a LU-decomposition is 
proven to be much faster. The use of point to plane metrics with a non-linear 
solution [35] gives a significantly Improved algohthm. Gelfand et al. [174] analyze 
the non-linear rotation according to [175]. Assuming a small incremental rotation in 
one iteration of the ICP, the rotation matrices (for example, for the X axis in 
equation 4.21) can be linearized: 

"l 0 0 ' 1 0 0 • 
Rx = 0 cos(a) - sin(a) ss 0 1 -a 

0 sin(a) cos(ar) 0 a 1 
4.21 

Appiying this linearization to all rotation matrices, the full rotation can be 
written as: 

1 -Y P 
y 1 -a 

-P a 1 
4.22 

With a substitution of this equation with respect to Equation 4.20, the error 
minimization is written as ([175], [174]): 

£ = ̂  ((m/ 

4.23 

The minimization by setting the parţial derivatives: 

SE SE SE SE SE SE 
Sa Sp Sy a^ ay 

= 0 4.24 

to zero, leads to a ''covariance"-matrix in the form of: 

^iyX^i.z a 
P 
r 
^x 
h 
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- I 

- Pi) 

- Pi)'n 
4.25 

The decomposition of the linearized equations can be made with standard 
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decomposition algorithms for the form of A*t = b . Because matrix A is symmetrical, 
the Cholesky decomposition is suggested by [175]. In [174], this approach is 
extended for stability analysis of the ICP algorithm. According to [13], [176], it 
turns out that the minimization method is a very efficient point-to-plane metric. The 
comparison of the convergence behaviour of the different metrics is proposed in 
[13]. It is shown, however, that the point-to-plane metric of Chen and Medioni 
[137] converges faster. Using point-to-plane metrics is not the oniy advantage of 
Improving the speed of the ICP algorithm. In addition, the vulnerability of the 
convergence to local minima is reduced, as shown by Pottmann et al. [177]. In 
Section 5.2, the results of the point-to-plane metric compared to the point-to-point 
metric are shown in detail. 

4,3.7 Extrapolation 

Independently to the metric, there are several variants that carry out the 
minimization as robustly and as fast as possible. The base algorithm has aiready 
been combined with an extrapolation method by BesI and McKay [6]. The result of 
the transformation vectors Qo, q^ ...Qn forms a path in the seven-dimensional space. 
This describes the translation of the initialized position up to the definite optimal 
orientation. To reduce the large number of iterations, where the status vector Q 
changes almost lineariy, an extrapolation procedure based on the last 
transformation vectors q̂ -i, Qk-z can be used. This accelerates the calculation of the 
next vector q̂ . Therefore, the difference vectors: 

are calculated by representing the angel k in the seven-dimensional room 

^k =Qk-4k-\ 4.27 

When the last q̂  are located on an approximate straight line, this linear (or 
quadratic) function is used to calculate the zero point (or the extreme value). 

It is checked at every iteration if this appiies to a sufficiently small angel 
Oî <SO and Of̂ .] <SG. This condition is true for the last status vector q̂  and if d̂ -if 
df(.i, dk-2 are the accompanying standard square distance errors of the last three 
status vectors. The angles along the status vectors are defined as: 

With the help of equation 4.28 a linear approximation and a square 
interpolation can be calculated. The estimated value for the smallest error arises 
from either the zero crossing of the line dj or the minimum of the curve d2. The 
smaller value is finally used for the calculation of the next status vector 
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IN 4.29 

An upper threshold is usually set at this extrapolation to prevent over-
fitting. On average, this method saves a third or up to a half of the iterations. In 
contrast to the standard method, the extrapolation method minimizes the square 
error faster, as aiready suggested by BesI and McKay [6]. The combination of a 
suitable metric with simple extrapolation procedures leads to the reduced number of 
iterations. 

Further minimization strategies exist besides this proposed acceleration. 
Simon [ll]changes the process by electing different iniţial conditions (iniţial 
positions) at the beginning of the algorithm, processing one iteration step and 
selecting the best one with which to proceed. With this approach, a certain 
resistance to the local minima is given in the error function if the point-to-point 
metric is used. The selection of parts of the point clouds changing in every iteration 
step is used by Masuda[139]. There are many further variants discussed [165], 
[11]. Trucco et al. [178] describe a robust registration algorithm called RICP. To 
reduce the effect of outiiers in the data, they integrated Least Median of Squares 
inside the ICP algorithm as a replacement for the Least Squares rotation estimation. 
A point pair rejection removes outiiers from the closest points to increase the 
robustness. 

4.4 Progressive mesh ICP algorithm 

As shown in the previous section, one of the major problems of the ICP 
algorithm is its low performance when calculating a huge among of points in scenes 
and models, as well as its sensitivity to outiiers. Rusinkiewicz and Levoy [13] (2001) 
reviewed several approaches to reduce the number of points in the closest points 
search process. In every iteration step, all points of the two data sets (meshes) 
must be compared to each other with a complexity of xNjwhere Nj and A/, are 
the numbers points. With k iterations in one refinement step, the complexity will be 

xA^J[179]. The proposed Progressive Mesh ICP algorithm uses a hierarchical 
system to match the point sets. This Idea reduces the complexity by comparing oniy 
low resolution representations of each mesh and not the whole mesh points to each 
other. The obvious advantage is the increased performance, but the profound effect 
is the increased robustness against outiiers. The next section describes the basics 
for Progressive Meshes foilowed by the combination with the ICP algorithm. 

4.4.1 Progressive meshes 

Hierarchical levels of detail (LOD) systems like Progressive Meshes are 
related to hierarchical pyramids in image processing. An early approach was 
introduced by Tanimoto and Pavlidis in 1975 [180] for an image representation with 
resolution levels. The resolution level of a pyramid in image processing is generated 
by the average determination of neighboring points, so quadratic non-overlapping 
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regions are created with one Intensity value. In every pyramid level, small image 
structures disappear with decreasing resolution and the infornnation content 
decreases with increasing reduction. Because of the unsafe localization of feature 
points In higher levels, every pair of points is projected on the next pyramid level. 
Hierarchical techniques are very quick and, nowadays, are used for many image 
processing tasks. However, corresponding points can be found more efficiently. The 
idea of a hierarchical system is transferred to 3D data structures as well. One of 
most efficient algorithms is the Progressive Mesh representation introduced by 
Hoppe et al. in 1993 [71]. An important appiication for Progressive Meshes is given 
by the progressive compression of 3D meshes. This is desirable for the data 
transmission of complex meshes over networks with limited bandwidth. First, a 
coarse mesh is transmitted over the network. After that, refinement data are 
transmitted to enhance the mesh representation until the mesh has its full 
resolution. For this reason, a hierarchical progressive data structured is required. 
The Progressive Meshes technique is closely related to the work on mesh 
simplification [181] and belongs to the energy function optimization methods [182]. 
This data representation has the foilowing advantages: 

Highiy efTident mesh representation 

Level of Detail representation 

Mesh simplification with noise reduction 

The mesh representation consists of faces (triangles) defined by three 
vertices (points). An edge is the line between two vertices of two adjacent faces. 
The representation of Progressive Meshes is given by a set of meshes Mo to Mn. Mo is 
the mesh with the lowest resolution and Mn is the mesh with the highest resolution. 
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Figure 39 Progressive Mesh operations[71] 
Edge collapse: The number of edges is reduced with this operation. Vertex split: The opposite 

operation of edge collapse adds a vertex to the mesh to increase the level of detail. Edge 
swap: The edge between vertices Is swapped according to the error function. 

Generating a Progressive Mesh means appiying edge collapse 
transformations to the mesh Mn. The Progressive Mesh generation algorithm appiies 
a series of edge collapses to a mesh, simplifying the model by reducing the number 
of vertices and faces. The edge collapse process is shown in figure 38, where the 
edge {i,j} is reduced to one vertex. The most simplified model obtained after this 
process is called the base model Mq. The opposite of the edge collapse 
transformation is the edge split transformation. The base model can be 
reconstructed to an original representation by the reversed operation of edge 
collapse through vertex splits. In this case, one triangle is split into two triangles 
with the vertices ijkl. Each vertex split operation replaces one vertex with two edge-
connected vertices and creates one additional vertex and two additional triangles. 
By incrementally adding new vertices and faces to the base model, the original 
mesh is reconstructed. Edge swapplng is made if an edge collapse will lead to a 
higher inaccuracy of the mesh representation. To construct a Progressive Mesh, it is 
important to find a proper edge to be collapsed at each step. The decision can be 
made with the calculation of an energy function which takes number, distance, 
accuracy attributes of vertices, discontinuity curves and a regularization term into 
consideration [71], [183], [184]. According to the calculated energy costs, each 
edge is put into a priority queue. After the algorithm has calculated the priority 
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value of each edge, the edge with the smallest priority value is selected to collapse. 
Wlth every iteration one edge is collapsed, the nearby edges are reevaluated and 
the priorities are reordered in the priority queue. This process repeats until 
topological constraints prevent further sinnplification. Thus, the original mesh with 
full resolution is simplified by edge collapse operations in batches — creating a 
series of intermediate nneshes Af, of decreasing resolution. The simplification stops at 
a simple model The complete process can be described in the foilowing 
equation: 

<r-
ecollQ ecolli ecoll^-x 

Every single step Mj is restored to recover the mesh of this step. So, every 
mesh Mi with the required resolution can be retrieved in a very efficient way. 
Therefore, a Progressive Mesh is defined as the representation of the base model 
and the series of vertex splits. Many arbitrary multi-resolution models provide a 
fixed number of levels of details organized level by level. The main advantage of 
Progressive Meshes is the fact that they allow the refinement steps to be done, 
vertex split by vertex split [185]. Some reviews of further developments of 
Progressive Meshes like [186], [185] can be found in [184]. Thus, the Progressive 
Mesh representation provides a powerful framework for polygonal simplification and 
object representation in different levels of details. 

4.4.2 Combination of Progressive Mesh and the ICP algorithm 

ICP is a time-consuming algorithm that depends on the number of points in 
the scene and model. The major problem of the ICP algorithm is its low performance 
when calculating a huge number of points in scenes and models. The proposed 
algorithm is a hierarchical system including Progressive Meshes — introduced in the 
previous section in order to speed up the convergence. This combination reduces 
the complexity of the neighbor search by comparing oniy the Mj representations of 
each mesh and not the whole mesh points to each other. The obvious advantage of 
multi-resolution ICP is the increased performance, as aiready shown in [14], [160] 
and the robustness against outiiers. By reducing the mesh up to Mo, outiiers can no 
longer affect the result of the distance calculation. 

Multi-resolution mesh registration has been introduced in onIy a few papers 
so far. Different mesh representations do exist and each has its own advantages 
and disadvantages. An approach for a multi-resolution mesh registration is 
introduced by Jost in [14]. Jost increases the number of points by a fixed factor in 
one LOD step depending on the number of points in the data sets. The author states 
an improvement in multi-resolution registration by factor 8, increasing the number 
of points by sub-sampling when an error criterion [155] is met. Due to this, the 
number of ICP iterations varies in each resolution step. 

One year later Zinsser et al. [179] used a uniform subsampling technique in 
a hierarchical context. They use onIy every 2̂ -th points in the data sets, where h is 
the increase after the data points are aligned with the ICP algorithm. This is 
combined with robust outiier thresholding and an extrapolation of motion 
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parameters in their Picky ICP. 

Ikemoto et. al. [187] align warped range data in their coarse-to-fine 
hierarchical approach. The data sets are separated into small pieces to compensate 
for the global warp, which connes from sensor errors. Each piece is rigidiy aligned 
with respect to other pieces in the data set, leading to a better convergence. To gain 
the advantage of better convergence and accuracy, the total performance is 
reduced. Their registration tests result in a pairwise match with 1200 points, with a 
total convergence of several minutes on a 2.8Ghz Pentium4. 

The Progressive Mesh representation in combination with the ICP algorithm 
is introduced by [188]. They register each LOD representation of the mesh with a 
full ICP registration step in the foilowing way. They create a list of mesh pairs 
(model and scene) with different LODs. Each pair is registered with the help of the 
ICP algorithm, starting with the lowest LOD, and the resulting transformation of 
each LOD registration is used as the iniţial transformation for the next LOD 
registration. In their experiments, they use two LODs for a data set. They report a 
slightiy better performance than the original ICP algorithm (about 5% in 
convergence time, without considering the time to create the mesh representation). 
Unfortunately, they do not give any information about the error stop criterion they 
used. 

Low [189] smooth their data sets into multiple resolutions by two-
dimensional cubic uniform B-spline wavelet transform. They use a pseudo-point-to-
plane minimization metric to implement a closed form solution for transformation 
determination. To change the level of detail, the average distance between the 
points in the current resolution is compared to the average distance between the 
matched points. When the maximum distance between the correspondence pairs is 
less than 25% of the size of the support of the cubic B-spline basis function used to 
produce the current smoothed surface, the next level of detail is used. In opposite 
to the described approaches so far, the approach of [189] changes the LOD inside 
the registration steps. Most approaches determine one LOD and try to find the best 
transformation for this exact model and scene representations with the help of the 
ICP algorithm. After the best transformation is found with the ICP algorithm, the 
LOD is increased and the next ICP process is started in order to find the best 
transformation for the next LOD. 
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Figure 40 PMICP Iteratlon steps 
The Progressive m e s h LOD a d j u s t m e n t is In tegra ted inside the ICP i terat ion. 

The Figure 40 shows the integration of the Progressive Mesh data 
representation in the iteration steps of the ICP algorithm. Before the iteration starts, 
the model (Af/j) and the scene (M/2) data sets are transformed to a coarse 
representation with a low level of detail {Mstarti and Mstart2)' The number of vertices 
in Mstarti and Mstani is not the minimunn Mo of the mesh. According to the 
experiments, it transpires that the optimal number of faces is given by 

4.31 

ThuS; the maximum faces at the start of the iteration are five percent of the 
maximum faces of the mesh. With oniy one face in each data representation, 
misalignments couid occur because the triangle couid flip over (face normals are 
opposite). Due to this, the minimum of 5 faces is used in the proposed algorithm 
based on the experimental resuits. The next step is the search of corresponding 
points in the current LOD data representation M/. This step incorporates the 
selection, matching, weighting and rejection strategies described in previous 
sections. 
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Figure 41 LOD integration 
This is an overview of the LOD integration. A reduced data nnodel is aligned and the LOD is 

increased after several iteration steps. 

AII points of the current LOD data representation (which Is a subset of all 
points) are used to find the corresponding point pair. Figure 41 shows the 
integration of the LOD data representation in the ICP algorithm. In the first ICP 
iteratlons, the coarsest LOD data representation of the scene is matched against the 
model. The LOD is increased wlth an increasing number of iterations until the scene 
and model data reaches the maximum number of their vertices. Each iteration 
compares the two meshes and determines their closest points. The point-to-point 
metric ailows for the accelerated closest point search in a kd-tree implementation. 
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Because the Progressive Mesh operations vertex split and edge collapse, the surface 
differs In each LOD representation and the kd-tree in the same way. As a 
consequence of this, the basis implementation to the non-accelerated closest point 
search with complexity of ) is implemented and tested and compared to the 

point-to-plane metric of Chen and Medioni [137]. This leads to a closed form 
solution for the eigenvalue calculation in the transformation calculation step of the 
ICP algorithm (see Section 4.3.5). The points of the Mn representation of the scene 
data set are transformed with the resulting transformation matrix to the new 
position. The distance error of the alignment is calculated over all points in the data 
sets {Mn), so the iteration stop criterion of Section 4.2.4 cancels the iteration. The 
convergence rates of the whole data sets are shown in the tests in the foilowing 
Chapter 5. 
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Chapter 5 System evaluation and 
implementation 

To quantify the accuracy and performance of the whole system, it is 
necessary to analyze the object localization steps in detail. Therefore, the next 
sections will analyze the performance of the coarse pose estimation and, later, the 
performance of the pose refinement. AII tests are run on the reference PC with 
l,73Ghz Pentium M processor, 1GB of RAM and an ATI Radeon graphic chipset 
(Microsoft DirectX© 9.0c Support). 

5.1 Evaluation of pose estimation 

5.1.1 Pose estimation test 

The test is made with the data set for an industrial doorjoint depalletizing 
appiication. One doorjoint is laying on the conveyor belt with an unknown position 
and orientation, as shown in Figure 18. The object model representation consists of 
180 vertices and is transformed into a VRI with about 4000-5000 vertices 
(depending on position and orientation). The scene data has about 150000 vertices 
in total. In every pose, an amount of about 10000 vertices of the scene data are 
compared to the VRI. 
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Figure 42 Pose estimation database performance 
The database decreases the calculation time up to 5% of the original calculation time. 

Figure 42 shows the performance enhancement of the database integration. 
The process time is reduced to about 5% of the process time of the pose estimation 
without the usage of the database. The total process time includes the VRI 
transformation to the respective pose, the database query and the distance 
calculation. The distance calculation is the most time-consumable part, which needs 
on average more than 70% of the total processing time. Therefore, the high number 
of vertices in this test results in a high total process time. If the data sets cannot be 
found in the database, the sensor simulation must be performed. The sensor 
simulation has a high potential to improve the calculation process time of the pose 
estimation. The TOF-based sensor simulation is based on the ray-triangle 
intersection test, which is tested in the foilowing section. 

5.1.2 Pose estimation triangle intersection tests 

The pose estimation algorithm is based on fast ray-triangle intersection 
tests, as stated previousiy in Section 3.3.1.3. The different intersection methods are 
tested in detail in the foilowing. Table 1 shows the average results of mesh 
intersection tests: 
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— ^ ^ Vertices 

36 1850 31752 

DirectX© Ray-Mesh Intersection (AABB) 0,3s 0,9s 14,7s 

Ray-Mesh Intersection with DirectX© 0,4s l,12s 18,4s 

Matlab (C++ Ray-Triangle Intersection Test) 5,3s 221,3s 3750,6s 

Matlab (proof of concept) 10,3s 271,6s -

A non-optimized Matlab proof of concept innplementation has a perfornnance 
of about 5 ray-triangle intersection tests per second. That said, even with an 
implementation of [105] in a compiled C+-i- function, the intersection is not 
significantly faster. The high-optimized intersection test in Microsoft DirectX© 
outperforms all other intersection tests, especially with huge data sets — the 
performance increased by a factor of 200 compared to the other implementations. 
The DirectXO-based implementation handies over 2000 vertices per second with the 
reference PC, using high-optimized intersection functions. Nevertheless, ray-triangle 
intersection tests have a lot of potential for optimization in the future. Known high 
performance software renderers [190] achieve several biliion vertices per second. 
These solutions gain advantages from the development of modern hardware 
(progress in CPU and GPU design), parallelization and high performance software 
concepts like spaţial data structures, Culling and more [191]. 

5.2 Evaluation of pose refinement 

The performance of pose refinement is mainly influenced by the 
implementation details of the iterative closest points algorithm, combined with the 
Progressive Mesh data representation. Therefore, the performance of this algorithm 
is shown in detail in the foilowing figure. In order to compare the test results, the 
standard ICP algorithm is implemented according to [6], without approximation. The 
PMICP is implemented based on the Progressive Mesh implementation of Hoppe in 
Microsoft DirectX© [192]. To evaluate the proposed algorithm, the reference data 
sets of Rusinkiewicz and Levoy [13] are used. These synthetic meshes have about 
100,000 vertices in total, added with Gaussian noise and outiiers. The "incised" data 
set has two lines in the shape of an "X" in the middie of a planar surface. 
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M 

Figure 43 'Nncised" data sets 
The incised dataset is a plane with a small X inside. Therefore, the most important information 

is given by this structure. 

The two data sets' scenario shown in Figure 43 is a difficult task for the ICP 
algorithm, because there is oniy one good feature (the ''X") in the data set to align 
thenn correctiy. As with the 'Nncised" data set, Gaussian noise and outiiers are added 
to the ''wave" data set (Figure 44). This is known as an easy scenario for low 
frequency features and a smooth surface [13]. 

M 

Figure 44 ''wave" data sets 
The wave is well defined with bumps, which gives the ICP the chance to perform very good in 

the first iterations. 
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Opposite to the wave scenaho, the "fractal" data set has features in all 
levels of detail. Therefore, this data set is a good reference for the experiment 
setup. The "fractal" data set represents landscape data of the terrain registration. 

N 

Figure 45 "Fractal" data sets 
The fractal data set represents a terrestrial map with a signal of high frequency. 

These three test scenarlos do not cover all possible classes of object 
surfaces, but they do provide the opportunity to compare the results with different 
kinds of ICP modifications such as the ones that Rusinkiewicz and Levoy [13] or 
ZinBer et al. [163] or Matabosch et al. [63] carried out in their experiments. In 
[193], the test scenarios aiready show the potential to be a good reference for 
comparison. 

5,2.1 Convergence tests 

The convergence behavior of the alignment algorithms is an important fact 
that can be used to compare the results of new algorithms to aiready known 
solutions. To compare the results, the standard ICP algorithm is implemented 
according to [6], without approximation. The original ICP algorithm of BesI and 
McKay [6] is not changed or improved with any other possible strategies such as 
selecting, matching, weighting and rejecting points or usage of different metrics and 
minimizations in this certain test scenaho in order to avoid side effects and show the 
pure results of the contributions in this thesis. The original algorithm uses oniy the 
position of the vertices without considering normals. To have the exact conditions as 
the tests in [13], the introduced data sets are changed in the foilowing way. The 
number of vertices is reduced to 2% (2000 vertices). At first, the experiments use 
the simplest way to adapt the hierarchy of the Progressive Mesh representation — 
for each iteration, the current LOD representation M, is increased by a fixed 
increment and starts with a defined level of detail. 
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10 
fractal data sel 

i n r ^ A m a r t t e l o n vâiu4lh 

Figure 46 Influence of LOD step width in "fractal" data sets 
The number of LOD steps increases the resulting distance error for the fractal datasets starting 

from a step width of about 25. 

It is obvious that the results depend on the used reglstration data. There are 
influences regarding the number of points, error in the data sets and thelr iniţial 
pose. The optimal iteration step width in the fractal scenario can be estimated from 
the graph shown in Figure 46. The distance error of the algorithm is measured until 
it reaches the maximum number of 100 overall ICP iterations. The graph shows the 
influence of the step width of the LOD of the Progressive Mesh in every ICP iteration 
step. This experiment shows two results. First, the quality of alignment depends on 
the number of points used to calculate the transformation in each iteration step. 
With each increasing step width, the maximum number of points in the mesh 
(maximum LOD) is reached and the PMICP converges to the original ICP algorithm. 
The number of total iterations is increased, so the process cannot converge to the 
global minimum with an increment size over 25, because of the iteration number 
limit. However, the optimal LOD step width for this scenario can be estimated. The 
optimal LOD step width is the minimum of the graph, which is mostly greater than 
1. For example, when increasing the number of faces by 1 (increment size 1 in 
Figure 46) in each iteration step, there will be oniy a minimum of additional 
information in the next step, which leads to a slower convergence rate with more 
iteration steps. As a result of this, a higher total convergence time is needed. With 
an incremental size over 10, the calculation time of every iteration step is increased, 
which leads also to a higher total convergence time. Therefore, the optimal LOD 
step width is about 5 in this case. The LOD is incremented every iteration step of 
both Progressive Meshes (scene and model) with this value in order to achieve the 
best total convergence time in this experiment. The iniţial number of vertices 
depends mainly on the number of points in the data set; it is set to five triangles at 
the beginning. The sum of squared distances of the closest points over aii Input 
vertices is calculated in every iteration step to compare the results to the original 
ICP. The distance error calculation is changed from the Euclidian distance to: 
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5.1 

to avoid computaţional floating point errors and increase calculation 
performance[ll]. The convergence theorem of the standard ICP [6] also appiies to 
the PMICP given by the ''internai" distance error of the current point data set M,. If 
the correct registration transformation is known, a ground-truth-based distance 
measurement can be calculated. Usually, when validating a registration approach 
with unknown data sets, no ground truth distance error is available. The squared 
distance error cannot be zero because Gaussian noise is often added to the model 
and scene data set independently. Due to this fact, the iteration process is stopped 
if the maximum of iteration steps is reached. 

80 100 120 140 160 
iteratlons 

Figure 47 Convergence of "fractai" data set refinement 
The fractal data convergence rate of the progressive mesh based ICP algorithm outperfonms 

the original ICP in each iteration step. 

The ''fractal" convergence results of the test scenario are shown in Figure 
47. Looking at the squared distance error, the PMICP outperforms the standard ICP 
in every iteration step, and the standard ICP is locked in a local minimum. Note that 
the PMICP found the absolute minimum in the very first few iterations (as stated 
above, the iteration is not stopped when the algorithm finds the correct pose in this 
experiment). By increasing the iteration steps and the number of points in the data 
sets, the PMICP implementation degenerates progressively further to the standard 
with a better robustness. The iniţial Mj does not suffer from outiiers like the standard 
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ICP does. 

The convergence performante of the PMICP in the wave scenario is similar 
to the previous scenario, especially in the first few iteration steps where the PMICP 
aligns the data sets to a good iniţial pose. The squared distance error over all the 
points in the data set is always smaller in every iteration step compared to the 
standard ICP. 

6.5 
xlO^ 

Sh 

Original ICP 

PM ICP 

60 80 100 120 140 160 180 200 
iterations 

Flgure 48 Convergence of ''wave" data set refmement 
The wave data convergence rate of the progressive mesh based ICP algorithm is always better 

the original ICP. 

The 'Nncised" scenario has an interesting behavior in the convergence graph 
(Figure 48) of the PMICP implementation. 
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Figure 49 Convergence of 'Nncised" data set refinement 
The rate of original ICP algorithm is oniy better in a specific range of iterations. 

Figure 49 shows an Increasing error between the iteration steps 20 and 40. 
In these iteration steps, the planar section is split into triangles. In general a plane 
can be divided into a triangle in many different ways. 
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I « 

99 

Figure 50 ''Incised" M30 Mesh representation 
The full mesh is reduced to a mesh with many points around the "X" and oniy a few mesh 

points in the plane. The points inside the plane are leading to the increased alignment error. 

Taking the different Gaussian noise of the planar shapes into consideration, 
it turns out that points are created at quasi-random positions lying in the planar 
section. This results in the wrong rotation of the aligned data set and increases the 
ground truth error, as shown in Figure 50. With the increasing number of points, the 
alignment is corrected and the iteration process performance enhanced. The M30 
Progressive Mesh representation shows a very good distribution of the ''feature" 
points in this data set. AII of these experiments concentrate on convergence 
robustness and final distance error issues. The influence of Gaussian noise in the 
data is analyzed in the foilowing section. After that, the next experiments show that 
the overall performance of the refinement process can be increased significantly 
with the proposed solution. 

5.2.2 Influence of noise 

To quantify the influence of noise on the proposed algorithm, Gaussian noise 
is added independently to the model data set and the scene data set with increasing 
amplitudes. 
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Figure 51 Noise influence to reglstration 
Due to the error reduced representation the progressive mesh based approach converge 

always better the original approach. 

As shown In Figure 51, the measured iteratlon time is compared to the level 
of noIse. Over aii the experiments [193], the PMICP has a 2 to 3 times lower 
iteratlon tIme than the original ICP algorithm. The convergence time of ICP malnly 
depends on the number of Iterations and nearest neighbor calculation time, as 
aiready shown In [14] and in the experiment data In table 2 where the number of 
Iterations of ICP is reduced in total. 

Table 2 Noise influence 

SNR Original ICP Inc. PMICP PMICP 

5 1027.7 ms 2623.1 ms 335.8 ms 

2 861.8 ms 3099.7 ms 371.7 ms 

1 1238.8 ms 4933.1 ms 65.2 ms 

0.5 1140.5 ms 3035.3 ms 419.0 ms 

0.2 654.7 ms 1149.4 ms 115.1 ms 

0.1 916.2 ms 2497.4 ms 214.6 ms 
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This can be achieved in addition to the higher computaţional performance 

because of the reduced number of points in the nearest neighbor calculation step. 
The results of the experiments in Table 2 show that the incremental Progressive 
Mesh ICP of [188] in column 3 is slower than the original algorithm. This is caused 
by the overhead of changing the resolution of the mesh back to the lowest LOD step 
in every iteration step. In the test, the error difference iteration stop criterion and 
the maximum iteration stop criterion are used for their algorithm. The 
implementation does not include any further improvements to the incremental 
Progressive Mesh approach, as introduced in [188]. The complexity of the ICP 
algorithm depends mainly on the number of points in the data set. The search of the 
closest points has a computaţional complexity of o{njX Ni). The number of points in 

the data set is reduced, starting with oniy a few points and increasing the number in 
every iteration step. The computaţional complexity is reduced to the average 
complexity of o((o.5xA'^ )x(o.5xA^, )) if the iteration is not stopped until the end (M̂  
mesh) has been reached. If the iteration process is stopped, because ICP reached 
the minimum, the performance of the PMICP implementation is always better than 
o((o.5x/V Jx(o.5x^,)). The PMICP (using a linear Mj delta) needs on average 25% of 
the time of the standard ICP implementation. Adding the overhead of the LOD 
adjustment into every iteration step, the proposed solution of this thesis (column 4) 
is always more than 3 times faster than the original ICP, which is aiready shown in 
the convergence time experiments (table 1). 

5.2.3 Evaluation of alignment methods with Progressive Meshes 

To find other test scenarios for a better evaluation, the next test scenario is 
taken from the Stanford 3D scan repository. The well known and most commonly 
used data set of the ''Stanford Bunny" consists of a reconstructed collection of about 
69,451 triangles in total. The model was assembled from the range images of 10 
different views. 
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Figure 52 ''Stanford bunny" registration test scenario 
This test scenario consists of two scans from the dataset of range scans of a bunny figure. 

Each of the scan data sets has over 30000 points. The range images of the 
statue of the ''Stanford Bunny" are acquired by a laser range sensor. In Figure 52, 
the two test data sets are shown. On the left, the bunny in scanned from the right 
front; on the right the bunny is scanned more from the left front side; because of 
this, there are more range points on the bunny's right side than on the left. This 
scenario requires a correct global alignment [8] with overlapping regions. Due to the 
fact that this thesis does not concentrate on this topic of research in detail, the data 
sets are oniy used for alignment to the global minimum without pre-calculatlon of 
overlapping regions or multi-scan global alignment. The threshold to find the global 
minimum is given by the correct transformation between the scans (here the files 
bun270.ply and bun315.ply) from the implementation of the appilcatlon trimesh2 
[194]. These tests concentrate on the convergence and performance of the 
alignment. 
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Figure 53 Alignment convergence time of the ''Stanford Bunny" 
The convergence time is reduced in the Chen-Medioni based alignment because of the 

excessive search of nearest neighbor of Horn-Alignment. 

Figure 53 shows the alignment convergence times of the implemented 
algorithms. AII alignment methods according to Section 4.3 are implemented in 
C++, with and without Progressive Mesh support. The first thing to mention is the 
dramatic improvement of the Progressive Mesh data representation with a linear 
increased level of detail. This is compared to the full corresponding point search 
implementation. The total convergence time includes the search of the 
corresponding points in the data sets, the calculation of the transformation and the 
transformation of the data set. These are the most time-consumable steps in the 
refinement process. It is shown that the Progressive Mesh Iterative Closest Points 
combination is a good method for all kinds of transformation calculation methods. 
The Horn-based minimization on the left of Figure 54 has the most stable 
convergence rate but is, on the other hand, the slowest because of the exhaustive 
search to the closest points. The closest point search of the Progressive Mesh 
algorithm is not accelerated by a kd-tree implementation, because it turns out that 
the creation of a kd-tree for each LOD of the Progressive Mesh is not generally 
appiicable. According to the minimization of Section 4.3.6, the implementation of 
the Chen Medioni algorithm [137], converges faster to the minimum [20]. The 
DirectX©-based Horn minimization is faster because the data must not convert from 
the DirectX© data representation to the required data representation of the 
functions provided by Pulli [20]. The linearized implementation of [174] provides a 
similar performance, with or without Progressive Meshes, because the performance 
is more influenced by the number of iterations. 

BUPT



103 
Chapter 5 System evaluation and implementation 

Plain Alignment 

Horn Alignment 

Chen-Medoni j 
Alignment 
DirectX Horn 
Alignment ! 
Chen-Medioni Linear 
Alignment 

Iterations I 

Figure 54 Convergence behavior without Progressive Mesh 
The Chen-Medioni Linear Alignment is the fastest because it converges in lesser iterations. 

The convergence rates of the alignment methods are shown in the diagram 
of Figure 54. As supposed before the Chen-Medioni Linear Alignment converges to 
the minimum error threshold of 0.4 within 3 iterations in this appiication scenario. 
The other algorithms need up to 8 iterations to converge. 

Progressive Mesh Alignment 

4 5 6 

Iterations 

- Horn Alignment 

Chen-Medoni 
Alignment 
DirectX Horn 
Alignment 
Chen-Medioni Linear! 
Alignment 

Figure 55 Convergence behavior with Progressive Mesh 
The use of Progressive Meshes leads to more iteration steps because of the lack of points in 

the first iteration, but increases the performance dramatically. 
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Comparing these results to the Progressive Mesh-based alignment, the 

Chen-Medioni Linear Alignment needs one more iteration due to the low number of 
points in the first iteration step. Nevertheless, the Progressive Mesh-based Chen-
Medioni Linear Alignment (PMICP CML Aligment) is faster than the Chen Medioni 
Linear Alignment without Progressive Meshes. This can be proven in experiments 
with other data sets. 

To compare the best alignment method of the previous experiments to 
further algorithms, the fractal data set from [13] is used again. In the comparison of 
[195], many more registration methods are tested in detail, focusing on accuracy. 
Nevertheless, they included the total convergence in their paper. Based on the 
paper and the source code of Matabosch et al. [63], the PMICP CML Alignment 
method is compared to the implementation of other algorithms. 

Full resolution Fractal data set 
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Figura 56 Comparison of total convergence time 
This diagram compares the results of the implementation of the most important modifications 
of the ICP algorithms to the implementation of this work (PMICP). The PMICP is over 2.5 times 

faster than the fastest implementation of Jost. 

In Figure 56, the total convergence time of implementations of [63] are 
shown. This diagram is created with similar preconditions to their tests. The fractal 
data set of [13] is rotated in one degree of each axis and translated in one unit. 
With this test, the exact transformatlon matrix is known. Like the test of [63], the 
iteration is stopped when the mean error falls below the threshold of 0.00001, or if 
the maximum number of 20 iterations is reached. No further conditlons and further 
improvements such as sub-sampling or kd-tree implementation are integrated to 
meet the requirements for the comparison to the results in [63]. In contrast to 
these tests, however, the full resolution of the mesh with 4096 points in total is 

BUPT



Chapter 5 System evaluatlon and implementation 
105 
used. The basic algorithm Is not surprisingly the slowest in this test scenario. The 
point-to-plane approach of Chen and Medioni [137] is known to perform well on 
plain surfaces. Extending this with the multi-resolution-based algorithnn of this 
thesis, it turns out that the PMICP CML Alignment performs about 3 to 4 times 
better than the fastest algorithm of the test implementations of Matabosch [63], 
based on the multi-resolutional ICP of Jost [14]. 

In the test data, it is shown that the PMICP is the most efficient 
implementation in all test scenarios provided in [63]. The proposed reduction of the 
influence of outliers of the PMICP is proven by the comparison of the total 
convergence time for synthetic tests of data sets to real data sets. The PMICP 
outperforms the fast algorithm by Jost [14] with about a factor of 7. These results of 
the PMICP include the creation of the Progressive Meshes, the iteration process itself 
and the final transformation of the data sets. 

5.3 System implementation detaiis and evaluation 

This section goes into the implementation detaiis for the object localization 
system, which is generally described in Section 2.1. The system is separated into 
two hierarchical steps — the pose estimation and the pose refinement. 

5,3.1 Pose estimation implementation detaiis 

As aiready shown in Chapter 3, the pose estimation can be different 
depending on the appiication. The implementation of the pose estimation is 
introduced in detail in this section. The overview in Figure 57 shows the steps in the 
implementation of the system. On the left side of the diagram, the data acquisition 
is shown. The object in the scene is usually known by an identifier or name. The 
sensor and its main properties (e.g. measurement principie) and parameters 
(resolution, coordinate system and position) are also known. All this information is 
needed for the data acquisition step to result in the acquired points in the current 
coordinate system. The pre-processing of the point list filters outliers and makes the 
scene data set available for the pose estimation algorithm, which compares the 
acquired points with the simulated data sets. This simulation is shown on the right 
side of the diagram. All steps for a certain set of object poses are aiready done 
beforehand (offiine). The known CAD representation (e.g. in the well known STL file 
format) is the input data to the simulation step. Furthermore, the sensor model is 
selected according to the sensor used in the data acquisition. First, the points and 
normals are extracted from the STL file to transform them into the required pose. 
The transformed data set is given to the sensor simulation function. 
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Figure 57 Pose estimation implementation diagram 
The pose estimation is separated in the processing of the real sensor data on the left and the 

sensor simulation on the right. The comparison results in the best matching candidates. 

The sensor simulation function is a very important step in the pose 
estimation. At first the sensor simulation was implemented in Matlab as proof of 
concept. The detailed function header shows the need parameter for the sensor 
simulation implemented in Matlab: 
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function dist = SensorSimSICKLDX9(transformedObject, 
Sensorposition, angle_srart, angle_srepwidth, numofbeams, 
encoder_steps, encoder_stepwidth) 

Figure 58 Pose Sensor Simulation function declaration 
The CAD object (transformedObject) and the parameters according to the sensor model is 

provided to the function and result in a list of points 

The first parameter is a nnultidimensional array of triangle vertices. This 
array contains the object points in the sensor simulation coordinate system. The 
transformation from the model coordinate system to the sensor simulation 
coordinate system is aiready appiied to the points. The array is a list of triangles 
defined with at least 3 three-dimensional points. One triangle t, consists of a 3x3 
double precise floating point matrix: 

ti = yu 

2̂/ 
>'2/ >'3/ 5.2 

The object array is a list of n triangles, so the dimension of the array is 
3x3xr7. The ray-triangle intersection implementation in Microsoft DirectX© requires 
a compatible mesh representation. The mesh is generated from the triangle list 
implemented with the function D3DXCreateMesh() in the underlying efficient C++ 
implementation. 

The next parameter Sensorposition of the function SensorSimSICKDXQ 
defines the position of the sensor in the sensor simulation coordinate system. This is 
a 3x1 vector according to the sensor model definition (see Section 3.2.2). 

The next parameters define the view direction and fieid of view of the 
sensor. Starting from the value of the parameter angle_start, one ray per 
angle_stepwidth is created. The number of rays in one scan line is limited with the 
value of numofbeams here. With these parameters, an array of rays is calculated 
according to the foilowing equation: 

Rayi = 
Sensorposition] 
Sensorposition2 
Sensorposition;^ J 

cos(ang/e _ start(i * angle _ stepwidth)) 
Sensorposiiion2 
1 

5.3 

The last two parameters setup the movement of the scan line in the 
direction of the Y coordinate axis. The Sensorposition2 or Y position of the sensor is 
incremented in steps of encoder stepwidth. This is done encoder_steps times, so 
the resulting distance map is an mx p image where m is equal to numberofbeams 
and p is equal to encoder_steps, AII these parameters are transferred to a 
DirectX©-based C++ function. The core of the simulation is the ray-triangle 
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intersection tests. This is made wlth the SIMD function D3DXIntersect: 

HRESULT D3DXIntersect(LPD3DXBASEMESH pMesh, CONST 
D3DXVECTOR3 *pRayPos,CONST D3DXVECTOR3 * pRayDir, BOOL * 
pHit,DWORD ^pFacelndex, FLOAT *pU, FLOAT *pV, FLOAT *pDist, 
LPD3DXBUFFER *ppAllHits, DWORD *pCountOfHits); 

Fjgure 59 Intersection function declaration 
The most important parameters are the definition of the ray and the mesh. In this 

implementation oniy the distance value is used to calculate the resulting point. 

The parameter pMesh and the ray (defined by a point in the coordinate 
system pRayPos and direction pRayDir) are provided to the function as inputs. The 
result the function provides the index of the intersected triangle in the mesh, the 
distance to the intersection point and its barycentric coordinates. With equation 6.4 
the intersection point is determined. 

' Inter soc îionPoS] ^ ^ Sensorposition\ ^ ^ pRayDir\ 
Jnter soc îionPos2 = Sensorposition2 + pDist X pRayDir2 

^ Inter sec tionPos^ ^ ^ Sensorposition^ j ^pRayDir^^ 
5.4 

The vector pRayDir is created according to equation 6.4 and linearly moved 
in Y-direction. AII intersection points together form a distance map. This distance 
map is retumed by the function SensorSimDX9, and the sensor simulation then 
finishes. The distance map is converted in the function 
ConvertPointList2ProgressiveMesh() to a Progressive Mesh representation. This step 
is not necessary in this state of implementation because the Progressive Mesh 
representation is not required in the pose estimation function. Due to a better 
performance in the pose refmement step, the generation of Progressive Meshes of 
the simulated objects is prepared in the offline calculations beforehand. This step 
mainly includes a triangulation of the data using a 2D delaunay triangulation [196]. 
The resulting triangulation indices are stored in the database in addition to the 
points and normals of the simulated object representation. The database entity 
relationship model of the database is shown in Figure 60. 
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Figure 60 Database entity relationship model 
The entity model shows the data stored in the database. For each VRI object the list of 

triangles and the list of points of these triangles are connected to each other via ID fieids. 

For every object in the entity PoseEstimationObject, the name and the 
position is integrated. The name identifies the used object and its STL-File and the 
Position_ID references to the VRI positions in PoseEstimationVRIPositions. Each 
position consists of n triangles with its n*3 points. To determine the indices of the 
triangles from a points list, the delaunay triangulation is used. To simplify the 
process of Progressive Mesh generation, the normals in every vertex are calculated 
in the same function DelaunayTriangulation() (see Figure 57). These offline-
generated objects in the database are compared to the scene in the function 
PoseEstimation(). The implementation of the brute force pose estimation (see Figure 
47) is "straightforward" in the case of looping through the positions in the database 
with a defined step width in the directions of all degrees of freedom. Depending on 
the density of the compared positions and the size of the scene, the implementation 
of the ray-triangle intersection piays a major role, as aiready shown in Section 
3.3.1. 

The accelerated brute force pose estimation is based on the normalized 
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cross correlation implementation in Matlabfwww.mathworks.com). The algorithm 
usually cannot be computed in the frequency domain in a simple and efficient way 
[115]. To overcome the computationally expensive normalized cross correlation in 
the spaţial domain, the implementation of the function normxcorr2() in Matlab uses 
the improved version of Lewis [115]. The function normxcorr2() is a 2D normalized 
cross correlation function in the image processing toolbox of Matlab and takes two 
parameters: 

= normxcorr2(template^ A) 

Figure 61 2D normalized cross function declaration 
The template is searched the data A. The result C is a 2D array, where the highest value 

represents the best matching position. 

The input parameter template is a matrix, which has to be smaller than the 
second input parameter A, Parameter A is given by the distance map of the scene 
and the parameter template is the VRI representation. It is obvious that the function 
is not invariant to scale and rotation. The scaling effect is given in the pose 
estimation process by the difference in the distance between the sensor and the 
simulated object. Furthermore, the object is rotated in many cases. Nevertheless, 
the normalized cross correlation in the Matlab implementation can be used to 
increase the performance, especially for huge data sets as proven in [115]. The 
function is used instead of the translational degrees of freedom in the brute force 
pose estimation steps for this reason. The object is rotated in every direction and 
the normalized cross correlation finds the best position for this pose in the scene 
data set. The best matching candidates are stored in an array of position indices 
from the database representation (primary key of entity PoseEstimationVRIPosition, 
see Figure 60). These candidates are used in the refinement process. The diagram 
(Figure 62) shows the implementation steps in detail. 
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Figure 62 Pose refinement Implementation diagram 
The pose refinement is reaiized with a solution to parallelize the data streams. For each pose 

candidate one thread is started to calculate the alignment of this datasets. 

The database indices of the best candidates are delivered with their quaiity 
of the pose estimation process. With the index a two-dimensional bounding box in 
the scene is determined in the function BoundingBoxSceneSeparation(). This 
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function is implemented in the foilowing way. The size of the X-Y boundaries of the 
model in the scene coordinates is retrieved from the database. The shape of the 
bounding box of the scene part is created according to: 

P = \pj\ ^ith pj = 
0.9Xmii\{xi)<Xj <\Axmax(jc,-) 

0.9xmniyi) < yj < l.lxmax(>7) 5.5 

Due to this, the size of the scene is increased by 10% in each direction. This 
is iliustrated in the Figure 62. 

The new scene's data set and the corresponding model's data set are given 
to the dispatcher. The dispatcher collects the tasks for registration and distributes 
them according to the free resources in the computer system. For each registration 
task, a thread is started with its own data sets. This offers a highiy efficient parallel 
registration on multiprocessor systems. Each path in Figure 62 represents one 
thread, which handies the registration of exactiy one scene/model pair. Each thread 
instantiates a class which is shown in Figure 63, sets the point data sets, and 
executes the calculation function. 

PMICP 
ModelPoinis 
ScenePoirts 
Trdnăforfr>edScenePoinls 
CalcuUitedTransformatior 
+Set̂ VxieîPclî t5() 
+SetSaănePoinlŝ ) 
CâlculateTransformation () 

+GetTrarsformaîkxi() 

+SetLODBounclaries() 

Figure 63 Registration class 
The class encapsulates the functions for the registration. Main function is given by the function 

CalculateTransformation after the model and scene points are set. 

The functions SetModelPointsQ and SetScenePointsQ convert the model and 
scene points to an internai Progressive Mesh representation. Therefore, the points 
and triangle indices are retrieved from the database and converted into a Microsoft 
DirectX© compatible mesh (D3DXMESH) in the same way as was done in the sensor 
simulation. 
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This mesh is transformed to a Progressive Mesh with the function: 

HRESULT D3DXGeneratePMesh(LPD3DXMESH pMesh,CONST DWORD 
*pAdjacency, CONST D3DXATTRIBUTEWEIGHTS 
*pVertexAttributeWeights, CONST FLOAT ^pVertexWeights, DWORD 
MinValue, DWORD Options,LPD3DXPMESH ^ppPMesh); 

Figure 64 Progressive mesh generation function declaration 
The progressive mesh is generate from the mesh representatlon with the predefined adjadency 

and other opţional parameters 

The function SetMaxIterations() sets the paranneters for the Iteration stop 
criterions, and the function SetLODBoundahesQ sets the minimum and maximum 
levels of detail {Mĵ in and Mimax) of the Progressive Mesh. These parameters (and 
some other internai hard-coded parameters) tweak the behavior and convergence 
rate of the registratlon process. The registration process is started with 
CalculateTransformation(). This core function includes aii the steps described in 
Section 4.4.2 for the Progressive Mesh-based Iterative Closest Point algorithm. After 
the iteration process has finished, the transformation of every scene/model pair is 
appiled to the scene data set. The thread calculates the quality according to 
equation 4.20. After al! the threads are finished, the returned quality of each thread 
is compared to the other threads in the function FindBestCandidateQ. If the quality 
Is better than a defined threshold, the candidate with the best quality is returned. 
To get the right pose of the object, the positlon and rotatlon of the candidate in the 
database are used. 

"arĝ / ~ ^PoseKstima tion ^ T^regisirati on ^ ^SJL ^. 6 

To get the exact target Positlon Pjarget/ the transformation of the simulated 
object from the database TposeEstimadon and the transformation of the registration 
process JRegistration must be appiied to the STL object model points Pstl-
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Chapter 6 Conclusion 

6.1 Outiine of Contributions 

This thesis proposes a system to align range data surfaces in the context of 
industrial process automation. The solution for robotic bin picking deals with range 
images provided by range sensors and the use of a model-based scalable 
hierarchical system to find known objects in 3D data. 

The pose estimation, introduced in Chapter 3, provides a basic system that 
can be used with any kind of known objects acquired by laser range sensors. It is 
shown that the proposed solution solves the object pose estimation with its 
universality, without the need of segmentation or feature extraction. In general, this 
approach "simulates" the stimuli of the real worid to a sensor in advance and 
compares these stimuli to data acquired from the real worId. This general approach 
is appiied to range sensors and object localization in this work. The simulation of 
data acquisition offers the possibility to use the proposed solution in many 
scenarios. New, innovative range sensors with higher resolutions can be modeled 
without any problem; most of which deliver range images with measurement errors, 
occiusions, and reflections. To increase the accuracy, the pose simulation takes all 
the properties and features of real sensors into consideration. By using sensors with 
high resolutions for range data acquisition, the complexity of the object localization 
process is increased. The complexity of the object localization depends also on the 
chosen algorithm and the complexity of the object. To reduce the high 
computaţional cost (depending on the appiication and the used PC), the proposed 
solution is scalable. For example, the number of pre-calculated VRIs in the database 
can change this computaţional time-memory tradeoff. The solution is characterized 
by a flexible coarse-to-fine algorithm, which can be used to find any kinds of objects 
in range data, provided these objects are known to the proposed system. The pose 
estimation is not limited to oniy one object because the database stores as many 
different kinds of objects as necessary. Another advantage of the scalability in the 
coarse pose estimation process is the fact that the required accuracy can be 
adjusted by simple changes in the position and orientation step width. The density 
of positions and the rotational degree of freedom of the object to create a VRI are 
also important parameters for adjusting the level in pose estimation. Additionally, 
sub-sampling can be integrated if it is necessary due to system limits. Because of 
the improvements in parallel computing and the support of new innovative 
approaches in general purpose GPU computing, the proposed solution has a high 
performance and is able to meet rnany industrial requirements. ^ 

In Chapter 4, the thesis focuses on the improvements in the refinement 
step of the hierarchical object localization system. The well-known and proven ICP 
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algorithm, wlth its variants, is a registration algorithm that tries to transform a 
scene iteratively into the position of a nnodel. A lot of modifications and 
improvements have been introduced in the last few years, and some expansions and 
results have been described in Section 4.3. The ICP algorithm generally offers a 
proven method to transform two sets of points in a common coordinate system. The 
input data is independent of the representation and source, and the algorithm does 
not need a time-consuming and complex feature extraction. In the proposed 
implementation, the ICP algorithm is combined with the Progressive Meshes. The 
LOD adjustment inside the ICP iteration steps is a new and innovative approach to 
solve at least two major problems of the ICP algorithm. The combination increases 
the robustness against outiiers in the early iterations' steps to counter 
misalignments. The integrated level of detail adjustments reduces computaţional 
costs and leads to a very high performance compared to other known improvements 
of the ICP algorithm. To be sure of meeting the requirements of different 
appiications, the proposed solution is evaluated with test scenarios in Chapter 5, 
which cover many types of possible range data scenes. These tests prove the 
advantage over all algorithm implementations known to author. The pose estimation 
and pose refinement do not use any segmentation algorithms, but instead use 3D 
Information in a hierarchical system. This leads to a high universality for the object 
localization. The proposed solution was successfully implemented and tested in 
different appiication test scenarios to prove the potential of the pose estimation and 
pose refinement. 

6.2 FutureWork 

A complete system for industrial robotic bin picking includes — beside the 
object localization — an adequate sensor selection, a robot control interface, a grasp 
point definition and a collision avoidance strategy. Merging all these components 
forms a system for many different appiications. Nevertheless, the proposed system 
offers many possible extensions. Due to the incremental process, the object 
positions can be verified and tracked over all steps of the pose estimation and 
refinement process. This increases the robustness and reduces the computaţional 
costs. In the available literature, many suggestions and approaches for 
improvement are found, especially for acceleration and the increase of the 
robustness of object localization. 

One of the promising improvements in the future will be a wider interaction 
between the pose estimation and the ICP algorithm. ICP couid use the knowledge 
and properties of the global sensor position. For example, the point-to-point metric 
couId be a change to the so-called 'Yeversed calibration metric", introduced by Blais 
and Levine [165]. 

Many improvements on the robustness and the increase of the convergence 
speed improve the ICP algorithm. In some cases this cannot ensure that the error of 
the minimization function decreases monotonousiy. Important additions described in 
Section 4.4.2 are made in order to increase the robustness against measuring 
errors. Thus, the algorithm is not ver/ vulnerable to outiiers in the point data. Many 
researchers pay attention to the high computaţional time and error convergence to 
local minima. 
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Using Progressive Meshes in the iteration steps of the ICP algorithm offers 

severa! methods of adjusting the number of used triangles in the Progressive Mesh 
representation. Currently, the registration algorithm uses the current iteration 
counter in the iteration process to connect the level of detail in the meshes. In every 
iteration step of the ICP algorithm the number of faces in the model mesh and the 
scene mesh are increased with a defined value. Taking the degree of performance of 
one ICP iteration step into consideration, the number of triangles in the current 
Progressive Mesh couid be adjusted to the current iteration step error as stated in 
[197]. 

With rising computer power, the ICP algorithm is also conceivable in video 
real time environments. Dorai et al. [167] have extended the algorithm of Chen and 
Medioni [137] and this is the basis for further developments at the multi-view 
registration[198], [170], [199], Non-rigid registration methods also offer good 
potential to accelerate the algorithm [8] and will play an important role in future 
research. 

The ICP algorithm is a robust algorithm for registration tasks in many fieids 
of research. Consequently, there is a large quantity of further expansion capabilities 
available. 
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