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Rezumat, 

Cercetarile din prezenta teza se axeaza pe doua directii 
principale din domeniul retelelor de senzori: pe de o parte se 
propun o serie de algoritmi de inspiratie originala pentru plasarea
nodurilor de tip releu intr-o retea de senzori in vederea 
minimizarii consumului energetic si pe de alta parte se analizeaza
toleranta la defectare a retelei nou-obtinute prin prisma 
conexitatii si stabilitatii diametrului. Ca si element de noutate se 
remarca utilizarea unor metrici si concepte de teoria retelelor 
complexe precum beetweenes si structura de comunitate, peste 
care se construiesc algoritmii propusi.

Lucrarea se evidentiaza si prin caracterul ingineresc-
aplicativ, continand de asemenea si un studiu de caz referitor la 
proiectarea unei retele se senzori dedicata monitorizarii in timp 
real a parametrilor de trafic rutier urban folosind metodologia si 
algoritmii propusi.
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Everyone takes the limits of his own vision
for the limits of the world

— Arthur Schopenhauer
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1 Introduction

Almost a decade ago, Raymond Kurzweil coined the term technological
singularity seen as the moment in time when the “non-human intelli-
gence” is going to surpass the human one, or the time when computers
and “robots” in general are going to take control over the world as we
know it Kurzweil [65]. Even is the proposed time horizon is some-
where around 2045, which most of the mainstream scientists consider
too early, what is worth noting is the fact that we are witnessing a
more and more accelerated development of the computational power
and the direct consequences are mostly at the application level, pro-
viding innovative means of crunching data in the form of information.
As with many of the technological advances we are witnessing trough

the history of the humanity processing large data sets and interpreting
them is having it’s roots in the military and intelligence gathering sector.
After the events of 9/11, many turned their opinions towards mass
surveillance and data harvesting on a large scale, from classical and
almost obsolete cell phone interception to more exotic side-channel
approaches such as audio surveillance trough laser light reflectionLi
et al. [73] and even extracting RSA private keys by audio surveying
the CPU operation Genkin et al. [42]. Of course mining the traffic over
data networks was not left outside the new doctrine of intelligence and
the silent war known as cyberwarfare began.
In the realm of military battlefield surveillance one of the major tech-

nological hot topics appear to be sensor networks. Presented as a col-
lection of simple devices capable of collecting data regarding the envi-
ronment in near proximity and some communication capabilities they
spear to be the ubiquitous element of modern sensing and automation
systems. Sensing devices are called nodes and are usually capable of
reading some elementary data such as temperature, light, sound level
or presence of chemical compounds while the communication is done
either wired like in underground or marine surveillance systems of wire-
less throughout a variety of physical media such as optical (infra-red,
laser) or electromagnetically (radio-waves, microwaves). On the other
side the collected data are locally processed or most of the time fun-
neled and aggregated via an up-stream data path towards on or more
aggregation nodes, called sinks. Depending on the size and properties
of the network some nodes are in place in order to relay the signal.
Of a smaller visibility but of equal importance in some of the sensor
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1 Introduction

networks are the actuator nodes, responsible of directly acting in the
surrounding environment based on the collected data and the decisions
implemented in the application. Examples comprise, but are not lim-
ited to chemical plant automation, automatic weapons systems or even
full body, wearable healthcare systems.
Important issues, which are going to be addressed in my thesis,

arise when a sensor network scales up to hundreds or thousands nodes
and/or when the nodes are mobile. If for smaller networks traditional
managing techniques inspired from computer networks can be success-
fully applied at each of the protocol levels, the shear number of nodes
imposes a performance wall which is not to be conquered with classical
approaches.
In this context the topology of the network represents the physi-

cal and logical way the nodes are interconnected and pass the data
between themselves or to the central node. Topology imposes lim-
its regarding technological and management issues which in the end
have a large impact on the performance of the network. At this mo-
ment it is work noting about the general term of performance when
we speak about sensor networks. The term has many facets but two
are of particular interest in the field of sensor networks: energy con-
sumption and bandwidth. Based on strict energy constraints in which
sensor networks are designed to operate (forests, deserts, underwa-
ter, hostile enemies) there is a really great deal of interest in the field
o designing and optimizing low and extremely low power nodes and
communication protocols.
On the other side of my research is the application of complex net-

works analysis in the field of sensor networks, more especially the op-
timization of the topology and routing strategies in order to reduce
the delay and congestion by using concepts and methodology for the
field of “new networks science”. Established after the 2ndWorld War
and gaining momentum in the last decade with the addition of a new
sub-field, the Social Network Analysis, CNA, deals with networks, as
in graphs, but with irregular topological properties which are hard to
be described deterministically in a complete and clear manner. Almost
anything which can be describes as a relationship between two enti-
ties can be represented in a form of network and consequently most
of the human activities are benefiting from applying CNA on their spe-
cific problems. Successful examples can be observed in the field of
human sciences, sociology, biochemistry, medicine and even scientific
authorship, but problems in the fields such as transportation networks,
electrical engineering of even counter-terrorism are approachable with
methodologies form CNA.
Besides metrics and concepts from graph theory, CNA deals with

something much more hard to formalize such as node centrality, com-
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1.1 Research path

munities, modularity, notions which are easy to map on the way we,
humans, see the structure of the societies. The “explosion” of online
social networks has provided a good testing ground for experimenting
with SNA but the same methodology when applied to sensor networks
as I’m going to present in this thesis is giving as the tools for radical
improvement in terms of cost-efficiency and reliability of the networks.

1.1 Research path

In this section I’m going to provide a general outline of my thesis,
emphasizing on the key contributions on the subject, while allowing
the reader to get an overview of the entire body of work and select
the topic which presents interest. The “path” I followed can be seen in
Figure 1.1.
It all started with my previous interest and involvement with the tech-

nological solutions for improving and optimizing the quality of road traf-
fic in urban environments (cities). I already had some existing work
in this field from previous years but I lack the necessary infrastruc-
ture for collecting large data sets in order to conduct the simulations
and run various algorithms I had in mind. So relaying on the concept
of crowd-sourcing and crowd collaboration I developed a simple mobile
application for collecting near real-time data regarding the mobility (es-
pecially) driving patterns of the volunteers. The data were anonymized
and used for building a “state of the traffic” map which was available
online. This solution was presented at the ITST 2013 Conference in
Tampere, Finland [49].
In the meantime I started reading more and more on the topic of

Sensor Networks (SN) as briefly described above and after discovering
some of the important issues regarding the organization of configura-
tion of the SN I began contemplating the idea of applying some bio-
inspired techniques which would be suitable to manage such a large
number of nodes. The next step was to integrate theoretical aspects
of the Complex Network Analysis (CNA) and especially Social Network
Analysis (SNA) into the problem of Wireless Sensor Networks (WSN).
This was concertized by a new algorithm I designed, laying at the cross-
roads between WSN and SNA, called SIDeWISe which was presented
in [53] at SOFA 2014 and in [52] at ICSTCC 2014.
The intial form of the SIDeWISe algorithm was dealing with so-called

“flat networks” which are a specific form of WSN, logically consisting of
a single level in the hierarchy of the nodes, form source to sink. Prac-
tical aspects in designing and deploying WSN imposes often the need
of a hierarchical structure with multiple levels consisting of intermedi-
ary “sinks” responsible for aggregating and processing data and even
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1 Introduction

taking action in their near vicinity. In order to achieve such a behav-
ior I’ve improved the original algorithm adding a recursive mechanism
which allows processing arbitrary large networks with arbitrary deep
hierarchies. This is the STiLO algorithm, presented in ICSTCC 2014
[50].
The next logical step in the path I began walking was to integrate this

somehow theoretical approaches into a specific application in order to
validate the assumptions and provide a test bed for the field assess-
ment of the performance and even find some pitfalls which might arise.
Consequently I turned my attention back to the field if ITS and I tried
to design a specific application in the area of ITS which might benefit
from implementing SIDeWISe and h-SIDeWISe. This was the problem
of optimizing the flow of urban road traffic by dynamically assigning
green phases on traffic lights installed in key intersections. The prob-
lem is not novel, much literature existing on this field and much atten-
tion was given to it from booth academia and the industry, but as it
can be easyly seen, most of the existing solutions - which, as a matter
of fact, are centralized from a logical and technological point of view -
are reaching their limit quite fast. Together with my colleagues, I pro-
posed also in [50] and refined in [30] a decentralized, locally managed
intelligent traffic light (i-Traffic Light) which would extend it’s influence
in a local “community”. At this level, the connection with WSN and h-
SIDeWISe was obvious, so I decided to use this in the simulation and
validation step of my algorithms.
A small problem arise during the design of the experiments, repre-

sented by large information packet storms which were generated from
time to time by the original implementation of h-SIDeWISe. Even if the
design of the algorithm required strict community delimitation, man-
aging cross-comunity-border information was necessary form time to
time (similar with the GSM hand-over) which required a lot of commu-
nication at the upper level. In order to provide and elegant solution
to this issue and with taking into consideration the way we usually
deal with information on an everyday basis I introduced an new im-
provement to the h-SIDeWISe, adding a bio-inspired taste to it. More
explicitly it consisted of a bioinspired element for an uniform distribu-
tion of the main parameters caracthersing the network: average path
lenght and centrality [101].
Regarding the structure and outline of this this theis, I’m going to

present in more details aspects regarding the foundations of my work
and the design, testing and analysis of the two major algorithms which
I have devised. The next chapter is dedicated to a much more in-depth
presentation of the concepts and notions regarding everything related
to “The New Network Science” from terminology and definitions and
up to metrics, properties and analysis which can be mad using this
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Figure 1.1: Outline of my Ph.D. research path with delivered research
papers

approach. A special interest is given to the aspects related to central-
ity, modularity and community structure which are heavily used in my
research and need clarifications. Next, a distinct chapters is devoted
for presenting in great detail SIDeWISe and h-SIDeWISe algorithms.
Starting with the formal definition of the problem (in terms for booth
network science and sensor networks) and presenting an analysis of
all the steps of my methodology I make some parallels in terms of
performance an cost effectiveness with literature-classical solutions.
The next chapter deals with issues regarding the dependability of sen-
sor networks and targets the issues with networks designed using the
algorithms I’ve proposed above while measuring two specific metrics
of network fault-tollerance: diameter stability and connectivity. The
impovements are emphasized in terms of coverage versus the num-
ber of lost nodes/connections. A specific chapter is putting everything
togheter in an engineering fasion, being targetted with the design and
implementation of a sensor neotwork for real time road traffic moni-
toring. A draw some conclusions regarding costs and performance in
specific terms. The final chapter makes a synthesis of the main con-
tributions presented in this thesis and in the same time provides some
points of further investigation in booth theorethical/fundamental and
engineering directions.
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2 Sensor Networks

2.1 Networks and computer networks

Living in our modern highly technological world exposes ourselves to
a plethora of digital devices, equiped by bigger and bigger displays,
higher battery autonomy and a large variety of accesories and func-
tions, but a part that is becoming less visible even if it’s the esential
aspect of everything we use today is the network. We are considering
as a given fact that we can send a message to the other side of the
World of even to Mars in the press of a key, but the undelaying levels of
standardization and interoperativity are the result of decades of social
and technological evolution.
What started as a set of military operated machines designed to whit-

stand a nuclear war in the Cold War era soon expanded as the most
simple and efficient way of exchanging any kind of information. From
simple news reading, sending emails and up to industrial command and
control systems of international financial transactions are handled by
the massive system which is now known as Internet, the network of
networks. Classical taxonomies which make a clear distinction between
LAN and WANs are becoming more and more fluid, in the last decade
the margin in the extent of the two being not so clear. The large ma-
jority of wires LANs are now based soleley on Ethernet while the WANs
are almost exclusively part of the Internet [cite]. Some special ap-
plications such as real time command and control systems, which I’m
going to discuss next, fall outside of this rough classification but the
general idea still holds.
In the context of the general computer networks there is a special

field which started initialy as part of the computer networks but which
in the last two decaded becam a specific topic of interest by it’s own
and this is related with the domain of intelligent sensors and actuators.

2.2 Sensor networks

There are various definitions of what a sensor network is, but at the
highest level it can be seen as a technological system of locaigally inter-
linked elements (nodes) which are capable of gatering data regarding
the physical environment in which they operate (sensing), carry some
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Figure 2.1: The high-level architecture of a sensor node

computation on the collected data in order to take some decissions and
apply he decissions back into the environment trough the set of actu-
ators. For the rest of this thesis, I will offer an unitary apporach for
dealing with booth sensing nodes and actuating ones, refering booth
of them by the term of nodes.
The emphasis and part of the power and andvanteges of any sensor

network falls on it’s shear size, seen as the number of nodes and the
strong capablities of exchanging information betwoeen nodes. On the
other side, of euqal importance is the hardware architecture and phys-
ical caractherisitcs of these nodes. In this case I’m speaking mostly of
the resiliance of the nodes to any imaginable sources of perturbance.
From the physical point of view the inteconnection of the nodes fall

into two major categories: wired (even fiber optics) and wireless (even
visible line of sight).
With all these prerquisites we can say that a node consists of a sens-

ing element (sensor), a microcomputer, one or more transceivers and
a power supply (figure 2.1). Depending on the task at hand the sen-
sor will be selected in order to booth meet the requirements in func-
tional terms (observed phenomenon, sensitivity, resollution) but also
to cope with the necessary environment factors (heat, chemical sub-
stances, dust etc.). The processing unit is selected based on booth the
actual functional task of the nodes, but also based on the architecture
of the netowk, the partitioning of the information processing and de-
cission and not in the last place, based on the power requirements and
availabilities. More and more networks are designed to operate in full
autonomous mode, with wireless conectivity and in this case, the low
power requirement is a must. I will elaborate on this later.
There is a great deal of networks and application which only require

monitoring and data gathering without direct intereference with the
environment.
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2.3 Challanges on designing sensor networks

The organization of the logical interconections between nodes is forms
what is called the topology of the network. From this point of view and
dependant on the task ast hand correlated with the particularities of
the environment, there is a clear distinction between enginnerid net-
works where the placement of each node is well known in advance
and is considered fixed for the lifespan of the network and the ad-hoc
networks which organize themselves after deployment being able to
provide on-line reorganization to cope with partial loss of the network
while still keeping functional requirements. In the same time applica-
tions which require mobile nodes fall into a distinct category, most of
the time treated as a special case of ad-hoc networks. My research
and the methodologies I present are dedicated towards fixed nodes,
but with possibilities of providing partial online reconfiguration.

2.3 Challanges on designing sensor networks

The last years were the witness of an increased interest in the area
of real time systems for sensor networks. This arises from specific
applications where the functional requirements are augmented with
time constraints such as: fire detection, chemical alerting or emegency
shut-down of industrial plants. In the same time various closed loop
control algorithms require struct timing caractheristics. In this case it
is the responsability of each of the nodes to meet the deadline in a
consistent manner, which translates into a similar requirement for the
interconnection network. In the same time the network as a whole has
to guarantee some metrics of scalability, fault tollerance and low power
requirements on which I’m going to elaborate later.
The defining caractheresitcs of most sensor netoworks is their size,

seen as number of nodes. In the same time the geographical span
can be taken into consideration but it is of smaller importance. From
this point of view there is a great deal of interest in minimizing the
costs associated with the deployoment of the network as a whole which
translates into minimizing the costs associated with each node and the
costs of the interconections. On the long term there are costs asso-
ciated with keeping the network up and running which arise from the
limited power autonomy in the case of battery operated nodes and from
this point of view there is a great deal of interest from optmizing the
power consumption on a node level.
The power optimization is a two fold apporach: on the one side it is

carried on the hardware level, by choosing low power microcontrollers
and communication modules and on the other sied it is handled in the
software level by implementing specific protocols for minimizing the
energy consumption while still keepting the desired levels for the func-
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Figure 2.2: Distribution of application areas for sensor networks and
thier maket share, courtoisy [27]

tional requirements. Moder microcontroller are providing a great deal
of flexibility for the application designer to directly interact with func-
tional blocks of the MCU in order to dinmaically swithch the desired
units on order to tailer the power consumption.
The advances in the area of microelectroncis and low-power hardware

design provide the industrial traction necessary for designing larger
and larger networks with increased cummulated computational power
while keeping the costs at lower and lower levels. What was in the last
decade the apanage of some highly funded sectors such as military
and scientifical research shifted steadily towards the industrial sector -
which as allways put a great emphasis on keepeg the costs low and af-
ter 2010 there is a clear penetration of the consumer market. In figure
2.2 we witness the steep decrease of the costs strongly correlated with
the clear adoption of the sensor networks in the area which until then
had a higher doubt based mostly on the cost aspects. The treshold
between past and present in figure 2.2 is in 2010.

2.4 Technological advances in sensors

The keyword of any sensor network is the sensor. From it’s initial
goal of translating a signal from the analog domain of the real worls
into the digital one required for further processing it has evolved and
diversified into tehns and even hundreds of subcategories, aplication
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2.4 Technological advances in sensors

Table 2.1: Technologies involved in designing and building sensors
Underlaying technology Typical sensors

Analog resistive NTC termistor
CMOS temperature, pressure, humidity
MEMS gyro, accelerometer, magento
LED light, distance, surface reflection
Laser high precission distance, particle

areas, resolutions and sensitivities in order to cover allmost any possi-
ble imaginable scenario. The so-called classical sensors were designed
based on CMOS technologies and widespread examples are those for
measuring temperature, humidity, capacitive proxomity or even chem-
ical composition. Advances in area of MEMS (Micro ElectroMechanical
Systems) gave birth to a new set of more specialized sensors such as
gyroscopes, accelerometers, magnetometers, pressure sensors and so
on. Optoelectric sensors represent another large category comprising
various LED based elements such as: light sensing, optical proximity
and chemical composition (particle detection).
A typical application of sensor network of building monitoring is the

one tasked for optimizing the consumption of the electrical energy re-
quired for HVAC and building lighting. Classical systems are based on
timers, without taking into consideration the actual presence of hu-
mans in the perimeter. Using a combinet data set from temperature,
humidity and PIR presence sensors corelated with and real-time clock
modern systems are capable of optimizing the duty cycle of building
HVAC and indoor lighting in order to obtain a decrease between 7 and
15% of the total energy consumption [cite].
All these advances are strongly interlinked with the advances in the

semiconductor and microelectronics. Modern highly integrated ans
specialized sensors are a stand-alone module comprising booth the ac-
tual sensing unit and the electrical conditioning and interface in order
to simplify the required interfacing but with translated into higher ini-
tial costs and sometimes higher power consumption, the designer not
being able to fine-tailor the device according to his requirements.
In figure 2.3 I present in a comparative manner typical sensors for

measuring the distance trough optical priciples. In subfigure (a) we
can see a typical Sharp-type IR distance sensor suitable for measuring
distances of up to 50cm with a tollerance of 3cm. There is a clear
evidence of cheap manufacturing with exposed electronical parts and
plasic lenses are hard to clean and provide numerous surface for build-
up of debries witch in time would clog the sensor. This design is most
of the time not suitable for long term autonomous operation but is
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Figure 2.3: Optical distance sensor for hobby use and for industrial en-
vironment

consistent with a <7EUR price. In subfigure (b) we see the same type of
sensor, but in this case designed for industrial environment. The tough
construction with M12 threaded screw withstands the use and abuse
specific for the environment while the smooth finishing of the optical
surface does not pose risks of dust buildup. This a highly integrated
module with it’s on local processing being able to be interfaced via
almost all the standard industrial interfaces such as: RS-232, RS-485
and analog output. The operating voltage if +24V DC specific with the
industral domain, while the list price is 485 EUR.

It is of clear evidente the good corelation between the advances in mi-
croelectronics and system integration and the advent of larger sensor
networks. With the developement of SoC type devices, the designers
no longer relayed on bulky discrete components which in the end had
the greatest impact on lowering the power requirements of system.
Modern SoC designs are capable of integrating booth the MCU and the
RF transceiver in the same chip, providing the periperials for imple-
menting all the sensing, processing and communication required for
the functional requirements of the node.

For example one of the most promissinng module at the moment is
the EM35x Ember ZigBee from Silicon Labs. It includes an ARM Cortex-
M3 with a IEEE 802.15.4-2003 (ZigBee) transceiver, an AES crypto
module, and most interesting sub-µA sleep modes and everything is
packaged in a 7×7 mm QFN chip. The reference design for this module
would require just a battery an the specific sensor, with the optional
requirement of an antenna for having a fully working WSN node. From
the ZigBee part of the protocol it is capable of being coordinator, router
or end device.
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Figure 2.4: Breakout board of the EM35 ZigBee module

2.5 Power and energy aspects regarding
sensor networks

Sensor networks can be defined even for wired applications, but this
subfield is a small one with few specialized area when the eneviron-
ment is hostile to other alternative. Most modern application in the
are of sensor networks are targeting various wireless technologies as
comunication mediums. In this context there is a great demand for
a reliabale and capable power source. Classic approach mandate put-
ing a battery for each node, but there are limiting factores with this
approach comming from the reduced lifetime and higher costs of op-
eration and maintenace (figure 2.5).
We are witnessing a tremendous development in the technology and

chemistry of various type of batteries. The large variety of Lithium
based batteries allow a fine tailoring of power source based on the
particular application, with it’s characteristics and operating specificity.
Two extreme cases are represented by the lithium-manganese batter-
ies (LiMnO2) suitable for application characterized by small tempera-
ture variations and short lifetime (days to weeks) while the Lithium-
Thionil-Chloride (LiSOCL2) are preferred when dealing with large tem-
perature range and even decades of service lifetime) [27].
Most of the application designers and network engineers would thnik

first of batteries when deciding on the power source for a wireless sen-
sor network, but novel alternative energy sources are being developed
and solutions such as energy scavenging and harvesting are good alter-
natives for some applications. Trough a Peltier thermoelectric element,
power can be generated by the difference in temperature between two
surfaces. Vibration and kinetic energy can be converted into electrical
energy trough MEMS technology sensors or even piezoelectric elements
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Figure 2.5: Evolution of various enabling technologies for sensor net-
works smphasizing on the low trend of the battery energy
density. Courtesy [88].

Table 2.2: Overview of the caracthersitics of the main energy harvest-
ing sources, Courtesy [88]

Energy source Carctheristic Efficiency Typical harvested power
Light Outdoor: Sun, Indoor: secondary sources 10-24% 1000mW/cm2

Thermal Human activity, industrial processes [0.1, 3]% 60µW/cm2

Vibration Human activity: Hz, Industrial: kHz 25-50% 4µW/cm2

RF GSM: 900MHz, WiFi: 2.4GHz, ... ~50% 0.1µW/cm2

(EnOcean wireless, battery-less light switches). Even conversion of the
RF energy is an option when the power requirements are low (in the
order of µW ) such as for ubiquitous anti-theft tags. Not at last the
technology for manufacturing solar photovoltaic panels is improving
from 6 − 8% in 1975 to around 46% with the currently state of the art
multijunction cells [44].
Various approaches for mitigating the energy problem exists in the

literature and most of them are allready employed in industrial appli-
cations. Of all the energy consumed by a typical sensing node, 68%
is spent for communication purposes, the actual task of the node re-
quirinng only the remaining 32% [68].
In [96] authors identify an overhead of less than 1% for routing the

messages, which is consistent with the 0.8% presented in [68] and
provide the bases of my furthe rinvestigations regarding optimzation
of the network topology. While the impact of building more complex
routes is allmost negligable there is no significat decrease in perfor-
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Figure 2.6: Breakdwon of the energy consumption in the main blocks
of a Mica2 sensor node. Taken from [68]

mance.
There is a trend in attacking the problem of energy optimization in two

directions: one is based on more and more advanced low power hard-
ware modules for booth processing unit and transciever while the other
of the application and protocol level which tries to improve the energy
efficiency by implementing novel communication protocols, with less
overhead for the acknowledgement of the messages. Improvement in
the real time operating systems have their impact on the overall de-
crease in energy requirements. For example Hill et al.’s work produced
a new kind of perating system for sensor network nodes, capable of
fitting into 178 bytes of memory and uses messages of 12 bits length,
with only 6 bits of context [45].
Another important issue to be taken into consideration is the depen-

dance of the required power and energy when dealing with a large
numbe of nodes. In this case we have for the beginning two distinct
subcases:

• high density network with high number of nodes: when most of
the nodes are in direct coverage of each other. In this case each
of the node is going to make a single-hop transfer and the power
is almost constant regardless of the destination node. Nontheless
significant energy loss can incurr because of the chanell satura-
tion and nodes would require multiple medium access trials before
getting acces to the air medium;

• low density network: in this case verry few nodes are going to
be in direct connection with each other and the burden of energy
consumption if going to fall onto the packet routing over multi-
hop links. Small density means there is going to be less chanell
overlapping and the acces to medium can be made faster with less
energy consumption.

Most wireless sensor networks fall in the second category because low-
power designs imply small wireless range and modern routing proto-
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cols are highly efficient, designers prefering to have multiple hops than
spectrum sturation. In the same time, typical tranciver powers offer a
range in the order of tens of meters in urban envirnoment and having
a high density of nodes in such a small area is the signature of only
few networks: building automation or security systems.
For gaving some estimates regarding the actual power and perfo-

mance of a small wireless sensor network, I’ll present the figures for
a hypothetical communication between two nodes placed at a distance
of 3 km in-beween. Typical receiver power consupution of 10mW is
assumed and a sensitivity of -60 dBm gives us a link budget of 80
dBm. For the transmision side of the link I’ll take into consideration just
the power of the final amplifier wich is an order of magnitude higher
than the rest of the components. Having a single transmiter-receiver
we need 110mW for covering this distance while if I install a single
repeter/relay in the middle of the distance the power drops at 70 mW,
giving us an improvement of 36%. Of course having a relay requires
a network topology suitable for this and a protocol capable of handling
the message routing and forwarding. This can be extended by adding
multiple relays, while modern technology allows us to incorporate booth
node functionaly and relaying into the same module, practically adding
more value to the network.
From figure 2.7 one can observe that it is beneficial to add more

and more relays (when they have also functional capabilities it is even
better) but we should not forget that the deployment and operational
costs also increase. It is well known from the industry [27, 25, 24] that
the expense of deploying and replacing a single node of a actual sensor
network can be more than 10 times the actual cost of the physical node.
In this terms having a large network pose significant chalanges which
have to be balanced by the designer, between the quality of the data
and the available resources, taking into consideration actual conditions
of the installation.
Similar investigation are carried also in the area of high performance

computing, where the issues are targeting the dynamic minimization of
energy consumption by reconfiguration and selective enabling of com-
putational units, dependant on secific tasks to be performed. I’ve car-
ried investigations in thies area and presented my findings in [48].

Metcalfe’s Law

Formulated in 1993 by Gilder and addapted by Metcalf for Ethernet
based networks, it states that “the value of a telecomunication network
is proportional with the square of the number of users connected to the
system” [95]. Modern adaptions exist for Internet, social networking
and World Wide Web.
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Figure 2.7: Total power consumption versus the number of nodes.
Taken from [27]

It is based in actual graph theoretical metrics which I’m going to
repsent in a separate chapter, but suffice to say for now that for a
network of n nodes there is a number of 2

n(n−1)
2 distinct possible con-

nections, this being assimptiocially proportional with O(n2).
Limitations of this law start from the fact is quantized the maximum

possible number of connection without taking into consideration that
most of the time the actual number of connection is much lower. An-
other critique that can be made is that it assumes all the node a having
the same importance to the network which is not the case in actual de-
signs.
With all these Metacalf propsed an revised version of it’s law which

tries to map better to the real wold scenario which uses an n × log n
approximation [95].

2.6 Network topology

Until now I’ve presented the basic aspects regarding the network and
the end elements of it, which are the nodes with all the challenges and
requirements for designing good performing ones. Next I’ll talk about
another important part of a sensor network, the one which defines the
emergent behavior of all the simple atoms, which is interconnection of
these nodes.
From a technical perspective much of the framework from computer

networks still holds when dealing with sensor networks.
From a topological point of view the roots of this analysis are based

in graph theory and I’ll present the connections with complex networks
analysis in the next chapter.
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Figure 2.8: One way sensing or actuating configuration

There are few classical regular topologies which are mostly possible
to apply in engineered static networks while the topologies in the area
of ad-hoc networks (seen as self organized) fall most of the time the
area of complex networks.

2.6.1 One-way point-to-point

The simplest way of implementing data collection or actuation if the
one way sending of data from the sensor to a processing node or the
otherwise, but with no possibilities of exchanging the data flow direc-
tion (see figure 2.8). Applications of this type can be identified in the
are of environment monitoring or various types of remote controls.
This kind of architecture exhibit the advantage of low cost per end

node but the lack of proper acknowledgment, and protocol stateless-
ness make them less suitable for modern application when the costs
for more capable devices are equally low.
From the reliability of this solution the network as a whole relay on

the massive number of nodes which are expendable on their own but
there are still enough left so that the functional requirements of the
network can be met.

2.6.2 Bi-directional

In figure 2.9 I present the natural extension of the one-directional so-
lution which in this case is capable for carrying a full-duplex commu-
nication between the node and the sink. Aside from advantages re-
garding modularization and integration of booth functionalities in the
same circuit there are some significant improvement in the area of re-
liability. From the application point of view, in this case we are able
to implement more robust communication protocols for dealing with
uncertainties regarding package arrival, fragmentation along the route
and even cryptographic authentication.
Most of the solutions developed in the last decade fall into this cate-

gory, alt least because of the above presented reasons or even from the
functional characteristics of the application such as a plant monitoring
system which requires sampling a variety of parameters in the pro-
cess and actuation of various valves for regulating the process, where
everything is done in a networked manner.
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Figure 2.9: Bidirectional topology for booth sensing and actuating

2.6.3 Star

Booth the above presented topologies are simple source-sink pairs.
This can reach their limit in terms of functionality and advantages quite
fast. Intuitively there are not much application to be developed on top
of these architectures besides reading some parameters in a reduced
are of the space and take a decision based on the data which has to be
carried by the same module that took the readings. In this case the
networked aspect of the solution is standing only because of the maybe
higher computational power required, but with the advent of modern
chips even this is fading out.

As I’ve stated above, the great advantages of the sensor networks
(wired or wireless) arise from the massive number of nodes which can
be deployed. At that moment we are capable of carrying computations
and take decisions based on a complete picture of the phenomenon
while the reliability of the network is positively influenced by the shear
size of it. Loosing a small number of nodes is having a lesser impact
over the functioning of the network as a whole, while the same is true
for the possible rogue behavior of some of the nodes, which send erro-
neous data, but I’ll get into more details regarding this aspect in later
chapters.

A classical topology for this kind of networks is the star. Inspired
from computer networks it has a central node acting as a sink (the
destination of all the messages and the controller of the entire network)
and all the nodes do the talking only with this one.

There are big disadvantages of this topology which arise from the
requirement that all the nodes are in direct range to the sink. Consid-
ering the technical implementations this is a hard to follow requirement
because we have to balance the short rang of the radio links (tens to
hundreds) of meters with the large number of nodes (tens to hundreds
or even more). Having such a large node density is required only in
few applications.

The one way links are in this case suitable only for sensing application
where the low costs are a primary concern while the bidirectional links
are more preferred for all the other applications (see figure 2.10).
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Figure 2.10: Sensing and sensing and actuating star topologies

2.6.4 Mesh

The successor of the star topology in terms of reliability which also
minimizes the problem with the high density of nodes is the mesh. As
seen in figure 2.11 in this case each of the nodes is in direct connection
with all the neighboring nodes an the sink only communicate with it’s
own direct neighbors. In this case the network can cover a much larger
geographical area while keeping the same simple and regular topology.
All the nodes should be capable of implementing a more complex

networking protocol designed for message forwarding and some simple
way of routing.
Disadvantages come from the requirement of having more complex

nodes with a more expensive hardware. Each of the nodes is going to
carry more computation and use more energy. In this case the low-
power policies are harder to implement because the inactivity (sleep)
times are shorter or even nonexistent.
From the reliability of the network there is a great improvement be-

cause the mesh fabric is tolerant to partial loss of nodes while the
networking protocol is handling the message rerouting.
It is worth noting the building a span-tree of this kind of network

shows us that the nodes closer to the sink (in topological terms) are un-
der heavier load because they are required to handle a greater number
of messages with translates into a higher energy consumption. Design
decisions have to be made accordingly.

2.6.5 Cellular clustered network

As discussed above, all the previously presented topologies had some
issues regarding either performance or reliability or cost/complexity of
engineering and deploying.
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Figure 2.11: Complete 2D triangular (left) and rectangular (right)
meshes, with the sink colored in blue

In order to mitigate this, inspired by GSM architecture, a new topol-
ogy is introduced in the form of the cellular-clustered one. This uses
elements of the mesh network on multiple levels, as seen in figure
2.12.
The hierarchical structure provides a good regularity at each of the

levels thus requiring a simpler and less expensive engineering while still
keeping a good fault tolerance. This topology is suitable in situations
when there are a few disjoint regions which has to be monitored and
all the data are fused together at higher levels.
From the reliability point of view there are advantages because at

the lower levels nodes can be lost while keeping the integrity of the
network. Still there are vulnerabilities in the upper levels, any of the
high speed links (red lines in figure 2.12) being lost the integrity of
the network being in danger. This kind of issues are addressed by my
work.
A new aspect that’s worth mentioning are the orange nodes. In this

topology some of the nodes have a special role, besides sensing/actu-
ating, that’s the one of managing the operation of each of the clusters
they supervise and to forward messages between clusters or the sink.
They are the relay nodes.

2.7 Sensor network node placement

Until now I presented the background and prerequsites of actually de-
ploying a sensor network with a strong wireless component. In more
complex topologies such as the clustered-cellular one some of the links
can be and are wired, but the prevalence falls onto the wireless ones.
In this context and as part of my further investigations the problems

is regarding the optimal placement of the nodes in a network.
Mostly dependent on the task of the network but also of the particular
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Figure 2.12: Clustered cellular topology consisting of four clusters and
highspeed interconnection links. Relays are figured by
orange nodes

conditions and the type of sensors there are two major strategies in
placing the nodes of a sensor net-work: deterministic and random.
The first one, when possible, can ensure great coverage with careful
placement of the nodes and even the logical topology of the network
can be established at deployment time [9].
Because of the adverse condition on the field there are situations

where the single possible option for deploying nodes is in a random
manner. This has adverse effects on the main metrics of a WSN [8].
In any situation where there is a large distance between two adjacent
nodes, we witness a low throughput and high energy consumption.
Rich literature exists on the topic of optimal node placement [10],

which is considered an NP-hard problem [11] and some non-deterministic
approaches were proposed, which provide sub-optimal results [12].
Much because the current approaches in deterministic placement of

the nodes proven themselves problematic but also because some of
the typical WSN deployment scenarios presented both in the literature
and also in the real life scenarios, such as wild fire prevention, battle-
field monitoring or disaster rescue, require a random distribution of the
nodes, even if there are some possibility of controlling the density of
the nodes [11] my efforts is geared towards investigating the problem
of relay placement strategies in this case.
Another interesting approach, which is also the starting point of my

investigations, is the one presented by Xu et al. in [13]. The authors
take into consideration a two-tiered topology in which nodes are clus-
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tered around relaying nodes which further communicate directly with
the sink. The authors also consider a “multiple-hop communication
case” which presume the existence of a hierarchy of relay nodes, con-
nected in a tree manner to the sink. The authors propose a weighted
random distribution, which increases the number of nodes as we move
further away from the sink. One of the issues identified by the authors
is that the random distribution can leave some parts of the network
disjoint, actually partitioning the network, and their solution to the
problem consists of the multihop deployment strategy [13].
Another research direction with practical application is the explo-

ration of the issues arising when scaling the network. From an eco-
nomical perspective, much of the sensor network deployments con-
sist of incremental stages with more nodes being added (see previous
section). Aside from the issues regarding possible flow congestions
(packet storms) there is a great need to know the optimal placement
of the relay nodes so that, with minimal costs, the new nodes are going
to benefit of the existing conectivity infrastructure [11].
Early work has considered the coverage as being the paramount of

the research [14], but because modern sensor node are running at
the threshold of the energy requirements their coverage is largely di-
minished. Flat, 2D sensor networks usually consider relay nodes to
be simply another node, but with higher transmission power and/or
energy autonomy. The problem is getting interesting in two and mul-
titier sensor networks where sensors are usually clustered in what can
be called subnets, as presented by Chen et al. in [15]. Each sub-
net is sending data to a relay (called aggregation-and-forwarding node
(AFN)) which in turn send the data via a multihop connection to the
base station (sink).
One other approach is to use a deterministic approach in placing the

relay nodes of a randomly deployed sensor network, such as presented
in [15]. The problem is formulated in terms of initial set of nodes
and their position, the task being to find the optimal placement of a
set of relay nodes, so that the network lifetime and connectivity are
maximized. Authors prove that the problem is still NP-hard, but provide
a polynomial time algorithm. Tackling the problem of fault tolerance,
there is an approach of maximizing reliability by placing relays at the
intersection of two neighboring nodes.
Deterministic node placement is suitable in carefully controlled envi-

roments and requires precise placement of each of the nodes at pre-
determined possitions of a grid (figure 2.13). This kind o policy is suit-
able for applications such as building management and automation,
permiter surveilance or external reference localization and mapping.
Semi-deterministic placement is a policy in which the nodes are placed

in a random manner onto the grid but in preciselly known areas of the

33

BUPT



2 Sensor Networks

Figure 2.13: Types of node distributions: deterministic grid (left),
semi-deterministic (center), random uniform (right).
Adapted from [110]

grid (which are deterministic). Aplications of this topology fall unde
the type of environmental monitoring, chemical detection where area
of space have to be strictly monitored, but there is no requirement
for precise positioning inside that specific area, the number of sensors
counting for reliability and fidelity of the data.
Non-determinisc placement is seen as a random placement with var-

ious density distributions depending on the modelled phenomenon of
deployment. This is actually on of the most prevalent method of en-
gineering networks because the cpntraints of the physical world would
impose it, biasing far away from the ideal deterministic model. Based
on the method of deployment and wether the sensors are fixed or are
capable of moving the models emplyed can vary in complexity.

2.7.1 Coverage issues in sensor networks

Much attention was given into the literature to the problem of optimal/-
maximal coverage of a specifc area in space. Definitelly it is one of the
goals of any sensor network designer to provide a methodology trough
which one can achieve maximal coverege trough minimum investment
in technological resources and minimal operational and maintenance
costs. In this terms there are two approaches for treating the cover-
age requirement:

• single coverage: each point of the monitored space has to be (and
most of the times is) monitored by at least one sensor;

• multiple coverage: in which each point in the target space has to
have k sensors monitoring it, defined as k-area coverage. An area
is k-covered if exists at least k distinct sensors which provide full
coverage of the targeted point in space [110]. This poses signifi-
cant interest in the subfield of fault-tolerance for sensor networks
and I’m going to detaild further in a separate chapter.
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Since the grammar school we were taught to express things by using
substantives and the relationships between them by using verbs. At a
higher level anything of the same form can be represented in a similar
fashion. In the middle of XVIIth century, the great Swiss mathematian
Lheonard Euler wrote his famous treatise on Seven Bridges of Konigs-
berg which is considered the semnial paper and the moment of birth for
a completely novel approach called graph theory. We had to wait until
1878 when James Joseph Sylvester published a paper in Nature and
introduced for the first time the term “graph”. Another important date
in this extremily short hostory of graphs is theyera 1969 when Amer-
ican mathematician Fran Harary published the first book, consideret
at that time “definitve”, on graphs and every thing related. This book
provided for the first time the common framework of investigation and
discussion between scientists in various areas of understanding from
mathematics and physics to socilogy and linguiestics. The second part
of the XXth century is dominated by mostly theoretical contributions in
the graph with little practical applications besides electrical engineering
with representation of the circutis as graphs.
A special place in the general theory of graphs is represented by the

graphs proposed by Paul Erdos and Alfred Reny, called random graphs
which gave rise to a completely new branch of research called random
graph theory.

3.1 Classical graphs

In the canonical assumption of graph theory, a graph G is seen as an
ordered pair of sets, one of nodes ni, i = 1...N and the other a set of
edges V - called also vertices - which connect pairs of nodes.

3.1.1 Teminology and notations

There are a few specific terms and definitions of them which are specific
to the fieeld of graph theory and which I’m going to present in the
following lines.

1. Degree of a node is the number of nodes which are conected to
the particular one;
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2. Adjiacency is the property of a node of being connected to another
one;

3. Path is a sequence of censequtively connected edges;

4. Connectivity is the property of a graph so that between any two
node there is a path.

3.1.2 Random graphs

The theory of random graphs lies at the corssroads between the graph
theory and probability theory. The term random is usually applied to
the probability distribution of various properties of the particular graph
but in the same time can be used to describe the process for generat-
ing the graph. Theoretically they are used in order to answer to ques-
tions regarding the properties of typical graphs but in the same time,
practical applications are to be found in the special field of complex
network analysis on which I’m going to refer myself in following pages.
Of particular interest for the mathematical approach is the Erdos-Reny
random graph.
Starting from the above ideea of generating random graphs in order

to analysie various properties of graphs, the generation of a random
one starts with a set of nodes (vertices) and the succesive addition of
edges between pairs of existing nodes until a particular property of the
graph appears.

3.2 Complex networks

As the name suggests a complex network a specific type of network
- also representable as a graph - for which we have hard to define
topological properties. These proprties do not occur in other types of
networks such as lattice or random graphs.
As defined by Homle and Kim [47], complex networks have patterns

of interconections “that are not purely regular nor purely random”.
Specific to complex network analysis is the “heavy tail degree distribu-
tion”, high clustering coefficient, communtiy structure and hierachical
organization all of which I’m going to present more in the following
sections.
Literature [98, 81, 102] mentions two big clasees of complex net-

works, these being the scale-free networks and small-world networks.
Scale-free networks are defined by their power-law node degree dis-
tribution while samll-world ones are caractherized by short path length
and high clustering coefficient [2].
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(a) Visualization of the random graph
with nodes colored and proportionaly
sized by degree
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(c) Density plot of the degree distribution

Figure 3.1: Example of a random graph with 350 nodes and an average
degree of 6.531

Complex networks lie at the crossroads of many diverse sciences, like
biology, economics, geography, computer science, political sciences,
psychology and are atracting at the present time a great deal of interest
from booth academia and industry practitioners. Interesting results
arise from the application of complex analysis metrics in economical
and financial area and similar investigations I’ve carried in this field
are presented in [15, 16].

3.2.1 Scale-free networks

In the 60’s the studies regarding the networks of academic citations in
scientific papers showed that the distribution of degrees (papers are
nodes and citations are edges) folows a Paretto distribution or power-
law distribution. Recent revigoration of the research in this field was
observed in the beginning of the new century with the work of Albert
Laszlo-Barabasi and his team regarding the mapping of the World Wide
Web. They observed that some of the nodes (called in their paper,
hubs) have a significantly more connections (links) than others and
globally the distribution of WWW links follows also a power-law distri-
bution. Barabasi continued his researches in the field and found that
some other type of networks such as biological and social networks fol-
low a similar type of distribution for the node degress thus introducint

37

BUPT



3 Complex Networks

the term of scale-free network.
Of particular interest in the mechanism of creating such networks

which Barabasi and Albert explain trough a methodology which they call
“preferential attachement”. In a simplified explanation the mechanism
might be called the “rich-gets-richer” approach being the same one
observed in social networks where a small number of people have a
high number of followers/subscriptions.
From amore formal apprach the work of Li et al, is of particular impor-

tance because they introduced a numerical metric and a methodology
of computing it such as the values range from 0 to 1, the latter be-
ing the perfect scale-free network. Using classical notations for graphs
having, the following equations are extracted from their paper:

s(G) =
∑

deg(u) · deg(v) (3.1)

where u and v are two distinct nodes. So the scale-freeness of the
graps is described as the sum of products for each pair of distinct nodes.
In order to nermalize the values in the [0, 1] range the authors divide
the value by the maximum value of the s obtaining:

S(G) =
s(G)

smax
(3.2)

From a qulaitative point of view, most of the assumptions regarding
the type of networks is usually done using the graphs of the distribution
of the node’s degree.

3.2.2 Small word networks

3.3 The New Network Science

The novelty introduced in my thesis is the usage of complex network
analysis (SNA) principles to enhance the properties of a wireless sen-
sors network topology. Initially emerged from techniques proposed by
modern sociology [78], statistics and graph theory, SNA etc. It an-
alyzes complex networks, which consist of nodes (individuals, actors
inside the network) and ties between these nodes. The ties can rep-
resent physical links, but also friendships, organizational ties or any
other type of relationship between individuals [39, 103]. Developed
from complex network theory [59], a social network is a complex net-
work which is mainly analyzed from a social point of view. The ele-
ments/people, which represent the set of nodes, form a complex set of
binary ties (i.e. the smallest possible social group, formed out of two
people) [34].
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(a) Visualization of a scale free graph
with nodes colored and proportion-
aly sized by degree. There are very
few nodes with high degree (the big
one) and a lot of nodes with a very
low one (small blue “dots”). The are
taken from the Drug Category Net-
work (DCN) project [?]
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(b) Degree distribution for the nodes in
the scale graph with the normal dis-
tribution trend line overlapped in red.

0 20 40 60 80 100 120 140

0
.0

0
0

.1
0

0
.2

0

N = 2191   Bandwidth = 0.4326

D
e

n
si

ty

(c) Density plot of the degree distribution

Figure 3.2: Example of a scale free network with 2191 nodes and an
average degree of 1.922
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Figure 3.3: Logarithmic plot of the nodee degree distribution from Fig-
ure 3.2b for a scale free network. The linear trendline is
overlaped in red.

39

BUPT



3 Complex Networks

(a) Visualization of a small world graph
with nodes colored and proportion-
aly sized by degree. The is a much
better uniformity in the distribution
of the degrees (similarly sized nodes
and continuos shades of color). This
is the “Les Miserables” dataset com-
piled by Donlad Knuth showing the
interactions among the caracthers of
the novel with the same name.
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(b) Degree distribution for the nodes in
the scale graph with the normal dis-
tribution trend line overlapped in red.
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(c) Density plot of the degree distribution

Figure 3.4: Example of a small-world network with 77 nodes and an
average degree of 6.597
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Through measurements performed over raw, state of the art sensor
networks my goal is to propose an optimal coverage of physically-linked
relays over any given network so that we maximize the throughput and
reliability and minimize the number of relays and cost of interconnec-
tion.

3.3.1 Complex Networks metrics

Troughout much of the subsequent work and as a quantifier for various
algorithms I’ve developed I’ve measured the basic network metrics:
network size (nodes and edges), average path length, clustering co-
efficient, average degree, network diameter, density and modularity,
and also the distributions of the degrees, betweenness, closeness and
(eigenvector) centrality [19].
After performing complex network analysis I’ve concluded that an

optimal way to decide the relay placement is through community de-
tection and centrality algorithms which I’m going to detail further.
The average path length of a network is the mean distance between

two nodes, averaged over all pairs of nodes.
The average value of the degrees, measured over all nodes, is called

the average degree of the network.
The diameter of a network is the longest of the shortest paths be-

tween any pair of nodes in the network.

3.4 Centrality in complex networks

As the term implies, centrality is a general way of speaking of how
“central”is a node to a network, and depending of the case it might
even map to the node’s importance in that particular network. Start-
ing with this vague presentation of the term, it’s obvious that there
a few more precise definitions. It is worth noting the fact, centrality
was first intriduced as a metric for social network analysis and conse-
quently many related notions can be found in the area of social sciences
Newman [83].
Giving a more precise definition of what centrality is we have to start

by tring to answer to a question given by Borgatti Borgatti [18]”What
characterizes an important node?”. In the world of network analysis
there are two major approaches in measuring importance: one is re-
garding the flow trough the network and the other is dealing with the
cohesiveness of the network.
It is worth noting s subtle observation presented by Lawyer and Glenn

in Lawyer [69] regarding the effective usage of any of the central-
ity metrics. The problem is the “vertex centrality indicate the ralative
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importance of vertices only in a relative way”. Any of the centrality
metrics is designed to provide a ranking of the nodes, but they do this
well eneough only for the top-tier of the nodes and loose of their power
for the rest. Also the diffrence in absolute value does not map into dif-
ference in importance of the nodes Lawyer [69]. Authors give a hint
regarding possible eplanations if this behaviour which lie in the het-
erogenous structure of the network itself. While, usually, the network
is caractherized by a small set of “important” nodes, in the end she
as a whole is allmost always heterogenous and consequntly we can-
not apply the same centrality metric for any subset of nodes expecting
consistent results Borgatti [18]. This is a verry important conclusion
for my work which is explored in depth for designing STiLO algorithm.
Next, I’m going to present some of the most important centrality

metrics which I have used in my work with qualitative illustrations.

3.4.1 Degree centrality

Having all the data presented until now, someone may consider solving
the problem in a simple manner and call the most important node, the
one with the most connections, which translate in the highest degree
for that particular node. While this might be true for some situations
and questionable for others, ideed it’s the simples way of defining the
centrality.
In terms of flow analysis, presented abowe, the degree centrality can

be expressed as being the dependance in which the node is going to
be traverssed by anything tha traverses the network.
Using the notations introduced in 3.1.1 the degree centrality (CD) can

be computed as follows:

CD(v) = deg(v) (3.3)

so, it’s actually the degree of the vertex. Going a step further we can
define the a similar metric for a subgraph. If ve consider v+to be the
node with the highest degree in the graph G and we have a subgraph
G′ ⊂ G having itself also a node with highest degree, denoted by v′+,
then according to Borgatti [18]

CD(G
′) =

∑
[CD(v

+)− CD(vi)∑
CD(v′+)− CD(v′i)

(3.4)

It can be seen that the denominator of the fraction is maximized when
we have a star structure with only one “central node” and all the others
being directly connected to it.
In figure 3.5 I present the application of the above presented metrics

on a random network consiting of 50 nodes and 145 edges giving us an
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Figure 3.5: Degree centrality illustrated on a random network with 50
node and an average degree of 3.625. Node as colored from
highest degree centrality (reddish) and up to the lowest
(blue) and sized proportionally.

average degree of 3.625. Each of the nodes is sized and colored pro-
portionally to it’s centrality. The renedering layout used is Force Atlas 2
which I’m going to use a few more times during my investigations, but
in a few simple words, it is an algorithm for drawing graphs, which con-
sider nodes bodies with mass and the edges are elastic springs, after
which it runs a gravitational attraction algorithm to find the begaviour
of the system.
Knowing the inner working of the rendering engine and the degree

of each of the node, we can observe the fact highest degree nodes in
figure 3.5 are indeed the ones which at least “look” to be important, but
as it can be seen in the simple counterexample from figure 3.6 this is
not always the case. The flow apporach to this situation clareley shows
the middle placed node as beign much more important even if it has a
lower degree. This makes me introduce another metric for centrality,
which is the betweeness centrality.

3.4.2 Betweenss centrality

While de above presented degree centrality was taking into consider-
ation the number of links (connection) of every node, in this case we
are speaking of the number of paths which pass trough the node. In-
spired by social sciences it was first intrudoced by Freeman in order to
describe the “influence” of a person in a social networks, the person
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Figure 3.6: A simple counterexample for the degree centrality. Green
node are having the highest degrees (4) followed closely by
the purple one (3), but from the data flow perspective the
reddish “centrally placed” node of degree 2 is much more
important.

being seen a communication bridge Freeman [39].
Informally the betweness of a node is the number of shortest paths,

between any two nodes in a network, with pass trough that particular
node.
In a mathematical way, this can be described, consistently with the

above formulae, as:

CB(v) =
∑ σ−→

st
(v)

σ−→
st

(3.5)

where, σ−→
st
denotes the total number of shortest paths between any

two nodes in the graph and σ−→
st
(v) is the number of paths from any pair

of nodes, sand t which pass trought node v.
On a simple algoithmic level the computation of the betweeness cen-

trality, can be expressed as follows:

• compute the shorthest path in the graph, for each pair of distinct
nodes, s and t;

• taking the node under consideration v count how many of the
shortest paths found in the previous step, pass troug that partic-
ular node;

• normalize the value in the [0, 1] range by computing the result over
the total number of the distinct paths in the graph.

In regard to the previouslly discussed degree centrality, when using
betweness we take into account a much better semantics of the net-
work flow, because it’s close connection with the paths in a graph. In
figure 3.7 and 3.8 we can observe the application of the definition on
the two networks discussed above when we defined the degree central-
ity. While havin the same network, when we apply the new definition
we observe a much better “correlation” with our intuition regarding
what an important node in a network is.
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Figure 3.7: Random network from figure 3.5 with nodes colored and
sized by betweeness centrality.
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Figure 3.8: In a simple network (same as in figure 3.6) there is a clear
difference between degree centrality and betweeness ce-
trality, defined as the number of shortest path that cross
the particular node. Each node is labeled, sized and colored
corespondingly to it’s betweeness.
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The simple algorithm presented above requires computing the short-
est path between all distinct nodes in the graph. Classical approaches
with the Roy-Floyd algorithm would have a polynomial complexity of the
form O(n3) while when having sparse graphs (small number of edges in
report to the complete graph, also denoted by network density metric)
we can use the Jhonson algorithm which would have a complexity of
the form O(|V |2logV + V E) Johnson [57].

3.4.3 Closeness centrality

Another metric of centrality, this time, more related to the topological
concept of being in the center is the closeness centrality. For any node
v we can compute the network distance of that particula node to all
the other nodes as the number of edges which have to be traversed
on the shorttes path on irder to read the far node. This direct value
is, by the way, called farness and the closeness of a node is simply the
inverse of this value. In this apporach a small flow-type componenent
can be identified if we define the closeness as being proportional with
the time required to disseminate the information regarding a specific
event taking place in an arbitrary node v trough the network.
For an intuitive way of approaching the problem this may be seen

as the best and most accurate way of computing centrality, but in the
same time it is not consistent with the flow approach and takes into
consideration only the static aspects of the network, ignoring the fact
that in the end this network is only the fabric which provides more
complex “services” built on top of it.
It can be easally seen that for an unconcted network, the centrality

metrics for any and all the nodes would be zero. Consecquently there
is an updated model, defined by Dongachev in Dangalchev [35] which
takes into consideration also the situations where the networks is un-
concetd. His approach requires identifing the connected components of
the graph, computing the closeness centralities of every node in each
of the connected component and agregate the partial results in order
to compute the closeness centrality of the entire graph.
For my investigations the possibility of applying the concept of close-

ness centrality to weighted graphs is of particular importance and the
work of Opsahl Opsahl et al. [86], continued by Boldi and Vigna Boldi
and Vigna [17] provide some insights into metrics suitable for this case.
They provide a simple formula,

CH(v) =
∑ 1

d(w, v)
(3.6)

and introduce the convention by which 1/∞ = 0 so, because the
weight (distance) of a pair of unconcetd nodes would be∞the closeness
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Figure 3.9: Random network from figure 3.5 with nodes colored and
sized by closeness centrality.

0.53... 0.57... 0.53...

0.36...

0.36...

0.36...

0.38...

0.4

0.38...

Figure 3.10: Closeness centrality of the nodes of a simple network, in-
troduced in 3.4.1.

of that particular pair of nodes would be 0.

For the graph I allready have used as example in the previous sec-
tions, I’ve plotted the application of the closeness centrality rule, which
can be seen in figure 3.9. One can observe a simillar, but non identi-
cal distribution of the nodes, and while using the same algorithm for
layout, we have to tahe into consideration that the emphasized nodes
are far from being the same as for the beetweeness distribution.

In figure 3.10 I’ve plotted the values for the closeness centrality on
the simple graph I’ve allready used as vehicule for discussion in the
above sections. One can perceive the fact graph being almost symet-
rical, the values follow the structure of the network. The intuitively
central node has indeed the highest value, while the peripherial nodes
have much smaller values.
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Figure 3.11: Random network from figure 3.5 with nodes colored and
sized by eigenvector centrality.

3.4.4 Eigenvector centrality

The last metric of centrality I’m going to discuss, but far from covering
with this the extensive range of metrics existing in the literature is the
eigenvector centrality. Simply put, the eigenvector centrality tryies to
compute “the value of the influence of a node in a network” Opsahl
et al. [86]. Each node has an absolute valued score, with node having
higher value, being considered more imprtant. The is a well know
metric, derived from the eigenvector centrality and this is the Google
PageRank score Newman [85].
As I’ve discussed before, my apporach is going to be from an algo-

rithmic point of view and in this case we start from the well known
description of a graph, as an adjacency matrix (A). Newman in New-
man [85], defines the centrality of a node v as being:

CE =
1

λ

∑
which also as described in Newman [85] would yield us:

Ax = λx (3.7)

Literature recommends using the power interation algorithm for com-
puting the eigenvalues which in term also guarantees us to find the
highest value, if multiple exists Newman [85] .
Of interest for the practitioner is the fact that there is guaranteed that

always is going to be a single node with absolute value of 1 (the most
influent in the network). Figures 3.11 and 3.12 show the application of
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Figure 3.12: In a simple network (same as in figure 3.6) there is a clear
difference between degree centrality and betweeness ce-
trality, defined as the number of shortest path that cross
the particular node. Each node is labeled, sized and col-
ored corespondingly to it’s betweeness.

the eigenvector centrality on the same two networks discussed above.
This time for the simple network in figure 3.12 we can perceive that is
a greater shift in structure, the highest value node, being the one with
1.0 in the left side of the picture. This is because that node is having
most direct or short distance connections to most of the other nodes.
On the influence flow side of the interpretation, for example an event

occuring in the node with EV-c 1.0 is having the highest propability of
being spread fast trought the entire network while one occuring in the
smalest blue nodes from the far side of the figure is going to need a
much more travel route in order to be completely propagated with the
corresponding diminishing in the influence of the “message”.
This observations are going to be used in my algorithm for informa-

tion diffusion in the sensor networks.

3.5 Comunity structrure in complex networks

What can be seen as a natural consequence of the way the nodes and
edges of a network are organized, and translates into a tighter grouping
of nodes around some areas of the network in regard to other areas,
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was formalized and called community structure. So to speak, in any
large enough network one can perceive a spatial clustering of nodes,
corresponding to various particular situations of the network, while in
other parts of the same graph there are almost no edges.
From a more formal point of view, the community strucutre is a prop-

erty of a network as a whole of which we can say it has it if the nodes
can be grouped in sets (subgraphs) which are densely connected in-
ternaly [84]. There is a valid possibility that some of the nodes (and
their respective communities) overlap.
From the practical point of view, communities are more often to be

found in netrwoks which represent pehnomenas where there are all-
read some kind of community structure. For example there si a clear
ovservation of this for all the graphs which represent social networks.
In this case there si a verry good match between the actual real life
connections (friedship, business contact) of the people and the results
obtained by the community detection algorithms of which I’m going
to speak later. Similar situations can be found in metabolic networks
(Brabasi’s Disieasome) [9] where there are connections and groupings
dependant of the same gene or the citation networks where comunities
are related to the same topic of interest[80].
There is an interest in developing algorithms and strategies for bet-

ter and faster identification of communities because this approach in
analysing large scale networks is capable of providing a bettwer insight
into the functioning of the system represented and prodict the outcome
of changes made to the network.
In the same case, it is not true the fact there are communities in

any network and current algorithms can produce misleading results
as can be seen from figure 3.13b. I’ve generated there a synthetic
network with 200 nodes and a uniform random connection propability
of 0.1. After running the community detection algorithm there are 7
identified communities, each depicted with a different color, but there
is no interpretation to be made with the actual domain being a random
network. So, there is the role of the practitioner to decide if and when
to apply the algorithm and what interpretation to give to the results.

3.5.1 Modularity of a complex network

Until now I’ve discussed about the general property of a complex net-
work of having the capability of being divided into smaller parts in a
way simillar to a community breakdown. The next question which is
rising is how do we measure this property.
In this case we can relay onto themodularity which is one of the met-

rics that measure the structure of a network, more exactly the strength
of the partitioning/division of a graph into clsuters/communities [31].
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(a) Community structure of an artificial so-
cial network (the caracthers of Les Mis-
serables).Taken form [11]

(b) Community structure of a 200 nodes ran-
dom network

Figure 3.13: Large network can exhibit clustering of nodes in forms of
communityes which map onto the particular properties of
the real-life domain-inspired network. In figure 3.13b the
results are wrong being the case of a syntheically gener-
ated random network.

The higher the modularity number, the better community structure the
network has. The value of it is in the range of [−1

2 , 1][84].

The computation of the modulariy relays on comparing the actual
number of edges from a cluster with the number of adges that would fit
into the same cluster if they would be distrubuted randmly, but keeping
the distribution of node degrees unchanged [4].

Classical applications of the modularity metrics are in the field of
community identification but there are issues with the resolution pa-
rameter: it is not capable of good identification of small comunities,
this being called the resolution limit. The cause lies in the definition of
the metric: if the communities are too small there are not many ways
of randmly reconnecting the nodes so the make a clear distinction.

For the particular discussion of my work the interests falls into the
particular problem of answering wether a given network can subse-
quently be divided or if a given algorithm should be recursvely ap-
plied, actually providing stopping conditions. If the network is not
having anymore a community structure it is presomptuous to still apply
methodologyes which relay on it.
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Resolution No. of communities Modularity resolution
0.1 182 0.055
0.2 128 0.07
0.3 91 0.081
0.4 70 0.092
0.5 56 0.098
0.6 45 0.115
0.7 36 0.112
0.8 27 0.12
0.9 21 0.129
1 17 0.137
2 9 0.044
3 9 0.044
4 9 0.044

Figure 3.14: The dependance between the resolution and the number
of communities in the Modularity Algorithm. For each of
the analyzed networks I’ve found an inflection point where
the behavior of the function changes from exponential to
almost linear. The practitioner has to choose on experi-
mental bases the suitable value inside the red window.

3.5.2 Community detection and resolution

There are numerous approaches formalized into algorithms for finding
communities, usually dependent of the specific application and on the
relevance of link density [38, 32, 31].
The community detection algorithm as described in [83] [14] and im-

plemented in Gephi uses a single parameter, the resolution; the lower
the value, the larger the number of identified communities (each with
fewer nodes). The default value is 1.0. Therefore a consistent method-
ology for choosing the resolution is required. I’ve carried out my in-
vestigations on a set of representative networks which model the typ-
ical literature-referenced sensor network topologies, but in the same
case the methodology still hold even when applied to urban transporta-
tion networks. Figure 3.14 plots the number of identified communities
against the resolution value. The networks used vary in size and acutal
topology: mesh, star, celullar, random.
For each of the data sets one can perceive allmost exponential de-

cay of the number of detected communities right after increasing the
resolution from the default value of 1 (the left part of the plot), and
an inflection point marking the area from where it becomes almost flat
(the area defined by the red box in figure). For the rest of the algo-
rithms and methodology I’ve designed, the practitioner has to choose
a suitable value for the resolution inside the marked area.

3.6 Concluding remarks

This chapther was dedicated for introducting the basic terminology and
concepts I’m using in my research, specific to the complex networks
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and graph theory. Much of the subsequent work is based on the two no-
tions of centrality and community structure/modularity. In this terms
I’ve dedicated some space presenting the specificities of the two, em-
phasizing on the pitfalls and limits of them.
Regarding centrality in graphs/networks it is worth noting that most

of these can be adapted and fine tuned for various specific networks
using the experince and understaning of the investigator while, in the
same time, concepts can be extended to other types of networks, such
as directed graphs of weighted ones Opsahl et al. [86]. Work has been
done also on dynamic, time dependeant networks, in which conse-
quently the centrality of evolving over time Hill and Braha [46].
On the other side the abstract term of community which has valid

significance for social and human aspects of life is equaliy hard to de-
fine and quantize in computation terms. For this, there are several
algorithms and methodologies which exhibit some degree of uncer-
tanty and require parametrization from the paractitioner, him being
the only one capable of deciding wheter the actual results are suitable
for a particular case of study. For this I’ve dedicated a specific section
discussing the limitations of the resolutions parameter in regard with
the community size.
In the next chapter I’ll present the integration of the concepts pre-

sented earlier in the form of the main algorihm I’ve designed as part of
my research for optimal palcement of relay nodes in a sensor network.
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Many applications require the deployment of an array of nodes which
have to operate unattended for long time, on limited power supply
(usually batteries). Major deployments consist of hundreds of nodes
interconnected at a logical level, in accordance to topologies and also
at a physical level, wirelessly or even wired [79]. Running on batteries,
one of the major issues that can be identified is the depletion of the
battery’s energy [24]. Such situations can cause issues with network’s
topology because some of the relaying nodes are not able to forward
data causing partitioning of the network and disruption of the services
[61].
Applying social network analysis principles in order to analyze and

optimize sensor networks is nothing but natural as the social perspec-
tive provides an innovative means of analyzing the structure of enti-
ties with a social-like structure [104, 103]. Thus, we can detect in-
fluential nodes, patterns of communication and also study dynamics
inside the network. This strongly relates to wireless sensor networks
as it is important to determine which sensor nodes are critical for the
data throughput, which are more central so that relays can be placed
at those positions, and also model growth as the network coverage
spreads in time.
Much of the research in the field of sensor networks was oriented

in the last years to maximize what is called “functional requirements”,
such as data latency [72], real time-ness and “non-functional require-
ments” such as data integrity [77], always taking into consideration
the main constraint: limited energy supply. Minimizing energy require-
ments, is seen most of the time as the main solution in prolonging the
life of a particular node and consequently of the entire network [74].
Because most of the sensor network deployment is in tough and ad-
verse environments there are many more hazards than just energy loss
[1].
In all of the following discussion I’m going to differentiate between

regular nodes, responsible for gathering data and/or acting upon re-
ceived commands and relay nodes which collect data from the nodes
in the direct area of coverage and send them upstream to the sink.
The scope of this research is to propose an optimization solution for
choosing the number of required relays and their optimal position so
that we maximize the performance of the network while keeping the
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overhead at a minimum.
In the design of a WSN the practitioner has to balance the costs in-

volved with the solution, with the performance, and one of the key
performance metrics is the average delay from node to sink. This part
of the research is part of a larger endeavor of designing and deploy-
ing a near real-time sensor network for monitoring and reporting data
regarding road traffic conditions and consequently dynamically adapt
the state of the traffic lights which is going to be presented in Chapter
6 of this thesis.

4.1 Problem statement

Given any two-dimensional WSN, we model it as graph G = {N,E},
composed out of nodes N and edges E. The set of edges consists of all
wireless links between all pairs of sensors inside each node’s coverage
area, like in an ad hoc network. The requirements are as follows:

• assign one sink for the network: s ∈ N,

• assign an optimal number of relay nodes: R ⊂ N, |R| ≪ |N |, s ∈ R

in order to balance a maximal performance and a minimal cost for G.
Another assumption considers the relay nodes R interconnected using

cable links with negligible latency and infinite power supply.
The performance is expressed in terms of number of hops required

to reach the nearest relay (relay-to-sink communication is considered
negligible, as mentioned above) and the cost is expressed in the num-
ber of required relays |R|.

4.2 Socializing the Network

In this section I describe the methodology of enhancing a wireless sen-
sor network using the SNA theoretical principles described in Chapter
3. The enhancement is done at the physical level, of determining where
and howmany relays to place over the wireless sensor network physical
monitored area, as well as how to interconnect those relays.

4.2.1 Network processing

In order to generate our input data I’ve used the WSNet topology gen-
erator [21]. It produces a set of nodes (sensors) with 2D geographical
data. The next step is to convert the information into gdf file format
which can be imported in Gephi [11], the leading tool in large graph
data visualization.
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nodedef> name VARCHAR, x DOUBLE, y DOUBLE
0, 218.74862670898438, 96.19173431396484
1, 100.27324676513672, 146.0537567138672
2, 207.51651000976562, 252.3385772705078
3, 342.5207824707031, 41.2176399230957
4, 0.8681038618087769, 332.48284912109375
5, 112.9320068359375, 349.3313293457031 . . .

Figure 4.1: Example data dump of the WSNet topology generator

Figure 4.2: The network processing workflow using WSNet for topology
generation and custom Gehpi plugin for import and imple-
mentation of my algorithm

Using WSNet, I’ve generated geographic randommesh configurations
for testing purposes, but any other layout of sensors in a geographic
space can further be processed by my algorithm. Figure 4.2 describes
the network enhancement process. To apply the algorithm one first
needs to generate a topology of wireless sensors which have positional
data (x, y) attached to them. Once the topology file is transformed into
gdf format it can be imported in Gephi using my custom implemented
plugin. The wireless coverage area can be set after which the enhance-
ment algorithm, called SIDeWISe, processes the topological data. The
resulting topology is the initial sensor network with an additional over-
lapping layer of optimally placed relays which are all connected to a
sink through minimum cost physical links. Once the algorithm finishes
it can be rerun by customizing its parameters (discussed in Section 4.4)
and the output file can be exported in XML format for further process-
ing into a network simulator of choice, like OPNET, OMNet++, NS-3
etc.

57

BUPT



4 Optimal relay placement

Algorithm 4.1 SIDeWISE Algorithm: Build mesh network
Input: Sensor network represented as graph G = {N, R} with geo-positional
data of the nodes (ni, nj).

A: Link all nodes in wireless range
1 : E ← {}
2 : foreach node ni in N:
3 : foreach node nj in N, i ̸= j:
4 : if distance(ni, nj) < r:
5 : eij ←create edge between (ni, nj) if none exists
6 : E = E

∪
eij

Output: Mesh sensor network E = {N, R′} with complete conections in the
close proximity (< r) of each node

4.3 The SIDeWISE Algorithm

In this section I will present the SIDeWISE (SocIally enhanceDWIreless
Sensor nEt-work) algorithm which enhances any given sensor network
by overlapping an additional physical network of optimally placed relays
and a single sink over it.
The enhancement process is presented using the graph visualization

tool Gephi, which offers standard graph analysis tools, and I’ve im-
plemented a plugin designed as a Java Gephi plug-in to express my
algorithm. This process is depicted in Figure 4.3. We start with a sen-
sor network senn as a 2D graph and a given wireless coverage range r,
and the first step (step A) is to create point-to-point edges between all
pairs of nodes that are within one’s range (in the fashion of an ad-hoc
mesh sensor network). Thus, we obtain the complex network (graph)
G = {N,E}, defined by the set of vertices (N) and edges (E) between
those vertices.
The distance (ni, nj) is defined as the Euclidean distance between the

two points (xi, yi) and (xj , yj).
Step B of the algorithm implies determining which node would best

fit as being the (single) sink of the network. For this I’ve choosen to
measure the betweeness centrality of the network and assign the node
with the highest centrality as the sink, in contrast to the geographically
centered approach proven less effective [108, 110]. The centrality
is represented as a floating point value inside [0, 1], with 1.0 always
corresponding to the most “central”/”important” node. As in a social
context, the most central node is the one being closest to all other
nodes on average. This is measured by having the shortest average
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Algorithm 4.2 SIDeWISE Algorithm: Compute the location of the sink
and assign the sink
Input: Sensor network represented as graph G = {N, R} with geo-positional
data of the nodes (ni, nj).

B: Assign sink
1 : foreach node ni in N:
2 : C[ni] ← compute_centrality{G,ni}
3 : find ns in N where C[ns] = 1.0
4 : R = {ns}
5 : ns → sink for G

Output: Identity and location of the sink node

paths to all other nodes in the graph. Once this node is determined it
becomes the sink.
Using Gephi, the centrality of all nodes is measured and the node ns

with the highest centrality (1.0) is chosen as the sink for graph G, and
is also added to the set R of relays.
Step C determines the clusters of sensors which are relevant to the

network from the throughput perspective. While it is not a common
practice to determine communities in sensor networks, communities
are highly relevant in social networks and other types of complex net-
works as I’ve presented in the previous chapters. As such, in order to
determine the optimal number of needed relays I’ve ran a community
detection algorithm on the network G, by measuring its modularity.
A community detection algorithm is a method for grouping individuals
(nodes) into clusters in which all elements share one or more common
properties. In this case, the commonly shared property is the posi-
tion of each sensor: they have to be tightly grouped toghether and
have a higher distance in relation to other nodes . A parameter named
resolution can influence the number of detected communities. In com-
parison to the default resolution value of 1.0, a custom resolution < 1.0
will determine smaller/more communities and a resolution > 1.0 will
determine larger/less communities. I’ll discuss the impact of using a
custom resolution in the next section.
Measuring the modularity of a realistic physical network (i.e. not

regular, not evenly spread) results in a high number of communities
with various sizes. As there are always small communities formed out
of several stranded nodes, I ignore all communities with a total size
smaller than a fraction λ of the total population, merging them with
the closest large community.
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Algorithm 4.3 SIDeWISE Algorithm: First level community detection
Input: Sensor network represented as graph G = {N, R} with geo-positional
data of the nodes (ni, nj).

C: Detect communities
1 : Com←community detection algorithm {G, resolution}
2 : foreach comi in Com:
3 : if |comi| < λ× |N |:
4 : Com = Com \ {comi}

Output: Set of nodes, each with it's own community id

It is important to mention that discarding does not mean the sensors
are removed from the network, it means that those groups of sensors
will be considered irrelevant for the next step of the relay-placement
algorithm.
Step D is an iterative process identical to step B, but it is applied on

each individual community previously determined. The number of re-
lays is determined by the number of relevant communities (i.e. size > λ
fraction of the population) during step C while the relays themselves are
chosen during this step. Measuring the centrality distribution of each
community, we choose the most central node as a relay. As mentioned
before, the central node is the closest to all other nodes in its commu-
nity. This is relevant to wireless sensors because the existing edges
are determined by position, and so it becomes straightforward and ef-
ficient to choose a relay to whom any sensor requires the minimum
number of hops to reach.
Consequently, the resulting set of relays R is composed out of the

initial sink and one relay added per relevant community. More precise,
the total number of relays is equal to the number of communities of
size > λ fraction of the total population, and contains the most central
nodes in each described community.
Considering that nowmost wireless sensors have a relay in their vicin-

ity, step E processes set R in order to create a secondary, overlapped
graph of edges that connect all relays and the sink. The edges repre-
sent physical links, like broadband cable or fiber connections. Coverage
of the set S with edges is done using Kruskal’s minimum spanning tree
(MST) algorithm [64].
The algorithm is applied on the set of relays, each with geographic

coordinates, by iterating through all possible edges between all pairs
of edges. The total number of possible edges between |R| = r nodes
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Algorithm 4.4 SIDeWISE Algorithm: Assign relays
Input: Sensor network represented as graph G = {N, R} with geo-positional
data of the nodes (ni, nj).

D: Assign relays
1 : foreach community comi in Com:
2 : foreach node nik in comi:
3 : C[nik]←compute centrality {comi}
4 : find nir in comi where C[nir] = 1.0
5 : R = R � {nir}
6 : nir →relay for comi

Output: Set of relay nodes (R), each with it's own community id

Algorithm 4.5 SIDeWISE Algorithm: Create the MST of the relay net-
work
Input: Realy network graph R = {NR, Ø} with geo-positional data of the
relaynodes (ni, nj).

E: Create MST for relay-graph
1 : ER ← {}
2 : foreach relay ri in R:
3 : foreach relay rj in R, i ̸= j:
4 : eij ←create edge between (ri, rj) if none exists
5 : ER = ER

∪
{eij}

6 : GR{R, KER} ← Kruskal{ER}
7 : ER = ER \KER

Output: Relay interconnection tree, ER
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is r×(r−1)
2 . Kruskal’s algorithm is applied on set ER which results into

the graph GR composed out of the relays (as nodes) and r − 1 edges
(KER) with minimum cost. The cost of an edge is represented by its
Euclidean distance, thus shorter edges are preferred over longer ones.
Also, the set ER of all possible edges, except the ones already selected
by Kruskal’s algorithm, is kept for the final optimization of the relay-
graph.
The final step of the algorithm is step F. Although we have obtained

an optimal set of relays for the wireless sensor network, as well as a
minimum cost coverage network for the relays, the problem that arises
is that such an MST is rarely an optimal throughput network and in the
same time it has a low fault tollerance as I’m going to detail in the
next chaper. Suffice to say for now that by loosing any relay node or
any high-speed connection would partiion the network. As the network
GR has a sink, it is relevant that GR itself is optimized in order for the
sink to be the most central node, so that information incoming from all
relays is gathered with minimum traffic congestion. The problem stated
is explained in figure 4.4. It can be observed how a randomly chosen
network covered with an MST resulting from step E (Kruskal) places
the sink in an eccentric position. The smallest (gray) nodes represent
wireless sensors, the red nodes represent relays and the single larger
red node is the sink. The red edges are the physical links connecting
the relays. On the right side of Figure 4.4 it can be observed how
the sink is made more “central” by adding two more edges to the MST
resulting from Kruskal’s algorithm.
The SideWise algorithm can be summarized into the dataflow chart,

presented in figure 4.3.

4.4 Simulation and results

In this section I’ll exemplify the functionality of the SIDeWISE algo-
rithm on realistic wireless sensor networks, as well as explain how the
algorithm’s various parameters affect the results. Figures 4.5 and ??
present the main steps of the algorithm. All sensor nodes are colored
according to the community they belong to, as determined by the com-
munity detection algorithm implemented in Gephi. There are a total of
7 communities, as such, 7 relays are assigned to the whole network,
one of them being the sink. Figure 4.5 displays the resulting MST (up
to step E). As it is a minimum spanning tree, there are no redundant
physical links which connect the sink to any distant relays. Although
cost effective, if we were to add an additional edge to the MST, the
congestion rate will decrease significantly, while the cost will only in-
crease by a small amount (step F). In figure 4.4b, the first edge added
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Algorithm 4.6 SIDeWISE Algorithm: Centralize the sink node
Input: Realy network graph R = {NR, ER} with geo-positional data of the
relay nodes (ni, nj).

F: Centralize the sink (C[Sink] = 1.0)
1 : while C(sink) ̸= 1:
2 : foreach edge ei in ER:
3 : KER = KER

∪
ei

4 : C(sink)←compute centrality{GR, sink}
5 : fitness(ei) ← C(sink)
6 : KER = KER \ ei
7 : find er in ER where fitness(er) is maximal
7 : KER = KER

∪
er

8 : ER = ER \ er
9 : C(sink)←fitness(er)

Output: Realy interconection graph with maximized sink centrality (1.0)

Figure 4.3: The network processing workflow of the SIDeWISe
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(a) A relay network covered with a MST ob-
tained by SIDeWISe

(b) The same MST from subfigure (a) but with
an additional two edges so that the sink
(big red node) becomes the central node
of the network.

Figure 4.4: The results of running the SIDeWISe algorithm on a typical
random sensor network

during step F of the algorithm is E1: it connects the sink with relay 4
and decreases the average path length towards the sink. Another edge
is added, namely E2, so that the distance from the sink to relay 6 is
reduced from 3 hops to one.
The resulting topology described above depends on two more pa-

rameters: the resolution of the modularity algorithm and the wireless
coverage radius. I’ll further analyze the impact of these two parame-
ters in regard to the number of assigned relays.

4.4.1 The Number of Relays versus the Community
Granularity

First I’ll analyze the total number of relays as a function of the mod-
ularity resolution used to detect the communities. The scale of the
modularity resolution depends on the degree of connectivity between
each community and does not depend on the network structure itself
[84]. Lowering or increasing the resolution is equivalent to finding an
ideal tradeoff between the number of terms in a sum and the value of
each individual term [67]. The experimental results depicted in Fig-
ure 4.6 show that as the resolution increases from the default value
(i.e. 1.0 in Gephi’s implementation of the algorithm) the total num-

64

BUPT



4.4 Simulation and results

Figure 4.5: A sensor network of 1000 nodes with 7 communities, each
with one assigned relay. The larger green node is the sink.
Even though the coverage cost is optimal, the average path
length to the sink remains high and the fault-tollerance is
still low.
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Figure 4.6: A sensor network of 1000 nodes with 14 detected commu-
nities, out of which 11 are representative (resolution = 1.0)
showing the ration between total and relavant number of
communities, depending on the resolution parameter.

ber of detected communities decreases slowly and converges towards
a minimal value. In the chosen example, the 500 node network can
be divided in no less than 9 communities, regardless of how much the
resolution is increased. As the resolution is decreased from 1 towards
0, the number of detected communities increases exponentially, but
their actual size decreases steadily. Because the SIDeWISE algorithm
neglects communities smaller than 5% of the total population — im-
posed treshold for this example, but changable if needed — the number
of relevant communities (blue) decreases to a state in which not a sin-
gle community is considered relevant to have its own relay. Table 4.1
shows the numerical values displayed in Figure 4.6. Figure 4.7 demon-
strates the fact that by increasing the resolution we obtain fewer but
more significant communities, as the ratio between relevant and total
converges towards 90%.
As a conclusion to this experiment, I consider that applying the SIDe-

WISE algorithm in every real scenario requires understanding the im-
pact a custom set resolution has on the overall structure of relays.
If the real world conditions require sparse relay placement, one can
consider lowering the resolution, so that only the most truly relevant
communities of sensors receive a relay in their vicinity. On the other
hand, if we require a higher speed network of relays one can increase
the resolution, but, as the experiments show, even though the ratio
increases up to 90%, still the highest number of relays (11) is placed
when the modularity is set to the optimal value of 1. Based on these
observation I suggest suggest working only with resolutions between
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Table 4.1: Experimental results showing the number of relevant com-
munities versus total number of communities in a wireless
sensors network as the modularity resolution is decreased
and increased from the default value of 1.

Communities
Resolution Relevant Total %

0.1 0 47 0
0.25 2 29 6
0.5 8 22 36
0.75 10 16 62
1 11 14 78
1.25 10 12 83
1.5 10 11 90
1.75 10 10 90
2 9 9 88
>2 8 9 88

0.5 and 1.25.

4.4.2 The Number of Relays versus the Wireless
Coverage Area

The second analytical approach emphasizes the total number of relays
assigned as a function of the communication range of each sensor. For
analytical reasons at this stage I consider that all sensors in the net-
work have the same wireless coverage radius, thus the length of all
edges in G are smaller than a given radius r. Similar to the modularity
resolution, a small radius will determine short, local edges in the graph
which leads to many small communities. Figure 4.8 represents exper-
iments done on a standard wireless sensor network of 1000 nodes by
varying the radius r from 5% (0.05) to 50% (0.5) of the total area
covered by the network (legth of the bounding box).
While the number of detected communities falls exponentially from

over 250 towards a small convergence value of 4, the number of placed
relays describes a different characteristic. Small communities lead to
no relays being placed, then, as r increases, an optimal relay layout
is obtained for a coverage r ∼ 0.1, and finally, the relay number falls
again as the coverage area widens (> 0.2). The conclusion that can
be drawn is that the SIDeWISe algorithm offers less improvement for
sensor networks with a low area coverage, and becomes redundant if
the coverage area is significant compared to the whole network surface.
The optimal scenario in which to apply the SIDeWISe algorithm is in a
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Figure 4.7: The ratio between relevant and total detected communities
on a network with 500 nodes as the resolution is increased
from 0.1 to values above 2. A low resolution yields poor
results (<50% relevance) and high resolutions all converge
towards the same result (>80% relevance).

Figure 4.8: The impact of the wireless radius of sensors in relation-
ship to the total number of communities detected (orange)
and the actual number of relays assigned by the algorithm
(blue). The figure is zoomed-in on the relevant portion of
the graphics. The radius on the Ox axis is expressed as a
percentage of the total area covered by the network.
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Table 4.2: Experimental results showing the number of relays placed
by the SIDeWISE algorithm for a network with N nodes.

network in which the ratio between a sensor’s coverage area and the
whole area occupied by the network is between 6− 20%. However, by
modifying the community size threshold of 5% to a different value, the
algorithm can be adapted to more diverse scenarios.

4.4.3 The Number of Relays versus a Growing Network
Size

I’ll discuss in this section the total number of relays as a function of the
network size and demonstrate that while the network increases linearly
in size, the number of relays increases much slower, like a scale-free
social network, namely logarithmic [1]. Table 4.2 contains measure-
ments of number of assigned relays depending on the network size N .
It is worth mentioning that for this discussion both the resolution and
wireless coverage are kept at constant values.
The measurements confirm the fact that the number of required re-

lays does not grow linearly with the number of nodes, but logarithmi-
cally. My algorithm has the same property as the small-world network
described by Watts-Strogatz [105]. In Figure 4.9 we can observe the
growth of the number of relays (N), with values of N ranging from
100 to 1000 with a step of 100, and from 1000 to 8000 with a step
of 1000. The orange trend line log(relays(N)) demonstrates the men-
tioned logarithmic characteristic. This is a very important feature of
the SIDeWISE algorithm because it manages to keep the number of
relays relatively low, thus the cost remains low, as the overall net-
work propagation delay is rapidly decreased. Making an analogy with
the small-world properties which represent an ideal balance between
the characteristics of a regular network and a random network [111],
Figure 4.10 demonstrates the same principle: the socially enhanced
wireless sensor networks lie at the ideal crossroads between cost and
performance.
On the left side of Figure 4.10 is a network with just one sink and
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Figure 4.9: The number of assigned relays (OY axis) as a function of
the network size N (OX axis). The function relays(N) has
a logarithmic characteristic as the trend line demonstrates
(orange).

Figure 4.10: The SIDeWISE algorithm balances cost and propagation
delay by optimizing the placement of the relays in a
WSN. The two extreme cases are represented by a single-
sink network (left) and a network fully covered by relays
(right).
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no relays. While being cost-optimal, it offers the worst performance as
the propagation delay is maximal. On the right side is a network fully
covered by relays. In this case the delay is optimal (minimum) but
the cost is maximized. As the graphics of the delay and cost suggest in
figure 4.10, there is a window in which we can create a network with the
best possible tradeoffs: a relatively low delay (i.e. high performance)
and a low cost. This is the type of enhancement which the SIDeWISE
algorithm facilitates.
To exemplify the advantages, I consider a network A with 10 × 10

adjacent relays placed in a lattice topology like in figure 4.10 (right)
and also that a wireless communication hop is equivalent to a delay of
1τ time unit and that all physical hops are equal to 0τ units of time. The
cost of a network is expressed by the number of required relays. In
this case, the delay on network A is 1τ and the cost is 100 (expressed in
number of relays). On the other extreme is network B of the same size
but with only a sink in the center. This sink only covers 1 cell out of the
100 cells in the network so the average delay for any sensor is 6.98.
The cost however is equal to 1. None of the two extreme solutions
– A or B – are ideal as the proposed algorithm covers the network
by assigning only 7 relays while keeping the average delay at 3.62τ
time units. This yields a 92% performance improvement compared to
network B and uses only 7% of the relays required for network A.

4.5 Hierachical SIDeWISe

At this stage I propose a methodology centered around topics from the
CNA, presented above which is an extension of the SIDeWISE algo-
rithm. The first stage is represented by the recursive division of the
city into topologically relevant communities. These communities con-
tain key intersections, identified through computing the betweeness
centrality. The second stage is represented by the recursive multi-level
breakdown of the intially identified communities into smaller cluster
and this process cand continue until a desired granularity (community
size) is achiverd. The third step is represented by the bottom-up re-
construction of the relay tree structure, with an aditional optimization
step of building the associated higher fault-tollerance network.

4.5.1 Issues with flat topology networks

In figure 4.11, a simple sensor network consisting of 3 communities on
a two-dimensional structure is presented. A selection mechanism must
be run to identify groups of master-slave nodes in order to advance
from Layer 1 to Layer 2 and to change our approach from computing
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Figure 4.11: Hierarchical structuring of intelligently managed traffic
light intersections. Taken from [50]

a global optimum to an adaptive mechanism (master nodes being de-
picted as grayed-out V1, V3 and V5). The nodes identified as master will
coordinate at Layer 2 all traffic movements from Layer 1 and will create,
at the same time, the population for Layer 3. At the upper layer each of
the communities are clustered from a logical point of view exchanging
information between equipotent master nodes of distinct communities
(square grey node is a logical one).
Running the algorithm at different resolutions identifies communities

along with the corresponding master-slave nodes. Each of the grey-ed
nodes act as relays in the entire network. Each community in figure
4.11 is associated to a topological community identified by the com-
munity identification algorithm. All other nodes, V2, V4 and V8 act as
lower level communities wich are going to be recursively broke-down.
Inter-community communication occurs between relay nodes of each
of the communities.

4.5.2 Hierachical SIDeWISe algorithm

In this section I’ll present an extension of the two-tiered relay network
obtained by the SIDeWISe algorithm for a multi-level structure.
Let G = {E, V } be the graph representing the topology of the net-

work, where E = {ei � i = 1, ne} is the set of all edges (wireless con-
nections), with ne being equivalent to the number of radio links and
V = {vi � i = 1, nv} is the set of vertices, with nv being the num-
ber of sensor nodes. The hierachical SIDeWISe (h-SIDeWISe) algo-
rithm uses two parameters, the resolution RES (discussed previously)
and the threshold value for stopping the recursion TRESH (chosen
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Algorithm 4.7 The hierachical-SIDeWISe algorithm
input: G = E, V
define RES = 10 //see more details in Section 3.5.2
define THRESH = log10 | G |
function assignMaster(G,RES, TRESH) {

C=detectCommunity(G,RES)
foreach ci in C do {

foreach vi in ci do {
betweness[i] ← computeBetweenes(ci, vi)

}
maxBetweenes ← max(betweenes[])
vmaster ← ci[maxBetweenes]
if (| ci |> TRESH)

assignMaster(ci, RES, TRESH)
}

}

by the practitioner on experimental basis). The recursion parameter
TRESH determines the number of nodes in a community, the larger
the TRESH, the larger the community. The recursive process is imple-
mented by function assignMaster(G,RES,TRESH). I apply the community
detection algorithm as presented in [14]. Subsequently, for each of
the detected communities (ci ∈ C) I compute the betweeness centrality
for each node vi. Next, the nodes are ranked and the master node is
selected based on the maximum value of the betweeness. The hierar-
chical nature of the algorithm is implemented as a recursive process,
consequently I apply the same methodology for each of the “smaller”
communities of ciuntil the number of nodes in a community is less than
the specified threshold value (TRESH).

Figure 4.12 shows the behavior of the h-SIDeWISe algorithm on a
synthetically generated random mesh network with triangle tessella-
tion. The blue nodes represent ordinary sensing/actuating nodes, while
the red one is the central sink — identified by using the SIDeWISe algo-
rithm. The networks was subsequently divided into communities and
each of the first level-communities are delineated by a differently dot-
ted polygon. Next, the hierarchical way of approaching the problem
requires the continuation of the recursive breakdown, which is rep-
resented by the magenta sub-communities shown in the figure. For
the sake of visual clarity I’ve stopped the process after two iterations
but for larger network it should be continued until the desired level of
granularity is reached.
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Figure 4.12: Application of the h-SIDeWISe algorithm on a random
mesh network

4.6 Conclusions regarding the SIDeWISe
algorithm

My work represents a novel approach in designing the placement of
relay nodes in a sensor network. By using concepts from the area
of social network analysis and mapping them to the already classical
field of sensor networks I’ve succeed to add improvements to the costs
implied with deploying the infrastructure. My research in done around
the algorithm I’ve devised, called SIDeWISE.
A particular assumption is represented by the multi-tiered relaying

architecture with relays linked by low-latency cable connections, which
I’ve have stated in section 1.2. I consider my research as a framework
for a much in depth analysis involving detailed physical characteristics
of the network, buy the analysis is spanning in two major directions
defined by the two varying parameters: the community granularity,
which provides in insight into the smallest possible cluster of nodes
and the already classical topic of the wireless coverage area of each
node. The logarithmic behavior of SIDeWISE is of particular impor-
tance for the demanding applications of modern day sensor network
with large number of nodes and with assumptions of a growing trend.
Taking two classical reference examples (single central relay/sink and a
regular mesh of sinks) I have shown the location of my algorithm in the
design space. In regard to the mesh placement SIDeWISE provides an
improvement of 92%. The extension of the initial algorithm is concern-
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ing the idea of a multi leveled topology in which there is a tree style
hierarchy of relay nodes, each datagram traversing the hierarchy for
reaching the diametrical extremities of the network. This is formalized
into another algorithm called h-SIDeWISe and uses the same concepts
of complex networks analysis further adapted for the required task.
The multi-level structure proposed has the advantage of exploiting the
localization of data traffic on geographical basis and providing means
of interconnection between clusters only trough relays, while the lower
importance radio connections which can arise from the mesh structure
are used for improving the fault-tolerance.
I’ve also tackled the problem of finding a methodology of choosing

the resolution parameter for my experiments and form this point of
view I’ve presented a procedure based on experimental findings for
determining the best value mostly dependent on the specific scenario at
hand. The h-SIDeWISe uses this findings in order to efficiently identify
the important nodes of the a sensor network and assign sink roles to
them, afterward using a genetic optimization approach.
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5 Building fault tolerant sensor
networks using SIDeWISe

Mostly dependent on the task of the network but also of the particular
conditions and the type of sensors there are two major strategies in
placing the nodes of a sensor net-work: deterministic and random.
The first one, when possible, can ensure great cover-age with careful
placement of the nodes and even the logical topology of the network
can be established at deployment time [77].
Because of the adverse condition on the field there are situations

where the single possible option for deploying nodes is in a random
manner. This has adverse effects on the main metrics of a WSN [72].
In any situation where there is a large distance between two adjacent
nodes, we witness a low throughput and high energy consumption.
Rich literature exists on the topic of optimal node placement [55],

which is considered an NP-hard problem [10] and some non-deterministic
approaches were proposed, which provide sub-optimal results [89].
Much because the current approaches in deterministic placement of

the nodes proven themselves problematic but also because some of the
typical WSN deployment scenarios presented both in the literature and
also in the real life scenarios, such as wild fire prevention, battlefield
monitoring or disaster rescue, require a quasi random distribution of
the nodes, even if there are some possibility of controlling the density
of the nodes [108] I’we decided to investigate the problem of relay
placement strategies in this case.
Another interesting approach, which is also the starting point of my

investigations, is the one presented by Xu et al. in [108]. The authors
take into consideration a two-tiered topology in which nodes are clus-
tered around relaying nodes which further communicate directly with
the sink. The authors also consider a “multiple-hop communication
case” which presume the existence of a hierarchy of relay nodes, con-
nected in a tree manner to the sink. The authors propose a weighted
random distribution, which increases the number of nodes as we move
further away from the sink. One of the issues identified by the authors
is that the random distribution can leave some parts of the network
disjoint, actually partitioning the network, and their solution to the
problem consists of the multihop deployment strategy.
Another research direction with practical application is the exploration
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of the issues arising when scaling the network. From an economical
perspective, much of the sensor network deployments consist of incre-
mental stages with more nodes being added. Aside from the issues
regarding possible flow congestions there is a great need to know the
optimal placement of the relay nodes so that, with minimal costs, the
new nodes are is a growing interest in the area of network connectivity
[61]. Early work has considered the coverage as being the paramount
of the research [110], but because modern sensor node are running
at the threshold of the energy requirements their coverage is largely
diminished. Flat, 2D sensor networks usually consider relay nodes to
be simply another node, but with higher transmission power and/or
energy autonomy. The problem is getting interesting in two and mul-
titier sensor networks where sensors are usually clustered in what can
be called subnets, as presented by Chen et al. in [22]. Each sub-
net is sending data to a relay (called aggregation-and-forwarding node
(AFN)) which in turn send the data via a multihop connection to the
base station (sink).
One other approach is to use a deterministic approach in placing the

relay nodes of a randomly deployed sensor network, such as presented
in [22]. The problem is formulated in terms of initial set of nodes
and their position, the task being to find the optimal placement of a
set of relay nodes, so that the network lifetime and connectivity are
maximized. Authors prove that the problem is still NP-hard, but provide
a polynomial time algorithm. Tackling the problem of fault tolerance,
there is an approach of maximizing reliability by placing relays at the
intersection of two neighboring nodes.

5.1 Reliability in sensor networks

Since the beginning of the 1950’s there was an intense research and
development in the field of reliability of computers, communications
and storage systems. These developments were conducted both in the
academia and the industry. One of the main driving forces behind was
the recognition of the fact that as the complexity of computing devices
and systems increases, fault-tolerance will gain more importance. At
the dawn of the 9th. decade of the past century the objective of the
fault tolerance has lost of importance. This situation arises form the
progress in the manufacturing area, where we could obtain individual
components (pieces) which have a very good reliability factor so that
the final system will have also at least a decent reliability. One as-
pect worth to mention is the more and more innovative packaging and
new cooling mechanisms which tremendously reduced the stress factor
om computation systems. The main step in the fault-tolerance testing
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procedure that has received a great deal of attention was the on-line
testing, especially in the industry.
In the last few years we see a revival of the interest in fault tolerance

and related techniques such as self-repair. One of the main driving
forces behind this state of fact was the rapid growth of the Internet in
the last decades. Internet requires a very high availability (called also
up-time) and therefore much interest was involved in the development
of fault-tolerant data-centers and associated data networks. Another
field of computer engineering which benefits from an increased fault
tolerance are the wireless sensor networks. WSN rise some unique
conceptual and technological challenges. We know that at least two
components of a sensor node will directly interact with the environ-
ment. These are the sensors and the actuators. Interacting with the
environment they will be under constant and various physical, chemi-
cal and biological stress. Therefore they have a significantly lower in-
dividual reliability compared to the classical integrated circuits in fully
enclosed packages. Also we should not forget that each node and the
entire wireless sensor networks is an exceptionally complex system
where a large number of not always homogenous nodes interact in a
complex manner. Even a bigger challenge would be represented by the
shear number a the nodes that can be part of a WSN, and we speak
of hundreds and maybe thousands of them. All these form a large dis-
tributed embedded network system that handle a variety of sensing,
actuating, communicating, signal processing, computation and com-
munication tasks. The development of WSN is strongly linked with our
capability of building low cost devices which directly influences their
reliability.
Another reason for the importance of fault-tolerance in respect to

WSN is that applications operate most of the time in an autonomous
mode without human presence and/or interaction. One of the biggest
aspects is therefore the one of security, safety and so-called graceful
degradation. The main concern as we speak of graceful degradation
is the impact on humans and the environment in case of an error, in
particular when we have a loop which involve actuators. The area of
debugging will rise also significant challenges mostly because of the al-
most impossible task of replicating the conditions and here we speak of
the condition of the entire sensor network as a whole where we have to
take into consideration all the aspects: geography, climate, weather,
stress factors, power supply and so on, compared to the classical de-
bugging where we regard the device as individual element (or a limited
number of well known interconnected devices).
The final reason I will present here is that WSN are still a young topic

of interest - especially in regard to an even newer concept called Inter-
net of Things - field and there is not very clear how we can address a
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particular problem, so we have a large playground for research, devel-
opment and testing. Even worst WSN are used in different context and
environments and purposes so it is very difficult to find the best way to
treat the fault-tolerance which can be applied on any of the scenarios.

5.2 Sensor networks

In the following I will try to make a surrey in the field of fault-tolerance
in sensor networks and according to [37] I will consider FT at four
levels of abstraction starting from the hardware and system software
and going to the middleware and application layers. Also I will consider
FT at each level of six individual components of a node: computing,
communication, storage, energy supply, sensors and actuators. Also I
shall speak on FT regarding an individual node as well as the network
itself.
A WSN can be seen as a system composed of small wirelessly com-

municating nodes, where each node have some well defined but not
necessarily unique function. In particular each node has a computa-
tion and communication part a power supply element and most of them
have some sensing devices and less of them have actuating (influenc-
ing the environment) elements.
A WSN can be seen as a symbiosis of physical world with the In-

ternet and computations. One of the biggest concerns in WSN is the
power supply. On a node the power supply is very limited and the
replacement of batteries is impractical or impossible because of the
topological conditions or simply because of the shear size of the net-
work. Therefore we see that energy is the most constraining factor
in the operations of a WSN. The mainstream technique for conserv-
ing energy is the short-range communication between adjacent nodes,
instead of a direct long-range link with the central access node [99].
From a theoretical point of view sensor networks are often modeled

as as graphs where each vertex of the graph corresponds to a wire-
less node and there is an edge corresponding to the communication
between two nodes [75]. The communication between nodes can be
either 1-to-1 or 1-to-N. This is a very simplified model and provid-
ing a reasonable and practical model for sensors and actuators is a
much more complex undertaking, mostly because of the large variety
of functionalists and underlying technologies involved.
From the application point of view there are a lot of envisioned ap-

plications for WSN. One of the classical one is in the field of military
science where they can be used to detect and spy the enemy territory
providing valuable information for the deploying forces. Another field
of application is the intelligent security systems in perimeter defense.
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A similar field is the monitoring of large areas of inhibited environment
for detecting dangerous situations (eg. volcanoes, landslides, . . . )
or contexts which require observation over a long period of time.
Later in my thesis I will develop and analyze a specific application

area, of real time monitoring of urban road infrastructure in order to
optimize the traffic flow in city environments.

5.3 Background in fault tolerance

In the dawn of design of digital computing systems one of the main con-
cerns was the fault-tolerance. The relay-based computer built at Bell-
Labs was exploiting so-called temporal redundancy by performing the
same calculation multiple time, using exactly the same inputs and the
same algorithm, and by comparing the results they were able to detect
potential transitory malfunctioning. Also UNIVAC 1, built in 1951 used
both parity checking and arithmetic unit replication to enhance relia-
bility. In that time both Moore&Shannon and VonNeumann conducted
studies on how to design systems that preserve functionality after a
subset of components manifest failure. One of the key development
directions was the enhanced serviceability features, manifested by a
very good modularity which allowed rapid replacement of the faulty
module. On of the extreme cases was the Apollo program which used
triplicated computers (units) in order to lower the probability of failure
[6].
In the following decades the fault-tolerance started to diverge be-

tween hardware (VLSI design) and software (especially in the database
area) and now one of the hottest topic is the self-repairness of hardware
units. The reliable design is discussed at three stages of the product
life cycle: design, manufacturing and usage. Before continuing I will
present some common language for the field of fault-tolerance, accord-
ing to [7].
Fault is an incorrect state of hardware or software as a consequence

of the failure of a component. Permanent faults are the ones that
are continuous and stable in time. For example, permanent hardware
faults are consequences of irreversible physical alteration within a com-
ponent. An intermittent fault is one that has only occasional manifes-
tation due, for example, to unstable characteristic of the hardware, or
as a consequence of a program being in a particular subset of space.
Finally, a transient fault is one that is the consequence of temporary
environmental impact on otherwise sound hardware. One of the most
interesting causes of transient fault is the impact of cosmic radiation
[94].
Error is the manifestation of a fault inside a component/module. One
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of the most important aspects is that error can occur not only at the
fault site but also at some distance form the fault (both in space and
in time).
Fault-tolerance takes into consideration three types of concerns: fault

models, fault detection and resiliency mechanisms [62].
Each level of abstraction has its own types of faults. One of the most

common examples is the stuck-at model that was used with success
in the physical testing phase at the gate level. This model supposes
that the value on the input (or output) of a elementary gate is always
stable (1 or 0). Another classical model is the bridging fault model
where two or more neighboring signal lines are physically connected
making a wired AND (or OR). Shorts and opens are another class of
faults corresponding to missing or additionally introduced connections
respectively [7]. It is interesting to notice that most of the testing
approaches assume a single fault model. This is based on statistical
analysis where was proven that the single-fault model is most likely to
occur in practice and the double (or multiple) fault is extremely rare
[71].
In the field of reliability we have the following phases.

1. Firstly we have to confine the fault, so to limits it’s effects in a
particular area and therefore the contamination of adjacent area
is prevented;

2. Fault detection, independently from confinement, is the accep-
tance of the existence of a fault.

3. Fault latency is the time lag that is between the actual (physical)
appearance of the fault and it’s detection.

Usually fault detection techniques are classified in: online (during the
production status of the device) and offline (when the device it’s not in
production) [54]. Most often we use a superposition of these two so
that we have a detection phase which is online and a diagnostic phase
which is ofline, using specialized tools. We can introduce another phase
called reconfiguration, where we act on the device so that the fault is
eliminated or, more generally speaking, the manifestation of the fault
does not have impact on the correct output of the device. Graceful
degradation is a reconfiguration techniqus where the performance of
the system is reduced but the correct functionality is preserved. Re-
covery is the stage where an attempt is made to eliminate the effects
of the faults. Repair is the stage where the failed component is substi-
tuted with another component which is operational [7].
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5.4 Fault tolerance metrics

Because fault tolerance is about making machines more dependable,
it is important to have proper measures (metrics) by which to judge
such dependability. In this section, I will examine some of these met-
rics and their application. “A measure is a mathematical abstraction
that expresses some relevant facet of the performance of its object”
[62]. By its nature, a measure only captures some subset of the prop-
erties of an object. The idea is to define a suitable measure so to keep
this subset large enough so that behaviors of interest to the user are
captured, and yet not so large that the measure loses focus [54].

5.4.1 Traditional metrics

We I describe the traditional measures of dependability of a single com-
puter - in our case we speak about a node. These metrics measure very
basic attributes of the system. Two of these measures are reliability
and availability.
The conventional definition of reliability, denoted by R(t), is the prob-

ability (as a function of the time t) that the system has been up continu-
ously in the time interval [0; t]. This measure is suitable for applications
in which even a momentary disruption can prove costly [7].
Two commonly used metrics are also the Mean Time to Failure (MTTF)

and Mean Time Between Failures (MTBF). MTTF is defined as “the av-
erage time the system operates until a failure occurs” and MTBF is
“the average time between two consecutive failures”. There is a clear
distinction between the two because of the time needed to repair the
system after the first failure, which defines the Mean Time to Repair
(MTTR) [7].

MTBF = MTTF +MTTR (5.1)

Another frequently used metric is availability, denoted as A(t) and
which is the “average fraction of time over the interval [0, t] of which
the system is working properly”. It is mostly used in applications where
continuous functioning is not vital but it is not desirable to have the sys-
tem down for a significant amount of time. A typical example is the
residential Internet data connections: having small service disruptions
is not catastrophically for the users but when this repeats numerous
times it can lead to loosing customers. The concept of long term avail-
ability is defined as:

A = lim
t→∞

A(t) (5.2)
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It can be interpreted as “the probability that the system will be up
at some random point in time”, and is meaningful only in systems that
include repair of faulty components [3]. Using “discrete time”, we can
derive the long-term availability from MTTF, MTBF, and MTTR as:

A =
MTTF

MTBF
=

MTTF

MTTF +MTTR
(5.3)

These definitions assume, of course, that we have a state in which the
system can be said to be up and another in which it is not. For example
a wire is either connected or has a break in it. This analysis can be hard
to make on any system of the complexity we are dealing when speaking
of computer or as in my case specific emebedded systems such as WSN.
Any modern processor has tens millions of gates which are in various
states during execution of code. For example having a single faulty
gate in the divide unit can lead to a wrong quotient when performing a
computation which itself maybe if executed one in every few thousand
of hours of operation. In this case it is obvious the processor is not
“fault-free” but it is equally hard to say that is “down”.
A similar discussion but with an even greater deal of uncertainty can

be made for the systems that exhibit graceful degradation traversing a
wider range of levels of functionality from a perfect state when every-
thing is running fine and until the completely broken system. Definitely
after a certain point the system fails to perform even the most basic
tasks and we can consider it “down” but until then it is in various “up”
states. When are we going to consider it broken and until when it is
“up”? In this case metrics like quality of service (QoS) are used to
describe in a more fine grained manner the behavior of the system.

5.5 Fault tolerance of networked systems

Before delving in the specic problems of WSN I will try to present some
of the general problems and specic fault-tolerance metrics regarding
the networks in general. One of the main reasons is that at the present
moment we have more research in the field of FT on general purpose
networks than on WSN. For this part I have related extensively the
work of Israel Koren [62].
Interconnection networks are widely used today. The simplest exam-

ple is a network connecting a number of processors (typically with their
own local memory) in a distributed system, allowing the processors to
communicate through messages while executing parts of a common
application. In this case processors and memories are linked by a col-
lection of links and switching equipemnt, where a switchbox allows any
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component to communicate with several other ones without neding a
dedicated link to each of them.
Another type of networks are the so-called wide-area networks (WANs),

related mostly to computers and which connect a large numbers of
computers that operate independently - running different and unre-
lated applications - and allows them to share various types of infor-
mation. The term packet is often used instead of message (a mes-
sage may consist of several packets, each traversing the network in-
dependently) when speaking of computer networks, and in this case
the routers take care of the burden of swithcing at a logical level. The
best known example and in the same time the wideest of this kind of
network is the Internet.
Links and switchboxes (routers and relay nodes in computer net-

works) establish one or more paths between the sender of the message
(the source) and its receiver (the destination). These links can be ei-
ther unidirectional or bidirectional from booth physical and logical point
of view. The topology of the network may assure a single path between
a pair of nodes an in this case any fault of that specifc link would dis-
conect the nodes. Fault tolerance in networks is thus achieved at the
simplest level by having multiple paths connecting source to destina-
tion, and/or spare units that can be switched in to replace the failed
units [54]. High availability and fault tollerance is achieved providing
multiple paths for some or all source destination pairs, and there is a
need to evaluate the resilience to faults provided by such redundancy,
as well as the degradation in the network operation as faults accumu-
late.

5.5.1 Metrics of network resilience

To quantify the resilience of a network or its degradation in the pres-
ence of node and link failures, we need measures, several of which
are presented in this section. We start with generic, graph-theoretical
measures and then list several measures specific to fault tolerance.
One of the most important tools in the analysis of networks is the

graph theory [97].
Representing the network as a graph, with sensor and actuating de-

vices as nodes and links of various types (wireless or wired and having
different properties) as edges with associated weights, we can apply
resilience measures used in graph theory. Two such measures are:

• Node and Link Connectivity. The simplest assessment of the
health status of network exposed to faults is whether the network
as a whole is still connected in spite of local failures. The node
(link) connectivity of a graph is defined as the minimum number
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of nodes and/or links have to be removed (affected by failure)
from the graph (network) in order to disconnect/partition it. We
assume that when a node is removed, all associated links on it are
also removed. Consequently, the higher the connectivity, the
more resilient the network is to faults.

• Diameter Stability is another metric of network resilience. The
distance between a source and a destination node in a network can
be defined as the smallest number of links that must be traversed
in order to transport a message from the source to the destination.
The diameter of a network is the longest distance between any
two nodes. Networks can have multiple routes for every pair of
nodes but anyway an impact can be observed in this case over the
diameter. Diameter stability focuses on how the diameter changes
as nodes fail in the network. A deterministic instance of such
a measure is the persistence, which is “the smallest number of
nodes that must fail in order for the diameter to increase” [97].
For example, the persistence of a cycle graph is 1: the failure of
just one node causes a cycle of n nodes to become a path of n = 1
nodes, and the diameter jumps to n=2.

5.5.2 Common topologies and their resiliance

I will present in this section examples of two types of network.
The first type connects a set of input nodes (e.g., sensors) to a set

of output nodes (e.g., actuators) through a network composed only
of switchboxes (distiant routing) and links (wired or wireless). As ex-
amples for this type, i will refer a crossbar network and use the met-
rics of resiliance to be bandwidth and conectivity. The second type
of networks I will discuss are the ones of computing nodes that are
interconnected through links. In this case there is no other sitching
equipment inbetween (routers) but the nodes are equaly potent and
all of them have the came computation possibilities, being capable of
booth executing their own function and manage the packet flow in their
vecinity. The typical networks used are the mesh and the hypercube,
and the applicable measures for these networks are the reliability/path
reliability or the availability, if repair is considered [62].
I have chosen this two types because the can easely mapped to the

corresponding two majos categories of wireless sensor networks. The
first type can easely aproximate the situation when we have a WSN
with nodes that function as relays and beacons and the second type
models a pure wireless mesh when each node is booth equiped with
booth sensing and communication facilities, so that we don’t need re-
lays. The relays are modeled by switchboxes and the sensing nodes
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Figure 5.1: switch controlling the routing of connections in a multi-level
network. Taken from [62]

by processors. Also we can approximate the central node by the cor-
responding memories.
Multistage networks — which I developed by running h-SIDeWISe

and obtaining the hierachical tree-like structure — are commonly used
to connect a set of input nodes to a set of output nodes through either
unidirectional or bidirectional links. These networks are typically built
out of 2×2 switching devices. These are switches that have two in- puts
and two outputs each, and can be in any of the four settings depicted
in Figure 5.1:
Another widely referenced topology of multistage network is the but-

terfly [54]. A three-level butterfly is capable of connecting 8 inputs to
8 outputs.
As an example we can see the three-stage buttery connecting eight

inputs to eight outputs shown in Figure 5.2. Output line j of every
stage goes into input line j of the following stage, for j = 0...7.
A butterfly network of type 2k×2k connectes 2k inputs with 2k outputs,

having a total of k stages. There is a regular, recursive pattern flowing
from input to output. The 8 × 8 network is actually composed of 2
4 × 4 butterfly networks and it has a supplementary input stage ok 4
crossbas switches each with two outputs. In general, the input stage of
a k-stage buttery has the top output lines of each crossbar connected to
an input line of of butterfly, and the bottom output line of each crossbar
connected to an input line of another butterfly [54].
The butterfly topology is not fault tollerant: for any given input

there is a single path to any given output. If any router in stage s
would fail any of the 2k−s would not be able to be connected with any
of the 2i+1 outputs. Using the terminology introduced above, in out
case booth the node and link conectivity is in this case unitary. We
could improve the resiliancy of the network by introducing an extra
stage for the input and provide switching capabilities in the form of
spatial multiplexing for groing around failed stages.
The other topology I’m going to discuss here is the crossbar net-

work. We can observe easily that the multi-level topology presented
above limits the communication bandwidth between the inputs and out-
puts. If the inputs require, each of them, at the same time, acces at
distinct outputs the network is not capable of sollving this requirement.
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Figure 5.2: A 8I-8O butterfly network switch. Taken from [62]

In figure 5.3 we have a crossbar network which, provides a higher
bandwidth seen from this point of view. As can be seen from Figure 5.3,
if there are N inputs and M outputs, there is one switchbox associated
with each of the (N →M) directed input/output pairings. In particular,
the switchbox in row i and column j is responsible for connecting the
network input on row i to the network output on column j: we call this
the (i → j) switchbox. The simple aglorithm running on each of the
switchboxes has to implement the following actions:

• propagate a message/packet on the same line;

• propagate a message/packet along the same column;

• diagonal propagation of a message/packet (left->top).

Each connection is able to carry one message while, in the same time,
each switching node can handle two messages at the same time. For
example, a node can be carring messages from left to right link at the
same time as it forwards messages from its bottom link to its top link.
Equally like in the case of the butterfly we can see that the crossbar

topology is not fault tolerant: the failure of any switching node will
disconnect certain input-output pairs. The solution for this problem
is similiar and requires a form a structural redundancy like seen in
subfigure5.3b. Adding a row and a column of switchboxes a providing
suplementary multiplexing hardware capable of selecting one of the
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Figure 5.3: Classical and fault-tollerant crossbar switching network.

Figure 5.4: Mesh network topology and the interstitial high-
redundancy variant

two distinct rows propagating further at any of the corresponding pair
of columns we can improve the reliability. If any switchbox becomes
faulty, the row and column to which it belongs are disconected, and
the spare row and column are activated.
Mesh network topologies are a much modern approach exhibiting

good bandwidth caractheristics while preserving a simple and regular
topology.
Until now the above discussed topologies deal with two distinct types

of entities: the ones responsible form performing actual computation
(or any other task adding value to the network) and the ones used only
for proving the infrastrcture fabric in which to carry data required for
doing the actual task. We can consider the second ones a a burden
to the actual project. In the case of a two-dimensional mesh network
there is no such distinction: all the node are of the same (computing)
type and all of them have the same number of topological and/or phys-
ical links (for example four). There are no dedicated switching/routing
modules. Sending a message between two non-adjiacent nodes re-
quires the identification of a path between them and forewarding the
message in a multi-hop manner along the path.
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Like the previous toplogies in the case of a mesh one there is also no
fault-tolerance in the classical mesh network as well. In case of failure
of any of the nodes the network is going to loose it’s mesh properties.
The solution is also the introduction of structural redundancy in order
to cope with partial failure. This mesh would require spare nodes which
can be brought online to take place of their adjiacent nodes in case of
failure. This is called intersitial redundancy [54].
Each active node has a single spare. Each spare node can serve the

n (in this case four) direct neighbhours thus we have an overhead of
25% in terms of required hardware. This approach has the big ad-
vantage in case of sensor networks because it creates a close spatial
proximity minimizing the latency of the network in booth operation
and overhaul costs. Considering the above stated role of the nodes as
having the common role for booth processing/actuating and message
handling they have to be able to cope with this in order to keep the
mesh properties intact. In this case there is usually a good corelation
between the routing and switching policy of the algorithm an the actual
topology of the network . In the case of wireless ad-hoc networks this
is not always the case, but the discussion still remains [63].

5.6 Fault tolerance in WSN

In the previous section I have presented some of the main problems
in the eld of classical fault tollerance. That is the area where we speak
of classical computers and classical networks. But the main framework
of discussion still remains valid because we can easely map computers
to nodes in a WSN, nodes which have the ability to sense the environ-
ment and repsectively the switches to the relay nodes and routers in a
WSN. So from the conectivity point of view there are many similarities
between these two and so the above sections is usefull for the rest of
the discussion.
Due to low cost associated with WSN nodes it is possible to conceive

the deployment of a large scale network with potentially hundreds or
thousands of nodes. One of the main characteristics required from
WSN, in most of their deployment, is the dependability, so that we can
rely on the correct operation and results gathered from them. In or-
der to be considered dependable, WSNs must offer characteristics such
as reliability, availability, and maintainability. From these, availability
depends mostly on fault tolerance to keep the system working as ex-
pected. On the global level represented by the delivered service avail-
ability of a WSN means that the offered service delivered by the WSN
is not affected by failures and faults in underlying components such as
single nodes or node subsystems. One of the most evident arguments
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is that the failure of independent nodes is almost unavoidable. Most
high-availability techniques aim to reduce MTTR (the amount of time
required for detecting and recovering from a failure) to a minimum.

5.6.1 Levels of fault tolerance in WSN

I will discuss the problem taking into consideration the layered archi-
tecture of a networked system, especially a WSN [63].

Physical layer

The PHY layer is responsible for the direct communication the a par-
ticular medium between two nodes. Here we speak of modulation-
demodulation and encoding-decoding. From the im- plementation point
of view, usually we have some kind of software dened radio (SDR)
which is a way of extending the programability to the hardware layer.
A SDR offers a much bigger addictiveness to the particularities of the
medium (particular configuration of the noise) which can signicantly
improve the performance of the wireless network. Even the concept
of SDR was used initially for the above stated problem it is well suited
for solving different fault-tolerance problems. One classical example is
when we have some faulty modules, used for implementing a particular
encoding-decoding schema, we can use the SDR to switch to another
encoding schema for which we still have hardware resources. And the
adaption to noisy media can be still regarded as a fault tolerance ca-
pability.

Hardware

At the hardware level, components can be divided into two groups.
One is represented by the computing, storage subsystem and power
supply that are all very reliable when using modern technologies and
design techniques. Of-the-shelf microprocessor, DSP processor and
controllers are very reliable devices that have a very low rate of mal-
functioning. There exist at least three main reasons why this does not
necessarily imply that computational subsystems of sensor nodes will
be exceptionally reliable [5].

• The first is that sensor nodes are very cost sensitive and there-
fore will not always be able to design using the highest quality
components.

• The second is that strict energy constraints imply that repeated
computations are often not realistic options.
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• The third is that these systems are often deployed in much harsher
environments than today’s computers.

Although programmability and flexibility are of high importance in sen-
sor networks, strict energy constraints will result in extensive use of
application specic designs that can have up to two orders of magnitude
less energy consumption for the same functionality [5].
As we should expect sensors and actuators are elements which are

most prone to malfunctioning. In the case of sensors, we can distin-
guish three types of faults [7]:

1. calibration systematic error;

2. random noise error and;

3. complete malfunctioning.

While the first two can be addressed through temporal redundancy,
the last one is done using hardware redundancy. Currently, no scheme
other that hardware redundancy is envisioned for actuators but the
modeles should addopt the established metrics and models from the
mechanical domain where the specific device is comming from [60].

System software

The system software of a node in a sensor network consists of the
operating system (not necesarely to be used but present most of the
time) and utility programs. Probably the most promising technique to
implement fault-tolerance is through software diversity, where each
program is implemented in numerous diferent variants hoping that will
not exhibit identical bugs [109] The subsystem that can mostly ben-
efit from fault-tolerance realized at the system software level is the
communication unit. For example, one can reroute messages using
diferent paths in a multihop network.
With respect to sensors and actuators, the most important piece of

system software is the one related to calibration. Recently, a number
of schemes have been proposed for this task [23, 40].
A very important component of system software is the one that sup-

ports distributed and simultaneous execution of localized algorithms.
For example, in the case of energy minimization under functionality
constraint requirements, several protocols have been developed for
the coordination of distributed actions [76]. It is important to note that
when communication protocols are considered, there is a clear trade-
off to be made between it’s complexity and its effectiveness taking also
in consideration the energy efficiency.
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Application

Finally, fault tolerance can be addressed also at the application level.
For example, if one wants to identify a particular person, he can try
to measure using the sensors a variety of biometric features of that
person. Each feature and possibly a combination of features will be
sucient to identify that person. While addressing fault tolerance at the
application level maybe very effcient, unfortunately any given applica-
tion will require a customized way to properly address the issue [93].
On the other side, an additional advantage of application level fault
tolerance is that it can be used to address faults in essentially any type
of resource.

5.7 Fault tollerance of SIDeWISe generated
networks

The specific area of interest regarding fault tollerance from my point of
view is about asessing the general state of the networks I design after
running the SIDeWISe methodology (booth flat and hierachical).
Starting with this and taking into consideration all the issues existing

regarding the concept of fault tollerance when we speak about net-
worked systems and moreover wirelessly connected ones I took under
scrutiny two types of metrics, discussed above: conectivity and diam-
eter stability.
From my point of view there are clear arguments for measuring con-

nectivity because this is the major qualitative aspect which gurantees
the emerging properties of the network as a whole: if there is no more
direct connection between any two points of the network, depending on
the spefific application running on top of it, major setbacks can occur.
In the same direction of taught the diameter stability express the im-
pact of the failiure of nodes over one of the major metrics I took under
consideration when designing the SIDeWISe algorithms: average path
length. For most application the latency of the packets traverssing the
network is an important qualitative metric and the degradation of it
could signfy important issues for the performance of the network as a
whole.
Regarding the nodes, in the typical networks I analyise here, there

are three types of them: sensing/actuating nodes, relays and the sink.
Also the connections are of two types: wireless point-to-point con-
nections between direct radio connected nodes and wired high speed
connections between relays controlling communities.
My investigations started with the generation of a set of randommesh

networks and running all the steps of the SIDeWISe algorithm in order
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Figure 5.5: Synthetic mesh nework with 185 nodes and 1135 edges
and the corresponding set of relays after running the SIDe-
WISe algorithm

Figure 5.6: Coverage area versus number of lost connections between
first level relays

to find the set of relays and the corrsponding networks of high speed
connections.
For all the networks a custom script was built on top of Gephi for

simulating various types of node and connections loss. Each of the
events required the recompuating of the two reliability aspects I have
monitored: conectivity and diameter stability. The simulation stoped
when the network became disconnected a first level. That ment that
first level communities were not able to exchange data anymore rened-
ering the network unsuable.
For the the synthetic network presented in 5.5 the simullations gave

promising results in the form of a 62.5% area coverage with 50%
coonection loss and 67% coverage until the network became discon-
nected.
The next stap is to analyse the three major network topologies using

the same terms. I took simulation data regarding equally sized net-
work which difered only by topology: mesh (as above), celullar/star,
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Failed
re-
lays

Diameter Affected
com-
muni-
ties

Coverage

0 38 0 100
1 41 0 100
2 45 0 100
3 50 2 92
4 60 3 87
5 80 6 80
6 120 9 75
7 150 10 65
8 200 11 55
9 400 13 45

Table 5.1: Dependency of the coverage and conectivity vs. the number
of lost connections

random.
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Figure 5.7: Diameter stability for three major topologies using same
policy for failure simulation
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Allowing a metaphor, it can be said that present day road traffic is
reaching the point of singularity: in the very foreseeable future our cur-
rent infrastructure will lose its ability to sustain high traffic demands.
In the last few decades in urban environments the road traffic sus-
tained an exponential growth, while the transportation infrastructure
followed a sub-linear development [12, 13]. As a consequence, this
will bring an increased number of traffic jams. Considering the critical
importance of the road traffic for our current living and economy, the
worst option would be a complete city-wide grid-lock. However a range
of techniques are available to prevent such situations.
Since the late 70s highly industrialized nations, already beginning to

feel the effects of the exponential growth of the number of cars, began
to take into consideration different solutions for managing the traffic is-
sue. From a naive point of view the traffic problem could be addressed
by adding infrastructure (that is, building more roads) [66]. However,
this may prove to inflict unacceptable costs and not actually solve any-
thing, as the newly added infrastructure will also quickly reach its max-
imum transportation capacity. Extending the road network represents
a logistic and technical challenge due to local terrain geography, which
is further made complex by existing architectural constraints.
An intelligent transportation system (ITS) is a symbiotic conglomer-

ate of hardware, software and people responsible with monitoring and
reacting to various conditions on transportation networks. There are
various approaches in designing an ITS for road traffic, but most of
the time there is a need for collecting data regarding to the number
of vehicles and/or average speed. Transportation systems generally
focus on the maximum capacity available for traffic overlaid onto the
current implementation of road management systems [90]. Perhaps
the effective transportation capacity might be improved by applying
some traffic management techniques. From a theoretical point of view
most of the traffic theory was based on the background of ideal fluids,
at most taking into consideration the compression properties [87]. All
these approaches have major problems when applied to real-life traf-
fic, or otherwise stated: real road traffic is neither an ideal fluid nor it
behaves like one.
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Various approaches exists towards solving this problem but one of
the key prerequisites for most of them is the capability of good and
adequate modeling and prediction of traffic flow. Travel demand, driver
choices and even the psychological and complex aspects of the driver’s
behavior are taken sometimes into consideration but even then the
results can be far from expected [#bazzan1999agents]. The social
nature of traffic conditions implies a variety of parameters that impact
each driver’s traffic behavior making them unpredictable and hard to
simulate. Unexpected phenomena could arise, such as road rage, when
a sudden reaction of even a single driver can lead to serious traffic
problems.
During the last years, the mathematical models for road traffic sim-

ulation have been improved to take into consideration additional in-
formation, such as meteorological factors, day and time of the driving,
surrounding environment and even psychological aspects for the typical
drivers. Most of the classical models, inspired by gas or fluid behav-
ior in pipes give non-realistic results in modern traffic situations and
are considered inappropriate [33], but in the last decade we witness
a refactoring of these models and implementation in simulation tools
[8]. Responsible for this effect is the nonlinear and chaotic character
of the systems that describe road traffic, the so-called”butterfly effect”
[106]. Even the slightest changes or disturbances (some incident) in
the traffic conditions on a road a few miles upstream the point of ob-
servation will induce ripple effects in quite a short time, and current
models are neither able to cope with, nor are able to give accurate
“what-if” simulations.
A common characteristic of current implementations for real traffic

monitoring is their centralized character: usually some state (or re-
gional) authority manages the entire system and shares data recorded
(if it does so) with third-party entities or with the general public. As
a consequence, citizens and researchers can only access some data
already processed and filtered, but not the raw data to do indepen-
dent analysis. For these systems, primary data is represented by the
number of vehicles passing on a road segment over a given time pe-
riod (possibly also the distribution by categories: cars, trucks, bicycles,
pedestrians etc) and the average speed on that given segment of road
at any given time of day and any given day of week [82]. Additional
data can be represented by the average acceleration and deceleration
when entering and exiting the road and even the statistical distribution
of the weight of the vehicles and the number of traffic incidents/acci-
dents.
The problem of improving the capacity of the existing transportation

infrastructure was previously addressed from applying the mathemat-
ical models presented above [12, 33, 41, 31] (developed for identify-

98

BUPT



6.1 State of the art

ing the critical areas in an existing topology or to predict problems in
a proposed one) to performing the simulation and validation (finding
the maximum traffic capability) of any particular intersections or road
segments. All these approaches require real data to be gathered for
developing initial models or validating existing ones
Even if the relationship between the layout of the streets and the

character of the urban traffic can be regarded as straightforward, until
recent years [36] there was no significant involvement in analyzing it
in a systematic manner. The importance of network topology is vital to
a traffic network planner [107]. Even if at microscopic level this aspect
could be ignored, at the macroscopic level we identified how aspects
from complex networks apply and influence traffic behavior. I believe
that allready proven metrics for describing the structure of a complex
network can be used successfully for finding the key intersections in
any urban network. These intersections are subject to intense traffic
flow and require careful regulation in order to maintain this flow.
The rest of this chapter is organized as follows: Section 2 provides

an overview of the most relevant research initiatives in the area of my
work, while Section 3 consists of a short presentation of the key con-
cepts and metrics used in my research, with adaptation to the specific
case of city monitoring. Section 4 describes the GIS independent lo-
cation algorithm and infrastructure for massive distributed monitoiring
while in section 5 I present the core of my investigations in the form
of a novel strategy for deplying a sensor network for real time traffic
monitring, designed using SIDeWISe and h-SIDeWISe.

6.1 State of the art

Traffic regulation and control is commonly based on a combination of
traffic rules, traffic lights, and monitoring. A common approach for
monitoring the traffic is to use induction loops installed in intersections
or in a particular highway spots [#nerem2001global]. This is an ef-
ficient solution and gives good results, but the costs involved could
prohibit a massive deployment (for instance, in 2012 for Romania the
costs for a single installation are estimated around 500Euros). Data
from such implementations are used in consumer level products such
as Google Maps Traffic Layer (http://goo.gl/0H0EX).

6.1.1 Road traffic monitoring tools and systems

With the advent of modern tools and methodologies for computer aided
urban planning and the rapid spread of (Geographical Information Sys-
tems) GIS tools in the public services and administration, significant

99

BUPT



6 Road monitoring sensor network

research has been carried towards finding alternative approaches in
analyzing the structure of cities. The approach based on graph theory
was a clear choice and much work was put into this segment. Such an
approach was presented by Alger et al. based on anonymous data col-
lected from BTS handover events produced within a GSM network [3].
The experimental results were gathered in Southern Germany through
the participation of Vodafone DE. Using data from the cell phone towers
they experimentally derived the speed of each vehicle traveling over
the highway and also determine the number of vehicles passing in any
particular interval. An essential issue in this approach is the coarse
graininess of the cell phone topology that affects its usability. The par-
ticular scenario discussed in the paper considers only a particular road
(the highway) and consequently the cell’s coverage can be intersected
with the road’s layout yielding a good approximation for the intended
purpose, but not adequate in urban situations, with a much higher den-
sity of both roads and vehicles. Even if the costs involved are very low
(almost zero), this approach still involves a centralized authority (rep-
resented by the telephony provider), while collecting data regarding
one’s mobility without the explicit consent of the cell phone owner can
be regarded as privacy violation.
Another issue in this approach, also acknowledged by Alger et al.

is the need of a calibration stage. The location of the boundary be-
tween two adjacent communication cells is based on both maps and
EMF characteristics. For each particular deployment there is a need
to check the generated boundary model against data from induction
loop. Practically in the early phase we have to install expensive and
intrusive equipment in the roads. Similar solutions are also reported
in [13, 26, 43].
Approaches such as presented by Alger et al. are not adequate for

urban road traffic monitoring because they are not fine grained enough
(the order of magnitude for the resolution obtained from the handover
events is measured in miles). Even if their granularity is adequate for
highways (because vehicles can be monitored quite well on highways
based on mobile phone communication) we need a solution capable a
resolution closer to tens of meters.
Such levels of precision are achieved usually via GPS or similar ex-

ternal reference systems. In this context it’s worth mentioning the
work of Calabrese et al., presented as a case study on urban mobility
in Rome [20]. An interesting aspect in their work is the use of cell
phone data (as seen in [3]) in conjunction with GPS traces from var-
ious independent providers, such as the public transportation system
of Rome (ATAC) and a private taxi company. Their approach, similar to
the one in [3], also requires dedicated post-processing and filtering of
the data coming from the cell phone carrier which introduces an over-
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head and a new level of uncertainty in the quality of data. Of particular
interest for urban planning and architectural analysis is the ability of
statistically visualizing large masses of citizens traveling throughout
the city. However, for my analysis I needed street-level resolution
which was not addressed. I still consider that monitoring pedestrians
at individual level brings a computational overhead that yields no par-
ticular improvement on the quality of the final result: monitoring in
real-time the quality of traffic on city roads. The artistic aspect of the
project is acknowledged by the authors themselves, the target being
the exhibition at the Venice Bienniale.
As we can see, existing solutions are either centralized (induction

loops send all the data to a single entity) or provide coarse grained
data (highway-related in [3] or statistical cloud in [20]). None of these
is adequate for monitoring traffic at street level in urban environments;
however, an approach inspired by [20] (using GPS receivers) can be
interesting. A particular aspect not addressed by any of the reviewed
solutions is the direct feedback of the users, regarding the driver’s
experience on the road. Such layer of social data can augment the hard
data regarding average speed and number of cars therefore allowing for
a much more complete and humane experience, including crowd-voting
(possibility to acknowledge a previously reported status on a particular
segment of road). One of the advantages which can be derived from
driver’s feedback is the possibility of choosing personal routes, taking
into consideration real-time date from traffic. Consequently the system
will self-regulate avoiding grid-lock.
Such an application that includes in some form all of the above is

WAZE (http://www.waze.com/) with their social approach in crowd
mapping and traffic conditions reporting. Founded in 2008, their goal is
to provide real-time traffic data, providing drivers the information nec-
essary for best routing. It is also possible to report additional things,
such as traffic incidents or road conditions (beyond average speed).
However, the real-time approach in Waze is potentially misleading, the
quality of data being affected by the number of users driving on that
particular area. Not showing statistical data regarding the number of
different users from which the data are derived leads to situations such
as the one presented in Figure 6.1
Figure 6.1 reflects a particular situation reported by the latest version

of WAZE (3.6.0.0) in the vicinity of my university. The red segment
indicates a portion of road on which the average speed is below 6 km/h
and therefore a “jam” is indicated on that portion. In fact the jam ex-
tends much further, to the intersection on the far right side (marked
with “Bd. CorneliuCoposu”). This particular situation is caused by si-
multaneously having a small number of Waze users (only one, in this
case) that are moving with low speed. Such situations may mislead
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Figure 6.1: WAZE has issues when there is not enough data available

other Waze users to avoid that route, when every day experience would
suggest ignoring this specific jam as it may potentially clear away much
sooner than an update is available in Waze.
Relying on unrestricted number of users may also create an exposure

to a malicious attack in which someone wants to induce a jam on a par-
ticular road segment. A set of users equipped with mobile devices are
sent to key points of the city with the task of moving as slow as possi-
ble, although the road allows superior speed and traffic. At the same
time, another user has the task of moving as fast as possible over the
same road segment, therefore indicating that traffic is optimal tricking
the system into considering that this road segment is free of traffic and
all the users are going to reroute themselves via that particular road,
creating a jam. Carefully deigning the points of placement for this two
kinds of actors can generate a city wide grid-lock.

6.1.2 Road network modelling and analysis

Several research directions put together traffic behavior and complex
interaction in the effort to create the “most real artificial driver”, which
acts as close to a real driver as possible [58]. In this context, separat-
ing the driver from its driving context cannot be achieved because the
adaption process is closely related to the environment. Understanding
how drivers interact and how road networks are created around spe-
cific points of interest (schools, shopping centers, concert halls, sports
arenas) could lead to identifying the patterns that can apply at differ-
ent scales over several road networks to achieve increased traffic flow
and consequently, less congestion.
Aida et al. focus in [1] on the analysis of macro traffic in a mo-

bile network as a way of investigating complex networks. They have
investigated the impact of human relations and the obtained cluster
structure and concluded that based on their values they should be able
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to obtain the behavior of a service process by observing traffic volume
values.
The work of Jiang and his team presented in [56] represents a partic-

ular interest because of the complex network behavior identified by the
authors in the structure of the urban traffic. More specific the authors
identify a classical 80/20 behavior because roughly 20% of the streets
account for more than 80% of the urban traffic. Another interesting
and important aspect presented by the authors and which is also the
subject of [100] is the hierarchical view of the urban structure. There
is a clear distinction between some important streets (few) and some
which are less important (many). In the same time the less important
ones behave as feeders for the important ones, in a way that is similar
to a central nervous system [100]. The authors also take into consid-
eration the complex behavior of the actors (drivers and pedestrians)
with respect to route learning and adapting, which can lead to a daily
dynamic behavior.
Much work was done in the application of complex networks theory

and metrics in the analysis of urban environment. Porta et al. present
in [90] a comprehensive methodology and a framework for analysis of
urban environments in terms of both classical graph theory but also
using complex networks specific metrics and algorithms. Of particular
interest for my study is the quite abstract concept of centrality and
which is the key subject for Crucitti et al. in [32].
Perhaps the most common approach for traffic regulation is installing

traffic signal lights which act as main actuators routing traffic between
two adjacent intersections. Being the most versatile elements in the
road infrastructure, much research was geared towards finding ade-
quate strategies and algorithms for improving the quality of the driv-
ing experience by means of dynamically adapting the characteristics of
traffic lights [19, 28, 36, 70]. The classical debate between centralized
and distributed control is well addressed in [36], however, most of the
currently deployed solutions are still centralized.
Of particular interest is finding intersections that present high im-

portance in terms of traffic aggregation (the more cars have to pass
through that specific intersection, the more importance it has). Be-
cause of this we have chosen to use as a key metric the so-called be-
tweeness centrality which is defined as the number of minimum length
path between any two nodes in the network. The empirical findings
in [90] show that, from a statistical point of view, drivers instinctively
choose routes as short as possible, which makes betweeness centrality
a viable metric for finding important intersections [91].
In theory, a community of a in a complex network is a subgraph

having its nodes densely connected internally, but with few connections
outside, between the subgraphs [84]. This approach allows community
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Figure 6.2: Community structure of an urban network, with possibili-
ties of a node belonging to more than one community

overlapping (the same node belongs to more than one community),
which is a common case (see example in figure ??).

6.2 Methodology and results

I propose a methodology centered around topics from the CNA, pre-
sented above and the application of the SIDeWISe algorithm I have
devised and presented in Chapter 4. The first stage is represented by
the recursive division of the city into topologically relevant communi-
ties. These communities contain key intersections, identified through
computing the betweeness centrality. The second stage is represented
by the hierarchical assignment of traffic sensing elements and the asso-
ciated controllers to key intersections as found by the centrality metric.

6.2.1 Theoretical background

We define a city topology as the set of interconnected nodes (inter-
sections) in which possible optimizations are viewed as a three-layer
stack [29]. All nodes may implement, but only some of them will
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do it, car counting, queue estimation sensors and and traffic lights
(semaphores). Each traffic light installed can generate local optima
values in terms of traffic flow, representing Layer 1 from [29]. How-
ever, not all traffic lights can communicate and coordinate their actions,
but those who do generate Layer 2, which will consist of master and
slave nodes.

In figure ??, a simple road network consisting of 3 communities is
presented. A selection mechanism must be run to identify groups of
master-slave nodes in order to advance from Layer 1 to Layer 2 and
to change the approach from computing a global optimum to an adap-
tive mechanism (master nodes being depicted as grayed-out V1, V3 and
V5). The nodes identified as master will coordinate at Layer 2 all traffic
movements from Layer 1 and will create, at the same time, the pop-
ulation for Layer 3. Hatched nodes (V1, V3, V5 ) represent master type
intersections organized at Layer 2 of the hierarchy, as obtained by our
algorithm. Each master traffic light has authority of changing dynami-
cally the green time on any of the traffic lights in it’s community (ci ).
At the upper layer each of the communities are clustered from a log-
ical point of view exchanging information between equipotent master
nodes of distinct communities (square grey node is a logical one).

Running the SIDeWISe algorithm at different resolutions identifies
communities along with the corresponding master-slave nodes (see
Section 4.2). If the master does not use a traffic light, the methodol-
ogy determines whether a traffic light is required. Each community in
figure ?? is associated to a topological community identified in figure
6.3. All other nodes, V2, V4 and V8 work as slaves. Inter-community
communication occurs between master nodes in order to implement
Layer 2 control required for optimizing Layer 3. Each time a master
node makes adjustments on its timing plan, on a specific direction, it
will send a message notifying the directly connected masters on that
direction about the changes. Receiving master node may take into
consideration to adjust its timing plan as a reaction to changes made
by its neighbors only if its local conditions allows it. An acknowledge
message containing the response (whether this is positive or negative)
will be sent back to the originating node, in order to notify it about the
new timings if they were taken into account or not. If the response is
negative, the sending master node will not make any further changes
on that direction until a positive one is received.

Going further with the detailed presentation and validation of the
algorithm falls outside the scope of this thesis and was presented here
only for creating the necessary context for deveoping the monitoring
sensor network.
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6.3 The Timisoara case study

Timisoara is the second city in Romania in terms of booth popula-
tion and urban density, placed in the western part of the country.
Founded during the medieval and lieying at the crossroads of multiple
cultures times the city witnesed numerous changes in administration,
from otomans to austro-hungarians being transfered into Romanian
administration in 1918. Each of the rulers imposed their set of reg-
ulation over the urban and architectural developeent of the city, now
beign able to distinguish two almost disjoint sets of urban layouts inside
the same city. One is represented by the old city centre organized dur-
ing the austro-hungarian administration and clustered around a central
public square with a radial-concentric topology and the other is more
recently built, during the communist era, whith wider boulevards and
narrow maze like streets spanning between these boulevards. More-
over, the city is divided in two almost symetrical parts by the Bega
canal, the two sides having 16 bridges, of which 10 are suitable for car
passing and the rest are for pedestrians and bicyles.
All of my subsequent investigations were carried-out using Gephi ver-

sion 0.8.2, one of the leading open source tools for large graph analysis.
The graph data were obtained by parsing the OpenStreetMap (OSM)

XML export via custom written Python script. For each city I’ve defined
and stored in a flat database a bounding rectangle specified by the ge-
ographical coordinates of opposite corners. I’ve used a shell script to
parse the database and build appropriate queries for the Overpass API
which provided raw XML with the semantics of OSM. The file contains
relevant data for my investigation in the form of nodes(id, lon, lat) and
ways(id, nd(nodeIs), {tags(key, value)}) represented as an ordered list of
nodes from start to stop. The list of tags is used to specify various
attributed for ways in a key-value format. From this I’ve used the
road type attribute to filter pedestrian lanes and the number of lanes
attribute in order to associate weights to each edge. I’ve normalized
the graph representation of OSM by eliminating the intermediary nodes
which were used in the original data set in order to represent curved
roads in the physical domain, as a sequence of dense points. Con-
sequently my data represents now strictly the topology of the inter-
connections and not the shape. The filtered data set is written by the
Python script in the proper form of a Gephi compatible GEFX file. The
algorithms — SIDeWISe and h-SIDeWISe — were implemented in Java
SE as a plugin for Gephi and all the measurements we done on a Intel
i5-3320M, with 4GB RAM.
I present in Table 6.1 some of the specific metrics established in the

field of CNA applied on the Timisoara graph dataset. The average node
degree signifies that most of the intersections have at most two other
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connecting roads — classical T crossroads — which is specific for the
block quarters. The network diameter is defined as the longest of the
shortest paths in the graph and signifies the maximum number of inter-
sections trough one has to cross in order to traverse the city. Together
with the average path length I consider this as being some of the defin-
ing metrics for the quality of the urban road network.
In figure 6.3 we have an overview of the layout of the urban structure

of Timisoara in form of a graph where each “dot” represents an inter-
section. Each community is represented with a different color. As my
algorithms are hevily relaying on the concept of community as seen
in the field of CNA I’ve applied the community detection on the en-
tire graph in order to obtain what is defined as first level communities
(Figure 6.3). Of particular interest with not much importance for this
research is the fact that topological communities map really well onto
the traditional quarters of the city, validating the assumption that the
topology imposes even complex organization of urban environments.
Figure 6.4 shows traditional quarters of the city identified as complex
network communities and the main topological metrics.
Of particular importance for the quality of the urban road network is

the average path length and the average degree. I have shown in each
of the subfigures the value for this parameters and one can observe
the fact that the Circumvalatiunii (figure 6.4a) quarter is having the
highest average degree (3.309) which correspond to a large number of
X crossroads. The low value of the average path length in Giroc and
Chisoda villages (figure 6.4d) is consistent with the almost bipartite
structure of the two subgraphs.
As can be seen, the road network contains the master nodes (ob-

tained after applying h-SIDeWISe algorithm) indicated by high value
of betweeness centrality. These nodes support high traffic values and
these are the places that are witnessing traffic jams on a daily basis.
Therefore, it is imperative to identify master nodes not only to imple-
ment traffic lights (these are necessary to enforce order since traffic is
so heavy that leaving traffic only to drivers abilities and will to obey reg-
ulations would certainly result in traffic jam), but also to achieve traffic
optimization through coordination of traffic data. Since local optimiza-
tions have been addressed previously [29], establishing a coordination
infrastructure between nodes implementing traffic lights (both master
and slave) can be regarded as a final, more demanding stage.
The case study over the city of Timisoara clearly indicates a match

between master nodes identified by this methodology and the nodes
with significant traffic problems. Figure 6.5 shows the recursive char-
acter of the approach with subdividing each of the communities and
assigning the local master traffic light. Recursive application of the
SIDeWISe algorithm onto the community presented in Figure 6.5, rep-
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Table 6.1: Main topological parameters for Timisoara.
Parameter Value

Number of nodes 4070
Number of edges 5542
Average degree 1.434
Diameter 61

Average path length 42.916
Modularity (res = 10) 0.938

No. of 1st level communities 39
Clustering coefficient 0.043
Eigenvector centrality 0.9236

resenting the Circumvalatiunii and Mehala quarters. In subfigure (b)
one can observe the inner community structure of the upper level com-
munity presented in (a). Subsequent stages present the application of
the same recursive process on smaller and smaller sets of nodes. In
subfigure (f) we show the partitioning of a community of 71 nodes
shown in subfigure (e) into 3 sub-communities. For the sake of clarity
I’ve stopped the illustration at level 4 of recursion but depending of the
TRESH parameter of the algorithm one cand obtain even more granu-
larity if necessary. At each level I’ve emphasized with a red (larger)
circle the node with the highest betweeness, the one which is to be
considered as a relay, in my algorithm.
 
 

6.4 Conclusions

My investigation was geared towards finding a suitable algorithm for
hierarchical placement of traffic lights under the form of master and
slave nodes. I have proposed a novel approach based on mapping
aspects from complex network analysis onto issues from urban trans-
portation networks. The key aspects used in this methodology are the
betweeness centrality and community detection.
I have presented a systematic procedure for determining the best

value for the resolution of the community detection algorithm. I’ve
extended the empirical findings trough a new algorithm that efficiently
identifies master nodes —important intersections — in the city where
traffic lights are required and where coordination could further optimize
traffic. After successive runs, the algorithm will generate the set of
master and slave nodes in the network that can be used to implement
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Figure 6.3: The network structure of Timisoara’s street infrastructure
with communities colored distinctively. The topological
community clustering is mapping very well onto the tra-
ditional neighborhoods of the city.

Layer 2 and Layer 3 of the control stack.
Our case study on Timisoara city confirms the correct identification of

master nodes as the most congested intersections in Timisoara. Also,
attaching each master node from each community to the central inter-
section provides the suitable policy for selecting the nodes of Layer 2.
Intelligent traffic light control is part of modern ITS systems which are
an important ingredient for the environmental policies. Efficient place-
ment of semaphores reduces deployment and maintenance costs for
the infrastructure and also reduces the impact over the environment
trough lower emission levels as a consequence of a better traffic flow.
Future work will focus on the design and implementation of the com-

munication framework between master nodes and also on proposing
dynamic internal community layout changes.
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(a) Circumvalatiunii362 nodes, Avg.
degree=3.309, Avg. path length=12.62

(b) Aradului: 297 nodes, Avg. degree: =
2.863, Avg. path length:= 13.33

(c) Girocului quarter: 206 node, Avg.
degree= 2.951, Avg. path length= 10.589.

(d) Girocului and Chisoda villages: 88
nodes, Avg. degree= 2.951, Avg. path
length= 9.683

Figure 6.4: In the side figures we emphasized some of the communities
and the corresponding quarters of the city, presenting the
key network metrics.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Recursive application of the h-SIDeWISe algorithm onto
one of the Timisoara city quarters
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(a) (b)

Figure 6.6: First level monitoring network for Timisoara (a) and the
fault tollerant version of it (b)
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7 Conclusions
In this chapter I will try to argue about the extent I fulfilled the goals
outlined in Chapter 1, while in the same time synthesizing the origi-
nal contributions added on top of the state-of-art. I will try to give a
dual perspective over my research: on from a more algorithmic and
scientific way regarding the design and testing of the two algorithms I
developed and the other from a more engineering approach regarding
the design and implementation of a sensor network designed for near
real time monitoring of urban road traffic.
The main goal of this thesis is to find novel methodologies and algo-

rithms for placing relays of a sensor network in order to minimize the
total energy consumption and improve the reliability of the network.
The interdisciplinary approach of this work is based on integrating con-
cepts and metrics of the Network Science in order to find “important”
spots of the network which are suitable for placing relays. This meant
that a thorough exploration of the field of Network Science had to be
done in order to clearly identify the best suitable metrics and in the
same time to have a good understanding of the behavior of the algo-
rithms which were to be reused:

• properties and differences between regular and random topolo-
gies: were used in order to find the adequate tools specific to
each of the cases; in my situation the real life network exhibits
more of a random behavior than regular;

• the centrality metrics were heavily used in my research and con-
sequently I had to compare the practical behavior of the most
important ones in order to find suitable adaptations to the specific
cases needed when designing sensor networks; betweeness was
used for finding the heavy load nodes (lots of data traffic) while
eigenvector was used for finding the nodes which are topologically
closest to all other nodes;

• community structure is another important aspect from the realm
of complex networks analysis and I have used it in order to break-
down the network into smaller sub-networks; for one of the algo-
rithms this was done on a single level (central sink + n commu-
nities) while the extension of this algorithm allows a multi-level
(recursive) breakdown of the network until a desired level of gran-
ularity is reached.
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All the above presented aspects are representing the starting points
of the work I’ve carried out, but throughout the thesis I’ve mentioned
points where original adaptations were made in order to accomplish
the desired goals.

7.1 Research path and results

This thesis represents an individual contribution to the effort of creating
tools and methodologies for designing better sensor networks, capable
of keeping with scaling up the number of nodes and in the same time
preserving the functional requirements in imposed limits. In the same
time the work carried in the area of designing solutions for the road
traffic monitoring was done together with other members of the ACSA
Research Group and consequently I’ll try to put in light only my own
endeavor in this field.
After a brief introductory chapter desired to present to the reader the

general context and problems in the field of sensor networks, Chapter
2 was intended to provide essential background to the state-of-the art
of sensor networks, introduce the terminology and present some typi-
cal literature and industry referenced projects where sensor networks
provide solution to major social problems. In the same time in this
chapter is introduce the problem of optimal relay placement. Various
methodologies of finding the best way for placing this nodes exists and
specific projects, depending mostly on their environmental conditions,
have decided to use different approaches. This is a topic on which rich
literature exists and a lot of research groups around the world have
investigated this topic. As a consequence in this chapter I’ve made
a review of the main results emphasizing of those which are going to
represent terms of comparison for my further presentation
Chapter 3 contains an introduction in the novel topic of Complex Net-

works and by extension the area of Network Science. When I first ap-
proached the topic of optimal relay placement I the major approaches
were based either on specific instruments of the mathematics (combi-
natorial optimization, linear programming, graph theory) or in numeri-
cal simulations and pure brute force or with some genetic optimization
step. Having some experience and understanding in the field of Com-
plex Networks form previous projects carried in our research group I
found interesting to apply to tools and methods in order top analyze
the specific type of networks which are sensor networks. In this chap-
ter I introduce the specific terminology related to the field of Complex
Networks and I provide in depth analysis of the most important topolo-
gies: regular (star, ring, bus and mesh) or random, with various types
of distributions for the main characteristics of the network. The novel
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aspects regarding complex networks deal in the same time with the
specific metrics which allow a better characterization of the network as
a whole instead of local properties like in classical graph theory. In this
case we are dealing mostly with distributions of various parameters of
the node or edge space (degree distribution is a is good example of
such metric) and I’ve used this for the genetic optimization step of my
algorithms. For all the network topologies under discussion an analy-
sis of these metrics is given, showing the specific properties for each
of them. A particular interest is given to a more global property of
the network which is the modularity metric capable of showing the de-
gree in which we can identify communities inside a complex network.
Based on this various community detection algorithms exist and I’ve
done a review of some of them for laying the grounds required for may
research.
Chapter 4 contains the two major algorithms of original conception

which provide the core of my research. Starting with the concepts and
theoretical grounds described in chapter 3 and providing a formaliza-
tion of the problem presented in chapter 1 — optimal relay placement
— this chapter is dedicated to an in depth analysis of the SIDeWISe
algorithm. I start with a formalized description of the problem in terms
and notations specific to the graph theory and I continue with the high
level description of the procedure from data generation using WSNet
topology generator and up to the conversion in a suitable format for
Gephi. Translating to Gephi the main idea of the algorithm is explained
in a top-down approach and synthesized in figure 4.3. All the steps
of the algorithm are subsequently presented in a pseudocode, using
the above introduced notations and relaying on metrics and properties
of the complex networks. Of those, of particular importance for the
novelty of my work, I would emphasize on the following:

• Step B: uses the centrality metric over the entire network and
assign the sink to the node with the highest centrality. In this
case I’ve used the eigenvector centrality because it maps with
the idea of having the average minimum length path o all the
other nodes of the network, making it a good analogy with the
minimum latency in average. Investigations were made also with
betweeness centrality but this was not found suitable in terms of
latency in this case.

• Step C: uses the community detection algorithms specific to com-
plex networks and adapted in this case for sensor networks. The
goal is to determine the optimal number of relays to be placed
over the covered area in order to further decrease the latency
of the network. Communities represent cluster of tightly/densely
grouped/linked nodes with few connections with nodes form other
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communities. The algorithm can be parametrized trough a pa-
rameter called resolution, and in this case one can fine tune the
number of communities and consequently their size. I provide an
in depth analysis of the impact of the resolution on the results of
the algorithm and a methodology for finding the best values in
case of sensor networks.

• Step D: applies the entire procedure describe in step B but on the
communities identified in step C. Again the eigenvector centrality
is used because the existing edges are determined by position,
and so it becomes straightforward and efficient to choose a relay
to whom any sensor requires the minimum number of hops to
reach.

• Step E: uses the relays identified in step D, and builds a MST
over this nodes. This is a secondary, overlapped graph of edges
that connect all relays and the sink. The edges represent physical
links, like broadband cable or fiber connections. The cost of each
edge is represented by the euclidean distance. This section ends
with creating the tree and consequently it has a low fault tolerance
(a loss of any edge/connection) would partition the network.

• In Step F, I try to improve the low fault tolerance identified in
step E. This is designed to improve the centrality of the sink node
in relation to the network of relays by adding one ore more low-
latency links. The node identified in Step B still remains the sink
of the entire network, but there are more high speed paths to it.
This has two major advantages, bu creating multiple paths in the
network of relays: first it improves the bandwidth capabilities of
the entire network in normal operation mode and second it provide
backup routes in case some of the node are lost during operation.

This chapter continues with an multifaceted analysis of the algorithm in
which I take under scrutiny each of the most important parameters and
variable aspects of the SIDeWISe methodology and asess it’s impact
over the general performance. The discussion is made as follows:

• the radio link coverage radius imposes limits over the capabili-
ties of building direct ad-hoc mesh networks. This is a parameter
r and I’ve done experimental determination of the most suitable
value taking into consideration the number of resulting clusters
(communities) versus their size (number of nodes). The best val-
ues are around 0.1% of the length of the covered area bounding
box. Consequently in this case we obtain the lowest number of
required relays for covering the entire network.
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• the resolution of the community detection algorithm directly dic-
tates the number of communities and implicitly the number of re-
lays (there is one relay per community). I’ve proposed a method-
ology for finding the best value for the resolution by introducing
a metric which links the number of communities with their size.
Lowering the resolution we are going to have a lot of small commu-
nities and viceversa. By using this metric I identified the window
of optimal values to be in the range from 0.5 to 1.25.

• the size of the network in terms of number of nodes has a signif-
icant impact over the performance of most of the algorithms for
placing relays and I’ve investigated the dependence between the
number of nodes and number of required relays. In the case of
my algorithm there is a logarithmic relationship between the two,
which is much better than the linear results obtained in [22]. This
is a very important feature of the SIDeWISE algorithm because it
manages to keep the number of relays relatively low, thus the cost
remains low, as the overall network propagation delay is rapidly
decreased.

The last part of the chapter is dedicated with introducing another al-
gorithm of original conception, which is an extension of the SIDeWISe.
Using the same notation and formalization I deal with the situations
where there is a need of building multi-level networks. The original
algorithm was designed for a 2 + 1 tiering of the network: there were
two levels on nodes (sensing/actuating and relays) and a single sink.
The extension I present here allows a n + 1 tiering of the network by
allowing a recursive breakdown of the network in small communities
using the concepts and metrics of the complex networks analysis. In
this case the relay from level x has the role of a sink for all the nodes
of the subnet of level x+ 1. Consequently there is a tree like hierarchy
of relays with the root being still identified like in Step B of SIDeWISe.
There are some obvious advantages of organizing the network in such
a manner regarding the localization of data traffic to a single commu-
nity partitioning the data on a path of top-down-up type. In the same
time it provides the natural organization for implementing higher level
algorithms which require a master-slave architecture for command and
control allowing a better mach between the physical and logical prop-
erties of the network. The multi-level structure provides also a better
fault tolerance allowing the localization of the fault at the level of a
single “cell”.
Continuing even further, Chapter 5 deals with the other part of my

investigations which are regarding aspects of fault-tolerance and de-
pendability of the network. The main interest of this endeavor is to
assess my algorithms capabilities of building fault tolerant networks.
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First I provide a general overview of all the aspects regarding the real
of dependability starting from the general an well known taxonomy of
fault-error-failure and continuing with a focus on the special topics of
fault tolerance in sensor network systems. I continue with a presen-
tation of the traditional metrics of fault tolerance. There are specific
issues with at least measuring it in case of networked systems because
at first it is far from trivial just knowing whether a network is working
or not. In this case the approach is more fuzzy and deals with aspects
like Quality of Service trying to provide a more continuous quantiza-
tion of the state of health of the network. Consequently I introduce
some modern metrics designed specifically for networked systems. In
my case I’ll use node and link connectivity and diameter stability in
order to assess the impact of loosing an increasingly high number of
relay nodes and high speed connections. A section was dedicated for
discussion the common network topologies and their resilience, but it
has the status of a background state of the art review, having little
impact over my work because none of the topologies I take under con-
sideration, nor those created by using SIDeWISe are regular. I finalize
the chapter by providing experimental findings for assessing the fault
tolerance of the networks built by my algorithm. In a simulated en-
vironment I ran algorithms for randomly introducing failures of nodes
and links measuring in each of the steps the affected sensing nodes
(those which were not capable to perform their duties in the network)
and percent of the covered area which was not connected anymore.
Encouraging results arise from having 50% of the area covered even
after loosing 62.4% of the relays.

7.2 Summary of contributions

This thesis is the result of almost four years of work together with my
colleagues form the ACSA Research Group. During all this time I’ve
been involved in a few other projects and research grants which were
developed in the lab and some of my work was influenced by this,
but the core of my research remains personal endeavor and the main
contributions of this thesis are personal.
Putting together all the aspects I’ve approached in this work I would

emphasize on the following:

1. The thesis represents a thorough and critical analysis of the main
problems in the area of sensor networks, emphasizing on aspects
regarding the optimal placement of the relay nodes in order to re-
duce to the total energy consumption of the network and improve
the fault-tolerance;
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2. There is an original adaptation of the main concepts and metrics
from Network Science to the topic of Sensor Networks, new met-
rics being introduced for describing the “importance” of a node to
the network (eigenvector and betweeness centrality)

3. The concept of community, specific to the complex networks do-
main, is originally adapted for the area of Sensor Network in order
to provide a solution to the classical design problem of algorith-
mically identifying topological clustering of the nodes (in commu-
nities) and the key points for placing relay nodes.

4. An original algorithm (SIDeWISe) is presented, devised as a frame-
work for automatic design of a sensor network and optimal place-
ment of relay nodes and of the single sink node in order to min-
imize the energy consumption and improve the fault-tolerance.
The results are presented in relation with literature referenced al-
gorithms the logarithmic dependency with the scale of the network
being emphasized.

5. In improvement of the algorithm is introduced for allowing a multi-
level analysis of the network, providing means of hierarchically or-
ganizing nodes in clusters and building a tree/graph of relays. The
algorithm uses metrics and concepts originally adapted from the
field of complex networks (modularity and community structure).

6. The entire methodology and all the proposed algorithms are inte-
grated for the analysis and design of a sensor network tasked with
monitoring urban road traffic, using a distributed multi-level archi-
tecture. It exploits the geographic localization of the data traffic
generated by the higher level algorithms. I present estimation
regarding the deployments and operation costs and also perfor-
mance in terms of latency and fault tolerance in terms of area
coverage preservation as the number of faulty relays increases.

7.3 Further development

The work presented in this thesis is, to the best of my knowledge, a
novel approach in designing sensor networks with regard to minimizing
the power consumption of the network as a whole, while preserving
or improving the fault tolerance of the network. Consequently much
work can be further dedicated for improving and refining the results
reported here and there a low of avenues of research which require
more in-depth exploration.
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Figure 7.1: The outline of my doctoral research

In the following paragraphs I’ll try to sketch a few possible direc-
tions where my work could be continued, with impact over some of the
existing problems.

7.3.1 Mobile networks

The entire body of work and the SIDeWISe framework is built around
a limitative assumption of having only static networks. I’m referring
here to the fixed position in space for all the elements of the network
in time. While this is true for a lot of major case studies referenced in
the literature and in the same time it’s a valid assumption for the case
study I’ve presented in Chapter 6, there is a great deal of interest in
booth the scientific and industrial area regarding mobile networks.
There are a lot of particularities in the case of mobile sensor networks

as outlined in [92]. From the point of my algorithms of particular im-
portance is the need of dynamically recomputing the the main metrics
of the networks as the topology changes. Booth the centrality metrics
and the community detection algorithm are dependent of the network
as a whole so any change in the topology would directly impact the
results: the sink and relay can change drastically.
A possible direction of investigation on this topic is further extending

the h-SIDeWISe algorithm by using concepts from the multi-level and
fractal networks in order to introduce a more layered architecture, and
provide a balance between the static/fixed topology of the upper levels
of relays and the central sink while keeping the lower layers (leafs of
the tree) disorganized and consequently the computational overhead
caused by the continuous reconfiguration can be localized deeper in
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the hierarchy.

7.3.2 Internet of Things

Another hot topic in booth the academia and the industry in the last
years is the novel concept of Internet of Things. My contact with this
field goes back around the start of my doctoral research and my inter-
est was kept high while following the latest results. In the meanwhile
part of my research activities in the ACSA Lab touched also with the
aspects regarding IoT, especially the medical application trough a re-
search grant regarding an embedded device for monitoring physical
rehabilitation [51].
Seen initially just as a buzz-world and marketing concept for the al-

ready established field of sensor networks it emerged in the last years
as a field of research and development by itself.
The era when millions and billions of devices are going to be strongly

interconnected via IP based protocols is not far form today. Major in-
dustry players such as Cisco, IBM, Google and so on are investing huge
amounts into developing viable and technologically sound platforms for
the moment when everything is going to be connected with everything
else. Even if we are closing the gap fast, there are still a lot of chal-
lenges in any direction of IoT, some of the most important being as
follows:

• lack of standardization and interoperability: at the present mo-
ment the are a lot of relatively small industrial applications which
already use various IP-based protocols for data acquisition and
plant automation. The big issue is represented by the lack of
standardization which places them in island like structures with
no means of exchanging data on a large scale in order to build
innovative services;

• shear size of the network: at it’s peak it is estimated that around
20 billion “things” are going to be IP based connected to the In-
ternet at any moment. With the introduction of IPv6 addressing
scheme there is no shortage of physical IP address, but the chal-
lenges arise from finding policies and methodologies for deploying
in organized an efficient manner all the elements of the network;

• lack of serious game-changing applications: at the present mo-
ment none of the major competitors from the representative in-
dustries hasn’t found any really novel and disruptive idea for the
IoT. There are serious developments in almost any area of hu-
man activity from e-health to agriculture and trough any industrial
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field, but there is nothing that could truly impress us in order to
grant the future of Internet technology to the IoT.

I’ll summarize this with a quote of Rob van Kraneburg which said: “In-
ternet of Things holds a lot of promises but it also holds dangers”.
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