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Rezumat,  

The theme of this thesis regards the domain of video based wireless sensors and 
proposes two algorithms fost real time field of view recovery with minimum of 
resources used. This implies maintaining the coverage at a high level while 
preserving and prolonging the lifetime of the network.  

The algorithms are performant and make use of novative concepts such as the 
one of redundancy, redundancy groups, events and prediction. These algorithms 
can be used to analyze both micro and macro traffic situations. Furthermore, in 
order to validate these algorithms, Monte Carlo simulation was performed and a 
simulator Simulo was implemented.  

The simulator’s unique characteristics represented the motivation for 
implementing a new simulator. Among these characteristics to be mentioned are 
the fact that Simulo is capable of simulating both micro and macro traffic 
situations, is capable of saving the previos test cases so that the same data sets 
to be used for other algorithms in order to obtain an objective comparison. The 
simulator was implemented considering a mathematical model that was 
developed for this purpose.  

All in all, the thesis proved the value of the proposed algorithms. 
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Abstract 

 

 

 Wireless sensor networks have become essential in our daily lives. However, 
the domain is still young and challenges wait to be answered with suitable solutions. 
This thesis has several goals. The first objective aims to provide a thorough 
theoretical background regarding quality coverage in wireless sensor networks as 
well as the metrics used to evaluate the coverage quality. Frameworks used for 
creating different testing scenarios are described together with their limitations. 
More and more, the area of wireless sensor networks is integrated in the vast 
domain of cyber physical systems.  This implies a strong link between the cyber 
world and the physical one. The cyber physical systems field is in its early age, but 
it promises to incorporate a lot of domains. From the wireless video sensor networks 
perspective, there still is a gap between the cyber and the physical world. Data 
gathering and its communication has to be done in real time. This fact includes the 
domain of algorithms for video based wireless sensor networks in the area of Kinetic 
data structures. The limitations come from the limited energy in contrast with the 
huge amount of data to be processed and transmitted to the sink, from the fact that 
the data accuracy is debatable not to mention the communication shortage. The 
next step was to investigate these faults and their solutions as they appear in 
literature. Furthermore I addressed the problem of coverage quality by proposing 
new metrics for video based wireless sensor networks. This represents the second 
goal of this thesis. 
 Further more, solutions to the addressed issues are proposed. In this 
direction, the first goal is to present the theoretical foundation on the one hand and 
the practical implementation corresponding to the theoretical part, on the other 
hand. Another important aspect also present in this report is the validation of the 
proposed algorithms. The performance of the proposed solutions was realized by 
Monte Carlo Simulation, and by comparing with theoretical solutions and also the 
comparison between algorithms themselves.  
 In addition to this, a simulator called Simulo was realized. Simulo is capable 
of simulating different traffic situations with desired car types, monitoring road 
traffic, setting driving behavior and setting the types of sensors by their shape.  The 
value of the presented algorithms is validated bysimulation with Simulo and by a 
considerable number of articles published at conferences and transaction. 
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1. Introduction 
 
 

1.1. Standpoint on Wireless Sensor Networks 

 
Wireless sensor networks have become indispensable in a variety of areas. 

There are different types of wireless sensors, but all have some limitations. One of 
the problems that are still in the top of research in this domain concerns the energy 
consumption of the nodes. This implies the longevity of the networks’ lifetime. In a 
wireless sensor network, not all nodes die simultaneously. It is rather difficult to 
predict witch node is going to die and at what time. Furthermore, when a node 
becomes unuseful, coverage quality drops. Analyzing the influence of the sensors’ 
behavior involves the development of different metrics. Therefore, coverage metrics 
have become another issue that is intensely studied. Metrics are needed to evaluate 
the performance of the network and make the suitable choices to keep that 
performance at suitable levels. In order to obtain an efficient coverage, redundancy 
is needed, but redundancy also means more cost and more communication that also 
translates into greater energy consumption.  

A particular case of sensors is video based sensors. This type of sensors 
differs in many aspects from the usual sensors. They need local data processing due 
to the huge amount of data that is captured and not all of it is of interest and needs 
to be transmitted. There are important features that differs video based sensors 
from the other ones. The great majority of video-based sensors are unidirectional. 
Due to this aspect, almost no metric used in the case of regular sensors is applicable 
in the case of video-based sensors. The applications that need video-based sensors 
are various and many necessitate accurate data that can be provided in most of the 
cases by using a larger degree of redundancy. The area covered by a video sensor is 
smaller than the one obtained by a regular sensor and the number of sensors to 
efficiently cover an area is high. Also, when a sensor dies, the performance in terms 
of coverage is affected significantly, if the redundancy between sensors is low. The 
cost of a wireless sensor network is estimated taking into consideration the number 
of nodes and their lifetime that is strongly connected with the amount of transmitted 
information and with the functioning period. The performance of the wireless 
sensors is estimated in terms of the amount of data collected and transmitted, data 
accuracy, real time data acquisition and network’s lifetime. 

If the sensor network is used for target tracking, the accuracy of the 
collected data may be vital. This implies that both the deployment of the sensors as 
well as their connectivity and the lifetime of the network are important. In a wireless 
sensor network, not all nodes die simultaneously. It is rather difficult to predict 
witch node is going to die and at what time. Furthermore, when a node becomes 
unuseful, coverage quality drops. The lifetime of a network is also influenced by the 
type of sensors that are used for performing their task. If they are regular sensors, 
they might have a longer lifetime than a video sensor due to the fact that in the 
case of video sensors, the tiny video is an additional device that needs energy in 
order to be able to collect data and send it to the sink. The proposed algorithms aim 
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to research the topics mentioned above. The lifetime of the network is computed 
with Simulo and the results show that is also prolonged when the proposed 
algorithms are used. The tests, performed by simulation are to be presented in 
detail in the next chapters. One of the important factors that make our approach 
different is the fact that we perform all these analysis in the presence of dynamic 
obstacles. It will be detailed the fact that the dynamism can be modeled by setting 
the drivers’ behavior. This will influence the patterns of dynamic obstacles and 
brings the simulation a lot closer to reality. 

Even though the domains where the sensors are used differ, the basic 
sensor structure remains the same. Figure 1.1. shows the main components of a 
sensor. It is important to know the role of each component in order to use the 
sensors’ capability in an optimal way. This is why I will shortly present each 
component. 

 
• Sensing Unit 
Role: to sense the specific factors from the areas where the sensor was   
        deployed 

 Components: Sensor – generates an analog signal that corresponds to the   
                                      sensed factor 

 ADC - converts the analog signal received from the    sensor into  
             a digital one 
 

• Processing Unit 
Role: to interconnect with other sensors 
Components: Processor – processes the data in order to transmit only the   
                                   relevant information to the sink 

    Storage – keeps the data in order to be processed by the local   
                  Processor 
 

• Transceiver 
Role: transmits the processed data to the sink by means of radio, laser or   
        Infrared 
 
• Power Unit 

       Role: provides power to the devices by the use of batteries that can be     
               rechargeable or non-rechargeable 

 
In the case of video based sensors, from the architectural point of view the 

sensing unit is represented by a small video camera. 
 A wireless sensor network is made out of a large number of sensors that are 
potentially capable to locate themselves and create the topology in case of random 
deployment, to communicate with each other and to communicate with the sink, to 
collect and transmit data on the optimal path between themselves and between 
themselves and the central unit using specific routing algorithms, to share 
communication channels, to be able to decide which data is relevant and perform 
local data processing, etc.  
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    Sensing Unit   Sensing Unit                   Processing                                   
Antenna 
          #1                    #2                             Unit 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1.1. Sensor components. Acknowledgement: adapted from [1] 

 
 

1.2. Applications Using Video Based Wireless Sensor 
Networks 

 
Wireless Sensor Networks (WSN) has gained a lot of attention due to their 

efficiency in getting data from observing external factors. Sensors are of different 
types and used in different domains and applications. They are very large collections 
of tiny sensor nodes that form ad hoc distributed sensing and data propagation 
networks that collect detailed information about the physical environment [2]. The 
applicability of WSN is widespread from military applications to health care and 
different types of monitoring. In a usual scenario, these networks are largely 
deployed in areas of interest (such as inaccessible terrains or disaster places) for 
fine-grained monitoring in various classes of applications. Various classes of 
applications with WSN are presented in [2]. The reason for the increasing usage of 
WSN is their low cost in comparison with the work they do. WSN has proved their 
efficiency by the way they collect data even from hard inaccessible fields such as 
deep into waters or high mountains or even in spying actions, where placement is 
vital. The most common type of sensors is a device that measures or detects a real-
world condition, such as motion, heat or light and converts the condition into an 
analog or digital representation [1]. 

The constantly increasing interest and usage of sensor networks in many 
diverse domains proved their importance and utility. This aspect determined the 
researchers to develop, overcome and improve the existing technology in this 
domain. A recent study made by the authors in [3] presents the most analyzed 
aspects. Their classification took into consideration the frequency and the number of 
published papers in every research topics: deployment 9.70%, target tracking 
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7.27%, localization 6.06%, data gathering 6.06%, routing and aggregation 5.76%, 
security 5.76%, MAC protocols 4.85%, querying and databases 4.24%, time 
synchronization 3.64%, applications 3.33%, robust routing 3.33%, lifetime 
optimization 3.33%, hardware 2.73%, transport layer 2.73%, distributed algorithms 
2.73%, resource-aware routing 2.42%, storage 2.42%, Middleware and task 
allocation 2.42%, calibration 2.12%, wireless radio and link characteristics 2.12%, 
network monitoring 2.12%, geographic routing 1.82%, compression 1.82%, 
taxonomy 1.52%, capacity 1.52%, link-layer techniques 1.21%, topology control 
1.21%, mobile nodes 1.21%, detection and estimation 1.21%, diffuse phenomena 
0.91%, programming 0.91%, power control 0.61%, software 0.61%, autonomic 
routing 0.30%. These statistics show the fact that on the top of the hierarchy is 
placed the deployment of the sensors and on the second place is target tracking. 
Target tracking implies video based sensors. The research in this specific area are so 
intense because the optimum balance between real time requirements, processing 
time and accuracy of data has not yet been found. 

 
 

1.3. Thesis Goal and Objectives 
 
In order to perform a relevant contribution in the field of video based 

wireless sensors, a thorough evaluation of the existing methods and metrics must 
be performed. Consequently, the first important goal of this report is to show the 
performance efficient algorithms for dynamic data collection in wireless sensor 
networks. In order to achieve this, several objectives have to be achieved. The first 
one is to perform a detailed study and analysis of metrics and algorithms for video 
based wireless sensor networks. In addition, the drawbacks of the analyzed 
algorithms and metrics are important in order to achieve the proposed goal. These 
drawbacks are studied and the second important objective of this study is to find 
solutions for the problems found.  

The main objective of this report is to develop software solutions for 
wireless video-based tracking applications. The images are taken by video cameras. 
Therefore two new algorithms for video based sensor networks are proposed. These 
algorithms are capable to save energy and in the same time to keep a certain level 
of coverage. Saving energy is a top research domain and there are many ways to 
achieve this task. The proposed algorithms differ from others because the real time 
component is very important. The images captured by the cameras are real data. 
This aspect situates the stated problem in the domain of real time algorithms for 
Kinetic data. A Kinetic data structure is defined [4] as any kind of continuously 
changing data. The process of transforming an algorithm on static data into a data 
structure that is valid for continuously changing (moving) data is called kinetization, 
according to [4]. From this perspective coverage is seen as an associated method 
due to the constraints. The limitations deal with real time and energy. As a 
consequence, the nature of the proposed algorithms has to adapt, so the constraints 
are satisfied.  

The coverage problem in case of video based wireless sensors is close to the 
minimal set coverage problem, which is an NP complete one. The coverage 
heuristics has to be fast in order to satisfy the constraints, but also optimal in order 
to keep a certain level of quality. The loss in quality due to the real time constraints 
that have to be fulfilled is analyzed in the proposed algorithm. Also, the mentioned 
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limitations concerning real- time requirements and energy restrictions in balance 
with coverage quality are debated and satisfied in the proposed algorithm.  
The overall objective regarding the new proposed algorithms is to present the 
performance of the proposed algorithms and their validation by simulation and by 
specifying their publication at different conferences and transaction. As stated, we 
propose two algorithms for coverage preservation while prolonging the lifetime of 
the network. The first algorithm computes groups of redundancy and manages 
sensors within those groups. The second algorithm derives from the first one, but it 
has no redundancy groups. The management is realized at the network level and 
has prediction of events. A third algorithm was also implemented based on Linear 
Programming, but only for comparison purposes. In order to accomplish the target 
mentioned, specific objectives have to be achieved. They can be classified in two 
areas: Proposed algorithms and simulation tool.  

 
For the algorithms, the objectives are the following: 
• Defining the context and presenting the need for developing the 

proposed algorithms 
• Presenting the proposed algorithms 
• Presenting the comparison between algorithms 
• Validating the proposed algorithms by different simulations 
• Validating the algorithms by using different types of sensos 
 
For the simulation tool, Simulo, the objectives are the following: 
• Presenting the main simulation capabilities of Simulo 
• Presenting the features that make the simulator unique like setting the 

types of vehicles, the road configuration, overtaking rules, traffic 
behavior, setting the energy quantum  

• simulate the lifetime of the network and show the improvement of the 
networks’ lifetime when the proposed algorithms are applied 

 
 

1.4. Thesis Structure 

 
The report is structured into thirteen chapters and two parts. The first part 

includes the first four chapters. In the beginning a general standpoint on wireless 
sensor networks is presented, showing the metrics used in literature for different 
perspectives such as energy saving metrics, coverage metrics, etc. The first part 
finishes with the contribution regarding metrics by presenting the proposed metrics. 
The second part first presents a standpoint on current algorithms regarding 
coverage and sensor management in wireless sensor networks and then it presents 
the performance efficient algorithms for dynamic data gathering in wireless sensor 
networks. This part represents the main contribution of the thesis.    

A brief description of the domain, the motivation and the goals of this report 
are presented in the first chapter. Every activity that is performed has a certain 
level of quality. The evaluation of the performance is estimated considering the 
levels of certain parameters. The video based wireless sensor networks are 
evaluated by some metrics. Depending on the domain where this type of networks 
are used, the link between quality, real-time data gathering and energy 
consumption can be in favor of one and not so supportive of another. The most 
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common metrics in the field of video based wireless sensors are presented in 
Chapter two. One of the most used metrics for video based wireless sensor 
networks regards the deployment of the sensors. Deployment can be done in two 
ways: the sensors can be scattered (eg. from a plane) generally due to the 
inaccessible terrain or they can be placed at desired locations. Furthermore, the 
advantages and drawbacks of all discussed metric are presented, for each of the two 
deployment metrics. Deployment influences coverage. Next, in chapter two, 
coverage metrics are debated. As stated above, a good coverage usually implies 
more energy consumption. This issue is really important because it implies the 
lifetime of the network. The metrics that deal with this aspect are presented towards 
the end of Chapter two. In the end of this chapter, the conclusion is formulated. 

The third chapter gives an overview of energy saving algorithms in wireless 
sensor networks. There is a considerable number of topology algorithms focused on 
saving energy. In video-based wireless sensors, the amount of data that is 
transmitted to the sink is significantly higher than in usual wireless sensor networks. 
Next, data aggregation algorithms are discussed. In the case of video sensors, the 
collected data is huge. For this reason local preprocessing of the collected data is 
performed. The position of the sensors is also important. If the sensors are placed in 
strategic positions, the number of sensors needed is low. A classic use of video 
based wireless sensors is traffic monitoring. Traffic surveillance is important due to 
prevention (eg. radars) and promptness (eg. being immediately notified of the need 
for intervention). Specific algorithms in this direction are presented in chapter three. 
Algorithms that deal with this aspect are discussed in the end of this chapter.   

The metrics based on the discussion from chapter two led to the need for 
other metrics specific to the goal of this thesis. The proposed metrics are presented 
in chapter number four.  

The fifth chapter represents a top view of the second part and states the 
general idea together with its objectives. This chapter starts the second part of the 
thesis that has the purpose of presenting the new proposed algorithms. First, the 
preliminaries and the context of the current work regarding the present traffic 
monitoring algorithms are presented. 

Chapter number six presents in detail the first proposed algorithm. It is 
emphasized the fact that the proposed algorithm tries to find a balance between 
coverage and the lifetime of the network. The metrics proposed in chapter five are 
applied to this algorithm and the results are analyzed. The algorithm is analyzed 
from a stochastic perspective as well as from a heuristic one. Also, for a better 
validation, Linear Programming is used in order to compare the mathematical 
solution with the experimental one. From Linear Programming. LPSolve was used to 
implement the mathematical version of the algorithm.    

Chapter seven presents the second algorithm that also deals with traffic 
monitoring, but it differs from the first algorithm by the new concepts implemented. 
For example it makes use of prediction and of events. For making an idea, events 
are considered to be vehicles that are driven on the same lane and the distance to 
its adjacent vehicles is less or equal to the minimum allowed distance. The event 
can dynamically form or split. The detailed explanation of the concepts and of the 
algorithm is presented in Chapter nine. 

Chapter eight shows the performance and validation of the algorithms from 
Chapters six and seven. This is done by simulation and by comparing the new 
algorithms with the mathematical computed solution using ILP. In order to obtain 
real and credible simulation results real data were used in the Monte Carlo 
simulation. In order for the simulation to be as close to reality as possible, the 
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mathematical foundation for the traffic simulation was realized and implemented. 
Traffic rules were used together with human factors like reaction time and speedy 
cars.   

Next, Chapter nine presents the performances of the algorithms from the 
energy perspective showing that by using the proposed algorithms the lifetime of 
the network is prolonged. Prolonging the lifetime of the network is important when 
using wireless sensors because if the sensors used have limited amount of energy 
they will soon will be depleted of it. Using the new proposed algorithms, the 
management of the sensors will prolong considerably the lifetime of the network.  

Traffic behavior issue is debated in Chapter ten. It is sown how different 
types of driving behavior influences the performance of the proposed algorithms 
with respect to coverage. 

All the simulation was done using Simulo, a traffic simulator that was also 
implemented and represents a real contribution to this thesis. The need to develop a 
new simulator came from the necessity to be able to simulate both micro and macro 
traffic and obtain results according to the simulation on the one hand and on the 
other hand, to be able to simulate human behavior like speeding, overtaking on the 
right side only if the driver is speedy, coming back on the first lane, only if it is free, 
decelerating if the vehicle in front drives slower, taking into consideration the 
reaction time of a human being before taking a driving decision, etc. Using this 
simulator allowed us to implement and test the proposed algorithms using Monte 
Carlo simulation. The simulator is also presented in Chapter ten.   

The last part is Chapter eleven, Chapter twelve and Chapter thirteen that 
states the conclusions, the contributions and the future work. 
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2.  Video-Sensor Based Metrics 
 

 

2.1. Abstract 

 
 

This chapter presents the most used metrics in evaluating the performance 
of a WSN and more specific of a video WSN. Chapter number two is divided into five 
subchapters that deal with metrics. 

First of all, the deployment of the sensors is discussed, together with the 
most significant metrics that deal with this aspect. Next, the coverage problem is 
debated in the next subchapter. Problems that appear regarding coverage are also 
presented. Subchapter 2.5. presents the main drawback of WSN and especially of 
the video WSN: energy. This chapter ends with a conclusion regarding the 
presented metrics. 

2.2. Introduction 

 
 In a WSN a node integrates a variety of different types of sensors, 
depending on the area of interest. A growing demand and development is noticed in 
video-based sensors nodes. In addition to usual acoustic and thermal sensors, they 
integrate a very low powered video camera. These types of nodes collect images, 
process them and transmit only the potentially interesting data. 
 The main difference between usual nodes and video-based nodes is that 
normal sensors gather and process information from their own vicinity, while video 
cameras capture images from locations that are not in the cameras’ immediate 
vicinity. Due to this issue, it is necessary to analyze the compatibility between the 
metrics applicable on regular sensors and video sensors. Another difference is that 
the orientation of the camera is vital in this case for the coverage issue. Different 
topologies may have a great impact on the efficiency of the surveillance, for 
example in object tracking applications.  
 There are some unique challenges that arise from this specific type of 
sensors. Compared with the usual wireless sensor networks, for video sensors imply 
some limitations in terms of limited energy, local computational capacity and 
transmission bandwidth. 
 In order to overcome these limitations, algorithms and techniques have 
been proposed. To prove their efficiency, tests in terms of metrics are applied on 
those algorithms. To test the effectiveness of a video based wireless sensor 
network, the most used metrics are those regarding the deployment and 
redeployment of the sensors, coverage metrics and energy saving metrics.  
 The parameters tested interconnect and influence one another: for example 
if the deployment of the nodes is not optimal and the distance between nodes is 
considerably big, the amount of energy needed for data traffic is higher, and as a 
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consequence, the node will finish its amount of energy faster. These aspects are 
debated in [5].  
 This chapter presents in more detail the existing metrics for video wireless 
sensor networks. The challenges mentioned above are evaluated by specific metrics. 
The emphasis is put on deployment metrics (both scattered and willingly placed). 
The importance of the networks’ geography is presented. Furthermore, the existing 
coverage metrics in literature are presented together with the motivation of having 
a good coverage level. In the end of the current chapter, metrics that assess the 
energy of a video based wireless sensor network are presented. The fact that 
deployment influences the amount of energy spent on transmitting data and also 
the fact that the better the coverage quality is, the greater the number of sensors 
that collect data has to be. It is relevant to mention that the lifetime of a wireless 
sensor network is limited, depending on the lifetime of the battery. When a sensor 
dies, coverage is affected. When coverage drops under a certain limit, the network 
is considered unuseful. Conclusion and summary of this chapter are stated at the 
end. 
 
 

2.3. Deployment Metrics 

  

2.3.1. Overview 

 
 Wireless sensor networks are largely used in almost every domain. These 
types of networks influence the scientific research in different domains and also the 
comfort of daily life.  
 Video based wireless sensor networks are composed by video sensors that 
have the ability to both sense (gather video information) and also to transmit that 
information to the central unit, if necessary.  
 There are two techniques of deployment and redeployment: scattering the 
sensors randomly [2] (e.g. from an airplane) or arranging the sensors in certain 
fixed positions. The literature focuses more on the algorithms concerning the second 
approach, but the first has its own advantages especially when the deployment area 
is hard accessible.  
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2.1. A Video-based Wireless Sensor Network deployed over the monitored area 

  The way the sensors are placed influences coverage. If the sensors are 
placed at will, an engineering topology can be precalculated and the degree of 
coverage is known as long as all the nodes of the network function. An issue to be 
considered is that in the case of video-based sensors, the data that is gathered is 
not in the cameras’ vicinity. The field of view of video sensors is omnidirectional and 
this is important because not only the placement of the camera is important, but 
also the rotation of the video sensor. This aspect is made clear in picture 2.1. The 
picture is relevant to point out that in the case of video-based sensors the field of 
view is unidirectional, to show that the gathered information are not in the vicinity 
of the sensor and also to point out that the placement of the sensors is in a strong 
connection to the area that is covered.  

 

2.3.2. Metrics 

 
Most of the existing algorithms regarding the redeployment of sensor 

networks focus on the idea of relocation existing sensors as long as the density 
requirement condition for covering is accomplished. In [7], the authors present a 
solution to the sensor relocation problem using a maximum-flow minimum-cost 
algorithm. This algorithm is evaluated by measuring the improvement in network 
lifetime. The benefits of the proposed method are proved both mathematically and 
by simulations.  

Another approach is to apply distributed protocols in order to provide 
centralized sensor deployment. This kind of redeployment is presented in [8] and 
[9]. These papers are focused on the usage of three algorithms VEC (VECtor based 
deployment), VOR (VORonoy based deployment), and Minimax to increase 
deployment efficiency. 

In VEC, sensors that are too close to each other will be pushed away by a 
virtual force. The border of the network can also push sensors away. These 
techniques of arranging sensors are implemented in the purpose of maximizing the 
coverage of the monitored area. 
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In VOR, when a node senses the coverage gap, it will be moved towards the 
farthest vertex of the polygon in the Voronoi network graph. Voronoi triangulations 
represent the computation of the Euclidian distances between the sensors. Like in 
Vec, this technique of improving topology was implemented with the purpose of 
obtaining a better coverage in the area of interest. 

Minimax algorithm is similar to VOR. Here, the virtual force will pull sensors 
to sparser area, but the target location differs. 

Reference [10] proposes a way to achieve a maximum coverage by the 
usage of flip-based deployment mechanism. They assume the sensor can only flip 
once. The metrics applied show that the centralized algorithm maximizes the 
number of regions that are covered by at least one sensor node with the minimum 
moving cost. The methods that imply relocation of the sensors have significant 
drawbacks. First of all, the relocation of the sensors implies a high complexity of the 
solution. Second of all, there are a limited number of applications where this method 
can be applied. Last, these kinds of sensors are more expensive and the tradeoff 
between the advantages of relocation and costs is questionable. 

Besides these techniques that focus on a good initial deployment, studies 
have been made to improve the initial deployment. One possibility in this direction is 
to deploy additional sensors to the ones already deployed initially. This method is 
called redeployment and is presented in detail in [11]. 
 Considering the case in which sensors are randomly deployed (scattered), 
another problem regarding the localization of the sensors arises. In the majority of 
the cases, there is no prior knowledge about the location of the sensors. Many 
applications that use wireless sensor networks need to know the topology of the 
network. The solutions for this problem can be classified into fine-grained 
localization and coarse-grained localization. The first one measures the timing or the 
strength of the signal. The second one is based on the proximity from a chosen 
reference [12], [13], [14].  
  
 

2.4. Coverage Metrics 

  

2.4.1. Overview 

  
 Considering specific applications, different types of coverage metrics are 
also needed. The most frequent classification found in literature concerns the 
network coverage and connectivity. Regarding the degree of connectivity three 
levels are proposed: full connectivity, partial connectivity and constrained 
connectivity [15]. Indeed, each approach has different performance and different 
cost. 

Full coverage means that the each spot of the location is covered by at least 
one sensor. It was proven that in order to achieve a full coverage of an A size 
surface, the number of the sensor nodes that are needed is on the order of A ln(A). 

Partial coverage is used in applications that do not demand such a stringent 
connectivity. Indeed, if we consider the example of meteorology, it is not mandatory 
to know the temperature of every spot, but it is sufficient to have 80% coverage of 
the area and still to provide an accurate situation of the monitored zone. 
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Constrained connectivity was also defined and refers to the maximum size of 
an area where an event can occur without being reported. A case where this kind of 
coverage is applied refers to the size of a fire. It can be a fire camp and in this case 
no action should be taken, but if the proportions of the fire are extended over a 
certain limit, the cameras take action by transmitting the images. 

                                   

 
 

2.2. Efficient Field of View for unidirectional sensors 

Besides this classification, specific matters are to be taken under discussion 
when talking about video-based sensor networks.  
 Common sensors are omni-directional. In the case of video-based sensors, 
the range of sensing is limited.  

The cameras attached to the sensors have a field of view (FoV) that 
represents the area that can be observed by the sensor and also the area from 
which information can be gathered. An assumption that the cameras have a limited 
view range was made in all the considered algorithms.  

 

 

 

 

 

2.3. Efficient sensing field for omni-directional sensors 

Indeed, in order to obtain an accurate perspective, a maximum range 
(DMax) was established considering the video sensor resolution and the size of the 
smaller targets of interest. The requirement is to capture at least Np pixels of the 
target surface in an image. This means that the object of interest is considered to 
be in the field of view of the sensors only if the object is closer than the maximum 
range distance DMax. Then, an efficient field of view is modeled as an angle sector α 
of a circle with a radius DMax and centered in the node’s position. Figure 2.2 
illustrates the modeling of efficient fields of view when the node orientation is an 
angle φ. For redundant node deployment, the field coverage is the percent of the 
covered surface from the total deployment surface (CS/S). 

A major difference between unidirectional and omni-directional sensors is 
that the sensing area. Indeed, in the case of omni-directional sensors it is more 

DMax 
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general. Figure 2.3 illustrates the modeling of efficient sensing field for an omni-
directional sensor. 

DMax also determines the sensing area with the difference that the data is 
collected all around the sensor within a range smaller than DMax starting from the 
sensor. All the discussion from unidirectional sensors is applicable also in the case of 
omni-directional ones, but not the other way around.  

 

2.4.2. Metrics 

 
The sensor range for omnidirectional sensors means the area from which 

the sensor collects data. In the case of video sensors, this area is unidirectional and 
is called Field of view. According to [16], the Field of View (FoV) is defined as 
themaximum volume visible from the camera. This means that the video sensor is 
able to capture images that are not in its immediate vicinity, but are at a distance 
smaller than DMax.  

In the case of video sensor networks, the three dimensional issue has been 
debated, due to the fact that everything can be captured in an image if it is in the 
FoV of the camera. This aspect involves a grater complexity of the problem. Still, 
[17] presents some research in this direction.  

In [15] the authors analyze the cases of worst and best-case coverage in 
sensor networks by combining computational geometry and graph theoretic 
techniques, specially the Voronoi diagram, Delaunay triangulation and graph search 
algorithms. The paper focuses on an optimal polynomial worst and average case 
algorithm for coverage calculation for homogeneous isotropic sensors. The worst 
and best case coverage are calculated by finding the maximal breach path and the 
maximal support path. The maximal breach is defined as the minimum Euclidian 
distance from a given a path P, connecting areas I any F, to any sensor in S. The 
maximal support is defined the maximum Euclidian distance from path P, connecting 
areas I and F, to the closest sensor in S. The drawback of this algorithm is the 
usage of a centralized computational model. Also, the coverage depends only on the 
Euclidian distances from the sensors and no other conditions are considered. 
However, the problem of deploying sensors in order to increase coverage remains 
open. 

Voronoi diagrams are also used by the authors of [18] propose a method a 
technique based on Voronoi diagram to compute an optimal path between source 
and destination in the presence of simple disjoint polygonal obstacles in the plane. 
They also take into consideration the length of the path and the smoothness of the 
terrain. Their algorithm is considering omnidirectional sensors and all paths are 
considered equally favorable. 

Regardless of the way the sensors are deployed (random or scattered), 
coverage is very important. Usually, a minimum level of coverage is estimated and 
the number of sensors that are deployed is established with respect to the certain 
coverage limit. Indeed, to accomplish an optimum coverage, when establishing that 
limit, the level of conectivity between sensor nodes has to be taken into 
consideration. The conectivity problem is debatable because there are arguments 
when to consider one sensor as being connected to th another sensor.  

The authors of [20] present an interesting observation concerning the 
minimum and maximum number of neighbors that are required to provide complete 
redundancy and introduce simple methods to estimate the degree of redundancy 
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without the knowledge of location or directional information. They conclude that 
with random sensor deployment, partial redundancy is more realistic for real 
applications, as complete redundancy is expensive, requiring up to eleven 
neighboring sensors to provide a 90 percent chance of complete conectivity in the 
considered area.  

An important factor that influences the degree of connectivity is represented 
by the type of the network. If the network is a centralized one, the captured images 
are sent directly to the sink. From this perspective, the connectivity between nodes 
does not have to be so tight. On the other hand, if the network is a descentralized 
one, the data is transmitted from one sensor to another. In this case the sensors 
must have a more tight connectivity due to the fact that the data is sent through the 
network from one sensor to another. 

Another particularity of video sensors is the fact that coverage can be 
affected in a dynamic manner. This happens if the field of view of that sensor is 
opturated by an obstacle. If this happens, that sensor becomes unuseful as long as 
the obstacle is preventing the sensor from capturing images. Solving this problem 
implies solving the solving the problem of loss coverage. The FOV loss recovery 
issue is difficult. Considering a simpler version of it as being the minimum set 
coverage for static conditions, the problem is known to be NP complete one. This 
aspect has been addressed by authors in [21], [22], [23]. 

A term that is significant when talking about coverage is redundancy. 
Redundancy represents an area that is covered by more than one sensor. From the 
sensors’ perspective, redundancy implies that at least two sensors have their FOV 
overlapped. Figure 2.4 shows two sensors S1 and S2 that have a redundant area. 

 

 
 

2.4. Overlapped FoV for two sensors 

 
In order to provide a good coverage, the degree of redundancy has to be 

high. 
A recent approach for the coverage problem is addressed in [24]. The 

authors propose a genetic algorithm for finding the optimal deployment in order to 
obtain the best coverage. They also make use of matrix definition for defining the 
sensing range of the sensor. In addition they also compute the Voronoi diagram and 
afterwards the genetic algorithm is applied. The drawback is that the genetic 
algorithm is not finalized and needs to be optimized more.  
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2.5. Energy Saving Metrics 

 

2.5.1. Overview 

 
Wireless sensor networks depend on the lifetime of the sensors’ battery. 

There are wireless sensor networks that use energy harvesting techniques, but they 
are still in their beginnings and are not reliable yet. In the meantime, techniques 
that have as a purpose energy saving and metrics that evaluate those techniques 
are developed. A sensor has a limited amount of energy. The lifetime of a wireless 
sensor network represents the time in which the network can collect and transmit 
data at desired levels. In a WSN some nodes are more used than others. This will 
make those nodes to finish their energy before other nodes and become unuseful to 
the network. A node can be used for several tasks. It can be used to collect data, it 
can be used to transmit data, it can be used to process data or it can be used to 
perform a combination of the mentioned tasks.  

If a node becomes unuseful to the network because it does not have any 
battery left, another node may try to perform the task the previous node did. In this 
way the lifetime of the network will be prolonged. Metrics that evaluate the 
prolonged lifetime of the network have been developed.  

Each application that uses wireless sensor networks applies the technique 
that suits the best the purpose of the application. Prolonging the lifetime of the 
network can be applicable if coverage is not so important because, by using this 
method, in time the coverage quality will drop until the network will become out of 
use. 

In the case of video-based wireless sensor networks, the energy problem 
affects even more the performance of the network. In the case of video sensors, the 
data they collect are images. In some applications like fire prevention, when the 
events of interest happen rarely, not all data has to be transmitted to the sink. 
There for before the information is communicated to the central unit, local 
preprocessing is performed. 

One of the most relevant general metric in wireless networks is the 
remaining battery power of nodes. Experimental measurements indicate that the 
communication cost in wireless ad hoc networks can be two orders of magnitude 
higher than computation costs in terms of consumed power [25].  

 

2.5.2. Metrics 

 
Establishing the amount of energy spent in a wireless network can be 

difficult, especially when the communication varies dynamically with respect to the 
surrounding stimuli. In [26] the authors try to consider a scenario in which a 
wireless sensor network is formed by randomly deploying n sensors to measure 
some spatial function over a field, with the objective of computing a function of the 
measurements and communicating it to an operator station. They establish scaling 
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laws for the computation time and energy expenditure for one-time maximum 
computation. They show that for an optimal algorithm, the computation time and 

energy expenditure scale, as ( )nnlogθ , whereas the energy expended scales as 

( )nnn logθ , n being the number of sensors, n ∞→ .  

Energy saving metrics evaluate not only the battery level, but also the 
performance of the network. There are applications where every frame is important. 
Among these applications are the traffic surveillance ones. In these applications, the 
energy consumption is greater than the case of fire surveillance, mentioned above. 
The data that have to be transported to the sink are greater, so the traffic 
performed is significantly higher. Moreover, the constraints concerning real time 
have to be respected. In this direction, the delay of the wireless network is 
evaluated. A metric that estimates the balance between the capacity of making real 
time decision and the remaining amount of energy is frequently used in these types 
of applications. The delay is significant in video WSN because it is important that the 
data reaches the sink in time to make immediate decision if necessary. Reference 
[27] presents two main factors that influence latency: physical distance in over 
which the data has to be transmitted and the number of hops.  

The author of [27] shows that the power consumption can be reduced when 
the node density increases in a wireless sensor network. In addition to this, the 
paper also states that the networks’ capacity grows when additional nodes are 
deployed. The increase of the network is due directly to a reduction in the interface 
between transmissions when the transceivers are operating at reduced power. In 
the paper this conclusion was proved analytically.  

Reference [28] presents some metrics for wireless sensor networks that are 
applicable, from the energy perspective to video based wireless sensor networks, as 
well. They adjust the transmission protocol in order to keep a certain link quality. 
They introduced the link quality indicator and the received signal strength indicator 
as metrics.  

Authors of [29] propose a tradeoff Energy Savings and Source-to-Sink Delay 
in Data Dissemination for Wireless Sensor Networks. In order to test their solution, 
they apply two metrics: energy consumption and the delay from source to sink. 
They prove that the nodes that are deployed closely to each other and can form a 
path from source to sink consume the minimum amount of energy. The 
disadvantage is that certain sensors will be used frequently and their energy will be 
consumed first. Adopting this technique, after the optimal sensors from this 
perspective, will die, the network will become more energy consuming than in the 
case of normal path usage due to the disadvantaged remaining paths. 

 
 

2.6. Conclusion  

 
Wireless sensor networks are used at a large scale in different applications. 

The performance of a wireless sensor network is performed by applying different 
metrics. Not all the metrics that are used for usual wireless sensor networks can be 
applied in the case of video based wireless sensor networks because in the case of 
video WSN, the FoV is unidirectional.  
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Analyzing the existing metrics led to the conclusion that there has to be a 
balance between the efficiency of the network and the amount of consumed 
resources. The efficiency of the network, in most of the cases means, first of all a 
good deployment that leads to obtaining good coverage, a prompt response that 
means real time abilities of the network where latency is reduced as much as 
possible. All the mentioned metrics were discussed in this chapter. The levels of the 
specific parameters are influenced by the needed resources. 

One of the main drawbacks these types of networks have is the limited 
amount of energy. There are different techniques that try to overcome this 
limitation. Energy represents a problem for all WSN, but in the case of video WSN, 
this problem is even greater due to two main factors: local data processing must be 
performed and the collected data are images. Each of the two is more energy 
consuming than a usual WSN. The metrics applied to evaluate the performance of 
energy saving techniques also evaluate other parameters that lead to more 
consumed energy. One example is the latency of the network. 

It has been proved that the amount of energy that is used by the network is 
directly proportional to the quality of the network. There are two directions when 
talking about energy saving. One aspect is to find methods that save energy, but in 
the same time to be able to maintain a certain level of efficiency of the wireless 
network. Another aspect regards prolonging the lifetime of the network. The metric 
applied in this situation measures the time the networks’ lifetime was prolonged. 
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3.   Performance Efficient Algorithms in 
Wireless Sensor Networks: Routing, 
Aggregation and Deployment 

 
 

3.1. Abstract 

 

This chapter presents in more detail the existing approaches for the problem 
of limited energy in wireless sensor networks. Mainly the specific algorithms for this 
purpose can be classified in three directions: topology algorithms, data aggregation 
algorithms and deployment algorithms.  

Topology algorithms are important due to the fact that the data has to 
respect the real time constraints. The amount of information that is transmitted in 
the case of video sensors is significantly higher than the data collected in the case of 
usual sensors. Furthermore, if the traffic is done between sensors that are placed at 
a considerable distance, the amount of energy grows in this case. 

Data aggregation techniques for saving energy are the most researched and 
for a better efficiency, can be combined with a good topology strategy.  

Deployment plays a big role in topology. If the sensors are scattered, the 
number of deployed sensors has to be higher.  
The end of the chapter concludes about the energy efficient methods. 

3.2. Introduction 

 
 Minimizing energy consumption in order to prolong the lifetime of the 
network is a major challenge in the domain of wireless sensor networks. 
Researchers are exploring advanced techniques looking for solutions both in the 
hardware and software domains for saving energy in WSN.   

The hardware approaches generally refer to the capability of the nodes to be 
turned off completely. This implies the usage of a topology control algorithm that 
can reconfigure the connections between nodes in order to avoid data transmission 
through the turned off nods, but still to keep the network connected. A different 
approach is to keep certain nodes off in order to save energy. Others have studied 
the possibility of periodically checking whether a node should become a coordinator 
or to enter a standby mode. All these techniques have to take into consideration the 
fact that in the majority of applications, decision making is really important from the 
real time perspective. If a sensor is in stand-by mode and at a certain time, that 
sensor becomes the optimal one to be turned on, the mode changing has to be done 
in real time. Otherwise, the sensor would not be able to accomplish the task that it 
was chosen to do. 
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The fact that data transmission is very expensive in terms of energy use 
was shown in [25]. It is obvious that reducing transmission costs would reduce total 
energy consumption. Transmission is improved by finding the best path for data 
transmission. It is debatable what best path means. In literature several approaches 
that present this theme can be found. A possible method is to find the shortest path. 
Another method is to find the path that has the minimum number of hops because 
each hop introduces a certain delay in data transmission. To respect the real time 
transmission another topology solution is to find the most reliable path that avoids 
any traffic collision. Topology methods combined with the hardware methods 
mentioned above have to consider the fact that if a node is completely turned off, it 
can’t perform any data transmission, but the energy saving amount is bigger. 
Another possibility is to turn only the camera off, so the node is able to perform 
traffic. 

Deployment is another option for saving energy in a wireless network. This 
technique can be used mostly for the willingly deployed sensors that have a known 
topology. In this case the degree of coverage that will be obtained as well as the 
degree of redundancy is known. The sensors can be deployed in an optimal manner. 
In the case of scattered sensors, the deployment is random and to obtain certain 
coverage, a bigger number of sensors have to be deployed. If the data is gathered 
from more sensors, the amount of energy used is higher. 

In this chapter the approaches regarding energy saving techniques are 
presented. In the first part topology algorithms are discussed. Next, data 
aggregation methods are showed. Towards the end of the chapter, the role of 
deployment in energy saving is presented. This chapter ends with conclusion and 
summary.  

 
 

3.3. Topology Algorithms 

 
To maximize the overall network lifetime, in [30] an algorithm that 

minimizes the routing energy by choosing paths through a multi-hop ad-hoc 
network is presented. In this power saving method, nodes adjust their transmission 
power levels and select routes to optimize performance. Energy saving by routing 
methods is also discussed in [31], where a technique based on Directed Diffusion is 
proposed. The authors describe Directed Diffusion routing and illustrate one 
instantiation of this paradigm for sensor query dissemination and processing. They 
show that using Directed Diffusion one can realize robust multi-path delivery, 
empirically adapt to a small subset of network paths, and achieve significant energy 
savings when intermediate nodes aggregate responses to queries.  

An interesting work on energy saving in WSN by routing approaches is 
presented in [32]. It presents an analysis of the lifetime extent of a wireless sensor 
networks that employ periodic sensing. Lower and upper bounds on the network 
lifetime are derived, and corresponding routing algorithms leading to these bounds 
are presented. For large sensor networks the upper and the lower bounds on the 
network lifetime are relatively close (less than a few percents), leading thus to the 
conclusion that for such sensor networks the choice of the routing protocol is largely 
irrelevant for maximizing the network lifetime, as long as some form of shortest 
paths are followed. Simulations are used to validate the theoretical results. Other 
approaches discuss the possibility of minimizing the energy consumed for each 
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message [33], [34], and [35]. This metric might unnecessarily overload some nodes 
causing them to die prematurely. Minimizing the variance in the power level of each 
node [36] is another possibility that saves energy. Minimizing the maximum energy 
drain of any node is a solution discussed in [37] and [38].  

Another promising solution to save energy in video-based networks is 
presented in [39]. The authors propose a coordination algorithm for topology 
maintenance. The algorithm adaptively elects node coordinators from all the nodes 
in the network, and rotates them in time.   Coordinators stay awake and perform 
multi-hop packet routing within the ad hoc network, while other nodes remain in 
power saving mode and periodically check if they should wake up and become 
coordinators.  

In reference [40] the authors introduce two variables: base stations that 
have flexible positions within a certain range and application nodes that have the 
role to receive data from the sensor nodes. Two approaches are studied in this 
article. One refers to the location of the sensors and the other one considers parallel 
relay routes in order to obtain an optimal allocation. The best route is chosen for 
data transmission. In the study performed in this paper, the authors realized a 
graphic that shows the link between the amount of the remaining energy and time. 
During the experiments the nodes changed their status from sleep to idle, to active, 
to sleep again and then to idle again, etc. Figure 3.1 illustrates this connection. 

 

 
            

3.1.  Activation modes. Discrete model [40] 

Another approach presented in [41] proposes two techniques for energy 
saving. The first one implies that each node remembers its past activity and if in a 
chosen time interval, no activity was detected, the node goes to sleep. The sleeping 
period is a fixed amount of time. After waking up, the node again memorizes its 
activity. The second approach is based on voting to decide if a node should go to 
sleep or not. The sleeping period is also a fixed one. These approaches are linked to 
topology due to the fact that the algorithm is distributed. This means that each 
sensor takes decision by its own, including the decision of message transmission. 
There are two problems that arise. One question would be if the local optimum is 
the same with the local optimum. The other question is how much information is 
lost during the fixed time in which the sensors are in sleeping mode.  
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3.4. Data Aggregation Algorithms 

 
In [42] each node periodically decides whether to sleep or stay awake as a 

coordinator. A node decides to be a volunteer to be a coordinator if it discovers that 
two of its neighbors cannot communicate with each other directly or through an 
existing coordinator. Similar to this approach, [43] presents an algorithm that for 
each node maintains a count of the number of nodes within radio range, obtained by 
listening to transmissions on the channel. A node switches between sleeping and 
listening, with randomized sleep time proportional to the number of nearby nodes. 
As a consequence, the number of listening nodes is quite constant. The difference 
between the two algorithms is that Span never keeps a node awake unless it is 
essential to connect two neighbors.  

Reference [44] proposes an energy-efficient optimisation approach to 
achieve tracking accuracy constrained by energy consumption. It enables 
reorganization of wireless sensor networks and includes three phases, which are 
related to prediction, localization and recovery. The first phase implies a particle 
filter algorithm on the sink to forecast the future movement of the target. Then, the 
most energy efficient sensor nodes are awakened to locate the target. Energy 
efficiency is calculated as the ratio of mutual information to energy consumption. 
The recovery phase is performed when the target is missed because of the incorrect 
predicted target location and implies a genetic-algorithm-based mechanism.  

The quality of images is a major reason for consuming processing power in 
video-based WSN. This is directly influenced by resolution and frame rates. A novel 
algorithm that implies image-processing techniques is presented in [45]. It aims to 
reduce the workload of individual sensors. Given the limited resources of sensor 
nodes, the approach exploits the redundancy among nodes by partitioning the 
sensing task to highly correlated sensors. For an object of interest, each sensor only 
captures and delivers a fraction of the entire scene. Then, the partial images are 
fused together for reconstructing the image. Experiments show that this approach 
achieves promising results. The authors offer detailed discussions about the effect of 
the variance for different algorithm parameters. 

The work in [46] proposes an energy-efficient optimization approach to 
achieve tracking   accuracy constrained by energy consumption. It enables 
reorganization of a wireless sensor networks, and includes three phases, prediction, 
localization, and recovery. The first phase uses a particle filter algorithm on the sink 
to forecast the future movement of the target. Then, the most energy efficient 
sensor nodes are awakened up to locate the target. Energy efficiency is calculated 
as the ratio of mutual information to energy consumption. The recovery phase is 
performed when the target is missed because of incorrect prediction of the target 
location, and is based on genetic algorithms. 

A major factor that consumes processing power in video-based WSN is the 
quality of images. This is directly influenced by resolution and frame rates. A novel 
algorithm that implies image-processing techniques is presented in [47]. Its goal is 
to reduce the workload for individual sensors. Given the severe resource constraints 
on individual sensor nodes, their approach is to employ the redundancy among 
sensor nodes by partitioning the sensing task among highly correlated sensors. For 
an object of interest each sensor only needs to capture and deliver a fraction of the 
scene. Then these partial images will be fused in order to reconstruct the whole 
image. The experimental results show that this approach can achieve satisfactory 
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results and the authors give detailed discussions on the effects of variance of 
different algorithm parameters.  

A solution that uses a hardware platform that allows a node to be put in 
stand-by, but still to allow traffic is presented in [48]. This means that stand-by 
nodes do not gather information, but are able to route messages. This kind of node 
allows the network aspects and image sensing to be separately treated.  

Another solution for energy saving is presented in [49]. The method 
addresses the way the sensing task is partitioned among sensors. It proposes an 
image fusion algorithms based on epipolar line constraint to fuse the received partial 
images at the sink.  

The approach in [50] addresses shadow-induced errors in image acquisition. 
It detects and suppresses shadows using the color ratio between lit and shadow 
pixels. 

A novel traffic congestion monitoring method is proposed in [51]. The 
method models cars as agents that deposit pheromone at virtual places. Pheromone 
evaporates and propagates following a modified version of the state transition 
model for digital pheromone. A car predicts the traffic on the road ahead from the 
information provided by the preceding cars.  

The system in [52] uses video cameras mounted on buses to dynamically 
monitor the traffic conditions along a traffic corridor. 

 
 

3.5. Deployment Algorithms 

 
In order to describe WSN deployment efficiency, several metrics have been 

proposed [53]. Mainly the article treats the possibility of some metrics that are used 
on regular sensors, to be used for video sensors, as well.  

The authors of [54] prove experimentally that from the image coding 
perspective, the distance between sensors influences the amount of consumed 
energy. In a centralized network, due to the fact that the intra encoder and decoder 
have almost the same complexity, so coding is suitable on both cases when the 
transmitter as well as the receiver is energy constrained. If the coding is applied in a 
distributed manner, video coding is suitable in WSN deployments where only the 
transmitter is energy constrained.  

Reference [55] proves analytically that in the case of video wireless sensor 
networks, from the energy efficiency point of view, it is preferable to have a high 
density network. In this case, the transmission would be much faster and easier, 
having more available routing possibilities. This way, a considerable amount of 
energy is saved, the real time constraints are fulfilled and the obtained coverage is 
high. The authors of this paper analyzed, as well, the drawbacks. The main 
disadvantage is cost, but they conclude that despite the investment, this method 
proves its efficiency.  
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3.6. Conclusion 

 
While existing methods offer valuable contributions, there are still many 

challenges to be addressed, like the high computational complexity of video 
processing, difficult modeling and prediction due to a large variety of situations, and 
the presence of disturbances (like moving obstacles) that perturb the efficient 
acquiring of images.  

Sensors are largely used. Wireless video sensors are still at the beginning. 
The consumed amount of energy is significantly higher than in the case of usual 
sensors. Furthermore a wireless network is useful if it reaches the proposed goals. 
Generally the performance of a network is quantified, as discussed in chapter 2, in 
the quality of coverage, real time response and efficient energy consumption. 
Unfortunately, as seen in this chapter, there always exists a tradeoff between the 
performance of a network and the consumed amount of resources. The better the 
performances are, the more the amount of resources needed to accomplish the task 
grows. There are a many proposed solutions to this problem. Hardware solutions, as 
well as software are tried. The trend in this area is the use of harvesting energy. 
The existing applications with video sensors that use harvesting energy are not wide 
spread yet. If the energy limitation will not exist anymore, the problem that will still 
persist will be the real time constraints. 
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4.  Proposed Metrics 

 

4.1. Abstract 

    
   This chapter presents the analysis that was performed mostly in terms of 
coverage for both scattered and panned deployment.  
  First, the argument regarding the need of metrics in video WSN is presented 
together with the motivation. Next, the proposed metrics are presented. In the 
beginning the estimation of uncovered surfaces and paths is done. Furthermore 
different metrics are applied to establish the influence of the deployment method 
upon the degree of coverage. The number of continuous uncovered surfaces is 
counted. Also the number of continuous uncovered crossing paths is computed. A 
conclusion for these metrics was drawn.  
 Next, the benefits of an algorithm proposed for saving energy are analyzed. 
The metrics presented in the first part of this chapter are applied in order to obtain 
a comparison between the coverage when no scheme for sensor management is 
applied and the case when an algorithm is applied. Simulation results and a 
conclusion for this section are presented.  

In the end of this chapter a general conclusion is drawn based on the 
simulation results. 

 
 

4.2. The Need for Metrics in Video WSN  

 
Wireless sensor networks are largely used and they are still developing. 

They are used in a lot of domains from health care, agriculture, military applications 
to weather forecast and traffic monitoring. The contribution of WSN in the 
mentioned domains is obvious. This is one of the reasons why the area of WSN is so 
intensely researched in order to overcome and find a solution to their challenges. 

The major limitations of wireless sensors are the limited amount of energy, 
the real time information processing, the reliable data communication and the link 
between the sensors and the users’ interface. All these issues represent variables 
that cannot be fully predicted with respect to their reliability. As a consequence, the 
functionality of the wireless network is, in a certain amount, a probabilistic one.  

In order to compensate the trust, the wireless network is design to be 
specific for the applications that uses it. This way, the designer of the network fins a 
tradeoff between all the variables and improves the ones that are most important 
for the application. Due to the unknown factors mentioned above, another difficulty 
resides in integrating the network into a bigger application. 
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When talking about wireless video sensor networks, the problem gets more 
complicated because in addition to the usual components of a sensor, a wireless 
sensor has a little camera that is attached to the device, camera that captures 
images, and compresses them to a desired format. If necessary, at the node level, a 
preprocessing is performed, as well. This is done in order to transmit only the 
important data and, this way, to ease the amount of data traffic.  
 In the case of wireless video sensors, all the mentioned challenges stand, 
besides the stated limitations of a regular node, some uncertainties are amplified 
and new ones appear. Video cameras are more energy meaning, even though the 
camera has reduced proportions, so the energy dilemma, in the case of video 
sensors, sometimes gets to be a real problem. Video sensors consume more energy 
in two more directions: one is the camera and the other one is the fact that, in most 
of the cases, local preprocessing is required. Besides the energy issue, video 
sensors bring along the unidirectional field of view. The data are not collected from 
the sensor’s vicinity and the process of collecting images can be disturbed by the 
interference of unpredicted obstacles in the field of view of a sensor. This may lead 
to unreliable collected data and coverage deficiency. Furthermore, the fact that in 
the majority of video sensors, local data preprocessing is performed, the real time 
constraints may be affected.  
 When dealing with a system, the main desire is to have trust in the 
reliability of the system. Unfortunately, until now, the domain of wireless sensor 
networks and especially that of video wireless sensor networks cannot be fully 
predictable systems due to the variables discussed above. 
 The need to have a system, as predictable as possible, metrics have been 
introduced and applied to wireless networks, and to systems, in general. In the case 
of wireless sensor networks there are no result standards due to the mentioned 
variables. Still, an evaluation of the networks’ performance must be done. This 
becomes the task of the metrics. Metrics are applied to the network and they 
measure the results of the network for specific issues like the amount of energy 
used in a certain amount of time, or the coverage level of the network, etc.  
 It is important to mention that, generally, in the case of wireless sensors, 
metrics are not applied to confirm that the network behaved as expected, but to 
measure the level of unpredictable variables. In this way, the network’s parameters 
can be adjusted in order to obtain a system that is specific to the desired 
application. 
 
 

4.3. Motivation 

  
Video wireless sensor networks are now wildly used. Even though there are 

no standards regarding the discussed variables, the users of the networks must 
have confidence in the system they use.  

For this report I proposed an algorithm for video sensors management that 
finds a balance between energy, coverage and real time constraints. This algorithm 
was tested at each step. The metrics used were not a standalone purpose, but came 
as a necessity. 
 The process of bringing the algorithm form the state of an idea to 
implementation and testing was complex and demanded a circular progress: from 
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algorithm implementation to testing, again adjusting the algorithm, again testing, so 
on.  
 The motivation of applying new metrics came from the fact that metrics for 
video sensors are harder to find in literature because this domain is in its early age. 
Most of the metrics are suitable for omnidirectional sensors. Due to the restricted 
sensing area, metrics have to be restricted, as well.  
 The circular process described is illustrated in Figure 4.1.  
 

 
 
 
 

4.1. The cycle of adjusting the parameters of a wireless sensor networks 

 
 The proposed metrics were applied on different test scenarios, with different 
purposes:  for example in the case of scattered sensors, coverage levels are 
analyzed.  
 
 

4.4. Metrics 

 

4.4.1. Metrics for Estimation of Uncovered Surfaces and 
Paths 

 
 The majority of the algorithms are designed for specific problems. Despite of 
common applications’ demands, most of the analyzed related work refers to the 
case where the cameras are located above the plan of surveillance and the sensors 
are omnidirectional. To overcome this drawback this study focuses on the 
performance of the covering metrics applied to video-based sensors that form a 
network located on the ground, in the surveillance plan with specific properties.   

These algorithms present a particular relevance in the field of object 
tracking, intrusion detection, and general surveillance. Together with proposed 
metrics they are applicable for all types of deployment discussed above, but in this 
chapter the analysis are done for scattering deployment. Considering these specific 
cases, the metrics and algorithms proposed in the present cases are unique due to 
the conditions imposed.  

For testing, the conditions assumed were that all the cameras are identical 
from perspective of the resolution and the view angle.  In addition, a new approach 
was adopted. In this work we consider that the cameras have a limited view range.  
In order to obtain an accurate application perspective, a maximum range (DMax) 

Network 
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was established considering video sensor resolution and the size of the smaller
interesting target. A condition is to have an extent of minimum n pixels of target on 
image. This means that the object of interest is considered in the field of view of the 
sensors only if the object is closer than the maximum range distance DMax. In 
literature the Field of View (FoV) is defined as the maximum vo
camera [53].  

4.2. Efficient Field of View (EFoV) and camera orientation 

 
The camera therefore is able to capture images of distant areas and 

that appear within the camera’s depth of field. In our work we consider the FoV as 
the intersection of that volume with the ground plane.  We also define the Efficient 
Field of View (EFoV) as an α angle sector of a circle with a radius of DMax and 
centered in node position. Figure 4
orientation denoted by an angle φ. Another remark is that the considered sensor 
nodes are not mobile. They are scattered randomly and remain fixed in the initial 
positions. 

In most of the cases, the sensors do not co
presents a case of a partial coverage. 

We propose two metrics for determining the efficiency of the deployment. 
The first metric denotes the covered surface (CS/S) from the total 
surface. Even if this is a common approach, the conclusions drawn are relevant for 
most applications. 

4.3. An illustration of coverage on a rectangular monitored area
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We propose two metrics for determining the efficiency of the deployment. 
The first metric denotes the covered surface (CS/S) from the total deployment 
surface. Even if this is a common approach, the conclusions drawn are relevant for 
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We also propose an algorithm that calculates this metric It uses a discrete 
representation of FoVs projection on monitored aria A and achieves an O(n2) 
complexity.  

One relevant test done using this algorithm is the CS/S variance on a fixed 
size surface with respect to a linear increasing network size. Another aspect that 
was analyzed is the variance of CS/S on several random deployments of a fixed size 
network. The results of these tests are presented in the next section.  

To increase the performance of the first metric in case of intrusion detection 
applications, a second one is introduced. Considering the case of intrusion detection, 
an important issue is to determine the size of the Maximum Continuous Uncovered 
Surfaces (MCUS) on monitored area. This is relevant to realize how much a target 
can move in the area without being noticed by the network.  

Associated with MCUS we also consider the deployment homogeneity 
expressed by the total Number of Continuous Uncovered Surfaces (NCUS).  

Finally, the particular case in which the target can traverse the surface 
between two borders is analyzed. This situation is captured by a fourth metric 
named Number of Crossing Paths (NCP). The NCP will count the number of different 
uncovered paths that cross the network. Each path will start from a different 
continuous uncovered surface. 
 

4.4.2. Experiments 

 
4.4.2.1. Abstract 

 
In analysis we presented metrics that allow the analysis of deployment 

performances for a wireless sensor network. The defined metrics are the covered 
surface from the total deployment surface (CS/S), the maximum continuous 
uncovered surfaces (MCUS) on monitored area, the number of continuous 
uncovered surfaces (NCUS) and the number of crossing paths (NCP). With these 
metrics, relevant tests regarding the covered surface variance on 100 network 
deployments was performed. They include the variance of surface covering when 
growing the number of nodes, the number of continuous uncovered area, the 
maximum area and the possibility for a target to travel undiscovered from one 
border of area to another. 

 

4.4.2.2. Experimentation Platform 

 
All algorithms that perform metrics computation have been implemented and 

used in several studies as stand-alone Java packages.  
Studied topologies were generated using a uniform random distribution provided 

by a standard java library class java.util.Random. We consider only homogenous 
networks. All camera nodes have same characteristics as a video resolution of 
160x120 pixels and a view angle of 60 degree. DMax was estimated using a 
Trendnet IP-400W wireless surveillance camera, considering an adult person as a 
smallest target. Using that heuristics, DMax was set to 30 m. As a deployment area 
we consider a plain rectangular 1.000x1.000 m2 field. No obstacles or hard 
environmental conditions were considered. 

BUPT



46          Proposed Metrics
 

 

 

4.4.2.3.

 
In this section, we present several experiments using CS/S metric and try to

provide analysis of results. 
100 uniform random deployments of a 500 nodes network on a one
The result shows a maximum dispersion less than 1%.
 

4.4. CS/S dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

 

 
This section presents several experiments using MCUS metric in conjunction 

with NCUS.  

Proposed Metrics - 4. 

4.4.2.3. Results for CS/S Metric 

In this section, we present several experiments using CS/S metric and try to
provide analysis of results. Figure 4.4. shows the magnitude of CS/S dispersion for 
100 uniform random deployments of a 500 nodes network on a one km2 plain field. 
The result shows a maximum dispersion less than 1%. 

.4. CS/S dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 
m2 monitored area 

4.4.2.4. Results for MCUS and NCUS Metrics

This section presents several experiments using MCUS metric in conjunction 

In this section, we present several experiments using CS/S metric and try to 
shows the magnitude of CS/S dispersion for 

km2 plain field. 

 
.4. CS/S dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

Results for MCUS and NCUS Metrics 

This section presents several experiments using MCUS metric in conjunction 
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4.5. CS/S variance on deployments of networks having sizes between 0 and 10000 nodes on a 

The result presented in Figure 4
(>25%) than in the case of CS/S.

Indeed, if we consider also an associated value represented by number of 
disjunctive continuous uncovered surfaces, an important dispersion in absolute 
value will be noticed, as seen in Figure 4
applying these metrics for redeployment.

4.6. MCUS dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 
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.5. CS/S variance on deployments of networks having sizes between 0 and 10000 nodes on a 
1000x1000 m2 monitored area 

The result presented in Figure 4.6. demonstrates a higher dispersion 
(>25%) than in the case of CS/S. 

Indeed, if we consider also an associated value represented by number of 
disjunctive continuous uncovered surfaces, an important dispersion in absolute 

be noticed, as seen in Figure 4.7. This suggests a special attention in 
applying these metrics for redeployment. 

 
.6. MCUS dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

m2 monitored area 
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.5. CS/S variance on deployments of networks having sizes between 0 and 10000 nodes on a 

a higher dispersion 

Indeed, if we consider also an associated value represented by number of 
disjunctive continuous uncovered surfaces, an important dispersion in absolute 

suggests a special attention in 

 

.6. MCUS dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 
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4.7. NCUS dispersion on 100 random deployments of a 500 nodes network

 

4.8.  MCUS variance on deployments of networks having sizes between 0 and 10000 nodes on 

 
Figure 4.8. shows an expected variance of MCUS when the network size is 

increased but the influence of high dispersion could be obviously noticed.
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.7. NCUS dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

m2 monitored area 

 
.8.  MCUS variance on deployments of networks having sizes between 0 and 10000 nodes on 

a 1000x1000 m2 monitored area 

.8. shows an expected variance of MCUS when the network size is 
nce of high dispersion could be obviously noticed.

4.4.2.5. Evaluation of NCP Metric 

 

on a 1.000x1.000 

 

.8.  MCUS variance on deployments of networks having sizes between 0 and 10000 nodes on 

.8. shows an expected variance of MCUS when the network size is 
nce of high dispersion could be obviously noticed. 
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The NCP metric expresses the number of disjunctive uncovered paths that 

traverse the monitored area. A path is defined as a line that starts from one border 
of the area and ends to a different one. Two paths are considered disjunctive if they 
belong to different continuous uncovered surfaces. 
   

 

 
4.9. NCP dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

Figure 4.9. depicts the dispersion of NCP for 100 random deployments of a 
500 nodes network. 

The graph presented in Figure 4
still suggest a decreasing trend of NCP. The result allows us to get an estimation of 
minimum number of nodes to achieve no uncovered crossing path along network. 
However, in case of general shape area the definition

4.10. NCP dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

  4.4. - Metrics          

 

The NCP metric expresses the number of disjunctive uncovered paths that 
traverse the monitored area. A path is defined as a line that starts from one border 
of the area and ends to a different one. Two paths are considered disjunctive if they 

ferent continuous uncovered surfaces.  

.9. NCP dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 
m2 monitored area 

.9. depicts the dispersion of NCP for 100 random deployments of a 

The graph presented in Figure 4.10. is affected by significant dispersion but 
still suggest a decreasing trend of NCP. The result allows us to get an estimation of 
minimum number of nodes to achieve no uncovered crossing path along network. 
However, in case of general shape area the definition of NCP is less significant.

.10. NCP dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 
m2 monitored area 
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The NCP metric expresses the number of disjunctive uncovered paths that 
traverse the monitored area. A path is defined as a line that starts from one border 
of the area and ends to a different one. Two paths are considered disjunctive if they 

.9. NCP dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 

.9. depicts the dispersion of NCP for 100 random deployments of a 

affected by significant dispersion but 
still suggest a decreasing trend of NCP. The result allows us to get an estimation of 
minimum number of nodes to achieve no uncovered crossing path along network. 

of NCP is less significant. 

 

.10. NCP dispersion on 100 random deployments of a 500 nodes network on a 1.000x1.000 
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4.4.3. Metrics for determining the influence of an 
algorithm for energy saving applied in the case of 
deployed and scattered sensors 

4.4.3.1. Abstract 

 
This subchapter realizes a comparison between the variance of coverage 

when an algorithm for sensors’ management is applied. The results show that there 
is not such a big difference with respect to coverage between the random deployed 
sensors and the planned deployed ones. A difference can be observed between the 
effects of the strategies applied. Strategy2 that has a node management algorithm 
offers a better coverage than Strategy1. Due to the fact that redundant nodes are 
turned off, also energy is saved and the lifetime of the network is prolonged. 

 

4.4.3.2. Introduction 

 
For each case of intersection, the overlapping area was calculated and a 

decision was taken with respect to the degree of redundancy.  Cases where 
obstacles (cars) were covering the FoV of a sensor determine us to find a smart 
algorithm that does an intelligent sensor management. These cases were analyzed 
when sensors were scattered and also in the case where sensors were placed at will.  

As mentioned earlier, the field coverage is the percent of the covered 
surface from the total deployment surface (CS/S).  

The algorithms that are analyzed in this chapter have an essential factor the 
percent of the covered surface. One relevant test done using this algorithm is the 
CS/S variance on a fixed size surface with respect to a linear increasing network 
size. Another aspect that was analyzed is the variance of CS/S on several random 
deployments of a fixed size network. The results of these tests are presented in the 
next section. Two metrics for determining the efficiency of the deployment were 
proposed. One metric obtained with this algorithm denotes the covered surface 
(CS/S) from the total deployment surface. Even if this is a common approach, the 
conclusions drawn are relevant for most applications. An algorithm in this purpose 
was implemented. It uses a discrete representation of FoVs projection on monitored 
aria A and achieves an O(n2) complexity. The algorithm determines the degree of 
redundancy and turns off the nodes that have CS/S greater than 70 percent. These 
nodes can be turned on again when necessary.  

On the other hand, the case where sensors are placed at will was considered 
the one for traffic monitoring. For this case the algorithm also calculates the 
percentage of CS/S and turns off the most redundant node, but in its place, an 
optimum node for coverage is turned on. The idea was that the covered shouldn’t go 
less than a limit imposed.  
 In this chapter we analyze the redundancy degree of nodes that are 
scattered and of nodes that are placed at will and we also analyze how the 
presented metrics differ in each of the cases. 
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4.4.3.3.

 
The proposed method was implemented as a Java program, and simulated 

on a PC desktop computer. Experiments studied the coverage variation when 
managing redundant nodes and in the presence of moving obstacles and for 
different traffic scenarios. 

Figures 4.11., 4.12
FOV areas in the case of random deployment and also with a planned deployment. 
These cases were simulated using two algorithms, named Strategy1 and Strategy2. 
Strategy1 calculates the coverage
sensors, without changing the status of the sensors. If they were off, they remain 
off and also, if they were on, they continue to be on even if their FOV is covered by 
the obstacle. Strategy2 contains an 
redundant sensors. In the algorithm, a sensor was considered to be redundant with 
another sensor if their FOV overlapped n a proportion larger than 70%. The strategy 
calculated the redundant sensors for the sensor t
obstacle and turned the sensor with the covered FOV off, turning on, instead the 
most significant sensor. The most significant sensor was considered the most 
redundant sensor with the sensor that was turned off. 

For each of the strategy, tests were done in the cases of random 
deployment and planned deployment. The camera model used the fo
parameters (see Figure 4
distance between the camera sensors and the monitored r
and 6 meters. The simulated time was 8 seconds and the simulation step was 
0.3seconds. In all the test cases, 5 sensors were used.

Figure 4.11 represent the case of planned deployme
Figure 4.12 presents the sam
deployed. Figure 4.13 and Figure 4
planned deployment case and in the randomly deployed sensor case. We can 
observe that there is not a huge difference in te
randomly deployed case and the planned one. The difference is made in a much 
significant way by the algorithms used.

4
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4.4.3.3. Simulation results 

The proposed method was implemented as a Java program, and simulated 
on a PC desktop computer. Experiments studied the coverage variation when 
managing redundant nodes and in the presence of moving obstacles and for 
different traffic scenarios.  

.12., 4.13. and 4.14. give more insight about the covered 
FOV areas in the case of random deployment and also with a planned deployment. 
These cases were simulated using two algorithms, named Strategy1 and Strategy2. 
Strategy1 calculates the coverage variation when obstacles appear in the FOV of the 
sensors, without changing the status of the sensors. If they were off, they remain 
off and also, if they were on, they continue to be on even if their FOV is covered by 
the obstacle. Strategy2 contains an algorithm that manages the status of the 
redundant sensors. In the algorithm, a sensor was considered to be redundant with 
another sensor if their FOV overlapped n a proportion larger than 70%. The strategy 
calculated the redundant sensors for the sensor that had its FOV covered by the 
obstacle and turned the sensor with the covered FOV off, turning on, instead the 
most significant sensor. The most significant sensor was considered the most 
redundant sensor with the sensor that was turned off.  

the strategy, tests were done in the cases of random 
deployment and planned deployment. The camera model used the fo
parameters (see Figure 4.2.): DMAX was 30 meters, and  was 40 degrees
distance between the camera sensors and the monitored route was set between 2 
and 6 meters. The simulated time was 8 seconds and the simulation step was 
0.3seconds. In all the test cases, 5 sensors were used. 

.11 represent the case of planned deployment using the Strategy1. 
.12 presents the same strategy, but the sensors I this case are randomly 

deployed. Figure 4.13 and Figure 4.14 show the test results for Strategy2 in the 
planned deployment case and in the randomly deployed sensor case. We can 
observe that there is not a huge difference in terms of coverage between the 
randomly deployed case and the planned one. The difference is made in a much 
significant way by the algorithms used. 

4.11. Planned deployment using Strategy1 
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The proposed method was implemented as a Java program, and simulated 
on a PC desktop computer. Experiments studied the coverage variation when 
managing redundant nodes and in the presence of moving obstacles and for 

give more insight about the covered 
FOV areas in the case of random deployment and also with a planned deployment. 
These cases were simulated using two algorithms, named Strategy1 and Strategy2. 

variation when obstacles appear in the FOV of the 
sensors, without changing the status of the sensors. If they were off, they remain 
off and also, if they were on, they continue to be on even if their FOV is covered by 

algorithm that manages the status of the 
redundant sensors. In the algorithm, a sensor was considered to be redundant with 
another sensor if their FOV overlapped n a proportion larger than 70%. The strategy 

hat had its FOV covered by the 
obstacle and turned the sensor with the covered FOV off, turning on, instead the 
most significant sensor. The most significant sensor was considered the most 

the strategy, tests were done in the cases of random 
deployment and planned deployment. The camera model used the following 

was 40 degrees. The 
oute was set between 2 

and 6 meters. The simulated time was 8 seconds and the simulation step was 

nt using the Strategy1. 
are randomly 

.14 show the test results for Strategy2 in the 
planned deployment case and in the randomly deployed sensor case. We can 

rms of coverage between the 
randomly deployed case and the planned one. The difference is made in a much 
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4.12.  Random deployment using 
Strategy1

.14.  Planned deployment using Strategy 2 
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4.14.  Random deployment using Strategy2

 
 

4.5. Conclusion

 
This chapter is relevant due to the result analyses that were performed for 

different wireless video sensor networks scenarios. The difference between random 
deployment and planned deployment was analyzed and the conclusion reveals the 
fact that at a sufficient number of deployed sensors (in our case 500) on a limited 
surface, 1.000x1.000 m2, in the tested scenario, the difference is not relevant.

The number of paths an in
edge to another was computed. Solutions to improve coverage degree and realize a 
good sensor management from the energy perspective was implemented and 
tested. The efficiency of the proposed method can be see
figure 4.11 with figure 4
was tested in both planned and random deployment and the results were significant. 
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.14.  Random deployment using Strategy2 

Conclusion 

This chapter is relevant due to the result analyses that were performed for 
different wireless video sensor networks scenarios. The difference between random 

nd planned deployment was analyzed and the conclusion reveals the 
fact that at a sufficient number of deployed sensors (in our case 500) on a limited 
surface, 1.000x1.000 m2, in the tested scenario, the difference is not relevant.

The number of paths an intruder could take in order to traverse from one 
edge to another was computed. Solutions to improve coverage degree and realize a 
good sensor management from the energy perspective was implemented and 
tested. The efficiency of the proposed method can be seen from the comparisons of 
figure 4.11 with figure 4.12 and of figure 4.13 to figure 4.14. The proposed method 
was tested in both planned and random deployment and the results were significant. 
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This chapter is relevant due to the result analyses that were performed for 
different wireless video sensor networks scenarios. The difference between random 

nd planned deployment was analyzed and the conclusion reveals the 
fact that at a sufficient number of deployed sensors (in our case 500) on a limited 
surface, 1.000x1.000 m2, in the tested scenario, the difference is not relevant. 

truder could take in order to traverse from one 
edge to another was computed. Solutions to improve coverage degree and realize a 
good sensor management from the energy perspective was implemented and 

from the comparisons of 
.14. The proposed method 

was tested in both planned and random deployment and the results were significant.  
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5.  Overview on WSN in Traffic Management 

 
 

5.1. Abstract 

 
The purpose of this chapter is to present the necessity of surveillance in 

traffic and to show the benefits that are brought by video wireless sensor networks 
in this direction. Of course there are some requirements and also some limitations. 
This chapter presents the importance of traffic monitoring and the main approaches 
in order to obtain efficient traffic surveillance. 

In the beginning this chapter presents the need for such an application. 
Next a number of proposed solutions are presented. The applications of traffic 
management are classified. The advantages and disadvantages of each approach 
are presented next. 

In addition to the methods specific for each of the domains of the 
classification, other ways to accomplish traffic surveillance task are discussed.  

The drawbacks and limitations are drawn in the conclusion, placed at the 
end of this chapter. 

 

5.2. Introduction 

  
Real-time data acquisition from broad geographical regions is critical for 

many applications in transportation, infrastructure management, defense, homeland 
security, environmental and habitat monitoring, and agriculture [56, 57, 58, 59, 60, 
61, 62, 63]. In spite of specific nuances, these systems are similar in that they must 
collect huge amounts of metadata, e.g., images, sound, temperature, toxin levels, 
etc., perform local processing, communicate and coordinate with each other through 
wired and/or wireless networks, and collaborate in achieving global and local goals. 
Many algorithms in this direction were proposed [64]. Their complex functionality is 
also subject to stringent performance and design constraints, like hard and soft 
timing deadlines, sampling and precision requirements, communication bandwidth, 
and low power and energy consumption [65].  

Modern traffic management systems, like adaptive traffic signaling [62, 63, 
66], are envisioned to execute complex decision making algorithms that optimize 
local and global goals, such as maximizing the traffic flow, minimizing the average 
travel times, minimizing the travel time of “high-priority” vehicles, e.g., fire trucks 
and police cars, and reducing the vehicle pollution in a zone [67, 68, 69]. Critical to 
any decision making and control strategy is the acquiring of reliable information in 
real-time about traffic conditions, like the travel time of vehicles for various road 
sections, the number of vehicles passing through a zone in a given time, the 
distances between cars, the vehicle speeds, and the position of traffic incidents [70, 
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71]. Currently, these parameters are estimated through tedious measurements, and 
then used in off-line traffic prediction models to compute optimized traffic signal 
parameters, such as cycle, period, and off-set time [63]. However, current trends in 
traffic behavior show continuously increasing traffic volumes, more frequent traffic 
congestions, increased travel delays, high pollution levels, and irregular traffic 
patterns. These issues are hard to tackle with off-line prediction models and static 
decision making strategies [62]. Some reports suggest that modern traffic systems 
present the behavior of complex systems in which new kinds of traffic patterns and 
behaviors, such as grid locks, can emerge spontaneously. It is increasingly 
important to develop reliable, online decision making systems that can 
autonomously operate for a large variety of conditions based on real-time data 
acquired over broad geographical areas [68, 69, 71]. 

Based on their sensing devices, traffic monitoring systems can be 
distinguished into two categories [63]:  

 
(1) Road-based detection systems use sensing devices, like inductive loop 
detectors and video image detection, and  
(2) vehicle-based detection systems require vehicles to be equipped with 
tracking devices, such as transponders, that allow cars to be tracked by a 
central server [56].  
Video camera based traffic monitoring identifies traffic parameters by 

sampling and processing images collected through cameras. Video cameras can 
collect unique information about traffic, such as car color, model, plate numbers, 
relative position, and passenger occupancy, and in conjunction with other sensors, 
such as sonars, offer more reliable information about vehicle speeds and positions. 
Precise estimation of the traffic parameters requires that the monitoring system 
continuously samples and processes in real-time images that comprehensively 
describe the ongoing traffic conditions. This is challenging because of the dynamic 
nature of the process, including vehicles moving at variable speed and obstacles 
obstructing the field of view of the cameras. Even for slow traffic, image processing 
and FOV loss recovery must be performed under tight timing constraints (less than 
one second), if accurate vehicle tracking ought to be secured. Another challenge is 
due to the unreliable nature of wireless communication, which adds stochastic 
aspects to the problem. New methods are required to construct solutions with good 
visual covering under the constraints of dynamic traffic.   

 
 

5.3. Traffic Management Algorithms 

 
The placement of nodes is important no matter the application they are used 

for, but in some domains the importance is even higher. One such field is in object 
tracking or traffic surveillance. In these cases it is really important to cover as much 
as possible of the target area. Redundant nodes have proven their efficiency not 
only from coverage perspective, but also from the prolonging lifetime of the 
network. Moreover there are many applications where, in order to prolong the 
lifetime of the wireless sensor network, energy saving techniques were used.  

Urban traffic management methods are classified into four groups depending 
on their decision making process:    

(1) centralized,  
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 (2) distributed,  
 (3) hierarchical and centralized, and  
 (4) hierarchical and distributed [63, 66, 72, 73, 74].  

In centralized approaches, decisions are made by a main server. The server 
acquires input data from all traffic signals, and then computes the control 
parameters of each traffic signal (e.g., cycle time, split, and offset).  

In distributed decision making, all traffic signals are connected in a network, 
and each decides independently its parameters by monitoring the local traffic and 
interacting with its neighbors.  

In the centralized and hierarchical approach, the central server computes 
the timing plans for each traffic signal, but each traffic signal can fine tune the plan 
depending on local conditions.  

Finally, the distributed and hierarchical control strategy uses information 
coming from the central servers as guidance to compute the local control 
parameters. 

Examples of distributed traffic control systems are PRODYN [75], OPAC 
[76], and SPPORT [77]. The system proposed in [78] is fully distributed in the sense 
that each local controller receives information only from the local sensors and the 
neighboring controllers. Thus, only short range communication is required in this 
approach.  

SCATS [79], a hierarchical and centralized traffic control scheme, is 
arguably the most popular traffic control system. It is currently employed in major 
cities in USA, Australia, and Europe. SCATS is organized as a two-level hierarchy in 
which local traffic signal controllers acquire information about the signal flow (using 
sensors such as inductive loop or video cameras), and send the information over the 
network to the centralized server. The server computes the minimum, maximum, 
and optimum cycle times, splits and offsets of each traffic light controller, and then 
communicates the information back over the network. The server makes decisions 
using a set of statically defined metrics, like original volume, degree of saturation, 
and reconstituted volume. A set of rules are used to identify special situations, like 
congestions. According to [77], SCATS reacts well to short term traffic fluctuations, 
but is less likely to anticipate future events due to the late acquiring of data on the 
traffic flow. A similar concept is discussed in [80]. 

UTOPIA [81] is a hierarchical and distributed traffic management method. 
More recently, Artificial Intelligence based control methods have been proposed, 
including methods based on multi-agent systems [69]. The work in [79] suggests a 
decision making procedure based on propositional calculus and satisfiability (SAT) 
problem solving. The method encodes the inputs as logic variables, e.g., the traffic 
volume in different road sections, congestion levels, etc. A set of logic statements 
define the rules by which the input variables control the decision variables, such as 
if a traffic signal should change states, or if a two phase or four phase signal cycle 
should be used. Logic variables are also used for representing qualitative aspects, 
like traffic levels, congestion, faulty sensing, and idle traffic. 

Several methods have been proposed for video camera based traffic 
monitoring and management. The work in [82] describes Unicam, a video-detection 
based traffic monitoring system. Two techniques, tripline and tracking, are used for 
traffic analysis. While the work presents a very interesting solution, the restricted 
communication layer is one limitation of the method. This is important for 
monitoring large geographical zones, where a group of cooperating cameras is 
needed to provide good coverage of the zone.  
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The approach in [50] focuses on the shadow-induced errors in image 
acquisition. It detects and suppresses shadows by using the color ratio between the 
lit and shadowed pixels. A novel traffic congestion monitoring method is proposed in 
[83].   

The method is based on multi agents and pheromone detection. Cars are 
modeled as agents that deposit pheromone at virtual places. The pheromone 
evaporates and propagates following a modified version of the state transition 
model for digital pheromone. Then, a car can predict the traffic on the road ahead 
from the information provided by the preceding cars.  

The system in [56] uses video cameras mounted on buses to dynamically 
monitor the traffic conditions along traffic corridors. While this work offers 
interesting solutions, there are still many unanswered challenges, such as the high 
computational complexity of video processing, and the difficulty of real-time 
monitoring in the presence of dynamic disturbances (like moving obstacles).  

A related topic is video camera based monitoring of geographical areas. 
Efficient monitoring algorithms have been proposed to maximize the covered area 
while reducing the used energy [22, 23, 84]. For traffic monitoring, these methods 
must be changed to address traffic related aspects, such as the impact of the 
vehicle traffic characteristics on real-time time constraints and data acquisition. 

Independent of their data acquiring procedure, effective detection and 
tracking requires that the application can continuously obtain the current position of 
any vehicle with a high precision and confidence. This is extremely challenging for 
modern traffic conditions, where traffic characteristics can change rapidly and many 
hard-to-predict situations emerge. 

 
 

5.4. Conclusion 

 
Video sensors are complex devices that perform real time data acquisition. 

For this reason they have been classified to belong in the field of multimedia. One of 
the most challenging applications that uses wireless video sensors is traffic 
surveillance. To achieve the role the sensors are used for, a series of challenges 
arise. They reflect the need for reliability in the obtained data that was gathered. In 
this case, reliability means good coverage, real time data processing and 
transmission and also real time decision making.  

These challenges have been addressed in many papers. The solutions can 
be divided in two main classes: hardware and software. No matter the approach, 
one aspect that has to be taken into consideration constantly when talking about 
wireless sensors (especially video sensors) is the amount of limited energy.  

The issues that are not yet resolved are the real time data acquisition and 
the traffic monitoring with smart decision making in order to recover any lost FoV 
due to obstacles that might appear in front of a sensor.  If the FoV is not recovered, 
coverage drops and significant events might happen and not be seen. Still, despite 
all these, major advantages in traffic surveillance and intervention are brought by 
video wireless sensors. 
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6. Stochastic Model-based Heuristics for Fast 
Field of View Loss Recovery 

 
 

6.1. Abstract 

   
 In this section we present a novel algorithm for fast FoV loss recovery. The 
algorithm is analyzed from several perspectives. The first two subchapters present 
the motivation for this research.  The issue debated is presented together with the 
main concepts used in the proposed algorithm. One key concept is redundancy. The 
mathematical background for determining the redundancy between sensors is also 
described.  
 The FoV loss due to moving obstacles, the performance and resource 
constraints and the FoV recovery in dynamic conditions are described. The 
mathematical background for the issues mentioned above are implemented. The 
issues raised are debated from several points of view. Heuristic algorithms are 
proposed. One of the algorithms implemented is the algorithm based on linear 
programming. Linear programming is used to determine the best sensor 
management and to validate the proposed algorithm in comparison with the 
mathematical solution. To the presented problems both deterministic algorithm, 
sustained by the mathematical background and also a stochastic one are presented. 
Experiments that validate the proposed algorithms are showed and analyzed at the 
end of this chapter. 
  
 

6.2. Introduction 

 
 This work assumes that there is a set of video cameras available for 
recovering the FOV loss of a camera due to the moving vehicles. Having a group of 
cameras monitoring each zone instead of a single camera is a necessary 
requirement for providing high precision and reliability data acquisition. Our work 
assumes that one camera could be used in monitoring multiple regions, which 
reduces the cost of the implementation.   
 Addressing the FOV loss problem due to interfering objects (e.g., moving 
vehicles) raises two problems: (a) selecting the subset of additional cameras that 
must be used to optimally recover the FOV loss, and (b) providing a solution that 
considers the interdependencies between the FOV losses of neighboring cameras. 
The two problems must to be addressed in real-time based on on-line video image 
acquisition on the traffic conditions. The two issues are detailed next.    
 Selecting the optimal subset of cameras from the total number of cameras 
that can be used is similar to the knapsack problem, and thus an NP complete 
problem.  
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 The proposed technique for sensor management was applied for randomly 
deployed sensors and also along a road for traffic surveillance. 
 
 

6.3. FoV Loss Recovery in Traffic Management 

 
Selecting the optimal subset of cameras from the total number of cameras 

that can be used is similar to the knapsack problem, and thus an NP complete 
problem. Figure 6.1. shows two examples to illustrate the hardness of the problem. 
Vehicle M1 obscures the FOV of camera S1. The resulting loss is shown using light 
shading in the figure.  

 

 
6.1. Coverage loss across multiple cameras 

 

 
6.2. Coverage loss across for moving vehicles 
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If other vehicles move across the initial FOV of camera S1, such as vehicles 
M3 and M4, then these vehicles are not detected by the camera S1. This results in 
information loss for the entire traffic management system. The FOV loss can be 
partially recovered by using cameras S3, S4, and S6. However, this set of cameras 
offers a redundant covering, as the camera pairs S3 and S4, or S4 and S6 are 
enough in recovering well the FOV loss. Similarly, the coverage loss of camera S2 
can be partially recovered through either camera S3 or camera S4 as both can 
collect the information needed in traffic management. Note that the coverage loss 
depends dynamically on the traffic characteristics of the moving objects.  

The FOV losses of the neighboring cameras are correlated over time. Thus, 
the camera set assigned for recovering the FOV loss of a camera should consider the 
FOV loss that occurs for neighboring cameras too. This reduces the related 
overheads (time and energy) for switching on/off and repositioning the cameras, as 
the same group of cameras is used to recover multiple FOV losses. This observation 
is also important for meeting the real-time constraints of video monitoring as it 
reduces the complexity of FOV loss recovering due to the areas already covered by 
the cameras identified for the preceding FOV losses. Figure 6.2. illustrates this case. 
Vehicle M1 obstructs camera S1. Either camera S5 or S6 can recover the FOV loss of 
camera S1. If vehicle M2 is also moving, as shown in the figure, then it might 
obstruct camera S5 as it is about to recover the FOV loss of camera S2 due to 
vehicle M1. However, camera S6 can recover the coverage loss of camera S2. This 
example explains that the selection method for FOV loss recovering must also 
consider the FOV losses of the neighboring cameras. These losses occur at future 
time instances.            
 
 

6.4. Preliminaries 

 
This chapter presents the characteristics of the context features in which the 

algorithms are used and tested. They refer to the manner in which the traffic is 
organized, the number of lanes, the traffic rules.  

In order to monitor traffic and develop performant traffic monitoring 
algorithms, the whole framework has to be as close to reality as possible. To 
accomplish this, we developed a simulator that is capable of performing traffic 
simulations with a great diversity of variables that can be set with respect to the 
traffic conditions that are needed in order to simulate the desired traffic situation. 

The idea of simulating with respect to reality or the simulation that tries to 
reproduce as good as possible the reality is called Monte Carlo simulation. The 
simulation framework together with Monte Carlo will be described in detail in 
Chapter 5. 
Still, in order to understand the proposed algorithms that are presented next, it is 
useful to get familiar with the capabilities of the framework, without getting into 
detail at this point. 

The framework offers the possibility of setting the following characteristics 
regarding the lanes: the number of lanes, the orientation of lanes, the length of 
lanes, the width of lanes, the direction of cars on each lane, the frequency of the 
cars on each lane. 

The characteristics of vehicles can also be set: the length of the cars, the 
lane on which the car enters the road, the time to enter the road, the preferred 
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speed for each car and the possibility to choose the type of driving behavior such as 
speedy driver, slow driver or usual driver. 

The simulation of traffic is realized also by setting the minimum distance 
between cars and the overtaking distances at which the overtaking is allowed.  

All these aspects are implemented. In order to obtain a realistic simulation, 
we used real data. We used the real data also for setting the above mentioned 
variables.  
Sensors are used to monitor traffic along the road and can be considered scattered 
or placed at will. The sensors collect data regarding the traffic and send it to the 
central unit. 
 
 

6.5. Redundancy 

 
 The motivation to develop this algorithm came from the fact that in a WSN, 
the number of scattered nodes is huge, approximately up to 20 nodes/m3 [86].
  In the proposed algorithm, we considered a node to be redundant 
only if the area that was covered by that node is covered by at least one more node 
in a percentage greater than 70%. The nodes being scattered, the deployment 
cannot be controlled with grate precision, so it is lightly that for a significant number 
of nodes, some areas to be covered by more than only one or two fields of view of 
the sensors. In this case, the algorithm detects the intersection of all the sensors 
and decides which sensor is the most insignificant. Only that sensor is turned off 
and this happens only in the case that the overlapping area for that specific sensor 
is greater than the specified percentage.     
 Although the redundant nodes are turned off for a period of time, the total 
area coverage is checked before each turning off of the nodes. This way, we ensure 
that we save energy, but we still maintain coverage within desired limits.  
 The problem of determining the intersection for the fields of view of two 
sensors was resolved mathematically. Each sensor was considered to be a sector of 
a circle. This way, the problem became finding the area of the intersection for two 
sectors of circles.  
 Using AutoCad [87] we have determined that there are 11 main possibilities 
for the intersection of two sectors of a circle. These cases are general. The particular 
cases were considered to be resolved automatically and were considered to belong 
to the general case.   
 The cases found are presented below in Figure 8.3. 
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6.3. Possible FOV intersections for two cameras 

 

6.5.1. Mathematical background 

 

 

8.4. Detailed description of the intersection cases (a)  

 

The intersection in Figure 8.4. (a) the area is as follows,  

        AAFF1+ AFF1BB1+ ABB1EE1+ AE1EC1C+ AC1CD                                                                                              (1) 

The equations of the lines are:  

                                               d0 : y=0                                                                                                       (2) 

d1:  y=xtg�                                                                                                 (3) 

d2:  (y-b)=(x-a)tg(�-�)                                                                             (4) 

d3:  (y-b)=(x-a)tg�                                                                                    (5) 

Finally, the two circles are described by the following two equations: 

C1:  x2+y2=R2                                                                                                (6) 
and   
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C2 :  (x-a)2+(y-b)2=R2                                                                                  (7) 

Then, the five areas in formula (1) are given by the following expressions: 

AAFF1 = ∫
F

A

x

x
xtgθ dx - ∫ +−−

F

A

x

x
baxR 22 )(( ) dx                            

(8) 

AFF1BB1 = ∫
B

F

x

x
xtgθ dx                                                                                           

(9) 

ABB1EE1 = ∫ −
E

B

x

x
xtg )( θϕ dx                                                                           (10) 

AE1EC1C = ∫ −
C

E

x

x
xtg )( θϕ dx - ∫

C

E

x

x
xtg )(ϕ dx                                          (11) 

AC1CD = ∫ −
D

C

x

x
xR )( 22

dx - ∫
D

C

x

x
xtgϕ dx                                              (12) 

 

 

 

  

 
6.4.  Detailed description of the intersection cases (b) 

 
For the case in Figure 6.4(b), the area is computed by the following 

expression      

2
)*sin(** ABOMABOM

                                                      
(14) 

where  

OM = 22
MM yx +                                                                                  (15) 

AB = 22 )()( BABA yyxx −+−                                                     (16) 

Points A and B are computed similar to the previous case, based on the 
intersection points between lines.  

A 

O 
M 

B 
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6.4.  Detailed description of the intersection cases (c) 

 
The mathematical formulation of the intersection in Figure 6.4. (c) is as 

follows. For each sensor, the known parameters include the angle α (the opening 
angle of the camera), the angle φ (the angle of the sensor with respect to the axis 
x), the radius R of the sensor, and the position of the sensor. The intersection points 
of the two sensors were computed using the angular coefficient. For example, point 
A is the intersection of lines d1 and d3. The equation of line d1 is given next:  
 

           mxy =                           (17) 

where  

       







 −Φ=
2

2
α

tgm                    (18)

 The equation for line d3 is expressed as follows:  

         ( )axpby −=−                      (19) 

where   

       














 +Φ−=
2

1180
α

tgp
             

      (20) 

 

The position of the intersection point A results from equating equations (17) 

and (19):  

         x = 
pm
bpa

−
+  and y = m 

bm
bpa

−
+

                                              (21) 

 The other intersection points were computed similarly. 
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The intersection area of the two disk sectors is as follows:  

                   A = ∫ −
−

′−

′−
pm
pab

mm
amb mxdx - ∫ ′

−′

′−

′− ′−′+m
bam

mm
amb dxamxmb )(  + ∫

−

−
− −+p

bpa

pm
pab dxpapxb )( ,      (22) 

where  

m' = tg(Φ2 + 
2
α

)                                                              (23) 

Finally, for case (k), the intersection area is expressed by the next formula: 

  S
R

A −=
2

22α                                                             (24) 

where 

             ( )[ ] ∫∫ −+⋅−′−−=
′−

′−
1

cos

22cos x

R

R

mm
amb dxxRdxaxmbmxS

α

α
                   (25) 

                                     CxR
x

R
xR

dxxR
x

R
+−+=−∫ 22

2

cos

22

2
arcsin

2
1

α
                                 (26) 

and                                                           0
2

2 =−Φ
α

.  

Similar expressions were derived for the other intersections. 

 
 

6.6. Video Camera Based Traffic Monitoring Model 

 
 

 
6.5. FOV Coverage Loss Across Multiple Cameras 
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Cameras lose their FOV due to moving obstacles. For example, in Figure 

6.5., vehicle M1 obscures the FOV of camera S1, and hence vehicle M2 cannot be 
tracked. The resulting FOV loss is shown with light shading in the figure. Note that 
the coverage loss depends dynamically on the tracked vehicles, their position with 
respect to the camera, the speed of the vehicles, and number and traffic 
characteristics of the moving obstacles.  

The FOV loss in the figure can be partially recovered by using cameras in the 
set S1,F = {S2, S3, S4}. Recovering the FOV loss of a group of cameras requires 
finding dynamically the smallest set of additional cameras that offer the best loss 
recovery while meeting all timing constraints imposed by the sampling requirements 
of the application, and minimizing the used resources, such as communication 
bandwidth and energy. Specifically, for any camera Si of a monitored region, the set 
Si,F of cameras used in FOV recovery must be dynamically computed for every time 
instance t, so that the total remaining FOV loss (the loss not recovered through set 
Si,F) is minimized: 

                          

���������������������������������������� ���	�
������ � � ��	����������������������
 !�

"�� #�����������������������������������������$%� 
      

Set V is the set of all cameras of the monitored region. The minimization 
objective in expression (1) gives more weight to cameras with large FOV losses. 
Alternatively, the following objective function treats equally every camera to give a 
uniform relative recovery to each camera Si  V: 

 ��������������������������������������������� &��	�
������'(')*���� � ��	���������������#��
��������

�
∞�� �����������������������������������$+� 

 
This problem must be solved under dynamic conditions due to the moving of 

obstacles in time and under performance and resource constraints. Solving the 
problem in static conditions is similar to the minimum set covering problem, which is 
known to be NP complete [22, 23, 84]. This section presents the model used for 
expressing the dynamic FOV loss recovery problem. Next section uses the model for 
defining the proposed heuristic algorithms. 

 
 

6.6.1. Background on FOV Loss Due to Moving Obstacles 

 
We assume that the cameras in set V are placed on the same horizontal 

plane. Consequently, all FOVs are 2D projections of the 3D volume of the view on 
the planar surface. All points in front of the camera are visible as long as the 
projection ray from the point to the optical center intersects the image. In practice, 
however, due to the limited resolution and distortion of their lenses, cameras have a 
bounded depth of field. If the points that are too close or too far from the optical 
center may not appear well focused. In order to get an accurate perspective, the 
used model considers that an object is in the FOV of a camera, if the object is within 
the range (DMin,DMax), where distances DMin and DMax depend on the video 
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sensor resolution and the minimum size of the target of interest. Figure 6.6. 
illustrates the FOV model for a camera.  

 

6.6. Field of view (FOV) model 

 
 By processing its sampled image, any camera Si detects the presence of 
moving obstacles (vehicles), and thus determines its FOV loss. The amount and 
nature of the loss is estimated based on the size and position of the obstacle. The 
FOV loss for a certain vehicle type M is function FOV LossM(position, t), where 
position is the 2D position of a vehicle relative to the camera at time t: 
 
   ��	�
���,�-� �� ��.�/01 2 3��4                                            (29) 
 
x and y are the coordinates of the obstruction and t is the current time. Area is the 
lost FOV area due to the obstruction. The values of the function can be pre-
computed for all possible vehicle types and their positions. To save camera 
resources, the proposed method considers that a camera stops monitoring, if its 
FOV loss is more than k% of its total FOV. In such as case, the camera is turned off 
until its FOV rises again above k%.  

Even though a camera might be off, its communication subsystem is 
constantly on to forward and receives any request to power on a stopped camera. 
For a camera pair, the mathematical expressions of the FOV loss recoveries can be 
pre-computed for every position of the pair, and then used in selecting the cameras 
to be turned on to recover a FOV loss.  
  
 

6.6.2. FOV recovery under performance and resource 
constraints 

 
 Video cameras communicate with each other by sending information about 
their FOV loss, and then collaborate to recover the experienced FOV loss. The 
recovery time until the additional cameras in set Si,F can compensate the FOV loss 
depends on the execution time of the image processing algorithms performed by the 
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cameras, the communication delay between cameras, the time needed to switch on 
any cameras turned off, and the time required to reposition the cameras. 

 
 

6.7. Vehicle Dynamics 

 
 

 
 

6.8. Interaction Scheme 

 
 Figure 6.8. summarizes the proposed interaction scheme between cameras. 
The scheme shows the sequence of steps over time, and the actions performed by 
the cameras. For example, if camera S1 in Figure 6.7. loses part of its FOV due to 
vehicle M then the loss can be recovered by cameras S2 and S3 (S = {S2, S3}). 
The interaction procedure between the collaborating cameras is as follows. Camera 
S1 informs the neighboring cameras, e.g., cameras S2 and S3, about its FOV loss. 
Steps one and two in Figure 8.8. require a constant execution time ��5�67�! , which 
includes the processing time �5�689: of camera S1 to detect its loss, and time��5�6!  for 
broadcasting the information. Then, the neighboring cameras respond by indicating 
what area of the loss they can recover. The fourth step consists of camera S1 
receiving the information from neighbors and deciding which of them to select for 
the FOV loss recovery. The cumulative execution time of steps three and four is 
equal to  
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 5�61�;= <4-==>?@ABCDEF�G6�5 H I J��K�K�L�6=M9:NO(8G��6� �K� 
 

The first terms is the time required by S1’s neighbors to respond, and the 
second term is the time needed by camera S1 to analyze the responses and make a 
decision. In step five, camera S1 requests a smaller subset S1,F of cameras to stream 
their actual images (S1,F = {S2} in the figure). Then, in step six, the requested 
cameras stream the image fragments, which are aggregated by camera S1 in step 
seven. The execution time of the last three steps is  

 
 5�6P�Q�R S�5�689: HTUV@=W6�XY@FZE?[\ H I ]^_`^Ua`�b�@=W6�X  

 
The second term is the time for streaming the images for loss recover, and 

the third term indicates the time for aggregating the received images. 

If images must be collected with a period Tconstraint then all steps related to 
the current FOV loss of a camera i must be completed before the next image 
sampling: 

 �����������������������������������������������������������������5��7�! H 5��1�; H 5��P�Q�R c 5d(MG'8)M'���������������������������������������������������������ef�                                 
 
In addition, to provide meaningful aggregation, the images sampled by the 

neighbors must be within a time window from the current moment: 
 ������������������������������������������������������������������5�67�! H TUV=�6�� 5 c 5)::89:�����������������������������������������������������������������������e&� 

 
In addition to constraints (30) and (31), the loss recovery is also subject to 

timing constraints that are correlated to the speed of the moving vehicles. For 
example, if camera S1 in Figure 6.6 must collect n images while vehicle M traverses 
its FOV then the worst-case timing constraint for sampling and processing one 
image is expressed by the following formula: �����������������������������������������������������������������������������5d(MG'8)M' c #�,�g)hL���������������������������������������������������������������e$��� 
 
where parameter d is the length of the vehicle’s trajectory within the camera’s FOV, 
and value vM,max is the maximum speed of the vehicle. If the number of samples n is 
not a hard constraint then the relation can be relaxed to include the expected speed 
of the vehicle E[vM]: ������������������������������������������������������������������������5d(MG'8)M' c #ij�,kL������������������������������������������������������������������������ee��
 
             Note that a larger sets S and Si,F improve the quality of the possible loss 
recovery, however they increase the time and resource overhead of the method due 
to the more alternatives that have to be analyzed. The FOV loss recovery method 
must identify which camera subset Si,F of set S offers the best recovery within the 
set time constraint and resources, e.g., processing speed and communication 
bandwidth. A second issue is related to the reliability of wireless communication. 
Wireless links tend to be unreliable, and therefore the availability of the cameras in 
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set Si,F can change over time. The decision about which cameras to use for FOV loss 
recovery must also consider the likelihood of a camera to be available or not in the 
immediate future. Besides, the arrival time of the camera responses might become 
random due to changing communication conditions. Some responses might be 
discarded because they arrive after the imposed timing deadlines. Thus, set Si,F has 
a stochastic character, which must be estimated during recovery. 

 
6.9. FOV Recovery Loss Over Time 

 

6.6.3. FOV recovery in dynamic conditions 

  
The FOV loss of neighboring cameras is correlated in time by the specific 

traffic conditions, such as the number and speed of moving cars. The information 
about the current traffic conditions can be used as look ahead information to 
estimate the position of the moving obstacles at future instances of time. 
Estimations can be used to decide the assigning of the additional cameras to the 
best set Si,F, if a camera can be participate to the FOV loss recovery of multiple 
cameras. The information about the expected FOV loss at neighboring cameras and 
at future instances of time can also help reducing the execution time of loss 
recovery by limiting the candidate set S to cameras, which are estimated to offer 
the highest recovery. Figure 6.9 illustrates this situation. Vehicle M1 obstructs 
camera S1 at the current moment. Either camera S3 or S4 can recover the loss of 
camera S1. If vehicle M1 is moving as shown in the figure, then at a future moment 
it also obstructs camera S2. Note that camera S3 can recover the coverage losses of 
both camera S1 and S2. Camera S3 is included into set S1,F at the current moment 
and set S2,F at the next moment. Camera S4 becomes available for recovering the 
loss of other cameras. The vehicle dynamics (trajectory and speed) also determines 
the FOV loss of a camera over time as long as the vehicle stays in the camera’s 
FOV. Figure 6.7. presents the situation in which the loss at time instance t0+∆T 
depends on the position of vehicle M at time t0.  
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    6.10. Traffic Modeling1 

The FOV loss recovering model must capture not only the losses of a camera 
at the current moment but also the expected FOV losses of the neighboring cameras 
at later time instances. The model expresses the expected FOV loss at the next time 
moment t0+∆T depending on the loss at the current moment t0. Figure 6.10. shows 
the modeling of the cumulative FOV loss of camera S due to multiple vehicles. Each 
of the three vehicles causes FOV loss. The overall FOV loss of the camera is as 
follows: 

 
            ������������������������	�
������l H m5� S � ��	�
����n��	�oK�p�,6qr��K�K�Lqs��l H m5t� �t=u9N�'v0mw� ��ex� 
 

where set Veh is the set of the vehicles Mi crossing the camera’s FOV at time t. The 
set Veh of vehicles obstructing camera S at the future moment t0 +∆T depends on 
the vehicles that enter the camera’s FOV and those that exit. Figure 6.11. shows the 
regions monitored by cameras P, Q, and S. The cars entering region S are the cars 
leaving regions P and Q. Then, set Veh at time moment t0 +∆T is expressed as 
follows: 
 

������������������������������	�o��l H m5� S 	�o��l�yz� y 	�oM'v�'v0mw  � � y 	�o({''v�'v0mw  |�����������������������e}� 
 
where Vehin are the vehicles entering into the zone, and Vehout are the vehicles 
leaving the camera’s FOV. 
 

 
8.11. Traffic Modeling2 
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The position of vehicle M must be estimated in order to predict the future 
FOV loss of the camera. The future position of the car depends on the traffic 
conditions and driver’s behavior. Without reducing generality, let’s assume first that 
the car’s movement is not constrained by the moving of other cars. This is the case 
of light traffic. Then, the future position depends mainly on the driver’s behavior to 
change the speed during the time range (t0, t0+∆T). We model the driver’s behavior 
as a Continuous Time Markov Process (CTMP), as shown in Figure 6.12.:  

 
                                    ~5s~ S �/� 3� 3�K�� r� �� ��                             (36) 

 

 
 

6.12. Vehicle dynamics modeling 
 

where R is the set of states, which correspond to the highly probable speed 
gradients �. Gradient �7 = 0 describes the moving with constant speed. A is the 
action set, and A(i) are the actions associated to state i = R. The action sets are 
empty in this model. p(i, j) is the transition rate for transitioning from state i to 
state j. The transition probabilities between states describe a certain driving profile, 
and are pre-computed. CTMP K is the number of reward criteria, and rk(i) is the 
reward rate for state i. These sets are empty in our model. xi is the steady-state 
probability of state i. The following set of equations describes the driver behavior: 
 ������������������������������������������������������������������r�K� K�- ��r�K� ��- S f��� = /��=� ��������������������������������������������������e%� 
                                                           

                 �������������������������������������������������������������������������������������������- S &��K = /�����������������������������������������������������������e+�=�  

 
 

                                                               - � f� �K = /                                   (39) 
 

Unknowns are the steady-state probabilities xi. 
The expected vehicle speed at time t0 +∆T is modeled by the expression:                         

               
                                     ij���l H m5�k S ���l� H m5I �-=�                                  (40)     

  
 

Hence, the expected position of vehicleM at time instance t0+∆T is as 
follows: 
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ijr��K�K�L��l H m5�k S r��K�K�L��l� H m5�ij���l H m��k S r��K�K�L��l� H m5����l� H m5!��-=�  

                                  
(41) 

 
The expected position is replaced in function FOV Loss in equation (34) to 

compute the expected FOV loss at time t0 +∆T. The vehicles’ traffic parameters, 
such as speed, might be correlated depending on the specific traffic conditions. If 
the traffic is light then each vehicle can move without being constrained by the 
other vehicles. Hence, the transition probabilities in equation (37) are independent, 
and depend only on the driver’s behavior. In contrast, for heavy traffic, cars are 
clustered together, and then the transition probabilities of all cars in a cluster tend 
to be the same as those of the car in front as the cluster moves with the same 
speed. The interaction between the vehicles in regions P, Q, and S in Figure 6.11. 
can be expressed depending on the cardinality of sets Vehin. If I ~4�#KL4pK���	�oM��  
is less than a threshold value then the traffic is considered light, and the dynamics 
of each vehicle can be estimated individually. Otherwise, the traffic is heavy.   
 
 

6.7. Heuristic Algorithms for FOV Loss Recovery 

 
 The FOV loss recovery problem described as a discrete optimization problem 
with constraints. Moreover, the nature of wireless communication and the dynamics 
of moving obstacles introduce stochastic elements. Without expressing the 
stochastic aspects, the problem is similar to constrained minimum set covering, 
which is known to be NP-complete [21, 22, 23]. This section presents three 
approaches to solving the problem. The first method is based on ILP (Integer Linear 
Programming) formulation of the problem, and provides the starting formulation of 
the problem. However, it considers only a simplified scenario. The second method is 
an heuristic algorithm that tackles performance and resource constraints and the 
dynamics of the vehicles. Finally, the third heuristic method also assumes the 
stochastic nature of wireless communication. The cost functions in formulas (27) 
and (28) are approximated by considering only the current moment t0 and the next 
time instance t0+∆T. For every camera Si, all timing constraints related to image 
sampling must be satisfied, e.g., equations (30), (31), (32), and (33). In addition, 
the methods minimize the number of candidates for FOV loss recovery (in set Si,F ). 
Reducing the number of candidates indirectly helps meeting the timing constraints, 
and also lowers the amount of used resources, such as communication bandwidth 
and energy consumption. Finally, the methods lower the involved overhead by 
selecting candidates that are useful over longer periods of time and for multiple 
obstructed cameras. This requires predicting the set V eh of obstructing vehicles 
(using expression (35)) and computing the expected positions of the moving 
vehicles at future instances of time (with expressions (41) and (40)). The 
parameters expressing the dynamics of different vehicles can be uncorrelated or 
correlated depending on the specific traffic conditions, such as light or heavy traffic. 
Note that a central issue of the problem is the management of sets Si,F used to 
recover the FOV loss of camera Si. Cameras in set Si,F must be selected to provide 
the best recovery under time constraints and while reducing the utilized resources, 
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like bandwidth, and considering the stochastic nature of wireless communication. 
The allocation of cameras to alternative Si,F depends on the dynamics of the FOV 
loss over time.  
 
 

6.7.1. ILP-based algorithms 
 
 Arguably, the most intuitive approach is to formulate the optimization 
problem as an ILP equation set [22, 23]. We use this method as a reference. An ILP 
formulation is possible if the intersections between camera pairs are statically 
defined so that they can be pre-calculated (coefficients ai,j in expression (18)). For a 
given loss, the objective is to maximize the expression: 

������������������������������������������������������
��� ��

��� �������������������������������������������������������������������x$� 
 
where N is the number of cameras. Coefficients ai,j are the areas of the pi sub-
regions of the FOV losses that are covered by camera Si. The FOV loss includes the 
loss at time t0 and time t0+∆T. Variables xi are 0/1 variables that have value zero if 
camera Si is not used, and value one, otherwise. By solving the ILP equations, the 
algorithm finds the values of the unknowns xi (hence, if camera Si is on or off) that 
maximize the objective. In addition, the following constraints must be satisfied for 
every sub-region j of the loss: 

                                                 �������������������������������������������������������������������������������� - c ����������������������������������������������������������������������������������������xe�=��  

                                                  
where Gj is the set of cameras that can cover the sub-region j, and constant  is the 
maximum amount of redundant covering that is accepted due to the need to save 
resources ( was set to value one in our experiments).  

If the intersections between cameras change dynamically, such as due to 
mobile cameras and adding/removing cameras, then the problem becomes 
nonlinear as parameters ai,j are also unknown. The stochastic nature of wireless 
communication is also not captured in the basic formulation. 
ILP refers to linear programming. We used linear programming to optimize the 
selection of the sensor that would be turned on in order to replace the obstructed 
one.  
The implementation of ILP concepts was realized with LPSolve [22, 23]. For this 
equation corresponding with Figure 8.13., the coverage is given by the following 
formula: 
 
              a = a1 S1 + a2 (S1 + S2) + a3 S2 + a4 (S2 + S3) + a5 S3              (44) 
 

The equation to be maximized is� TUV�U�.� Yh`� consa_Ubnas� fo_� ah`s`�`quUabons�U_`.�
 
   S1+S2=1     =>        S1=0                          S1=1 
   S2+S3=1                  S2=1         or              S2=0                                      (45) 
              S3=0                          S3=1 
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6.13. General case study for 3 sensors 

 
 The last set of equations represents the maximized solution because two 
sensors are on, instead of one.  

The second case considered is the situation where we have more sensors. 
This is important due to the fact that more redundancy groups are formed. We are 
interested, in this case, as well, to maximize the coverage equation. 

 
  

 
             

 8.14. General case study for more than 3 sensors 

For Figure 6.14. the constraint equations will be in this case constraint 
inequations: 

 
S1+S2 ≤ 1               S1=1              S2=1                 S1=1 
S2+S3 ≤ 1    =>      S3=1      or     S4=1        or      S4=1   or     S1,S2,S3,S4 (46)          
S3+S4 ≤ 1               S2=0              S1=0                 S2=0 
                               S4=0              S3=0                 S3=0 
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In this case the algorithm computes which of the above solutions has the 
best coverage and chooses one of the first three solutions. The last one is not 
considered because we are interested in the greatest number of sensors that are 
turned on that have no redundancy.  

Another example would be described by the following case where the 
sensors are not aligned – Figure 8.15. For this case the constraint equations are: 

 
S1+S2=1            S1=1                 S2=1 
S1+S4=1  =>     S3=1      or        S4=1                                                         (47) 
S2+S3=1            S2=0                 S1=0 
S3+S4=1            S4=0                 S3=0 
 

 
          

6.15. General case study for more than 3 sensors not placed in line 
  

In the performed study, we implemented and used Lp Solve to determine 
the best case of sensor selection by maximizing the coverage equation. The solution 
provided by this method is the best from the coverage perspective, but it was used 
only to prove the performance of the proposed algorithms by comparison due to its 
major drawback. The main disadvantage of ILP implementation in practice is the 
fact that the computation of all the equations is time demanding and need 
performant processors. Unfortunately this would not be suitable to implement on 
real wireless sensors. Moreover, due to the time needed for computation, the 
latency would not respect the real-time constraint anymore and by the time the 
computation of which sensor is most suitable to be turned on in order to recover the 
FoV of the obstructed sensor, the car might already be out of the area of interest. 
Still, as mentioned above, the method is used for comparing its results that are 
mathematically the best decisions with the proposed algorithms and prove the 
performance of these algorithms. 
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The next two heuristic algorithms adapt greedy, minimum set covering 
strategies to our problem. A good cost function for minimum set covering is to 
always select the candidate that covers most of the uncovered elements [22]. The 
main advantage of heuristics is short execution time, which is important for meeting 
real-time constraints. The two algorithms differ by their cost functions used in 
greedy selection. The two cost functions are derived from the model presented 
above for two different scenarios, deterministic and stochastic scenarios. 

 
 

6.7.2. Heuristic algorithm 1 (deterministic) 

 
The first cost function assumes that the cameras are interconnected through 

a fast and reliable network (e.g., wired connections). Thus, it is reasonable to 
assume that all candidates can submit their data within the real-time constraint and 
without experiencing any data loss. The proposed cost function, called Parameter 
Weighted Contribution (PWC), characterizes the suitability of a neighboring camera 
X to cover the FOV loss of camera Y . Based on the model presented above, PWC 
captures the following aspects:   (i) camera Y ’s FOV loss ratio that is covered by 
camera X,  

     (ii) the uniqueness of the FOV coverage provided by camera X   
          compared to the other cameras in set S,  
     (iii) the capability of camera X to cover the FOV loss of other   
          cameras than camera Y (including any FOV loss due to    
          obstacle   
          dynamics in the near future), and  
    (iv) the available resources of camera X (e.g., energy,   
          communication bandwidth, and processing speed). PWC is   
          defined as follows: 

                   ��������������������������������������������������������~ S �~�	 H ��~�	 H ��~�	 H �/i���������������������������������������������������x+� 
                    

Where �� �� � and k are weights. The other parameters of PWC are defined as 
follows: 

• Parameter COV is the ratio of the FOV area covered by camera X over the 
area of the FOV loss of camera Y : 
 

                                                  ~�	 S ��u�d(�989 �O¡�d)g98)�¢��u�*(GG�(£�d)g98)�¤                               (49) 

 
Parameter COV maximizes the objective function in equation (27). 
Maximizing this parameter also minimizes the cardinality of the covering set, 
thus reduces time T5,6,7 in the presented model. This helps satisfying the 
timing requirement in expression (30). It also reduces the communication 
bandwidth because less cameras participate to the loss recovery. This 
parameter is similar to traditional priorities in minimum set covering 
heuristics [22], which choose subsets with many uncovered elements. 

 
• Parameter UCOV characterizes the uniqueness of camera X to cover the FOV 

loss of camera Y : 
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 �����������������������~�	 S 3��4�������#�n���4<��4�¥¦§<n����¨���o����4<��4���o4���������o���4<����	�p����4���4<��4�¥�����}f� 
 
If a sensor is unique in covering a certain loss than that sensor is selected 

with a high priority. This parameter decides the inclusion of a camera to a certain 
set Si,F , if the camera can be used to recover the FOV loss of multiple cameras. 

 
• Parameter FCOV captures the usefulness of the sensor X in predictably 

covering future FOV losses of neighboring sensors (i.e. due to moving 
vehicles). The parameter refers to situations for which reliable predictions 
can be made about neighboring cameras losing their FOV too. More details 
are offered in the next paragraph. 
 

• Parameter RES captures the resources available at sensor X, like the 
processing speed, communication bandwidth, and energy. The algorithm 
tries to avoid using cameras that are slow, low on energy, or have low 
communication bandwidth (e.g., weak signal strength). These cameras are 
used with a low priority, such as special situations like if the camera is the 
only one that can observe a given area. The parameter also captures the 
capability of a candidate camera to sample an image within the timing 
constraint expressed by equation (31) and to provide sufficiently fast 
sampling as described by equations (32) and (33). 
 

 

6.16.  Definition of priority functions 
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6.17.  Definition of priority functions 

 
Parameter FCOV is detailed next. Our discussion refers to two illustrating 

cases on preserving the FOV coverage during a certain time interval. The first case 
considers three sensors S1, S2 and S3 that cover the same FOV, and two vehicles 
move in opposite directions, as shown in Figure 6.16.(a). Camera S1 is covered by 
vehicle M1, and thus has to decide whether to start camera S2 or camera S3. Without 
estimating any future situations, camera S3 is started as its parameter PWC is large. 
However, camera S3 loses its coverage in a short time since vehicle M2 is moving in 
its direction. Hence, parameter PWC should be defined so that camera S2 is selected 
in this case. In the second case, the moving vehicles are in the same lane, as shown 
in Figure 6.17.(b). Switching between cameras S1 and S2 is a good solution, if only 
vehicle M1 is considered. If vehicle M2 is also considered, then selecting camera S3 
to be turned on is a better solution over long time periods. 
 The definition of parameter FCOV covers the previously described 
requirements. The parameter increases with the estimated time of loosing coverage 
in the future because of close vehicles. The estimated time is proportional to the 
ratio of the distance d between the camera and the obstacle over the estimated 
speed E[v]: 
 ������������������������������������~�	 S � � �~�	 H �~�	� � #ij�k������������������������������������������������������}&�M9:NO(8M:�G9MG(8G  

                  
           
The speed is estimated as described in equations (36)-(39). 
 
 

6.7.3. Heuristic algorithm 2 (stochastic) 

 
 The second heuristics assumes slow and unreliable connection between the 
video cameras, such as in the case of wireless communication. This implies that the 
communication time represents a significant portion of the left-hand side in equation 
(30). Moreover, the arrival times of the responses from a camera’s neighbors are 
random, including situations in which a response might not be received on time due 
to poor communication conditions. Hence, the set neighbors(Si) of any camera Si is 
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not fully deterministic as some of the neighbors might “disappear” for certain time 
periods. 
 The heuristic algorithm analyzes the currently received data from the 
neighboring cameras, and selects the cameras that are more likely to participate to 
the FOV loss recovery. In contrast to the deterministic heuristic, the utility of a 
camera in FOV loss recovery depends not only on the covered FOV but also on the 
likelihood that it is available to participate to the selected covering solution. The 
likelihood depends on both the probability of the camera to transmit its data within 
the required time limit and the probability of the complementary cameras to also 
deliver their data too. For example, in Figure 6.13(c), camera S1 provides a 
significant FOV coverage, and hence should be selected according to the priority 
function of the previous heuristics. Moreover, cameras S1 and S2 offer the best 
overall FOV coverage. However, if camera S2 is not available then the pair S3 and S4 
gives a better overall coverage than camera S1 alone, even though S1 has the 
largest FOV coverage among the three cameras. 

For any camera Si, the probability pj,unav of a camera Si = neighbors(Si) to be 
unavailable for the FOV loss recovery of camera Si is as follows: 

                    
                         ���{M)� S ���(OG' H ��.d(gg�& � ���(OG'�                                 (52) 
 
Probability pj,obst is the probability of camera Sj being obstructed by a 

vehicle, and probability pj,comm is the probability of having a communication loss. 
Probability pj,comm is evaluated locally by Si for every of its neighbors. Probability 
pj,obst is computed by every camera Sj , and communicated periodically to camera Si.                 

The priority function of a camera Sj , called Expected PWC (EPWC), is 
defined as follows:  

                             
                                i��~� S ��~� © r��ª)8'                                        (53) 

 
where pj,part is the probability of camera Sj to participate to a covering solution. It 
depends on the probability of the other cameras expected to participate in the 
recovery to also make their data available. This probability is estimated as follows: 

 ��������������������������������������������r��ª)8' S � «�¬=M)��®(�98̄ ��& � r¬�{M)���������������������������������������������}x���=®(�98̄  

                
where Coverm denotes the coverings that camera Sj is part of. Set Unav(Coverm) 
describes the cameras that are part of covering Coverm but did not make their data 
available yet. In the proposed heuristic, the sets Coverm are approximated by 
storing the M most frequently used coverings. 
 
 

6.8. Experiments 

 
 The proposed methods were implemented as Java programs, and simulated 
on a PC desktop computer. Experiments studied the FOV loss recovery in the 
presence of moving vehicles, and for different traffic scenarios. 
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Figure 8.18. illustrates the case study used to model a real-life urban traffic 
situation. The white areas indicate the FOVs of the deployed cameras. Experiments 
considered three levels of redundant FOV coverage:  

 
(i) minor redundant coverage (middle group),  
(ii) moderate redundant coverage (left group), and  
(iii) strong coverage (right group).  
 
Moreover, the traffic scenarios included one, two, three, five, and fifteen 

cars moving at different speeds. The case study used the following parameters: the 
length of the monitored route was 70 meters with 4 lines (as seen in Figure 6.7.), 
each line being 3 meters wide. The vehicle speed was varied in the range 30 km/h 
to 60 km/h. The camera model had the following parameters (see Figure 6.6.): 
DMAX was 30 meters, and angle  was 40 degrees. The distance between the 
camera sensors and the monitored route was set between 2 and 6 meters. The 
simulated time was 8 seconds and the simulation step was 0.3 seconds. 

Table 8.1. presents the total coverage loss without and with the proposed 
deterministic heuristic algorithm (first heuristic). Columns two and three are the 
number of cameras and cars in each traffic scenario, column three is the area of the 
coverage loss without any FOV recovering, and column four is the area of the FOV 
loss after using the proposed FOV recovery method. Column six reports the 
percentage FOV loss recovery of the heuristic as compared to no recovery being 
performed. The average FOV loss recovery is 52% for the nine cases, the lowest 
value being 19% and the highest being 80%. In all but one case, the FOV loss was 
about 40% or greater. 

Tables 6.2. and 6.3. offer more insight on the algorithm’s performance, 
including scalability for increased number of cameras and monitored vehicles. Table 
8.2. refers to the case if no FOV loss recovering algorithm is used. Table 6.3. is for 
the deterministic heuristic. Columns one and two indicate the number of cameras 
and vehicles. Column three shows the average FOV coverage, Column four the 
minimum FOV coverage, and Column five the FOV coverage variance over time. 
Column six reports the execution time of the algorithm. 

 
 

6.18. Case study for FOV loss recovery 
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6.1. Total coverage without and with proposed method 
 

 
 

6.2. Total coverage without proposed method 
 

Table 6.1. (no FOV loss recovery algorithm used) shows that the FOV 
coverage loss increases significantly as the number of cars is higher. For 5 cameras 
and 15 cars (row six) the minimumFOV coverage can be as low as 7.36%. Column 
five indicates that the resulting variance is large, and hence FOV coverage is 
unreliable even in situations in which the FOV coverage is reasonably high, e.g., 5 
cameras and 15 cars. According to 6.3., the proposed heuristic improves 
significantly the average FOV coverage, the minimum coverage, and variance for all 
cases. The average FOV coverage is above 85% in all cases as compared to 63% 
without algorithm. Also, the minimum FOV coverage does not drop below 65%, 
which is a significant improvement over the results in column four in 6.2. The 
variance is low (Column five in Table 6.3.). Hence, the algorithm reliably covers the 
FOV over the entire period. Column six shows that the algorithm scales well for 
larger  examples. It is fast even for higher number of cameras and monitored 
vehicles, e.g., 15 vehicles and 15 cameras. 
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6.3. Total coverage with proposed method 

 
Figures 6.19., 6.20., 6.21. and 6.22. give more insight about the covered 

FOV areas with and without the deterministic heuristic. Figure 6.19. and 6.20. 
correspond to a cluster with three cameras (the middle cluster in Figure 8.18.), and 
Figures 6.21. and 6.22. are for the more dense cluster with five cameras (the right 
cluster in Figure 6.18.). The plots present the variation of the percentage of the 
covered FOV area over time for the three traffic scenarios (three, five and fifteen 
moving cars). Coverage of 100% indicates that there is no FOV loss. Note that the 
deterministic heuristic is capable of providing FOV covering above 65% and close to 
100%for most of the time. In contrast, the FOV loss can be close to 60%for long 
intervals of time (almost 50%of the time in Figure 6.20.), if no FOV loss recovery is 
utilized. This motivates that the addressed problem is important for comprehensive 
and continuous data collection in traffic management applications. 

 

 
6.19. FOV coverage for 3 cameras without proposed method 

 
The four plots suggest the following dependency of the FOV loss due to 

moving obstacles.  
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6.20. Covered FOV area for 3 cameras with the proposed method 

Plateaus in the FOV coverage plots correspond to situations in which a 
moving vehicle obstructs uniformly a camera without another camera being able to 
cover any of the loss. Ideally, the size of plateaus should be very small. Identifying 
deep plateaus is important because they indicate poor deployment of cameras, and 
provide information to a camera deployment strategy on to where new cameras 
should be placed. Note that the plateaus in Figure 6.22. are narrower and shallower 
as compared to those in Figure 6.21., meaning that there are short periods of 
significant FOV loss. In Figure 6.21. (no recovery method), there is a deep plateau 
between moments 1 sec and 10 sec. Similar observations exist for the results in 
Figures 6.19. and 6.20. 

A spike in the FOV coverage plots indicates that either a car has quickly 
passed very closely to a camera, hence its FOV obstruction in time is short, or that a 
camera was able to cover the FOV loss, thus, bringing the coverage close to 100%. 

If a spike is deep then the chances of losing more monitored information are 
greater. If the spike is shallow but broad, then the chances of not monitoring a car 
are smaller, but if this occurs then the time the car is not covered is actually longer. 
The spike width is related to the minimum speed of a car that might pass through 
the area without being identified by the monitoring system, thus offering 
information on the speed restrictions that could be introduced to improve traffic 
safety in populated area or other high risk zones. 

Figure 6.23. shows the FOV coverage if static obstacles are present, such as 
stopped cars. The experiment considered two stopped cars for the case with 5 
cameras and 5 vehicles. Without using the proposed algorithm, the FOV coverage is 
mostly between 60-70%, at times dropping to 40%. The proposed algorithm 
improves the FOV coverage to above 60%while keeping the FOV coverage to 100% 
for more than half of the time. 
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6.21. Covered FOV area for 5 cameras without proposed method     

 
 

6.22. Covered FOV area for 5 cameras with proposed method 
 
The next experiment evaluated the deterministic heuristic for a street 

intersection. Figure 6.11 illustrates the layout of the intersection. The simulation 
considered a segment of 100 meters for each of the two intersecting streets. The 
lane width was set to 3 meters. Four traffic lights were positioned as shown in the 
figure.  The time set for the red and green light was 5 seconds. The experiment 
studied the impact of the number of camera sensors on the resulting FOV loss 
recovery. 
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6.23. Covered FOV in the presence of static obstacles  

Two cases were considered: (i) monitoring the moving of 4 cars through the 
intersection by using 4 sensors, and (ii) monitoring 4 cars by 12 sensors. For the 
second case, 4 sensors were positioned at the same places as the sensors of the 
first example while the additional 8 sensors were distributed equally in the close 
neighborhood of the initial 4 sensors. Same traffic conditions were used in both 
cases. The obtained simulation results are plotted in Figure 6.20. Figure 6.24.(a) is 
for the 4 car - 4 sensors situation, and Figure 6.24.(b) for the 4 car - 12 sensors 
case. In both cases, the heuristic improves the final FOV coverage. Even though the 
FOV loss recovery improves with the increasing of the number of camera nodes, the 
amount of FOV loss recovery depends significantly on the positioning of the sensors. 
FOV loss recovery results only if there are redundant nodes available that can cover 
the areas lost due to the moving vehicles. 
  

 
 

6.4. Total coverage with proposed method 
 

Table 6.4. compares the deterministic heuristic with the ILP-based method. 
For the two methods, the table indicates the average and minimum FOV coverage 
and the execution time for various number of cameras and vehicles. As expected, 
the ILP-based method offers better results in about half of the instances but at the 
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expense of a much longer execution time. Without powerful computing resources, 
the ILP-based method cannot be used for real-time traffic monitoring. In about half 
of the instances, the heuristics finds better coverage due to the way the selection 
procedure is implemented. The ILP algorithm has a tendency of turning off more 
cameras, especially if many cars produce large FOV losses. This is due to linear 
formulation, which enforces a camera to be turned off once its FOV is significantly 
reduced by an obstacle. The heuristic method might still turn on a camera with its 
FOV covered by other cameras, if these are obstructed by vehicles. This constraint is 
hard to express as an ILP constraint. 

The last experiment evaluated the performance of the second heuristic, 
which is based on the stochastic formulation. The experiments consider that 
randomly only 80% of the cameras can communicate with each other while 20% are 
unavailable. The amount of acceptable FOV overlapping between two cameras was 
varied. The model in assumes that a camera is turned off if its FOV is covered k% 
by another camera. The values of parameter k were set to 30%, 50%, and 70%. 
This parameter controls the cameras that are candidates to be included into sets Si,F 

. A larger value of k increases the cardinality of the sets. Two cases have been 
experimented for each case: (i) when only a restricted set of cameras can respond 
due to the set timing constraint, and (ii) when all cameras can respond. The second 
case is ideal and was used as a reference. 

 

                         
6.24. FOV loss recovery for the street intersection (a), (b) for example in Figure 6.25.  
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6.25. Layout of the street intersection example 

 
 Table 6.5. summarizes the resulting coverage over time and Figure 6.26. 
illustrates the coverage. The resulting coverage increases with the value of 
parameter k, even though there are small fluctuations due to the stochastic 
availability of the nodes. This experiment also suggests that selecting parameter k 
about 50% offers a good trade-off between the resulting coverage and the camera 
resources that are saved by being turned-off.  

 
 

 
 

6.5. Total coverage with stochastic heuristic 
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6.26. FOV coverage for the stochastic heuristic 

 
The table lists the relative difference between the reference case when all 

available cameras can communicate, and the case when only a restricted set 
communicates due to the imposed timing constraints. The worst case difference is 
about 21% but for most of the cases it remains below 15%. Large differences occur 
if the additional cameras in sets Si,F can cover only small areas of the lost FOV. But 
for most of the cases, three additional cameras offer sufficient loss recovery. Finally, 
in some situation, the restricted case offered better recovery values than the 
unrestricted one. This is explained by the way in which cameras become randomly 
available during recovery. 

 

6.9. In Depth Motivation  

 
The proposed algorithm is used for traffic surveillance. We use dynamic FoV 

recovery in order to improve traffic surveillance algorithms. One of its key concepts 
is redundancy. In this case, we considered that two cameras are redundant if their 
FoV is overlapping more than a percentage that can be established. In our study 
cases, we considered this percentage to be 70%. Figure 6.1. presents the fact that 
at 65% the coverage is stabilized. The difference between higher or lower values 
would mean more loss in coverage or higher consumption of energy by more 
sensors turned on. 
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6.1. Coverage variation for different degrees of redundancy  

The need for computing redundancy comes from the fact that for a good 
coverage, cameras have to be placed closed to one another. Even so, if the objects 
of the surveillance, in our case, vehicles, are becoming obstacles and obturate the 
field of view of the sensors, the coverage drops considerably. This is a major reason 
for using more cameras for traffic surveillance. When the FoV of one of the cameras 
is obstructed, other cameras that have the same FoV can monitor from another 
angle the lost FoV. For a good coverage, the redundancy needs to be high, but using 
so many cameras implies high costs and relatively short lifetime for the network.   

The proposed algorithms address this issue from several perspectives such 
as mathematical point of view by heuristic model, proposing a traffic model for 
simulation and of course by simulation, including Monte Carlo simulation. 

  
  

6.10. Conclusion 

 
This chapter proposes two novel heuristic methods for real-time, distributed image 
acquisition through a network of traffic monitoring cameras. The goal is to minimize 
the FOV loss of the cameras due to dynamic obstacles by identifying the best set of 
additional cameras that can compensate for the loss. The set is identified under the 
timing and sampling constraints of the application and with the objective to reduce 
the utilized resources. The FOV loss changes dynamically depending on the traffic 
conditions. As wireless communication can be unreliable, the availability of a camera 
is also considered in the chapter. The two heuristic methods employ different cost 
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functions for selecting the additional cameras used for FOV loss recovery. The cost 
functions are based on a new stochastic model for traffic monitoring, including the 
dynamics of mobile obstacles, unreliable communication, and resolution and timing 
constraints. The first cost function, Parameter Weighted Contribution (PWC), 
addresses deterministic situations by capturing the trade-off between the quality of 
recovery and the imposed timing constraints. PWC expresses the utility of a camera 
in FOV loss recovering, the available resources of a camera, and the capability of 
recovering multiple FOV losses of neighboring cameras. The second cost function, 
called Expected PWC (EPWC), addresses unreliable networks, such as wireless 
connections. EPWC extends PWC by incorporating the probability of a node to 
participate in FOV loss recovery, including the chances of the camera being 
obstructed by obstacles, experiencing data loss during communication, and other 
cameras used in the covering solution being also available. 

The average FOV loss recovery of the deterministic heuristic is 52% with 
actual values between 19% and 80% of the lost FOV. The algorithm delivers FOV 
coverage of at least 63% for cases in which FOV coverage drops to only 7% if the 
algorithm is not used. The resulting coverage is close to 100% for most of the time 
while without the recovery to coverage drops to about 60% for about half the time. 
The heuristic is capable of improving the reliability of the recovered loss as 
motivated by the small variance of the solutions. The two heuristic methods are 
fast, thus scale well with the number of monitored cars and cameras. In contrast, 
the ILP-based method is much slower, and cannot express nonlinear or stochastic 
aspects. For time-constrained, unreliable communication, the stochastic heuristic 
offers a coverage that is only about 15% less than if communication is unrestricted. 
Also, turning off cameras that have about 50% of their FOV covered by other 
cameras offers good FOV loss recovery while saving resources. 
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7.  Improving FoV Coverage Preservation 
Through Traffic Prediction 

 
 

7.1. Abstract                

 
 This chapter presents an innovative idea of combining the micro traffic with 
the macro traffic. Micro traffic is represented by the fact that the behavior of each 
car influences the management of the algorithms in order to maintain a good 
coverage and the macro traffic is represented by the idea of events. If the road is 
fully loaded with vehicles, all the vehicles on a lane if they are close enough to one 
another are seen as a single event.  An event is represented by one or more 
vehicles that are close enough to each other so the distance between them would be 
insignificant from the coverage point of view. The events form dynamically when a 
vehicle surpasses the minimum distance to another vehicle in order to form an 
event. Also, an event splits dynamically when a vehicle gets out of the range for 
which the distance is too big to be considered negligible. The modality in which the 
events are formed and split is largely presented above. 
 Another innovative idea is the fact that this algorithm uses the concept of 
prediction. It is important due to the fact that sensors stay off for a predicted period 
of time. The prediction is made taking into consideration the speed of the events 
and the data that has been sent by the sensors in the immediate proximity. 
 
 

7.2. Introduction 

 
 Several attempts regarding traffic models have been done, but there are still 
plenty of improvements that can be added. In general, for modeling highway traffic, 
Gaussian densities [88] are used. It is difficult to model the connections between 
variables using Gaussian densities, thus, in the mathematical model with Gaussian 
densities, the variables of the system are considered independent and behave 
consequently. This approach alienates the results from the reality. This model works 
well if the highway traffic is light. In this case, the interaction between vehicles is 
small and the behavior of vehicles may be considered independent of traffic 
conditions. 
 Another approach, popular for traffic modeling, is the conditional 
autoregressive model. The idea behind this model is based on local probabilities 
only. In other words, this model is a car following one, where the dependencies 
between variables are influenced only by the adjacent traffic conditions. This model 
uses the Markov property [89]. In general, the concept of adjacently is considered 
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to be represented by the situations from a certain segment defined as s. According 
to [90], the model assumes that the volume y observed at a location s obeys the 
formula: 
 ����������������������������������������������������������������������� S °G H � �8G����8=±�G� ����������������������������������������������������������������������}}� 
 
where N(s) represents the neighborhood of s,  ²F is considered additive noise and ³ 
is a parameter calculated with ridge regression procedure [91]. The authors of [90] 
try to overcome the Gaussian densities drawback using Bayesian networks [92] that 
allow a certain degree of dependences. Furthermore, the mathematical model 
proposed is assumed to learn from the given data sets that are divided into training 
and testing sets. Their results show the improvement compared to the Gaussian 
initial model, but still, the proposed method addresses only to car following models, 
ignoring the probability dependences with the whole traffic scenario. 
 In this chapter we present a mathematical model for traffic prediction tested 
by Monte Carlo simulation. Monte Carlo simulation is detailed further in the report. 
In this model we consider cars as events. An event can be formed by more than one 
car. If twoor more cars are on the same lane, have the same speed and the 
distances between them are less or equal to the minimum safe distance between 
two cars, those vehicles are considered part of the same event. 

In our previous work [93, 94] we presented an algorithm for coverage 
preservation in the presence of dynamic obstacles, in our case, cars. Sensors 
decided for themselves if they are obstructed in such a proportion that they 
became unuseful and turned their camera off. Before turning off, they searched in 
their redundancy group the most redundant camera to turn on in order to maintain 
a certain degree of coverage. The sensor that was initially turned off due to the 
obstruction was immediately turned on after the car (dynamic obstacle) has passed.  

This algorithm is an optimization of our previous work due to two important 
factors:  
• Sensors consider events as being the dynamic obstacles 
• Sensors stay off all the predicted obstruction period 

These facts have as a result an optimization in power consumption. The sensors 
that turn off due to obstruction will turn on again only after the whole event has 
passed.  
 
 

7.3. Overview 

 
The dynamic of traffic is a complex issue and in time there were different 

ways to solve its formalization. The similarity between fluid dynamical approach 
and traffic flow is debated in [95]. The authors of the paper researched the 
behavior of normal traffic in comparison to laminar fluid behavior and turbulent 
traffic in comparison to fluid bottleneck situations. Their approach is to use Monte 
Carlo simulation in order to get as close to reality as possible, but for the 
mathematical simplicity of the computation, some variables such as the lengths of 
the vehicles are ignored and considered fixed. The model uses probabilities for 
determining the vehicles’ speeds. This chapter offers a simulation model for 
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localized traffic situations and a modality of coming back to a normal traffic 
situation after a bottleneck by observing the propagation of certain traffic state. 
The authors of [96] propose a car following model based also on the fluid dynamics 
accordingly defining a relation between speed and density. They establish the 
acceleration and deceleration with respect to the relation of the cars nearby. A new 
variable is also proposed and it refers to negative reaction that is a psychological 
factor, ignored in most of mathematical models. This variable finds its 
correspondence in the fluid mechanics as the viscosity. They start from the 
stochastic decomposition theory that determines a formula for the number of 
vehicles on a link (segment) X: 
 
                                                                  �¥ S ¥� H´������������������������������������������������������������(56)�
 
where µ¶ represents the stationary number of vehicles on a link in uninterrupted 
traffic and Y represents the additional vehicles on a link as a result of traffic 
incidents. The variance of X is determined in [97]. They reach the conclusion that 
the average probability of having vehicles on a link is 25, without considering 
incidents. In the proposed model, the authors of [98] determine the congestion 
factor Ai:  
 �������������������������������������������������������������������]bS�� u·u¸¹ºº�����������������������������������������������������������������(57)��
where Vi is the vehicle speed based on the free speed, Vfree when there are totally 
n vehicles on a link.  Reference [98] also gives a thorough description of the 
evolution of the mathematical models for traffic from its early beginnings. We 
consider relevant to mention a few theories regarding this subject. The authors of 
[98] classify the classical traffic models into three major approaches according to 
the analogy made: microscopic traffic models based on particle behavior analysis, 
mesoscopic models based on gas kinetic behavior and macroscopic traffic models 
based on fluid dynamic behavior. The concept of microscopic approach is based on 
the acceleration and deceleration of the current vehicle with respect to the behavior 
of the nearby vehicles. This model is called the car following model and was first 
introduced in [99]. The model was improved by adding the safe distance concept 
that directly influences the velocity of the vehicles was introduced in [100]. The 
mesoscopic models compare the interactions between particles of a gas to the 
interactions of vehicles on a road. Based on this idea the authors of [101] 
mathematically model the concept of acceleration and overtaking behaviors and 
obtain the critical density of the phase transition from free flow congestion. Since 
then, the model was improved by also modeling the conditions in bottleneck 
situations. References [102, 103] propose models for estimating the travel traffic 
delays also considering the congestion probability. Based on these studies, the 
effects of introducing traffic lights in different intersections were analyzed from the 
decongestion and waiting time perspective. The comparison of traffic behavior with 
the behavior of fluid dynamics is included in the macroscopic traffic theory. The 
idea of this approach is based on the average factors such as velocity, density, etc. 
Starting from the fundamental diagram describing an uninterruptible traffic system 
[104] the model was developed by adding the correlation between velocity and 
density and the viscosity [105] property that describes the reaction of the driver to 
the events in traffic. 
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The authors of [106] debate the capacity of a freeway. They also try to 
determine the maximum number of cars with respect to their density and speed.  

The problem they try to solve is the maximum throughput »�¼� of the 
freeway for which the car speeds are not influenced, where the mathematical 
definition for the freeway throughput       
 
                                 »�¼� S ¼½�¼���������������������������������������������������������������������������������������}+� 

 
where ¼ defines the density of the cars on the freeway and ½�¼�defines their 
corresponding velocities. The approach proposed by [106] treats the case of a 
single lane and the model is a car following one. In this model, the authors treat 
time in a discrete way and they debate on the discretization step that inevitably 
implies a certain loss of information. The model proposed in [106] has the basis in 
the Krauss model [107] that is proved to be free of collisions. Real traffic is not 
collision free, so the approach presented in [107] shows an unrealistic 
mathematical model for traffic. Basedon that model, the authors of [106] consider 
the acceleration used in their model 5,4km/h per second, the deceleration 16,2 
km/h per second and the maximum velocity is considered to be 81 km/h. Even if 
the model is a car following one which means that the behavior of the current car is 
adjusted with respect to its adjacent cars’ behavior, [106] presents three traffic 
behavior types: laminar traffic in which each car drives with its desired speed due 
to the big distance between the cars. An intermediate traffic behavior is the 
coexistence one in which a distinct group of cars are in a jam traffic and the others 
are in a laminar situation. The last case is the jam traffic situation that is defined by 
[106] as being a sequence of adjacent cars driving with speed less or equal 
to��¾\[¿À$. The cars between two neighboring jams are considered to be in laminar 
flow. The mathematical model proposed in [106] was realized for one lane. As 
mentioned earlier, on the lane, the authors consider the possibility of different 
types of traffic such as laminar and jammed. In order to establish the portions of 
the lane that have a certain type of traffic, the lane is considered to be formed by 
cells. So, in their model the 1 way lane road is split into cells of length��ÁÂ, where ÁÂ 
represents the length a vehicle occupies in the average in a jam, for example, ��ÁÂ S 7ÃÄÅÆ Ç %.}T. The transitions between one traffic state to another is also debated 

from its similarity to the transition of a fluid in a gas state and from a gas state to 
fluid state. Initially a coagulation point is formed that increases more and more. In 
the state changing zone exists an equilibrium domain that has both liquid and gas 
characteristics. The authors of [106] say that this domain might assure the 
maximum traffic throughput. Some important conclusions reached in [106] are the 
fact that only stochastic models allow to look at meta-stable states, spontaneous 
transitions all which are important to real time traffic. Also, according to [106], 
traffic is best described by 1 phase model and this model has no theoretical 
justification. The breakdown prediction becomes feasible only for 2 phase or 3 
phase models. 
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7.4. Motivation 

 
Coverage preservation realized by a good sensor management is tight to 

their response to the traffic flow that represents the dynamic obstacles. As shown 
above there are several approaches to solve this problem. It still remains an issue 
especially if the purpose of the model is maintaining a certain degree of coverage. 
 The algorithm presented in our previous work [93, 94] is optimized. Its 
improvements are presented in the current chapter.  A sensor stays off until the 
whole event passes, even though an event can be formed by several vehicles. 
Considering the conditions that have to be fulfilled in order for a car to be part of an 
event, it is obvious that turning the sensor on and immediately turning it off again 
would be a waste of energy with very little gain. The gain would be the visibility of 
the area between cars, but that area might already be covered by another sensor. 
Furthermore, the speed of the event can be high, so the area that might have been 
seen if the sensor would have been turned on would have been a short glimpse. 
Gathering the data in such a short time and process it, it is also difficult to 
accomplish. For these reasons we considered that this approach is an improvement.  
 Another significant advantage is the prediction aspect. Sensors still turn off 
when they are obstructed and they become unuseful, but they are now able to 
compute when the event would have passed and turn themselves on again. 
Proceeding this way, more energy is saved without significant loss in coverage. 
 
 

7.5. Problem Description 

 
 Traffic prediction is difficult. This is no news and depending on the 

application, there are different modalities to predict traffic. There are two 
possibilities of analyzing this issue: from a micro or a macro perspective. The micro 
perspective means that the behavior of each car is observed. The result of this 
observation has to be understood as a hole in such a way that the behavior of traffic 
as a hole can be approximated. This is difficult and not likely to achieve. The other 
approach is to have a global view from the beginning. This allows understanding 
traffic as a flow. The majority of models see traffic as a fluid behavior. 

 The model we propose in order to have a good prediction is a mix between 
the micro and macro perspective. The idea behind this is that when sensors are 
turned on, they see cars and they register their speed, lane and orientation. We will 
explain how this is realized later in the chapter. The characteristics of cars 
mentioned above are registered in a global database together with their offsets. 
Taking into account the conditions, if they are fulfilled, events are formed. If a 
sensor is turned off due to obstruction, it looks in the database to see the 
characteristics of the event and it turns itself off on the period it predicts the event 
will by still obstructing for itself. After the predicted period passes, it will 
automatically turn itself on, again.  
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 This method has both a distributed and a centralized component. The 
distributed component is the part in which the sensors decide if they are obstructed 
and become unuseful and turn themselves off the sensors compute the duration of 
the obstruction the sensors turn themselves on again after the event has passed 

The centralized component is necessary because all the information that 
sensors compute, are registered on a server and all the sensors have access to that 
global database.  

 
 

7.6. Sensor Capabilities 

 
The method proposed has only been tested by different types of simulation, 

but the target is to implement and test this algorithm in practice. In order to do this 
the sensors must have some capabilities: 

• sensors must have a video camera that has an optical focus capacity 
• sensors must have an internal clock 
• sensors must have wireless transmission capacity 

Initially, after deployment, on the lanes of interest, that means on the lanes 
on which the sensors will monitor and register events, a special car will be driven 
that will help at sensors’ calibration. This car will have a known constant speed that 
will emit the code corresponding to the lane it drives on. This car will also have a 
pattern drawn on it (for example two big spots - one color in front and another color 
at the back) in order to distinguish the direction of the lane. So, if a sensor 
recognizes the calibration car driving in its field of view, that sensor will have 
information about the lane and its direction. Furthermore, computing the data 
offered by the calibration car such as the lane, its direction, and also considering the 
velocity of the car, relationships regarding the relative positions between sensors 
can be determined.  

The simplest methods that sensors could use in order to detect the 
calibration car and to recognize its pattern are phase detection and contrast 
measurement. Phase detection is similar with the way eyes form their image. Two 
points are needed and the image is than formed. Contrast measurement is based o 
computing the blur of the image. When the contrast between pixels is maxim, the 
blur is minim, so the image has the best quality. This method is easy to realize and 
the sensor can compute its blur when the calibration car drives in front of it. After 
adjusting its best image for each of the two lanes, it can automatically switch at 
those focus positions according to the lanes that have the vehicles on them. 

 
 

7.7. Algorithm Description 

 
When a sensor is on, it registers in a database all the cars that appear in its 

visual area. More specific, each sensor sends to the database the lane the vehicle is 
on, the speed of the event and the starting and ending points of the segments 
defining the car. The server then computes the properties of each vehicle and if the 
conditions are fulfilled, from separate segments defining particular cars, events are 
formed. If a car is driving at a certain distance from the other cars, that car will 
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form an event by itself and the car the sensor had registered will remain a singular 
event until the conditions will be accomplished and will be coupled with another 
event.  

 If two events are on the same lane and the distance between the events is 
less then dmin (safe distance between cars), the events will be concatenated and the 
result will be one concatenated event. The extremities of the composed event are 
given by the minim and the maxim values on the OX axes from all the unique 
segments that are contained in the compose event.  

 We note f (front) the margin of a segment that has the greatest offset on 
the lane and we note b (back) the margin of the same segment that has the minim 
offset on lane. We consider that the offset is computed on the direction of event 
propagation. In this case we have: 
 

                        ÈÉ S ÊËÌ�È�� � È� = �ÍÉ�������������������������������������������������������������������������������������}Î� 
                      ÏÉ S ÊÐÑ�Ï�� � Ï� = �ÒÉ����������������������������������������������������������������������������������������������Óf�       

where 
 

o Ô̈ �is the front of the event��
o nÔ �is the back of the event,�
o �Ô �is the set of all front segments frontiers,�
o ÕÔ �is the set of all back segments frontiers 

Considering these notations, two events E1 and E2 will be concatenated in 
one of the following situations: 

 
• ÈÉ� Ö ÏÉ×��ØqÈÉ��ÏÉ×t c ØTbn�Tbn�Tbn�Tbn����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Ó&�����ÙÉ� Ö ÙÉ× ���������������������������������������������������������������������������������������������������������������������������Ó$�����

ð ÉÚÏÉ��ÈÉ×�ÙÉ×Û�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Óe�������
 ��������������������������������������������������������������������������������bbbbE&�E&�E&�E&�����������������������������������������ffffE&E&E&E&��������������������������������bbbbE$E$E$E$������������������������������������������������ffffE$E$E$E$��������������������

 
 

• ÈÉ× Ö ÏÉ���ØqÈÉ×�ÏÉ�t c ØTbn�Tbn�Tbn�Tbn����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Óx��ÙÉ× � ÙÉ� �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������Ó}��
ð ÉÞÏÉ×�ÈÉ��ÙÉ�ß������������������������������������������������������������������������������������������������������������ÓÓ������������������

 
 

 �����������bbbbE$E$E$E$������������������������������������������������ffffE$E$E$E$��������������������������������bbbbE&�E&�E&�E&�����������������������������������������ffffE&E&E&E&��
 

E1 E2 

E2 E1 
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• There is one more concatenation situation when a car is on a separate lane and 
it changes he lane, coming into a colon of cars that form an event. In this 
situation the vehicle is just inserted into the event. Nothing else changes due to 
the fact that the extremities of the event remain unchanged. The speed v also 
remains the same because if the vehicle that was inserted into the event had to 
have the same speed as the event in order to be integrated in it. 

Where: 
o E is the new event resulted by the concatenation of the two, 
o d�U�b� is the distance from point a to point b 
o dTbn�is the minimum distance between cars 
The events are concatenated if they are on the same lane and are kept in a 

common database that is available to all sensors (s). The events registered in the 
common database are constantly normalized to the current time tcrt by the 
propagation of the event in time. The propagation is computed on a certain segment 
with respect to the speed v of the event and to the difference in time from the last 
propagation of the same event. We note: 

• aDB the current time of the event in the database 
• aC the current time 
• ¾DB the speed of the event in the database 
• oDB the offset of a segment that is part of the event from a lase. This 

offset is useful at aDB 
 

By normalization we will update the offsets of all segments and in the same 
time the time of the last propagation of the event in the database in order to 
simulate the movement of the event in the database according to its speed v. The 
result will be: 

 
              äåÒæ S äç                                                                                                         (67) èåÒ�æ S èåÒ�� H �äç � äåÒ� é ÙåÒ, � èåÒ�� = �èÉ,                                          (68)    

 
o �Ô is the set of all segments’ offsets from the event 
o �êëæ  is the new current time from the database 
o �êë�æ  is the new offset of the segment from the event 

 
Once an event is registered in the database, for a simulation step, its lane or 

speed will not be modified. If a vehicle that was previously registered in an event is 
noticed outside an event, the situation is updated in the database with respect to 
the new real situation. From this update a modification of the segments’ position in 
the event can appear or it is also possible that the segment is completely removed 
from the event, if the conditions are not fulfilled anymore. In this case it is possible 
that old event to be separated in other two distinct events if the distance condition 
is not respected anymore.  

A separation of a vehicle from an event can take place in one of the 
following situations:  
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1. ì�íîï�ð ñ ì�íîÉ 
 
 
 
 
 
 
                                                                   

         ÁUn`ÁUn`ÁUn`ÁUn`cU_cU_cU_cU_������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ÁUn`ÁUn`ÁUn`ÁUn``¾`a`¾`a`¾`a`¾`a����
 
 

2. Èï�ð S ÈÉ����������������������������������������������������������������������������������������������������������������������ÓÎ� Ùï�ð ò ÙÉ���������������������������������������������������������������������������������������������������������������������%f�   ØqÏï�ð�Èï�ðó�t � Ø��í��������������������������������������������������������������������������������������������%&� 
 
 
 
 
 ������������������������������������������������bbbbcU_cU_cU_cU_----&�������������&�������������&�������������&�������������ffffcU_cU_cU_cU_----&���&���&���&���������������bbbbcU_cU_cU_cU_����������������������������������������ffffcU_cU_cU_cU_��������������������������������������������������������������������������������������������bbbbcU_cU_cU_cU_----&�������������&�������������&�������������&�������������ffffcU_cU_cU_cU_----&���&���&���&������������������������������������ Ø��í����������������������������bbbbcU_cU_cU_cU_����������������������������������������ffffcU_cU_cU_cU_       

 
 e.e.e.e.���� Ïï�ð S ÏÉ���������������������������������������������������������������������������������������������������������������������%$�����Ùï�ð Ö ÙÉ���������������������������������������������������������������������������������������������������������������������%e�����ØqÈï�ð�Ïï�ð0�t � Ø��í��������������������������������������������������������������������������������������������%x�   

Where 
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nd)807 and nd)8ó7 have been noted the cars that are in front and after the 
considered car 

We can distinguish the next possible situations: 
Corresponding to 1. if: 
 

§ d�d�d�d�Èï�ðó��Ïï�ð0���ò��ò��ò��ò�Ø��í�����������������������������������������������������������������%}�����
ð EEEE&&&&����ÚÚÚÚbbbbEEEE��������Èï�ðó��ÙÉÛÛÛÛ�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������%Ó�����������������
ð EEEE$$$$����ÚÚÚÚÏï�ð0�� ÈÉ�ÙÉÛÛÛÛ���������������������������������������������������� ���� ���� ���� ���� �����%%��

 nd)807 and nd)8ó7 have been noted the cars that are in front and after the 
considered car 

We can distinguish the next possible situations: 
Corresponding to 1. if: 
 

§ d�d�d�d�Èï�ðó��Ïï�ð0���ò��ò��ò��ò�Ø��í�����������������������������������������������������������������%+�����
ð EEEE&&&&ÚÚÚÚbbbbEEEE��������Èï�ðó��ÙÉÛ��Û��Û��Û������ ���� ���� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������%Î�����
ð EEEE$$$$ÚÚÚÚÏï�ð0�� ÈÉ�ÙÉÛÛÛÛ���� ���� ���� ���� ���� ���� �����+f���������

 
 

 ����������������������������������������������������������������������������������������������������������������������������������������������������bbbbcU_����������������cU_����������������cU_����������������cU_����������������ffffcU_cU_cU_cU_����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bbbbcU_cU_cU_cU_----&������������&������������&������������&������������ffffcU_cU_cU_cU_----&&&&������������������������������������� Ø��í��������������������������������bbbbcU_H&��������cU_H&��������cU_H&��������cU_H&��������ffffcU_H&cU_H&cU_H&cU_H&�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������bbbbcU_����������������cU_����������������cU_����������������cU_����������������ffffcU_cU_cU_cU_������������������������������������������������������������bbbbcU_cU_cU_cU_----&������������&������������&������������&������������ffffcU_cU_cU_cU_----&&&&����������������������������������������������������������������������������������������bbbbcU_H&��������cU_H&��������cU_H&��������cU_H&��������ffffcU_H&cU_H&cU_H&cU_H&����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� Ø��í����
 

§ d�d�d�d�Èï�ðó���Ïï�ð0���Ö���Ö���Ö���Ö�Ø��í������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������+&���������
the event remains the same with the exception that the segment corresponding to 
the considered car is removed from the event  
 
 
 
 
 
 
 
 

 

 

BUPT



7.7. -  Algorithm Description          103 
 

  

 
 
 
 
 
 
 ����������������������bbbbcU_cU_cU_cU_----&&&&������������������������������������������������ffffcU_cU_cU_cU_----&&&&������������������������������������Ö Ø��í��������������������������������bbbbcU_H&��������cU_H&��������cU_H&��������cU_H&��������ffffcU_H&cU_H&cU_H&cU_H&��� �����������������������������������������������������������������������������bbbbcU_����������������cU_����������������cU_����������������cU_����������������ffffcU_cU_cU_cU_����������������������bbbbcU_cU_cU_cU_----&������������&������������&������������&������������ffffcU_cU_cU_cU_----&&&&������������������������������������Ö Ø��í��������������������������������bbbbcU_H&��������cU_H&��������cU_H&��������cU_H&��������ffffcU_H&cU_H&cU_H&cU_H&����

 
 
b) Corresponing to 2. 

ð EÚbE��fÂ[Eó7�¾õÛ�����������������������������������������������������������������������������������+$��
c) Corresponing to 3. 

ð �EÚbÂ[E07� fõ�¾õÛ�����������������������������������������������������������������������������������+e��
 

 To this event, a new event will be added EæÚbÂ[E� fÂ[E� ¾Â[EÛ corresponding 
to the considered car. 
 If a turned on sensor realizes that it is obstructed in a proportion greater 
than the maximum given obstruction, it is considered that the sensor becomes 
useless and it will turn off. 
 For all the turned on sensors, a coverage analysis is performed and if two 
sensors that are turned on and those sensors are redundant, the sensor that covers 
the less, will be turned off. The sensors that are off will be turned on again if two 
conditions are fulfilled: 

• There is no sensor that has a better coverage that itself that is on and is 
redundant with it 

• It is not obstructed in a greater proportion greater than the limit 
obstruction level by any events registered in the common database 
Due to the fact that the sensors that are turned off, they cannot compute 

their real obstruction with respect to the vehicles that are in front of it. In this case, 
the obstruction will be computed taking into consideration the speed, the position 
and the length of the event. 

A composed event is considered to be obstructing on all its length on the 
road because the spaces between the segments are too small at those speeds and 
the processing capacity of the sensors is too small in order to be able to register 
possible events that are not on the closest lane to the sensor. 

An important concept that is used in managing sensors in the current 
algorithm is redundancy. As we mentioned earlier, two sensors that are redundant 
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cannot be on in the same time. A sensor is considered to be redundant with another 
sensor if they cover the same are in a proportion greater than an established limit. 
This concept is more detailed in our previous work [93].  
 The mathematical model used in simulating the traffic decisions of cars like 
overtaking, speeding or decelerating, etc are the ones we developed and presented 
in [24]. In the current chapter we defined the model that describes traffic also from 
a global view. This way a more accurate simulation based on events and on the idea 
of event propagation is realized. 
 
 

7.8. Performance 

 
 The experiment section shows the efficiency of this algorithm in 
comparison with the algorithm presented in Chapter 3. The current method was 
implemented as a Java program and run on a desktop PC. The algorithms compared 
in this chapter with the presented algorithm are the algorithm from [94], the 
situation where are no algorithms applied and the algorithm where the traffic is 
analyzed at micro level. This means that no composed events are considered. 
 The traffic cases were generated with a generator also implemented as a 
Java program. Traffic was generated according to real situations. The method used 
in simulating traffic is called Monte Carlo simulation. A more detailed description of 
the Monte Carlo simulation that was used can be found in the next chapter. Still it is 
important to emphasize the fact that each Monte Carlo simulation lasted for 1 day in 
order to analyze all traffic situations. The graphics presented below are snapshots of 
the worst situations found. In addition to this, we simulated how the current 
algorithm would work if we considered that sensors have limited battery. We did this 
by allowing the sensors a limited time in which each sensor could be turned on and 
perform traffic surveillance. 

It can be observed in Figure 7.1. that the difference between the case 
when the cars are concatenated forming composed events and when the cars are 
not concatenated and each car is a single event is really small. As expected, when 
events are not composed, the coverage is better due to the fact that sensors turn on 
and off after each single event, meaning after each vehicle. It is important to notice 
that the minimum coverage value in the concatenated events case is 66.303% and 
in the case of single events is 69.363%. 

Figure 7.2. shows the comparison between the performance of the current 
algorithm and the algorithm presented in our previous work [93, 94]. It was 
described the fact that not all sensors are turned on and the reason was shown. In 
the previous algorithm, the maximum number of sensors that were on at a time 
with no redundancy between them was computed at the level of redundancy groups. 

The idea was that the sensors communicated between them in their 
redundancy groups in order to determine which sensor to turn on. Due to the fact 
that in a redundancy group, the distances between the sensors are relatively small, 
the energy spent on communication was not considered to be an issue. 
Furthermore, due to the fact that not all the sensors are on, the best coverage 
situation given by the maximum number of sensors on from each redundancy group 
is considered to be the optimal situation and was calibrated in our previous tests at 
100%. The difference shown in Figure 7.2 comes from the fact that the calibration 
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was computed with respect to the highest coverage value from both sets of data: 
the old algorithm and the new one. 

 

 

        7.1. Comparison between coverage levels with concatenated and no concatenated events 

 

 
 

7.2. Comparison between the proposed algorithm and the old algorithm  

 
 It is obvious that the present algorithm performs much better than the older 
one. This comes from the fact that in the current algorithm, the maximum number 
of sensors that have no redundancy between them at the level of the network is 
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turned on. This means that in the current algorithm, the number of sensors that are 
on at a time is higher and the coverage obtained is better.  
 Both algorithms have to constantly communicate with the central unit in 
order to provide real time data and also to request information about the status of 
the whole network, more in the current algorithm regarding the event prediction 
and in proportion also regarding the sensor management. 
 The comparison between algorithms was realized by normalization to the 
same value. Both algorithms computed their coverage performance and the results 
were normalized with respect to the unique value determined by the total coverage 
given by the network with all sensors turned on.  
 
 

7.9. Prediction Error 

  
 The algorithm presented above is based on prediction. The prediction is 
used to compute the moment an event has passed the obstructed sensor and can 
turn itself on again.  
 The prediction error refers to the situation in which a car is not situated in 
reality where it would have been according to the prediction. The prediction error is 
determined by the fact that the obstructed sensor turned itself off when it became 
unuseful due to the events in front of it and is supposed to turn on when according 
to its prediction, the event has already passed. The error appears if the obstructed 
sensor turns on and the event has not passed its FoV.  
 The prediction errors can have several causes: 
  - when an event has entered the FoV of a sensor, but the event was 
not entirely seen by the sensor and the sensor is obstructed in such a proportion 
that has to turn itself off, the prediction for the event that has just entered its FoV is 
slightly to be accurate because the length of the event was not known by the sensor 
  - when a sensor turned itself off due to obturation by an or several 
events, it predicted their evolution on the lanes, but on the duration of the idle 
period for the obstructed sensor, the events might have split or changed lanes, or 
changed their speed, so the prediction can be altered. 
 

 
 

7.3. Prediction error 
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In Figure 7.3. the prediction error for Monte Carlo simulation of the traffic 
from 9 am, situation presented from the coverage perspective in is shown Chapter 
5. 

 
 

7.10. Conclusion 
 

 The presented algorithms were developed as solutions to traffic surveillance 
using wireless sensors. Both solutions work and are perform well. Between the two 
algorithms there is a tradeoff between coverage and energy consumption. The level 
of energy consumption was not simulated but the remark comes from the fact that 
more requests to the central unit mean more energy consumption. We intend to test 
the two algorithms with respect to their energy consumption to see how big the 
tradeoff between coverage and energy is, but the object of the current chapter was 
to show the coverage performance of the new algorithm and we can conclude that 
the performance is high. 
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8. Monte-Carlo Simulation Of A     
Dynamic Coverage  

 

8.1. Abstract 

 
 This chapter presents the proposed algorithms with their performances. The 
simulations that are performed are realized in accordance with the reality. The 
algorithms that are tested in order to validate their performance are presented as 
pseudo code. The detailed description is done in the previous chapters.  
 As mentioned above, for simulation real case scenarios were used. This type 
of simulation is called Monte Carlo simulation. The simulation performed has a 
mathematical foundation presented in Chapter 8.4. The mathematical model of the 
traffic simulator is described. The model takes into consideration both the saturated 
situation, when the traffic is jammed and also the unsaturated situation, where 
vehicles might travel with their proffered speed. The mathematical model also 
computes the time reaction of the driver, the minimum distance between vehicles 
that is considered to be safe, etc.  
 The simulations are performed in order to present the performance of the 
two algorithms: with and without prediction.  They were also compared with 
LPSolve, which represents the mathematical version of the algorithm, using linear 
programming. The datasets used to perform Monte Carlo simulation were collected 
during some studies.  
 For relevance, tests are performed for different hours of the day to see how 
coverage varies with respect to traffic. 

 
 

8.2. Introduction 

 

 This chapter investigates the benefits of Monte Carlo (MC) simulation in case 
of real-time distributed image acquisition through a wireless video-sensor network. 
The main goal is to prove the dependability of a coverage preservation algorithm 
designed for such kind of networks. The video-sensors provide image acquisition in 
the presence of dynamic disturbances, which obstruct the Field-of-View (FoV) of the 
cameras. The dependability of coverage preservation is not a trivial task to solve 
due to the diversity of dynamic interference in the FoV of the sensors that has a 
huge impact. Thus finding the worst case is a real challenge. One proposed 
algorithm tries to recover the area coverage by computing an optimized set of 
cameras based on redundancy. Another proposed algorithm is using prediction along 
with the redundancy concept. First, the problem is analyzed from a mathematical 

BUPT



8.2. -  Introduction          109 
 

  

perspective. Then, the dependability of the algorithms is proved by experimental 
results through MC simulation. Test cases results consider real measurements from 
a road traffic surveillance system and are presented at the end of the chapter.  
 
 

8.3. Argument  

 
 Real-time data acquisition from broad geographical regions is critical for 
many applications in transportation, infrastructure management, defense, homeland 
security, environmental and habitat monitoring, and agriculture [52, 58, 59, 60, 61, 
62]. In spite of specific nuances, these systems are similar in that they must collect 
huge amounts of metadata, e.g., images, sound, temperature, toxin levels, etc., 
perform local processing, communicate and coordinate with each other through 
wired and/or wireless networks, and collaborate in achieving global and local goals. 
Their complex functionality is also subject to stringent performance and design 
constraints, like hard and soft timing deadlines, sampling and precision 
requirements, communication bandwidth, low power and energy consumption. 
 The problem addressed in this chapter regards the dependability of 
distributed algorithms for optimum coverage preservation in the presence of 
dynamic disturbances, different constraints (e.g. real time requirements – decision 
making) and nondeterministic factors (e.g. quality of communication in the case of 
WSN).  Dependability reveals the degree of confidence the system can offer. Due to 
the fact that these algorithms are of NP complete complexity, they require heuristics 
in order to evaluate their performance. Often, in the evaluation of the algorithms, 
Monte Carlo methods are used in order to get as close to real results as possible.  
 An application that illustrates the problem discussed above is real time field 
of view (FoV) recovery in the presence of dynamic obstacles. To prove the 
dependability of the algorithm we then use a MC simulation. However, the 
dependability of a system is a difficult problem. What we address gets even more 
complex due to the variety of test cases that makes finding the worst case a 
complicated issue. What we try to determine by Monte Carlo simulation is the 
quality of FoV preservation in the presence of dynamic obstacles. Coverage 
preservation is achieved by real-time FoV recovery. A main issue here is the 
problem of dependability considering dynamic obstacles that obstruct the FoV. 
Indeed, they have as a consequence a decrease of coverage. In our previous work 
[94] we proposed a greedy algorithm that recovers in real-time the lost FoV. In this 
chapter we present an improved version of the algorithm and we determine the 
dependability of coverage preservation using MC simulation. We also present the 
pseudo-code for the algorithm presented in Chapter 8. At the basis of the MC 
simulation is a mathematical model for traffic analysis that helps in validation 
process. In order to obtain accurate results regarding the proposed algorithm, the 
MC simulation of the algorithm is also compared with an Integer Linear 
Programming (ILP) solution. As mentioned above, ILP techniques are usually used 
to resolve knapsack problems. In our scenario, we used ILP to determine 
mathematically the sensor management in order to obtain the best coverage by 
maximizing the coverage equation. However, due to scalability problem, the ILP 
solution is not suitable for practical applications. We detailed ILP in Chapter 8.  
 This work presents a method having a good performance in coverage 
recovery. It is then validated using Monte Carlo simulation, a popular method due 
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their close probability of happening in real physical tests. This is why MC is used in 
various applications that include terrestrial or air traffic simulation [63]. Moreover, 
diverse reaction to unpredictable situations like volcano reactions and best plans to 
minimize the damages [71], forest crossing roads [68] and traffic [61] simulation 
are performed using MC. 
 
 

8.4. Coverage Recovery Algorithms 

 

8.4.1. Algorithm Without Prediction 

 

8.1. Activity diagram for the algorithm without prediction
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Figure 8.1. represents the activity diagram of the algorithm without 
prediction. The corresponding pseudo code is presented in Figure 8.3. 
 

 

1.      for (*each camera from set s) { 

2.         *determine the FoV intersection with the road; 

3.         *compute common road coverage; 

4.         if (common coverage > k)  

5.             *add that sensor to s’ redundancy group of 
sensors; 

6.         *sort the s’ redundancy group of sensors descending; 

7.     } 

 
8.2. Pseudo-code for computing the redundancy groups 

 
Each of them then establishes if the degree value of the intersection is 

greater than k. We consider k as the percentage of common useful intersection 
between the FoV of two cameras in order for the cameras to be considered 
redundant. All sensors that satisfy this condition are then added to the initial sensor 
redundancy group. Finally, each redundancy group orders the sensors descending 
with respect to their useful FoV. The pseudo-code for computing the redundancy 
groups is presented in Figure 8.2. Choosing the camera that can best recover the 
lost FoV is resented as a pseudo-code in Figure 8.3.   

 
  

1. if (a car enters in the FoV of a camera s) { 

2.    if (the s looses useful FoV) { 

3.       if (the lost FoV of s > p) { 

4.          *search the first available camera in  

            the redundancy group of s; 

5.          if (the camera is available and is off) { 

6.             *turn it on; 

7.             *set the time when it was turned on; 

8.             *turn s off; 

9.             *set s’ time when it was turned off; 

10.          } 

11.          else if (no camera was found) 

12.                                  *keep s on; 
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13.       }       

14.    } 

15. } 

              
8.3. Pseudo-code for choosing the camera that best recovers the lost FoV 

 
This part is responsible for determining in a dynamic manner the best 

camera that can recover the lost FoV of a neighboring sensor. A sensor S that has 
its useful FoV obstructed in a percentage greater than a threshold p is not 
considered efficient anymore. Therefore the best available camera that can recover 
its FoV is searched in its redundancy group. Sometimes, a camera might not be 
available due to communication problems. This aspect will be explained further in 
the chapter. The camera that recovers the FoV has to be off. This is an important 
condition because the consequence is that for every turned off camera, another 
camera that recovers its FoV is turned on, so the coverage is maintained at a certain 
level. When no available camera is found in the redundancy group, the sensor is 
maintained on even though for the obstruction period its effectiveness is very low. 
In Figure 8.3. at lines (7) and (9) different times are set. This is necessary because 
the purpose is to maintain the coverage as high as possible. It is important to 
mention that in the beginning, after all the sensors compute their redundancy 
groups, only one sensor from each redundancy group remains on the rest being 
turned off. This measure is taken not to overload the communication bandwidth and 
also to prolong the lifetime of the network. From each redundancy group only the 
sensor that has the greatest useful FoV remains on. This situation is considered to 
be the optimal one. After the obstacle that obstructed the FoV of a sensor S has 
passed we want to go back to the optimal configuration. Therefore, if no other 
obstacle appears after one step S will be turn on again. This way, the algorithm will 
always try to reach the optimal sensor configuration and preserves coverage in a 
dynamic way with respect to the unpredictable traffic situations. In this 
implementation we improved the way the algorithm reaches the optimum sensor 
configuration. Indeed, in the previous version of it we only turned on the sensor that 
was turned off due to obstruction if the total coverage obtained this way was greater 
than the present one.  
 
 

8.4.2. Algorithm With Prediction 

 
 The algorithm that implements the concept of prediction also uses 
redundancy. In this case redundancy is used to avoid the case in which two or more 
redundant sensors are on, in the same time. The difference is the fact that if a 
sensor is turned off, the computation of another sensor to be turned on is done at 
the network level.  
 First all the sensors are ordered with respect to the useful FoV determined 
by the intersection between the FoV of the sensor and the road. The sensors are 
then ordered ascending from the sensor with the least coverage. Next, the 
redundancy between sensors is computed keeping on the sensors with better 
coverage. 
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1. for (*all the sensors in the network){ 

2.   *determine the FoV intersection with the road; 
3. *sort the sensors ascending according to their coverage 

4. } 

5. for (*each camera s in the descending order){  

6. *compute s’ redundant cameras from its left, by  

       computing common road coverage with every other sensors; 

} 

 
8.4. Pseudo-code for ordering and computing the redundancy 

 
K represents the percentage of common useful intersection between the FoV 

of two cameras in order for the cameras to be considered redundant. If the useful 
common area of two sensors is greater than k, the sensors are considered 
redundant.  
 Below, in Figure 8.5. is described the process that does the management of 
the sensors turning them on and off. 

The idea for choosing the best sensor is to compute for all the sensors their 
intersection with the road and according to their useful FoV to order them 
ascending. The next step is to turn on all the sensors. Then traverse the list of 
ordered sensors from the end to head and turn off the sensors that are redundant 
with it. In the end the sensors that have the best coverage and are not redundant 
with each other will be on. The rest would be turned off. This is the starting situation 
of the sensors. If an event enters the FoV of a sensor and obturates it, another 
sensor that is off and offers the best coverage among the turned off sensors is 
searched and if it is not redundant with any already turned on sensor, it will be 
turned on. The obturated sensor will be then turned off. It will turn itself on again 
when the event would have passed its FoV according to the prediction. If the event 
has not passed yet, the synchronization of the real position of that event with the 
events database will be realized. 
  

1. *turn on all the sensors 

2. *at each simulation step{ 

3.     *the ascending list of sensors is traversed from the end   

         to the head{ 

4.              if(sensor is on){ 

5.                   *register all events in front of it 

6.                   if(obturated()){ 

7.                         *turn it off 

8.                         } 

9.                   }else{ 

10.                   if(not obturated()){ 
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11.                     if(not right redundant sensor on){ 

12.                         *turn it on 

13.                         } 

14.                     } 

15.                   } 

16.              if(sensor is on){ 

17.                   *turn off its redundant sensors from its      

                      left 

18.              } 

19.     *update all registered events 

20.     *remove from list all energy depleted sensors 

21.     } 

 
8.5. Pseudo-code for choosing the camera that best recovers the lost FoV 
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8.6. Activity diagram for choosing the camera that best recovers the lost FoV 
 Figure 8.5. represents the pseudo code for choosing the best camera 

that recovers the FoV of the obstructed sensors. The case weather there still is 
energy left in the next best sensor that potentially would be chosen for replacement 
is also treated.  
Figure 8.6. shows the activity diagram corresponding to the pseudo code presented 
above.  
 
 

8.5. Mathematical Model for Monte Carlo Simulation 

 
The mathematical model that is presented below computes the degree of 

road occupation with cars and how this degree is influenced by the vehicles’ 
dynamic data. This is important because the number of vehicles influence the 
degree of sensor obturation. 

We consider R = the degree of road fullness with cars (%)  

                    �� = the length of the occupied road segment (m) 

                    
� = the length of the road (m) 

������������������������������������������������������������/ S ��
� ����������������������������������������������������������������������������+x� 
          

The mathematical model considers two cases:  
(a) road saturated with vehicles and  
(b) road unsaturated with vehicles. 

Saturation condition: ��� = ~4��� #K���� � �§������ c #K��gM���                          (85) 

Insaturation condition: ö�� = ~4��� #K��q�� �§�����t ò #K��gM���                           (86) 

Where �§������is the successor of c and #K��gM��� is the minimum distance 

at which c can efficiently respond at any change of the traffic conditions that arise in 

front of c. #K��gM��� depends on a lot of factors like speed, technical status of the 
vehicle, the degree of car charging weight, the road geometry, the status of the 
road and the driver’s driving skills. Technically,  #K��gM��� S <KLK<§<�#K��4L����o4��r���K#����L�§÷o��K<�������4�������o�� 
                 ��4¨¨K��#�L4<K�� 

If we consider ø 1 second the analysis and biological reaction time and 
another 1 second the mechanical response of the car to the driver’s command, we 
obtain #K��gM��� = the distance that is made in 2 seconds: 
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 ���������������������������������������������������������������#K��gM��� ø �d é $                                                 (87)                                                              

Where �d is the speed of the car (m/s). 

At saturation:                     �����������������������������������������
� S��
®� H #K��gM������������������������������������������������������������++� 
                                               

Where 
®� is the length of � (m) 

���������������������������������������/� S I
®�I�
®� H#K��gM���� S � I
®�I�
®� H$�®�� ���������������������������+Î� 
                                                                                        

Observation: R at saturation has a maximum value. 

The lengths of the cars are given by a probability function, ùúûü(l), the 

probability that the car � has the length l, l= jÁ\@>�Á\[¿k. 
��������������������������������������������������������� �ýþ��Á� S &�

* ���������������������������������������������������������������������Îf� 
                                                                                                                                  
due to the fact that the probability integral is computed on the entire probability 
domain. ùúû��Á� is obtained from the real collected data set and can vary with respect 
to the time of day (e.g. at a certain hour, there may me more trucks than cars) and 
to the lane (e.g. on the speed lanes, are more cars than trucks). Considering the 
two variables, we detail (90): ùúû�æ ��Á� a���, where t is the time of day and w is the lane 

number. 
Consider                           
d�r� ���� S �ýþæó7�p�                                                                  (91)  

where 
d is a function that represents the length of a car with respect to the 
probability of that length to be generated on the lane and �ýþæó7�p� is the reverse 

after l of �ýþ�æ �, p has the probability =1 

Sò������������������������������������
d� S�� 
d��r� �����
ª=jl�7k �������������������������������������������������������Î$� 

                                                         
Analogous with the lengths, the speed of the cars are also given by a 

probability function, ��þ��¾� is obtained from the real collected data set and can vary 

with respect to the time of day (e.g. at rush hour, the speed is slower) and to the 
lane (e.g. on the first lane, the speed range is slower than on the second lane called 
the speed lane). 
                                       � ��þ��¾� S &��                                                               (93)
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Considering the two variables, we detail equation (90): ��þ�æ ��¾� a���. 
Consider                           �d�r� ���� S ���þæó7���                                                  (94) 

where �d is a function that represents the speed of a car with respect to the 
probability of that speed to be generated on the lane and ��þæó7��� is the reverse 

after v of ��þ�æ ��¾� a���, has the probability =1 

Sò���������������������������������������������������d� S�� �d��r� �����
ª=jl�7k ����������������������������������������Î}� 

                                
Equation (89) becomes:     

���������������������������������������������������/� S � 
d�r� �����ª
� 
d�r� �����ª H �$� �d�r� �����ª � �����������������������������ÎÓ� 

where r = jf�&k                                          
  

At road insaturation, statistically, we can use a density function for the cars: ¦d�p��that represents the number of cars with length l that exist on the road. This 
function can also vary with respect to the time of day (e.g. at a certain hour, there 
may me more trucks than cars) and to the lane (e.g. on the speed lanes, are more 
cars than trucks). Considering these two variables, we introduce  the detaliation of ¦d�p� as ¦dæ�p� ����. We compose ¦dæ�p� ���� with 
d�r� ���� in order to obtain the 
total loadness of the road: 

 ����������������������������������������/±G S I��
� S � �¦dæ�
d�r� ����� ����
d�r� ������ª 
� ������������������Î%� 
where r = jf�&k                                                      

Equation (97) represents the loadness of the road when it is not saturated. 

For a better understanding, we can consider a simple example; p=0.3 and for 
p=0.3 we can consider 
d�f.e� �l��l�=4 m and ¦dæ(4,��l��l) = 20 cars => the surface 

of the road occupied by cars that have a probability p=0.3 is ��ª�l.1 = 4*20 =80 m. 
 
 

8.6. Monte Carlo Simulation Description 

 
We used Monte Carlo to simulate a real situation and to test the performance 

of the proposed algorithm. The author of [109] offers a study regarding the 
distribution of types of cars (vehicles and trucks) on lanes together with their 
speeds during 24h. The differentiation of vehicles first is done only in two categories 
– cars and trucks. The study than gives a more detailed approximation regarding 
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the lengths of the cars and the lengths of the trucks, also on lanes and on a day 
duration. For the simulation, those data were collected, processed and used for 
providing a real situation for simulating the Monte Carlo method. For correct data 
processing, [110] and [111] were also used. 

The performed simulation was made on a road with 2 lanes per direction. 
The factors considered are the types of the vehicles (cars/trucks), the number of the 
lanes with the remark that trucks have a much better probability to be on the first 
lane and cars have a much better probability to be on the speed lane, according to 
collected data. Vehicles have the possibility to overtake other vehicles on the lanes. 
The speeds and the distribution on lanes are faithful to the collected data only for 
the initial simulation step on lanes. When a vehicle enters the road that corresponds 
to the probability of the collected data that closely follows the real scenario, it has a 
certain speed, also corresponding to the real scenario. We called this speed 
prefferedSpeed, in order to be able to simulate closely the real traffic scenario. So, if 
we presume that we have vehicle M1 on lane 1 driving with the speed v1 
(prefferedSpeed) and at some point it gets closely to another vehicle M2, driving 
with the speed v2 (prefferedSpeed), v2<v1, M1 will try to overtake M2. In order to 
do this, M1 checks to see the distance between its current position and the closest 
car behind and before it on lane 2. If the distance is sufficient it changes the lane 
and continues to drive with its prefferedSpeed until the first lane is free again. If the 
second lane is not free, M1 decelerates, and drives with the speed of M2 until it can 
overtake M2 and continues driving with its desired speed. Another remark is that a 
car cannot get closer to another car that is under certain limit computed from the 
driving manual and that gives enough time to observe an unpredicted event and to 
react to that event. The pseudo-code is presented in Figure 5.7 

There is a tiny difference from changing the lane from lane1 to lane2 and 
changing the lane from lane2 to lane1. A vehicle can change the speed lane (lane2) 
to the first lane only if it doesn’t have a car in front that has a slower speed. The 
purpose of this condition is to avoid overtaking on the right side of the car. This 
situation is solved by the fact that all cars from the speed lane constantly try to 
come back to the first lane if the condition regarding the distance between cars 
allows it.  

The cars represent the dynamic obstacles that interfere in the useful FoV of 
the sensors and opturates the sensors, point in which the other algorithm for 
coverage preservation does its job.  

 
 
                  

(1) if(M1 is on lane1){  

(2) if(the prefferedSpeed of M1< prefferedSpeed of M2) { 

(3)     if(the distance between M1 and M2 > minDistBetweenCars) { 

(4)            *check if lane2 is free; 

(5)               if (lane2 is free) 

(6)                  *M1 changes the lane to lane2; 

(7)                  } 

(8)               else { 

(9)  

(10) *M1 decelerates until it has the speed of M2; 
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(11)                  *M1 gets closer to M2 until distBetweenCars =  

                            minDistBetweenCars; 

(12)                  *when lane2 is free, M1 changes the lane to   

                            lane2;   

(13)                  if(M1 changed the lane to lane2) 

(14)                       *the speed of M1 = its preferredSpeed;  

(15)                       } 

(16)               } 

 
8.7. Pseudo-code for changing from lane 1 to lane 2 

 
 

8.7. Monte Carlo Simulation 

 
The experimental process exposed in this chapter regards several platforms 

and algorithms that are combined and compared. The new version of the algorithm 
was implemented as a Java program and run on a home desktop. This version of the 
algorithm is composed by three distinct algorithms: the one presented in Chapter 3, 
the implementation of another algorithm that computes the FoV loss, without taking 
any action regarding sensor management, and the LP-solve algorithm. The latter 
was developed also in Java. We have modeled the algorithm by writing equations for 
each constraint, for example from each redundancy group, only one sensor remains 
on, or another example can be the restriction that for each sensor that is turned off 
due to obstruction, another sensor is turned on, instead, etc and by maximizing the 
coverage equation. These equations represent the mathematical model of the 
algorithm and were solved by LP-solve, that was included in our Java program. 

Monte Carlo simulation was also developed as a Java program and run 
together with the algorithms above on the same home desktop PC. MC simulation 
was developed from its mathematical model, presented in Chapter 8.4. and was the 
basis for all the algorithms because it provided them real test cases and real traffic 
behavior. The data that were collected from reality were processed and then 
represented as distributions in an .xml file. We have chosen representing the data 
as distributions due to the large quantity of data collected in a day’s time. There 
were a lot of tests performed. For example, one test was to run MC simulation for 
one day, in order to get through all densities and to detect all possible anomalies 
that can appear. The tests were performed for a road for which data traffic was 
gathered in studies [109, 110]. The resulted file is huge because the data regarding 
coverage was collected every 0.5 second. It was time demanding to analyze the 
resulting file, and for space reasons we will present only the most representative 
snapshots from that file. In order to be convinced by the validity of the results, 
considerable many parts of the simulation were run up to 3 times more. The 
simulation that lasted 1 day was performed for the proposed improved algorithm. 
Due to scalability reasons of LP-solve, this algorithm was run only for the snapshots 
mentioned above in order to compare the efficiency of the proposed algorithm for 
coverage preservation in the presence of dynamic disturbance. 
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Figure 10.8. represents a simulation portion from the 1 day simulation, run 
separately, but with the same data corresponding to the exact period of day. It can 
be observed that the proposed algorithm is close to ILP algorithm as performance. 
ILP is the best because it mathematically computes which sensor to turn on in order 
to have the best overall coverage. The major disadvantage of ILP is its scalability. 
The algorithm was modeled with ILP, as well, to prove the dependability of our 
algorithm. The traffic distribution has a Gauss curve with its peak at lunch break 
hour, but close also at 16:00 hour. It is important to observe that if no sensor 
management is performed, the difference can be up to 20%. 

Figure 10.9. shows a frozen simulation step from 8:00 a.m. In the presented 
tests, the configuration of the sensors remains the same, 12 sensors arranged like 
in Figure 8.9., but only 4 active at a time. The number of active sensors at a time is 
established by the condition that from each redundancy group, only the sensor that 
has the best coverage is kept on. The active sensors change at each simulation 
step, as described in Chapter 8. MC analysis results showed that the average 
number of cars at 12 o’clock present on the road varied between 6-9. 

 

 
8.8. Coverage preservation for traffic monitoring at 8:00 a.m. 

 

8.9. Road situation at 8:00  
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8.10. Road situation at 9:00 with and without prediction 

 Figure 8.10. represents the coverage determined with the first algorithm, 
without prediction ad with the prediction algorithm at 9 am. The traffic is higher 
than at  8 am due the fact that in most of the places, work starts at 9am. The 
differences between the algorithms come from the fact that in the case of the 
algorithm without prediction the best sensor to replace the obstructed one is chosen 
from the redundancy group. This corresponds to finding a maximum in a local. In 
the case of the algorithm with prediction the best sensor to recover the coverage is 
searched at the network level. Both algorithms perform well, but the algorithm with 
prediction performs even better than the other one. 
 For all the encountered situations used for simulation, between the 
minimum number of cars and jam situation, the results of the coverage variation for 
the proposed algorithm without prediction was kept around 7% with respect to ILP, 
which is considered optimal from mathematical point of view.  
 

 
 

8.11. Coverage variation for traffic monitoring at midday 
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8.12. Coverage variation for traffic monitoring at midday 

In Figure 8.11. is the situation presented also in Figure 8.10. with the 
difference that we showed the performance of the of the prediction algorithm also 
compared with LPSolve. It can be seen that the prediction algorithm is better even 
then LPSolve that mathematically computes the best sensor to be turned on. Still, as 
explained above, LPSolve, as well as the algorithm without prediction uses the 
concept of redundancy groups of the obstructed sensor to choose another sensor for 
replacement. 

Figure 8.12. represents the coverage preservation situation at midday. The 
remark is that for midday (Figure 8.12.) and for 16:00 o’clock, we had to enlarge 
the interval in which we collected data at 1.5 seconds from 0.5 seconds due to ILP 
scallation. In these cases the number of cars that are on the road is considerably 
higher and the computation was slower. The test scenario remained the same. 
Figure 8.13. shows a picture from road midday situation. It is obvious that the 
number of cars has a great impact on coverage. This case scenario is taken during 
the lunch break. While the case where no algorithm management is applied, the 
coverage dropped under 30%, while the proposed algorithm kept the coverage level 
above 50%. If no algorithm is applied, no sensors will turn on to replace the 
obstructed ones.  

 

8.13. Road situation at 12:00 
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8.14. Coverage variation for traffic monitoring at 4 pm 

In order to prove the dependability of the proposed algorithm, we ran 
different test scenarios in which different sensor arrangement was considered. The 
experiments section presented the worst case found. At different simulation sensor 
arrangement scenarios, the presented case remained the one presented in Figure 
8.14.  
  
 

8.8. Conclusion 

 
This chapter proposes to prove the dependability of real-time dynamic 

coverage preservation algorithm considering the presence of undeterministic 
disturbances using MC simulation. The goal is to minimize the FOV loss of the 
cameras due to dynamic obstacles by identifying the best set of additional cameras 
that can compensate for the loss. The set is identified under the timing and 
sampling constraints of the application and with the objective to reduce the utilized 
resources. As wireless communication can be unreliable, the availability of a camera 
is also considered. The dependability of the algorithm was proven by the reliable 
tests that were made in which the proposed algorithm was compared with its ILP 
model that mathematically determined the best solution for coverage preservation. 
The proposed method was simulated using the MC technique that showed that in the 
worst case, almost at saturation, the coverage is maintained above 50% with the 
minimum of resources used. 

The algorithm is fast and scales well for large number of cameras and 
monitored vehicles. It is useful for reliable data acquisition over extended periods of 
time, including video image collection for traffic monitoring applications. This 
chapter proved its dependability. 
 The performance of the prediction algorithm was also presented and 
compared with the algorithm mentioned above as well as with LPSolve. The 
performance of the algorithm with prediction taking coverage as the metric is the 
best.  
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9. Coverage Variance When Sensors Have 
Limited Energy 

 
 

9.1. Abstract 

 
 The performances of the algorithm with prediction and of the algorithm 
without prediction are presented in this chapter. The sensors can be divided into two 
categories: with and without rechargeable batteries. The performance of the 
algorithms that have unlimited amount of energy is presented in the above 
chapters. The performance of the sensors that have limited amount of energy is 
presented in this chapter. The algorithms perform well from both the coverage 
perspective as well as from the lifetime of the network, as seen in Figure 9.1.  
 The performance of the algorithm with prediction is better in the first part, 
but the algorithm with redundancy groups is better in the second part after sensors 
start to remain without battery. The reason for this is that the algorithm with 
prediction can use more sensors at a time between which redundancy is 0 and for a 
turned off sensor more sensors can be turned on at the network level while the 
algorithm without prediction uses redundancy groups and the algorithm turns on 
sensor from the redundancy group of the obstructed sensor. As a result the 
distribution of the turned on sensors can be better at this algorithm.  
 Both algorithms perform well but each has its advantages and 
particularities. Choosing one instead of the other one depends on the purpose of the 
application. 

9.2. Coverage Variance  

 
 Wireless sensors can be of two types: they can have rechargeable batteries 
or they can have batteries that die after a while.  

The performance of the proposed algorithms was realized in the above 
chapters for sensors that have unlimited amount of energy.   

In this chapter we present the performance of the proposed algorithms: the 
one using redundancy groups and the prediction one from the energy perspective, 
showing how these algorithms are capable to offer good coverage performance 
while also prolonging the lifetime of the network.  
 For the simulation performed no particular type of sensor was used due to 
the fact that the battery chosen for the network can vary. The idea used was to 
establish an amount of time (that in our simulator can set) that represents the time 
the sensors can be on. After this time, the battery of the sensors is considered to be 
finished.
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9.1. Coverage variance considering limited energy 
  
 Figure 9.1. presents the coverage variance for the two algorithms if the 
sensors have limited amount of battery.  
 The results are interesting. In the tests performed above (see Figures 7.1., 
7.2., 8.10., 8.11.), the prediction algorithm always performed better than the 
algorithm without prediction. In Figure 9.1 it can be observed that in the first part, 
the prediction algorithm performs better, but in the second half, the algorithm using 
redundancy groups performs better. The explanation is the fact that in the first part, 
for both algorithms, sensors have energy and the performance of the prediction 
algorithm is better, as shown in previous chapters. As presented at the algorithms 
description at both algorithms if they have energy resources, the best sensors are 
used, so the algorithm performance is their best. After energy starts to finish those 
sensors are replaced by other sensors that do not perform as well as did the ones 
that consumed their battery. The performance of the algorithm without prediction is 
better in the second part due to the fact that the algorithm tries to turn on sensors 
from the redundancy group of the sensor that drained its battery, so the algorithm 
tries to turn on sensors from each redundancy group and as a result the algorithm 
offers as good coverage as possible along the entire road. The second algorithm 
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with prediction performs better in the first part where the energy is not an issue, 
but after the energy starts to finish, the coverage recovery is weaker due to the fact 
that more sensors are used at a time, sensors that give a better coverage in the 
first part.  
 It is obvious in Figure 6.1 that the decrease is in steps. The steps come from 
the fact that at each moment the best sensors are used and when they become 
unuseful, the network tries to replace them, but the only sensors that still have 
energy are the less performant ones.  
  
 

9.3. Conclusion 

 
 This chapter presents the performance of the proposed algorithms for the 
sensors have limited amount of energy. The algorithms perform well and by using 
only certain sensors at the time, the lifetime of the network is prolonged. If there 
would be no algorithm for sensor management applied, the network would have 
lived until the first decreasing step, around simulation step 360. Each of the 
algorithms has advantages and disadvantages. Choosing the algorithm for the 
network depend on the purpose of the application. If the resources are unlimited, 
the algorithm with prediction performs better, but if the resources are limited, the 
overall coverage of the algorithm without prediction that uses redundancy groups is 
better.  
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10. TRAFFIC BEHAVIOR SIMULATOR 
SIMULO 

 
 

10.1.  Abstract 

 
This chapter begins by presenting the traffic behavior aspects that are 

implemented and also shows the impact that several variations have upon coverage. 
For example the number of speedy cars and the value of the minimum distance 
between cars were varied in order to determine the influence upon coverage. 

A thorough study about the existing simulators is then described and the 
motivation for developing a new simulator is explained. Next, the description of our 
simulator, Simulo is presented. Simulo integrates both micro and macro simulation. 
Besides this, Simulo closely simulates the real traffic rules that imply overtaking, 
acceleration, deceleration, coming on the first lane if it is free, etc. All these rules 
are applied depending on the type of human driving, presented in the next 
subchapter. The mathematical background for the simulator is the one presented in 
Chapter 8. Conclusions are drawn at the end. 

 
 

10.2.   Traffic Behavior 

 
This chapter presents the influences of the driving manner upon coverage 

determined by both algorithms. In traffic drivers have behave differently. In our 
work we divided the behavior into normal behavior and speedy behavior. The 
simulator acts different if the vehicles’ behavior is speedy. The differences are first 
of all the speed that is significantly higher than the normal average speed. Also 
besides the speed, if the simulator determines that a vehicle is speedy, it allows that 
vehicle to overtake on the right side, if a minimum safe distance between cars 
allows it. Moreover, for speedy vehicles, the simulator also adjusts the minimum 
distance between cars by reducing it with 20% from the normal distance between 
cars applied at normal behavior.  

The simulation driving behavior capabilities will be presented in the final 
thesis. Still, to make an idea, the simulator follows pretty closely the real behavior. 
Each vehicle enters the road with a certain speed on a certain lane. That speed is 
called preferred speed. If the vehicle is on the second lane and the first lane is free, 
it automatically switches lanes. If a vehicle has a car in front that is slower, it 
decreases its speed and drives at the safe distance from the car in front. If it can 
overtake the car, it does that and then if possible comes back on the first lane, 
trying to accelerate until it reaches its preferred speed.  

Vehicles are also divided into cars and trucks. Trucks are not allowed to 
exceed a certain speed limit. 
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When tested on different
and without prediction) show very good stability. The test cases included variations 
of percentage of speedy cars, between 20
between cars 7-13 m. For testing we used the c
for the sensors. 

The metric used was total coverage (TC): 
 

where :  
• TC – total coverage
• C(t) – coverage at moment t
• t0 – simulation starting time
• tf – simulation ending time, when no energy is left at any sensor

 
 

10.1. Coverage variation for algorithm without prediction
 

The results show a maximum variation of about 2% for both algorithms. 
There is no noticeable difference between the performances of the algorithms. 
 The variation is more dependent of the parentage of speedy cars than of the 
minimum distance between cars. The cause is related to the acquisition and 
processing time of the sensors, so as the car speed increases, the senor analysis 
quality decreases.
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.1. Coverage variation for algorithm without prediction 

The results show a maximum variation of about 2% for both algorithms. 
There is no noticeable difference between the performances of the algorithms. 

The variation is more dependent of the parentage of speedy cars than of the 
minimum distance between cars. The cause is related to the acquisition and 
processing time of the sensors, so as the car speed increases, the senor analysis 
quality decreases.
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The results show a maximum variation of about 2% for both algorithms. 
There is no noticeable difference between the performances of the algorithms.  

The variation is more dependent of the parentage of speedy cars than of the 
minimum distance between cars. The cause is related to the acquisition and 
processing time of the sensors, so as the car speed increases, the senor analysis 
quality decreases.
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10.2. Coverage variation for algorithm with prediction
 

 

10.3. Inroduction

 
Vehicular Ad-Hoc Networks (VANET) represent a growing area of interest due 

to the large number of vehicles on the roads. Traffic rises many issues due to jams, 
time spend in traffic, pollution, accidents, etc. The studies regarding traffic flow are 
of much need in order to provide more safety on the roads
accidents by introducing or synchronizing traffic lights. The implementation of such 
a system and more over adjusting its parameters until it reaches its goal can be 
really expensive. That is the main reason for 

There is quite number of traffic simulators specific for the purpose of
design: simulators for urban traffic, simulators for highways, simulators for car 
crashes. Each simulator has certain 
can be divided into two categories: simulators for micro traffic or simulators for 
macro traffic. Micro traffic simulation 
while macro traffic simulation refers 
micro traffic simulation is presented [112
two of them like VanetMobiSim
sensors on vehicles and they can provide at each
information. The drawback is that this is performed dynamically, so the information 
are from different parts of the road depending on the position of the vehicle. 
VanetMobiSim simulator 
into account the vehicles’ 
modeled. The author of [1
Mainly it studies the reaction time of the driver if different factors interfere in the 
usual traffic flow.  
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Inroduction 

Hoc Networks (VANET) represent a growing area of interest due 
to the large number of vehicles on the roads. Traffic rises many issues due to jams, 

pollution, accidents, etc. The studies regarding traffic flow are 
need in order to provide more safety on the roads, to reduce the number of 

accidents by introducing or synchronizing traffic lights. The implementation of such 
a system and more over adjusting its parameters until it reaches its goal can be 

ve. That is the main reason for simulating traffic.  
number of traffic simulators specific for the purpose of

simulators for urban traffic, simulators for highways, simulators for car 
Each simulator has certain specific facilities.  From one perspective t

two categories: simulators for micro traffic or simulators for 
Micro traffic simulation refers to simulation at the level of vehicles, 

while macro traffic simulation refers to the flow of the vehicles. One example of 
fic simulation is presented [112]. There are simulators that combine the 

like VanetMobiSim [113]. The idea used for this simulation is to put 
sensors on vehicles and they can provide at each time both micro and macro traffic 

drawback is that this is performed dynamically, so the information 
are from different parts of the road depending on the position of the vehicle. 
VanetMobiSim simulator uses graphs in order to simulate traffic and does not take 

vehicles’ length. Also, in this simulator human behavior is not at all 
The author of [114] presents a study regarding human driving behavior.

it studies the reaction time of the driver if different factors interfere in the 
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Hoc Networks (VANET) represent a growing area of interest due 
to the large number of vehicles on the roads. Traffic rises many issues due to jams, 

pollution, accidents, etc. The studies regarding traffic flow are 
, to reduce the number of 

accidents by introducing or synchronizing traffic lights. The implementation of such 
a system and more over adjusting its parameters until it reaches its goal can be 

number of traffic simulators specific for the purpose of their 
simulators for urban traffic, simulators for highways, simulators for car 

specific facilities.  From one perspective they 
two categories: simulators for micro traffic or simulators for 

refers to simulation at the level of vehicles, 
One example of 

There are simulators that combine the 
The idea used for this simulation is to put 

time both micro and macro traffic 
drawback is that this is performed dynamically, so the information 

are from different parts of the road depending on the position of the vehicle.  
raffic and does not take 

Also, in this simulator human behavior is not at all 
] presents a study regarding human driving behavior. 
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Table 10.1 Comparison of mobility generators [117] 

 
When talking about simulators, some general characteristics should be 

mentioned besides the degree of generalization they perform (micro/macro 
simulation). 

• if the simulation is comprehensive or not- whether it simulates all traffic 
situations or not 

• the type of analysis - what inputs they accept and how general or adapted 
to specific situations these data is 

• what type of statistical data are generated 
• what kind of decisions can be taken after analyzing the results 
• the type of analysis the simulator performs 
• what type of calibration has to be performed in order for the simulation to 

be performant 
• if it allows intersection simulation 
• if it allows multiple lanes on the same direction 
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• if it allows traffic lights, barriers 
• if the simulator is capable of recording a simulation in order to repeat itif 

plug-ins are allowed in order to add new functionalities 
• what is the output of the simulation: images, files, movies 
• what type of license does the simulator have 
• how it emulates the collection of real data 
• can new sensors be added to the simulator 
• what data can be varied in the simulator 

 
Two most used simulators that are used for traffic simulation is 

VanetMobiSim [115] and SUMO [116]. SUMO is a well known simulator, but a major 
drawback is that it does not save the current traffic situation so that the exact 
simulation to be used again in order to perform comparisons between the 
performance of different algorithms. Also, human behavior is not modeled. 

Moreover, as seen in Table 10.1, only FreeSim is capable of Lax macroscopic 
simulation, needed to simulate events, but its major drawbacks in comparison with 
Simulo are the fact that it does not support the simulation of different types of 
vehicles and it does not have multilane roads.  
 
 

10.4. Simulo description 

 
 In this thesis we propose a new simulator, Simulo. This simulator has a 
mathematical foundation described in Chapter 10.4. The functionality of Simulo is 
presented next. 

The configuration (the input) is loaded from a XML file. The simulation 
options are specified in this file and they regard: 

• lanes with physical coordinations, lane id, neighbor lanes from right and 
left side if the case:  
 
<lane id='1' x0='80' y0='100' x1='350' y1='100' right='0' 
ms='70'> 
 
Attribute Description 
id the unique identifier of the lane 
x0,y0 the starting point of the lane (m,m), considered at the 

middle of the lane’s height. The direction of the cars on 
this lane are from its starting point to its end point.  

x1,y1 the ending point of the lane 
right the id of another lane, if that lane is to the right of the 

current one, in the sense that a vehicle could change this 
lane to the one on the right 

left if there is another lane to the left 
ms maximum speed 

 
Table 10.2 Lane attributes 
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• a lane contains one or more probabilistic vehicle distributions, grouped 
on types of vehicles (car, truck), each of them having the name of the 
type, the minimum and maximum length of the vehicle and the 
corresponding percentage of fleet: 
 
<cartype name='car' lmin='3' lmax='5' pof='98'> 
 
Each vehicle type has two probability distributions: 

o the density, that determines the number of vehicles that appear 
in the system starting with a specified hour:  
 
<stat name='density' type='linear' dataset='a' > 
 

o the velocity that determines the speeds of the vehicles that 
enter the system 

 
<stat name='speed' type='linear' dataset='p' > 
 

Attribute Description 
name the specific distribution 
type interpolation used between distribution’s 

reference points  
dataset a=absolute values for the ordinate  

p=percentage values for the abscissa 
 

Table 10.3 Vehicle attributes 
 

Every statistic (stat) uses reference points, having on abscissa 
values like hour or speed and on ordinate a probabilistic value (in 
absolute or percentages), like number of cars or speed percentage: 

 
   10.3 Distribution example 
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According to the empirical data, collected by [109,110,111] there are 
mainly two types of distributions:  

• linear - used for noncontinuous variations of the traffic flow, 
like: changing traffic lights, intersections, many people getting 
out of work, etc. All these are step variations in the density of 
the traffic flow, best approximated with linear interpolations 
between reference points.  

• spline  -  used for continuous variations of the traffic flow, like: 
traffic variance between different hours when no external 
factors are interfering and there are no intersections or traffic 
lights, forming of car columns, etc 
 

The probability distributions are conceived to be flexible and to accept 
more probability functions. Currently the multisegment distribution is 
implemented. More segments are specified and are interconnected in 
given points.  

o for density, “x” represents the hour of the day and “y” 
represents the number of vehicles at that hour.  

o for velocity, “x” represents the speed and “y” represents the 
percentage of vehicles that have that certain speed 

• a sensor is defined by its coordinates, the bisector line with respect to 
the horizontal line, minimum and maximum communication and 
obstruction penalty. The wildness of the sensors is global and is given in 
the program: 
 
<sensor x='100' y='90' a='30' minCommPen='0' 
maxCommPen='100' minObtPen='0' maxObtPen='80'/> 
 

Attribute Description 
x,y coordinate of the sensor (m,m) 
a angle of the sensor median with the world’s abscissa 
minCommPen, 
maxCommPen  

minimum and maximum percentage of communication 
penalty 

minObtPen, 
maxObtPen 

minimum and maximum percentage of obturation 
penalty 

 
Table 10.4 Sensor attributes 

 
Due to the fact that other values like sensor type or wildness are the 
same for all sensors, they are given with the other global settings. 
 

• other specifications that can be made in the XML file concern global 
settings: 
 
<set lanewidth='6' newcarmintime='1' scenewidth='360' 
timeoffset='28800'  speedycars='20' carmindist='10' 
alg="predict" /> 
 

Attribute Description 
lanewidth width of a lane (m) 
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newcarmintime minimum time before a new car is put on a lane (s) 
scenewidth width of the scene (m); the height is automatically 

computed to respect the proportion of the 
visualization window 

timeoffset the starting offset time of the simulation, from 0:00 
(s) 

speedycars percent of speedy cars 
carmindist minimum distance between cars 
alg algorithm to be run:  

- lps - LPSolve 
- alg1 - algorithm without prediction 
- predict - algorithm with prediction 

 
Table 10.5 Global attributes 

 
• in order to be able to repeat a scenario, it can be specified if the cars 

can appear according to the probabilistic distributions or can be loaded 
from a file representing the data from a  previous simulation. 
 

 
 

10.4 Simulo XML file example 
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At each simulation, the vehicles can be loaded from a presaved file, or they can 
be generated (according to the above probabilistic distribution) and in that case 
they are saved in a file for the possibility of being used in the future for diverse 
algorithms comparison using the same data sets. 

All the coordinates are given in physical units that are then translated into 
screen coordinates. 

In Figure 10.1. a XML file example is presented. On the second line it is 
shown that the simulation will load an existing file 1013, generated at a previous 
simulation. 

  
§ The simulation part consists of an object World that contains all the objects 

that intervene in simulation: vehicles, lanes, sensors, algorithms (derived 
from WorldObject) 

§ At each simulation step, for each WorldObject the methods process and run 
are called. They are responsible for the computation of the different aspects 
and for their display and are given as parameters the simulation current 
time, the time, the time interval from the last simulation step and the 
graphic drowing context. Each WorldObject also has an z-order, necessary 
for treating objects in a certain order. For example, the vehicles are 
processed after the lanes, so the lanes not to be drawn over the vehicles 
and hide them. 

§ In the simulator besides the physical objects there is an object Alg, that has 
different virtual aspects, for example the computation of the global 
situations that are related to the interaction between more objects and not a 
specific object (standby mode) and also related to the statistics 

§ The senors also have settings for minimum time intervals in which they can 
change their state (minSwitchDeltaTime). The sensors are displayed with 
green when they are on and with yellow when they are turned off, each 
sensor having specified its own id. 

§ The vehicles also have acceleration that can be negative, as well and 
respects the driving rules by the fact that they tend to always come back on 
the lane from the right. If a slower car appears in front, its velocity is tested 
to be slower and if the overtaking is possible. If it is not possible, the vehicle 
will reduce its own speed. In jam situation, the cars will keep a minimum 
distance between them. The lane changing cannot be performed too often, 
under a given interval. Each vehicle has a preferred speed and if from 
different reasons, it had to slow down, it will have the tendency to regain its 
preferred speed. The preferred speed is given by the distribution speed for 
its class of vehicles. For a nice visualization, the vehicles also have different 
colors, randomly chosen by the system and they also have displayed their id 
and speed.  

§ World also has methods for the management of simulation objects, for 
example a vehicle, after it exits the lane, it is erased from the simulation. 

§ The algorithms can change by changing a constant that specifies the current 
algorithm 

§ The mathematical part and the analytical - geometrical one is separately 
implemented and has functions for the computation of intersections, 
lengths, angles, coordinates, etc 

§ The statistical reporting part is conceived to save in a CSV format, for each 
set of values, being specified the current time and the value. The saving 
step is given by a constant and the system, when it saves the data for a 
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certain moment, computes between all the values from the last given 
interval and makes a range (the values are received at each simulation step, 
steps that can be more often than the step of results saving). 

 
 
 

10.5. Conclusion 

 
This chapter presented the description of Simulo, the proposed simulator used to 
determine the efficiency of the proposed algorithms. It is shown the need for 
developing and implementing a new simulation tool by a thorough study of the 
existing traffic simulation tools. Simulo has the possibility of simulating both micro 
and macro simulation, can save a simulation and reload the data to simulate the 
same traffic in order for the algorithm comparison to be accurate. The simulator has 
also the possibility of performing Monte Carlo simulation due to the fact that it loads 
XML files where data can be specified on hours and with respect to the probability of 
appearance for each event. Furthermore, Simulo is capable of simulating some 
human traffic behavior characteristics. 
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11. Conclusion. Contributions. Future Work 

  
 

11.1  Conclusion 

 
 
The thesis is divided into two parts. The first part refers to metrics used in 

wireless sensor networks. A detailed background of the metrics used in different 
types of applications that use WSN are described such as deployment metrics, 
coverage metrics, and energy saving metrics. The importance of metrics resides in 
the modality of determining the applicability area of the algorithms, in the 
comparison between algorithms, and in determining the resources necessary for the 
implementation of the algorithms. At the end of the first part, the proposed metrics 
are presented as a contribution. The proposed metrics correspond to two areas: 
metrics estimation for uncovered surfaces and paths and the second area Metrics for 
determining the influence of an algorithm for energy saving applied in the case of 
deployed and scattered sensors. Each of them has several metrics. 

 The second part refers to performance efficient algorithms for data collection 
in wireless sensor networks. It begins also with a solid state of the art regarding the 
algorithms used in WSN especially in target tracking. The issue raised is that at 
traffic surveillance vehicles can pass unnoticed if the sensors that are supposed to 
notice them are obstructed by other vehicles. The solutions proposed make use of a 
new concept, redundancy. Using redundancy two main algorithms were proposed for 
performant efficient data collection in wireless sensor networks. The management of 
the sensors used in the proposed algorithms turn sensors on and off, so the 
efficiency to be the high. Both algorithms have as metric coverage and also the 
prolonging the lifetime of the network. Both algorithms perform well for coverage as 
well as for prolonging the lifetime of the network.   

 One important aspect regarding the proposed algorithms is that the FoV 
recovery is performed dynamically. If a vehicle enters the FoV of a sensor and 
obstructs it, another sensor will be searched at the level of redundancy groups for 
the algorithm without prediction and at the network level for the algorithms with 
prediction. This way we manage to accomplish and maintain good coverage while 
keeping the minimum sensors on, still being the network able to realize a good 
coverage. From the algorithms perspective the minimum sensors that are on means 
the maximum number of sensors between which there is no redundancy. The goal is 
to minimize the FOV loss of the cameras due to dynamic obstacles by identifying the 
best set of additional cameras that can compensate for the loss. The set is identified 
under the timing and sampling constraints of the application and with the objective 
to reduce the utilized resources. The FOV loss changes dynamically depending on 
the traffic conditions. As wireless communication can be unreliable, the availability 
of a camera is also considered in the report. For the algorithm without prediction, 
two heuristic methods employ different cost functions for selecting the additional 
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cameras used for FOV loss recovery were implemented. The cost functions are 
based on a new stochastic model for traffic monitoring, including the dynamics of 
mobile obstacles, unreliable communication, and resolution and timing constraints. 
The first cost function, Parameter Weighted Contribution (PWC), addresses 
deterministic situations by capturing the trade-off between the quality of recovery 
and the imposed timing constraints. PWC expresses the utility of a camera in FOV 
loss recovering, the available resources of a camera, and the capability of 
recovering multiple FOV losses of neighboring cameras. The second cost function, 
called Expected PWC (EPWC), addresses unreliable networks, such as wireless 
connections. EPWC extends PWC by incorporating the probability of a node to 
participate in FOV loss recovery, including the chances of the camera being 
obstructed by obstacles, experiencing data loss during communication, and other 
cameras used in the covering solution being also available.  

 In the case of the second algorithm the concept of events was introduced. 
An event is formed by several vehicles between which the distance is less or equal 
with the allowed minimum distance between vehicles, so no collision to appear. 
Events form and are split dynamically with respect to the dynamics of vehicles. In 
this algorithm another new concept is introduced. This algorithm makes use of 
prediction. We use prediction to determine the moment an event will pass the FoV 
of a certain sensor. This aspect is important because if a sensor that has the best 
coverage in its surrounding is obstructed by an event and turned off and after the 
event passes if this sensor is not turned on again, the loss recovery will be done by 
sensors less performant from the FoV perspective. In our case, each sensor can 
compute the moment the event is supposed to leave the FoV of the sensor and if 
the prediction is accurate, that sensor probably will turn on again in order to redo 
the coverage at the network level.  

 Prediction is a concept that also has the possibility of failing. The cases when 
the prediction is not accurate have several causes: at the beginning of the network, 
when the length of the events is not yet known or if an event splits or unites with 
another event. In these cases the prediction fails. It was shown that the prediction 
varies between 0 and 4%, which is an insignificant percentage.  

As mentioned above, an event is formed by consecutive vehicles that are on 
the same lane, drive in the same direction and the distance between them is less or 
equal to the minimum distance allowed for collision free. If an event is formed, it 
will be seen by the sensors as a hole obstacle that obturates its FoV. It was also 
shown in the experiments that that the useful FoV representing the minimum 
distance between vehicles is negligible.  

The performance of the algorithms shows that both algorithms perform well. 
The coverage is maintained almost permanently over 80%. They were tested using 
Monte Carlo simulation. Real data sets were used in order to obtain as close to 
reality results as possible. The data sets used were taken from a study for roads 
paving and it implied the division of vehicles into cars or trucks, their distribution on 
lanes as well as their speeds at different hours.   

The mathematical model for traffic behavior was. The tests were performed 
taking into consideration multiple variations such as factors of human behavior 
presented in the last chapter.  

The algorithms have a solid mathematical background and they were 
validated by articles, journal and also by tests performed with LPSolve that 
mathematically computes the optimal solution. Even though LP solve performes 
well, it cannot be practically implemented because it uses maximization of equations 
that need a lot of resources and it would imply the use of expensive sensors. 
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Choosing one algorithm over another depends on the specific application. If 
the sensors have rechargeable batteries, the algorithm with prediction performs 
better due to the fact that it uses the concept of global maximums when choosing 
the best sensor to be turned on. The algorithm without prediction is better if the 
sensors have limited amount of energy because it makes use of local maxims, at the 
level of redundancy groups when choosing the sensor to recover the lost FoV. The 
advantages of each algorithm were showed and explained by test cases and results. 
 The simulations presented in this thesis were realized by a simulator, 
Simulo, which we implemented. The need of developing a new simulator came from 
the fact that the license free existing simulators do not offer the simulation 
possibilities needed in this thesis. Simulo is capable of performing both micro and 
macro simulation and also to implement several human behavior characteristics 
such as time response to an event, speedy drivers and also most of the driving 
aspects like overtaking on the left side for usual vehicles and on both sides for 
speedy drivers, coming back on the first lane if it is free, etc. The simulator is also 
capable of registering the simulation performed so that a comparison between 
algorithms with the exact test data sets to be possible. Furthermore Simulo is 
capable of simulating traffic flow specific for each lane, with different speeds, 
lengths, type and colors for each vehicle.  
 The overall idea of the thesis is that two performance efficient sensor 
dynamic management algorithms for data collection in the presence of obstruction 
in a WSN were proposed. They have solid mathematical background and were 
tested with a proposed simulator, Simulo, using Monte Carlo simulation. The 
algorithms proved their performance also by an important number of publications. 
 
 

11.2 Report Contributions 

 
 

This report has contributions on two directions: theoretical and practical 
contributions: 
  

1. Theoretical:  
 

•   The proposed metrics quantify in a good manner the 
researched area and represent the basis for a thorough analysis  
 

•   An analysis of existing traffic monitoring algorithms  
 

•   Mathematical background for the algorithm without prediction 
 

•   Mathematical background for the algorithm with prediction  
 

•   New algorithm for efficient traffic surveillance without 
prediction, using redundancy groups 
 

•   New algorithm for efficient traffic surveillance with prediction,   
using event prediction 
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•   Mathematical model for traffic simulation 

 
•   Algorithms performance from energy efficiency perspective   

(prolonging the lifetime of the network) 
 

•   Algorithms that offer coverage stability in the presence of 
dynamic obstacles  
 

•   The dynamical approach with the real time consideration of the 
different special situations that might appear (like the 
interruption of sensor communication or the energy depletion) 

 
• By Monte Carlo Simulation, that represents the basis of the 

proposed traffic model, a certain empirical situation is generated 
according to some thorough developed mathematical models. 
This way a mathematical model, well researched both theoretical 
and practical that covers a large area of specific phenomena to 
the researched area is developed.   

 
2. Practical: 

•   The implementation of the simulation framework Simulo  
•   The flexibility of the testing framework with respect to different   

traffic scenario and human behavior 
•   The processing of the data from the study in order to have real 

testing scenarios  
•   The automation of the simulation phase and post processing 

tasks  
•   The exemplification of real problems with suitable solutions 

 
 

11.3 Future Work 

 
 
 Future work concerns both the development of the algorithms and also 
further development of Simulo. 
 One major work for the future is to implement the proposed algorithms into 
practice and compare the simulation results with the practical ones. Another aspect 
that shall be further developed is the dynamic adaptation of the network in case 
new sensors are added to the existing network. Furthermore, the performance of 
the algorithms in case the shape of the sensor changes, for example, circular 
sensors or radar sensors. 
 Regarding Simulo, further development implies introducing the possibility of 
testing traffic flow if on the lanes are different speed limits for certain areas or 
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traffic lights. Also, at this moment Simulo is collision free, but the idea is to develop 
it to be able to also simulate collisions.  
 Also, at the network level, an important development would be have the 
possibility to dynamically add new sensors and these sensors to be immediately 
recognized by the network and also used by the algorithm that runs on the network.  
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