
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Şerjg ElECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 1, 2004

Hardware implementation of CMAC based artifîcîal
network with process control application

Tiham6^SândorBRASSAI '^ Lâszlo D Â V I D \ Lâszlo BAKO^^

Abstract - T h e cerebellar model articulation controller
(CMAC) is often uscd in learning control and has
become especially popular in the areas of robotics and
control wbere the real-time capabilities of the network
are of particular importance* In this paper a CMAC
based adaptive controller software implementation and
siraulation are discussed with application in process
control. The implementation process of the controller
on digital reconfigurable hardware is also mentioned.
Experimental results are given with controller software
simulation results in a trajectory following application.
Keywords: CMAC, Neural networks, FPGA, Hardware
implementation

I. INTRODUCTION

Great interest has been manifested lately in the
utilization of adaptive modeling and control, based on
biological structures and leaming algorithms.
Control systems need to have high dynamic
performance and robust behavior. These controllers
are expected to cope with complex [1], uncertain and
nonlinear dynamic processes. It is difficult to obtain a
mathematical representation of uncertain and
nonlinear dynamic processes that impose an
intelligent modeling and control. ICs are generally
self-organizing or adaptive and are able to cope with
signifîcant changes in the plant and its environment,
while satisfying the control requirements. Intelligent
modeling and control are advantageous if the leaming
schemes generate local continuous nonlinear
mappings so that the desired fijnction can be
represented over local regions. The network's output
is represented as an overlapping local mapping, each
of them allowing local adaptation. These locally
generalizing networks are universal approximation
schemes as they can approximate any continuous
nonlinear function to any desired degree of accuracy.
A CMAC type controller was experimented in
software and implemented in hardware. To achieve
high control performance the weights were updated

using the principie of minimal disturbancc and not the
standard gradient descendent rules.

II MODEL ARCHITECTURE

The leaming module (Fig. 1) is used to model the
process directly, rcceiving the applied control signal.
The error beUveen the model and the measured plant
output is used as a feedback signal and these are
passed to the leaming controller (LC).

Reference
Signal (r)

Plant
Output

Fig 1: Internai model control.

The used configurations represent an intemal model
control architecture as it is shown on Fig. 1 (LC-
leaming Controller, r-reference signal; u-control
signal). Any associative type memory networks are
generally used for funcţional approximation tasks. AH
of these networks can be represented as a three-layer
system with:

normalized input spacc
basis functions
weight vector and network output.

For the normalized input space a partitioning strategy
was used (input lattice) based on optimal
displacement tables from [2]. The basis functions are
Gaussian type defmed on normalized input space and
their size and overlap determine how the network
generalizes the input space.

Teaching assistant at "SAPIENTIA" Hungarian University of Transylvania, P-ţa 1 randafirilor nr. 61 Tg.-Mureş, Romania,
nha@ms.sapientia.ro

PhD student at 'TRANSILVANIA" University of Braşov, Romania
Professor al "SAPIENŢI A" Hungarian University of Transylvania, Tg.-Mureş, Romania
Teaching assistant at "SAPIENTIA" Hunganan University of Transylvania, 1 g.-Mureş, Romania
PhD student at "TRANSILVANIA" University of Braşov, Romania

209
BUPT

mailto:nha@ms.sapientia.ro

In the present paper a CMAC type AMN controller
was used, built in an adaptive form. Three-
dimensional normaiized space is the receptive field of
this ANN. The input space is with:

error of reference, difîerence bet̂ A'een the current
position and reference position for the trajectory;
speed of current position, difference in position
in t\v'o neighbor time momentum;
acceleration for the current position in order to
define a lattice on the input space, a set of 3
known vectors is given, one known vector for
each input axis.

These known values give the positions of the 2
dimensional planes. The set of all planes generates the
lattice in the input space. It was incorporate a priori
knowledge about this tacking problem into the
network design with the position of knots for each
axis.
The hidden layer is represented by a set of local basis
functions wich are defined on the 3 dimensional
rectangle bounded lattice. The number of non-zero
basis flinction for an input vector (generalization
parameter) is a constant and it was experimented to
have the value from 4 to 10 (overlays) with 10-30
internai point for every input dimension. These values
were experimented and the mentioned values gave
enough accuracy in testing. The number of
generalization parameter or number of overlays must
be optimal because of on-line leaming procedure. If
the internai point is higher the leaming is more local.
For a less number of internai points the controller
forgot more quickly the controlling information leamt
in last phases.
The local generalization wich occurs in the CMAC is
uniquely determined by the iniţial nonlinear mapping,
as each basis flinction has associated with it a support,
the number of overlays specifies the number of basis
flinctions that contributes to the network output but
determines the size of their supports. In order to
achieve smooth local generalization the overlays are
displaced relative to each other to have a uniform
projection onto each of input axes. The sets of
adaptive parameters (weight vector) are trained in
order to achieve a desired behavior.

III. HARDWARE IMPLEMENTATION

The hardware implemented CMAC type controller
was developed on a Spartan II XC2S50 FPGA
reprogrammable digital hardware with 50kGate wich
had to satisfy the following properties:

to provide a way to introduce the controller
parameters, the basis flinction, the iniţial weight
values, the trajectory reference signal generated
onaPC
to implement the leaming algorithm
to elaborate the control signal from the reference
signal and the plant current position
to ofTer the possibility to save the network
weights for a later utilization

We proposed the following schematic bloc
diagram wich contains the necessary elements to
satisfy the needs wich was mentioned before.

PC
FPGA

Weight
processing Unit

FPGA
Intemal

PC Data
Input

Output
Unit

FPGA
Intemal

^ w
Data
Input

Output
Unit \ r

RAM

Data
Input

Output
Unit

Output
evaluation unit

Fig. 2: Hardware implemented Cmac type controller block diagram

The Cmac type hardware implemented controller
is composed of the following components:

• FPGA Data input-output unit which heips in
data transfer from and to PC

• weight processing unit in which the leaming
algorithm is implemented (weight correcting
algorithm)

• output evaluation unit. (Control evaluation
unit) In this module the CMAC controller is
implemented and this module elaborates the
control signal.

Controller internai logic implementation:
The weight and basis function extraction unit extracts
the weights vector and Basis function value vector
from the RAM memory - according to the inputs -
and stores them in the Weight vector and basis
function value vector registers. The arithmetic unit
has the role of multiplying the weights with the
corresponding basis function values. It calculates the
controller output by summing these intermediate
values. The weight processing unit is responsible for
weight correction (leaming). All these units are
synchronized by the Control Unit.

Fig 3 Controller internai logic implementation

At the other side, on the PC te following software
modules were implemented:
• a communication module for data transfer from

PC to FPGA
• Simulated process (which contains the system

model, and trajectoiy generator)
• CMAC implementation initialization
The FPGA reprogrammable digital hardware is
connected to the PC through the parallel port. To test

210 BUPT

the hardware controller \ve used a simulated process
implemented on PC in C-^, using a discrete model
identification.

IV. THE SIMULATION PHASES

When designing the CMAC based controller on the
PC we have to define ţhe following parameters:

• number of inputs,
• number of overlays,
• number of internai points,
• the inputs limit,
• the utilized basis flinction.
The basis ftmction was built on the PC and

calculated in a few points. The basis flinction values
were transferred in the FPGA RAM. Wc chose to
implement the basis flinction in this form because it
gave us more possibilities to evaluate the controller
behavior with different basis flinctions.
After the CMAC type controller has been designed,
the controller structure will be transferred to the
FPGA over the PC parallel port, with sf>ecial software
package provided by hardware manufacturer. At this
stage the Output evaluation module, and weight
processing unit are built in the FPGA, while the
weight vector also has to be transferred using the Data
Input Output Unit and stored in RAM module on the
FPGA prototyping board
The trajectory generator program runs on the PC,
program wich was utilized in software simulated
CMAC based controller with minor modifications. In
fact at this point the controller is initialized, and is
ready to start the simulation.
The trajectoiy generator calculates the next reference
point. From this point and from the current position of
the DC motor an error reference, the speed of current
position, and the acceleration of the current position,
are calculated and then transferred over the data
output-input unit to the Output evaluation unit. The
Output evaluation unit produces the next command
wich is applied over the Data Input output units to the
simulated Process. The weight processing unit, in
wich is implemented the leaming algotithm, corrects
the weights corresponding to inputs in that moment,
using the error reference.
The error reference will defme the magnitude, and
direction which will be used in weight correcting and
leaming process. It has to be mentioned, that VHDL
language and the Webpack6.1 software were used in
hardware implementation, provided by the FPGA
manufacturer. As an error detection tool we used a 34
channel logic analyzer, which proved to be invaluable
help throughout the hole design process.
One of the problems that had occurred during the
hardware implementation was the fact, that we were
running out of available logic gates when the number
of overlays and internai points grew higher, forcing us
to reoptimize the control unit and the weight
processing unit In the fliture we propose to change
the simulated process to a real process, in which case
the FPGA will be directly connected to the real

proccss, The controller will be programmed from a
PC, and the weight and controller structure can be
saved in a FPGA internai FLASH memory, while the
controller can be disconnected from PC.
In the following section we present several
experimental results obtained with the software
implemented CMAC type controller.

V. EXPERIMENTS

In these experiments three different type of generated
trajectories were used: a random type, a sine-curve
and a triangular type reference trajectory. The CMAC
controllers for two different actuators were used in
sequence (serial command), each with its prescribed
component of fmal trajector>.
The used CMAC controller has an input vector with
three components, five overlays for an accurate
generalization, the universe of ever}' input is devised
into fifteen divisions, and the optimal overlay
displacement vector was (1,2,4) [2]. The basis
functions were of Gaussian [4,5] type in every
experiment. The command signal is limited and the
experiments were made with different leaming rate
(Ir) and different discretization period for the control
loop. In the following flgures we present experimental
results, where the thick line represents the difference
between the prescribed trajectory and the leamed
following path. The thin line represents the prescribed
trajectory and the dashed line is the leamed following
path.

Fig. 4. Random type sine curve at the beginning of the simulation
lr=001

Fig 5. Random type sine curve after 1000 iteration of the
simulation

211
BUPT

-20
i 51 101 151 201 251 301 351

Fig 6. Random type sine curve after 4000 iteration of the
simulation lr=0.01

Fig. 4,5,6 were extracted from the same simulation,
and they show how the error between the reference
trajectoiy and the followed trajectory decreases.
Immediately after the start of the simulation (Fig. 4)
the error is huge, because the CMAC type controller
doesn't have any information about control led
process. After 1000 and 4000 iteration it is easily
visible how the follow error decreases.

120 T-

100

Fig 7. Random type sine curve at the beginning of the simulation
lr=0.9

In both Fig. 4 and Fig. 7 the simulation it's presented
from the start, the only difFerence between the two are
the different leaming rate values. One can easily
observe, that in Fig. 7, where a bigger leaming rate
(lr=0.9) has been applied the trajectory foilowing is
better after a few iteration then in Fig. 4 with lr=0.01.

Fig. 9. Sine curve at the beginnmg of the simulation (2000 iteration)
IrO.Ol

Fig. 9. show a simulation result of 2000 iterations
when the reference trajectory was a sine curve.
Approximately after 1000 iterations the system can
follow the reference signal with a good accuracy.

Fig 10. Triangular reference at the beginning of the simulation
(2000 iteration) lr=0.01

-150

Fig. 11. Random type sine curve at the beginning of the simulation
(4000 iteration) 1t=0.9

Fig. 12 presents a sine curve reference. Because the
leaming rate was small, the follow error decreases
slowly. In the next figure, the difference is, that we
have a triangular reference signal a small leaming rate
at beginning, then - during the time of the simulation -
the leaming rate was modified from 0.01 to 0.9, fact
wich can be seen in the last part of simulation.

Fig 8 Sine cur\'e at the beginning of the simulation (400 iteration)
lr=0.01

212 BUPT

Fig 12. Sine curve reference simulation (2000 iteration) lr=0 01

The wcighls of CMAC networks were initialized lo
random values at the beginning of every test. As it is
known, the leaming process is local (not every weight
is modifîed at each step), and in this experiment the
leaming rate coefficient was modified and an extra
module type coefficient was introduced in relation of
weight update. The time axis for Fig. 4-9 represcnt a
400 iteration interval in simulations and Fig 10-13.
represent 2000 iterations. The trajectory following
performance is strongly dependent on the leaming
rate (Ir) and the weight updating. The system has
good performance in the situation of load disturbance.
The vvhole software package was elaborated in

150 -

- 1 0 0 ^

-150 - -

Fig. 13. Triangular reference simulation (2000 iteration) (lr=0.01 at
beginning, lr=0.09 at finish)

Fig. 3-12 show difTerent measured situations,
comparing the prescribed trajector>' and the actual
trajectory with CMAC controller. It is necessary to
mention that the CMAC system had no any iniţial
information and the on-line training process assured
the following of the prescribed path with an
acceptable dynamic.

REFERENCES

[11 Junhong, N Dcrek, A L . Fuzzy-Neural Confrol. Frentice Hali,
1995

[2J BroNVTi. M. Hams C, Neurofuziy Adaptive Modclmg and
CoAi/w/,Prentice Hali, 1994
[3] Astrom, K.J. Wittenmark, B. Computer ControlledSystems,

Prentice Hali, 1990
[4] Horvâth Gâbor. Ne uralis hâlozatok es muszaki olkalmazâsok,

MQegyetemi kiadb, Budapest, 1998
[5] Ching-Tsan Chiang. CS4AC with General Basis Functtons,
Neural Networks, Voi. 9 No. 7, 1996, pp.l 199-1211
[6] T.P. Trappenberg, Fundamenials of Computaţional
Neuroscience, Oxford University Press, 2002.

213
BUPT

