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Hardware implementation of CMAC based artifîcîal 
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Abstract - T h e cerebellar model articulation controller 
(CMAC) is often uscd in learning control and has 
become especially popular in the areas of robotics and 
control wbere the real-time capabilities of the network 
are of particular importance* In this paper a CMAC 
based adaptive controller software implementation and 
siraulation are discussed with application in process 
control. The implementation process of the controller 
on digital reconfigurable hardware is also mentioned. 
Experimental results are given with controller software 
simulation results in a trajectory following application. 
Keywords: CMAC, Neural networks, FPGA, Hardware 
implementation 

I. INTRODUCTION 

Great interest has been manifested lately in the 
utilization of adaptive modeling and control, based on 
biological structures and leaming algorithms. 
Control systems need to have high dynamic 
performance and robust behavior. These controllers 
are expected to cope with complex [1], uncertain and 
nonlinear dynamic processes. It is difficult to obtain a 
mathematical representation of uncertain and 
nonlinear dynamic processes that impose an 
intelligent modeling and control. ICs are generally 
self-organizing or adaptive and are able to cope with 
signifîcant changes in the plant and its environment, 
while satisfying the control requirements. Intelligent 
modeling and control are advantageous if the leaming 
schemes generate local continuous nonlinear 
mappings so that the desired fijnction can be 
represented over local regions. The network's output 
is represented as an overlapping local mapping, each 
of them allowing local adaptation. These locally 
generalizing networks are universal approximation 
schemes as they can approximate any continuous 
nonlinear function to any desired degree of accuracy. 
A CMAC type controller was experimented in 
software and implemented in hardware. To achieve 
high control performance the weights were updated 

using the principie of minimal disturbancc and not the 
standard gradient descendent rules. 

II MODEL ARCHITECTURE 

The leaming module (Fig. 1) is used to model the 
process directly, rcceiving the applied control signal. 
The error beUveen the model and the measured plant 
output is used as a feedback signal and these are 
passed to the leaming controller (LC). 

Reference 
Signal (r) 

Plant 
Output 

Fig 1: Internai model control. 

The used configurations represent an intemal model 
control architecture as it is shown on Fig. 1 (LC-
leaming Controller, r-reference signal; u-control 
signal). Any associative type memory networks are 
generally used for funcţional approximation tasks. AH 
of these networks can be represented as a three-layer 
system with: 

normalized input spacc 
basis functions 
weight vector and network output. 

For the normalized input space a partitioning strategy 
was used (input lattice) based on optimal 
displacement tables from [2]. The basis functions are 
Gaussian type defmed on normalized input space and 
their size and overlap determine how the network 
generalizes the input space. 
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In the present paper a CMAC type AMN controller 
was used, built in an adaptive form. Three-
dimensional normaiized space is the receptive field of 
this ANN. The input space is with: 

error of reference, difîerence bet̂ A'een the current 
position and reference position for the trajectory; 
speed of current position, difference in position 
in t\v'o neighbor time momentum; 
acceleration for the current position in order to 
define a lattice on the input space, a set of 3 
known vectors is given, one known vector for 
each input axis. 

These known values give the positions of the 2 
dimensional planes. The set of all planes generates the 
lattice in the input space. It was incorporate a priori 
knowledge about this tacking problem into the 
network design with the position of knots for each 
axis. 
The hidden layer is represented by a set of local basis 
functions wich are defined on the 3 dimensional 
rectangle bounded lattice. The number of non-zero 
basis flinction for an input vector (generalization 
parameter) is a constant and it was experimented to 
have the value from 4 to 10 (overlays) with 10-30 
internai point for every input dimension. These values 
were experimented and the mentioned values gave 
enough accuracy in testing. The number of 
generalization parameter or number of overlays must 
be optimal because of on-line leaming procedure. If 
the internai point is higher the leaming is more local. 
For a less number of internai points the controller 
forgot more quickly the controlling information leamt 
in last phases. 
The local generalization wich occurs in the CMAC is 
uniquely determined by the iniţial nonlinear mapping, 
as each basis flinction has associated with it a support, 
the number of overlays specifies the number of basis 
flinctions that contributes to the network output but 
determines the size of their supports. In order to 
achieve smooth local generalization the overlays are 
displaced relative to each other to have a uniform 
projection onto each of input axes. The sets of 
adaptive parameters (weight vector) are trained in 
order to achieve a desired behavior. 

III. HARDWARE IMPLEMENTATION 

The hardware implemented CMAC type controller 
was developed on a Spartan II XC2S50 FPGA 
reprogrammable digital hardware with 50kGate wich 
had to satisfy the following properties: 

to provide a way to introduce the controller 
parameters, the basis flinction, the iniţial weight 
values, the trajectory reference signal generated 
onaPC 
to implement the leaming algorithm 
to elaborate the control signal from the reference 
signal and the plant current position 
to ofTer the possibility to save the network 
weights for a later utilization 

We proposed the following schematic bloc 
diagram wich contains the necessary elements to 
satisfy the needs wich was mentioned before. 
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Fig. 2: Hardware implemented Cmac type controller block diagram 

The Cmac type hardware implemented controller 
is composed of the following components: 

• FPGA Data input-output unit which heips in 
data transfer from and to PC 

• weight processing unit in which the leaming 
algorithm is implemented (weight correcting 
algorithm) 

• output evaluation unit. (Control evaluation 
unit) In this module the CMAC controller is 
implemented and this module elaborates the 
control signal. 

Controller internai logic implementation: 
The weight and basis function extraction unit extracts 
the weights vector and Basis function value vector 
from the RAM memory - according to the inputs -
and stores them in the Weight vector and basis 
function value vector registers. The arithmetic unit 
has the role of multiplying the weights with the 
corresponding basis function values. It calculates the 
controller output by summing these intermediate 
values. The weight processing unit is responsible for 
weight correction (leaming). All these units are 
synchronized by the Control Unit. 

Fig 3 Controller internai logic implementation 

At the other side, on the PC te following software 
modules were implemented: 
• a communication module for data transfer from 

PC to FPGA 
• Simulated process (which contains the system 

model, and trajectoiy generator) 
• CMAC implementation initialization 
The FPGA reprogrammable digital hardware is 
connected to the PC through the parallel port. To test 
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the hardware controller \ve used a simulated process 
implemented on PC in C-^, using a discrete model 
identification. 

IV. THE SIMULATION PHASES 

When designing the CMAC based controller on the 
PC we have to define ţhe following parameters: 

• number of inputs, 
• number of overlays, 
• number of internai points, 
• the inputs limit, 
• the utilized basis flinction. 
The basis ftmction was built on the PC and 

calculated in a few points. The basis flinction values 
were transferred in the FPGA RAM. Wc chose to 
implement the basis flinction in this form because it 
gave us more possibilities to evaluate the controller 
behavior with different basis flinctions. 
After the CMAC type controller has been designed, 
the controller structure will be transferred to the 
FPGA over the PC parallel port, with sf>ecial software 
package provided by hardware manufacturer. At this 
stage the Output evaluation module, and weight 
processing unit are built in the FPGA, while the 
weight vector also has to be transferred using the Data 
Input Output Unit and stored in RAM module on the 
FPGA prototyping board 
The trajectory generator program runs on the PC, 
program wich was utilized in software simulated 
CMAC based controller with minor modifications. In 
fact at this point the controller is initialized, and is 
ready to start the simulation. 
The trajectoiy generator calculates the next reference 
point. From this point and from the current position of 
the DC motor an error reference, the speed of current 
position, and the acceleration of the current position, 
are calculated and then transferred over the data 
output-input unit to the Output evaluation unit. The 
Output evaluation unit produces the next command 
wich is applied over the Data Input output units to the 
simulated Process. The weight processing unit, in 
wich is implemented the leaming algotithm, corrects 
the weights corresponding to inputs in that moment, 
using the error reference. 
The error reference will defme the magnitude, and 
direction which will be used in weight correcting and 
leaming process. It has to be mentioned, that VHDL 
language and the Webpack6.1 software were used in 
hardware implementation, provided by the FPGA 
manufacturer. As an error detection tool we used a 34 
channel logic analyzer, which proved to be invaluable 
help throughout the hole design process. 
One of the problems that had occurred during the 
hardware implementation was the fact, that we were 
running out of available logic gates when the number 
of overlays and internai points grew higher, forcing us 
to reoptimize the control unit and the weight 
processing unit In the fliture we propose to change 
the simulated process to a real process, in which case 
the FPGA will be directly connected to the real 

proccss, The controller will be programmed from a 
PC, and the weight and controller structure can be 
saved in a FPGA internai FLASH memory, while the 
controller can be disconnected from PC. 
In the following section we present several 
experimental results obtained with the software 
implemented CMAC type controller. 

V. EXPERIMENTS 

In these experiments three different type of generated 
trajectories were used: a random type, a sine-curve 
and a triangular type reference trajectory. The CMAC 
controllers for two different actuators were used in 
sequence (serial command), each with its prescribed 
component of fmal trajector>. 
The used CMAC controller has an input vector with 
three components, five overlays for an accurate 
generalization, the universe of ever}' input is devised 
into fifteen divisions, and the optimal overlay 
displacement vector was (1,2,4) [2]. The basis 
functions were of Gaussian [4,5] type in every 
experiment. The command signal is limited and the 
experiments were made with different leaming rate 
(Ir) and different discretization period for the control 
loop. In the following flgures we present experimental 
results, where the thick line represents the difference 
between the prescribed trajectory and the leamed 
following path. The thin line represents the prescribed 
trajectory and the dashed line is the leamed following 
path. 

Fig. 4. Random type sine curve at the beginning of the simulation 
lr=001 

Fig 5. Random type sine curve after 1000 iteration of the 
simulation 
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Fig 6. Random type sine curve after 4000 iteration of the 
simulation lr=0.01 

Fig. 4,5,6 were extracted from the same simulation, 
and they show how the error between the reference 
trajectoiy and the followed trajectory decreases. 
Immediately after the start of the simulation (Fig. 4) 
the error is huge, because the CMAC type controller 
doesn't have any information about control led 
process. After 1000 and 4000 iteration it is easily 
visible how the follow error decreases. 
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Fig 7. Random type sine curve at the beginning of the simulation 
lr=0.9 

In both Fig. 4 and Fig. 7 the simulation it's presented 
from the start, the only difFerence between the two are 
the different leaming rate values. One can easily 
observe, that in Fig. 7, where a bigger leaming rate 
(lr=0.9) has been applied the trajectory foilowing is 
better after a few iteration then in Fig. 4 with lr=0.01. 

Fig. 9. Sine curve at the beginnmg of the simulation (2000 iteration) 
IrO.Ol 

Fig. 9. show a simulation result of 2000 iterations 
when the reference trajectory was a sine curve. 
Approximately after 1000 iterations the system can 
follow the reference signal with a good accuracy. 

Fig 10. Triangular reference at the beginning of the simulation 
(2000 iteration) lr=0.01 

-150 

Fig. 11. Random type sine curve at the beginning of the simulation 
(4000 iteration) 1t=0.9 

Fig. 12 presents a sine curve reference. Because the 
leaming rate was small, the follow error decreases 
slowly. In the next figure, the difference is, that we 
have a triangular reference signal a small leaming rate 
at beginning, then - during the time of the simulation -
the leaming rate was modified from 0.01 to 0.9, fact 
wich can be seen in the last part of simulation. 

Fig 8 Sine cur\'e at the beginning of the simulation (400 iteration) 
lr=0.01 
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Fig 12. Sine curve reference simulation (2000 iteration) lr=0 01 

The wcighls of CMAC networks were initialized lo 
random values at the beginning of every test. As it is 
known, the leaming process is local (not every weight 
is modifîed at each step), and in this experiment the 
leaming rate coefficient was modified and an extra 
module type coefficient was introduced in relation of 
weight update. The time axis for Fig. 4-9 represcnt a 
400 iteration interval in simulations and Fig 10-13. 
represent 2000 iterations. The trajectory following 
performance is strongly dependent on the leaming 
rate (Ir) and the weight updating. The system has 
good performance in the situation of load disturbance. 
The vvhole software package was elaborated in 
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Fig. 13. Triangular reference simulation (2000 iteration) (lr=0.01 at 
beginning, lr=0.09 at finish) 

Fig. 3-12 show difTerent measured situations, 
comparing the prescribed trajector>' and the actual 
trajectory with CMAC controller. It is necessary to 
mention that the CMAC system had no any iniţial 
information and the on-line training process assured 
the following of the prescribed path with an 
acceptable dynamic. 
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