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Abstract - An efTicient implementation of a Distributed 
Speech Recognition (DSR) on a Digital Signal Processor 
(DSP) platform is shown. Although complying with the 
European Telecommunications Institute (ETSl) DSR 
standard, feature extraction and data compression 
enhancements are added, in order to address three 
issues: computaţional speed of the signal analysis 
process, reliability of the representative signal features, 
and low channel bandwidth utilization, when 
transmitting the speech features. A series of tests and 
simulations are provided, in order to show the 
functionality of the proposed system. 
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L INTRODUCTION 

Portable devices (such as PDAs- Personal Digital 
Assistant and mobile devices) have become very 
popular nowadays. Since the size of these devices is 
becoming smaller and smaller, their manipulation by 
traditional means (i.e., keyboard, touch-screen) can be 
cumbersome. Therefore, the idea of using speech 
recognition to control portable devices is natural. 
However, these devices are fitted with low computing 
power processing units, and with low amounts of 
memory also. This is why speech recognition, which 
is a computaţionally very demanding task cannot be 
implemented on such devices in a straightforward 
manner. Previous trials of speech recognition system 
implementations on DSPs (which fit mobile devices) 
have been pursued [2], but the results were rather 
poor: connected word recognition of a small 
vocabulary (100 words). But in order to interact with 
portable devices in a more natural way, this is not 
enough: continuous speech recognition of a large 
vocabulary (1000 words) is much more appealing. In 
order to accomplish this task, the idea of Distributed 
Speech Recognition has emerged a few years ago; it 
eventually attained a slandardized description, in 2003 
[1]. However, the standard specifies only parts of the 
entire DSR system: the feature extraction block 
(called front-end), which includes a speech 

parametrization module, a voice activit> detcction 
(VAD) module, and a pitch extraction module. The 
standard also specifies the techniques for voice 
reconstruction, at the server side (called back-cnd). 
Although several implementations of the ETSI DSR 
standard are known, some issues are still intensively 
studied: the robustness of the DSR system to the 
channel penurbations and variabilities, more 
specifically. to additive distortions (channel noise) 
and convolutive distortions (channel frequency 
response). These issues can be basically addressed in 
two ways: robustness of the back-end speech 
recognition enginc itself, and specific signal 
processing techniques: echo cancellation, spectral 
equalization. 
Our paper proposes an alternative approach: 
improving the DSR system performance by careful 
speech analysis (parametrization) and vector 
quantization (VQ) of ihe feature vectors obtained. The 
ETSI DSR standard also specifies a quantization 
procedure, but in an unsupervised manner. Instead, we 
propose a vector quantizer designed using a modified 
version of the Linde-Buzo-Gray (LBG) algorithm. 
The modification from the original LBG algorithm is 
so as to reduce the computaţional power required, at 
no accuracy cost. 
The paper is structured as follows: Section II gives an 
overview of the DSR system architecture, 
emphasizing the feature extraction part; Section III 
brings insights on the front-end implementation, on a 
Motorola Star Core 140 core; Section IV shows some 
results from simulations of the proposed system, 
specilying the practicai framework used and testing 
policy; Section V concludes the paper and asserts 
future developments. 

11. SYSTEM ARCHITECTURE 

A. Overview 

The proposed DSR system consists, as stated before, 
of two parts: the actual system, placed on the server, 
which encloses a back-end for the recognition task 
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and a front-end also, for the signal processing needed 
to train the system, and a front-end placed remotely, 
on the client device, needed for system testing. From 
these, the former is implemented on a standard 
Personal Computer (PC), and the latter, on a DSP-
based platform (fitted with a Motorola SC 140 Core). 
A block diagram of the DSR system is given in Figure 
1. 

IEEE802.3i^2.11 
FrontrEnd Link 
(SC 140) 

Testing 

Back-End 
(PC - Server) 

Trcdnig and 
Recogrulion 

Fig. 1 DSR system architecture 

As seen from Fig.l, the back-end and the front-end 
are connected through an usual IEEE 802.3 (Ethernet) 
link, or through an IEEE 802.11 (Wireless) Link. We 
will use the former connection in our experiments. 

B . The Front'End 

The client side of the DSR system is concemed 
mainly with speech signal acquisition, endpoint 
detection and feature extraction. These analysis 
features are accomplished following the ETSI DSR 
standard [1], but with slight modifications: 

• the VAD module uses also the zero cross 
rate (ZCR) for the speech/silence decision, 
into an adaptive algorithm, as shown in [3]; 

• the preemphasis(PE) of the speech signal 
is performed before framing, as it is the 
case in the nowadays speech recognition 
engines [4]; 

• the feature vectors are considered by 
taking, besides the Mei Frequency 
Cepstrum Coefficients (MFCC), the 
differenced MFCC coefficients also 
(AMFCC); 

• the differenced energy (AEN) is taken 
along with the energy (EN), in composing 
the feature vector of each speech frame. 

Using the EN parameter, along with the ZCR, the 
VAD process simplifies considerably; the algorithm 
reduces itself to successive comparisons of the EN 
and ZCR with some fixed. specified thresholds: for 
the EN, these thresholds are computed from the 
maximum and mean values of the energy, for a given 
utterance: for the ZCR, the thresholds are computed 

from the sum of the ZCRs, and a form of dispersion of 
this sum [3]. This algorithm alleviates the need for the 
complex spectral estimation blocks, present in the 
ETSI standard [1]. 
The inversion of the PE and the framing processing 
features is performed for compatibility reasons: most 
of the continuous speech recognition engines extract 
the feature vectors in this way [4], [5]. Thus, one 
creates the premises for the ease of the back-end 
recognition task, at no computaţional cost for the 
front-end. 
Considering the first order temporal variations of the 
mel-cepstral coefficients is particularly suited for the 
short-term stationary speech signal, since this way one 
can take into account the coarticulatory eflects, 
between phonemes or even words [4]. Temporal 
changes in the spectra play an important role in 
human perception; this is particularly true for speaker 
independent recognition, where formant slopes are 
more relevant than the absolute formant locations [4]. 
We also chose the AMFCCs for compatibility reasons: 
the most speech recognition engines perfbrm this 
feature extraction for their server-side front-end 
[4],[5]. The AMFCCs are computed with: 

AMFCCit) = MFCC(t + 6>) - MFCC{t - d ) (1) 

We used also the differenced energy (priorly 
normalized by subtracting the mean value in a frame. 
from each energy value in the frame; one thus 
alleviates the need for the log-energy computation, 
reducing thus more the cost!), which provides 
information about relative changes in amplitude or 
loudness. It is given below: 

^EN{t) = EN(î ^ 6 ) - EN(t - 0 ) (2) 

In order to fiirther increase the efficiency of the 
system, a vector quantization (VQ) is performed, 
using a modified version of the Linde-Buzo-Gray 
(LBG) algorithm. 
We first used the classical LBG algorithm [2], taking 
as the first centroid, the arithmetical mean of the 
feature vectors of all the frames of a given utterance, 
then, choosing a small division parameter, we built 
the codebook for the feature vectors, representing the 
frames for a given input utterance. 
Then, in order to further reduce the computaţional 
power, we adapted a modified version of the LBG 
algorithm, in which, by interverting the optimization 
loop with the division loop, one practically optimizes 
the codebook only when it reaches its final dimension 
[2]. A flowchart of the modified LBG algorithm is 
shown in Figure 2 [2]. 
The feature extraction also includes a decision block, 
used in order to map the feature vector to the 
corresponding codebook, so as to minimize a certain 
distance between the codeword and the feature vector. 
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Fig.2 The modified version of the LBG algorithm 

Due to the computaţional simplicity, we have chosen 
the Euclidean distance, also used in the state-of-the-
arl speech recognition applications: 

d(x,y[J]) = (3) 

codebooks reduce the distortion by partitioning the 
feature space into several smaller subspaces. 
Another advantagc of multiple codebooks is the large 
increase in the dynamic range and precision of the 
resulting parameters. With three codebooks, therc are 
256^ possible parameter combinations using just 
256 X 3 parameters. With such an increase in precision 
comes the ability to make fîner distinctions. 
However, the independence assumption with multiple 
codebooks is inaccurate, Also, more memory and time 
are needed with multiple codebooks. But the modified 
version of the LBG algorithm can compensate partly 
this increment in computation time and memor> 
requirements. 
As a conclusion to what was stated in this subsection. 
the block diagram of the proposed front-end is shown 
in Figure3. 
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For each frame of speech, not one but several 
codebooks are used to replace the input vector. Since 
each input vector is a vector of symbols, the 
recognition algorithms at the back-end are producing 
multiple symbols for each frame. By assuming that 
multiple output observations are independent, the 
output probability of emitting multiple symbols can 
be computed as the product of the probabilities of 
producing each symbol. Thus, the coefficients can be 
divided into distinct sets, each set being quantized 
into a separate codebook. For our system, following 
previous approaches [4], three codebooks were 
created, each with 256 centroids. These codebooks 
were generated from: 1) the MFCC coefficients, 2) 
the differenced MFCC coefficients, AMFCC, and 3) 
an equally weighted combination of energy (EN) and 
differenced energy (AEN). 
The muhiple codebook approach has a distinct 
advantage over the single codebook approach 
specified in the ETSI DSR standard - namely, 
reduced quantization error. If too many features are 
used in VQ, the distortion will be very large, which 
means the observed vectors will match their 
corresponding prototype vectors poorly. Multiple 

Fig. 3 The front-end block diagram 

For further enhancement of the resuhing front-end, a 
Hamming window can be added, following the 
framing block. 
Besides these specifications, with the exception of the 
Pitch extraction module (which is not implemented at 
present). the proposed front-end follows the ETSI 
DSR standard [1]. 

C . The Back'End 

In order to ensure compatibility with actual speech 
recognition engines and even software products, we 
used the Carnegie Mellon Universit>'s SPHINX-II 
speech recognition engine [5] for our DSR system 
back-end. 
The SPHlNX-II system has a phonemic-HMM three-
stage Viterbi decoder and is designed for building 
applications of small, medium and large vocabulary 
speaker-independent continuous speech recognition, 
being one of the state-of-the art products in its fieid 
[7], [8]. 
In order to integrate the SPHFNX system, which is a 
standalone recognition engine, with our DSR system, 
we had to adapt the input/output Application 
Progr^ming Interface (API), so as to process the 
(fixed-point) code vectors, instead of its own 
(floating-point) code vectors. The API of the 
SPHINX-II system is described in detail in [8]. Thus, 
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the modified version of SPHTNX provides only 
training (this is why we kept its own feature 
extraction block) and actual recognition, which is 
based on three knowledge sources: l) the vocabulary 
(for the English language at the moment), 2) the 
(three-state triphone) HMM acoustic models, and 3) 
the grammar. For our tests we chose a finite state 
word-pair grammar (FSG) (which is simple to 
implement, and offers higher perplexit>' than an n-
gram language model). 
In fact, the architecture of SPHINX-II îs more 
complex, but this is not our concern yet. A simplified 
architectural overview of the SPHINX-II system is 
given in Figure 4, adapted from [7]. 

Fig. 4 SPHINX-II system block diagram 

In our system, the "Testing" block is replaced by a 
"Communication'' block, which encloses the reception 
of the (coded) features from the client device. 

III. MOTOROLA SC 140 IMPLEMENTATION 

The architecture of the Motorola Star Core 140 DSP 
core is presented in detail in [9]; a brief overview of 
the processor is given also in [10]. 
For our implementation, we used CodeWarrior 2.52 
as the Integrated Development Environment (IDE) for 
the front-end implementation. Furthermore, we 
simulated its behavior using the Motorola SC 100 Sim 
Star Core Simulator. Thus we could perform some 
benchmarks conceming the execution speed and the 
memor>' requirements. This way, we depicted the 
follovving issues: 

• The fixed-point implementation involves 
possible overflow when computing 
parameters like EN or even N^CC, 
therefore scaling methods should be used. 

• The computation of the FFT involves 
extensive memory usage, therefore 
attention should be paid when configuring 
the memory layout. 

• The parallel architecture (4 Arithmetic-
Logic Units - ALUs and 2 Address 
Generation Units - AGUs) permits the 
parallelization of the codebooks generation 
process, and also of the energy and zero 
cross rate computation. 

In the fixed-point implementation, many scaling 
techniques can be used: 

- the normalization through division, with respect 
to the maximum value of a certain feature, considered 
over a window of analysis (Hamming-window 
weighted or not); 

- the normalization through division, with respect 
to the summation of all the values of a certain feature. 
considered over a window of analysis (Hamming-
window weighted or not); 

- the normalization through subtraction, with 
respect to the mean value of a certain feature, 
considered over a window of analysis (Hamming-
window weighted or not). 
From all these, we preferred the normalization 
through subtraction of the mean value of the features 
within a frame. 
Our choice is motivated by the fact that in this way 
one performs mostly additions (for the computation of 
the mean value) and subtractions (for the actual 
normalization), which are more robust to possible 
overflow or underflow, on a fixed-point platform. The 
only division is performed when computing the mean 
value, but this can be eased by choosing a number of 
features within a fi-ame which is a power of two (e.g. 
32 features per frame); the division becomes in this 
case a right shift by a number of positions equal to the 
respective power of two. 
As for the memory required to compute the FFT, one 
can depict a memory layout in which to place the 
stack segment very high in the 16-bit address space, 
and furthermore, the code segment is placed right 
below the stack segment, reserving as much space for 
the code as it is needed. And then, the rest of the 
memory remains basically for the data segment. 
The space required by the code segment can be 
determined by simulating the code execution on an 
Intel x86-based PC platform (e.g. using Microsoft 
Visual C-H-), and looking (with a debugger) at the 
memory consumed by the actual code. 
A possible memory layout is shown in Figure 5. 
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Fig. 5 SC 140 Core memory layout 
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As for the parallelization of the tasks, a naive 
approach is to use standard optimization techniques 
[9] for all the computaţional routines. In this way, one 
accomplishes still a sequential codebook computation 
flow, which is not efficient. Tliis is why we propose a 
parallelization at the main routine level, which calls 
the codebook generation routine three times, in 
paralleK using as inputs the already-computed feature 
vectors. This way, although achieving a lower 
performance for a single codebook computation, the 
overall performance is better, since one has all the 
three codebooks generated at the same time. 

IV. EXPERIMENTS 

At the moment when our experiments were 
performed, we simulated our front-end using 
Microsoft Visual C-H- and building a project 
enclosing the routines described below. Using this 
environment, we could also simulate (syntactically) 
the SC 140 Core (including the prototype function 
defmitions for the intrinsic routines associated with 
SC 140 [9]. This way, starting from the wave (.wav) 
files, we generated the feature vectors and the 
codebooks (with the code words) in corresponding 
files (.dat). These .dat files were used as input to a 
Simulink model, with which we simulated charmel 
distortions (additive and convolutive). The outputs of 
the Simulink model (which are also some .dat files), 
were used as input to the (already trained) SPHINX-II 
System. As for the recognition back-end, we used an 
adapted application provided by CMU, in order to 
launch the Viterbi decoder using the .dat files 
(provided by the Simulink model) as codeword inputs. 
In the Simulink chaimel simulation, a Gaussian noise 
can be added, along with an analog Butterworth 12-
order bandpass filter, in order to simulate the 
convolutional perturbations. The model is shown in 
Figure 6. 
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Fig. 6 The channel simulation 

The performance evaluations show the following: 

• The modified LBG algorithm brings an 
about 32% decrement in computing time, 
along with only 6% increment in error rate, 
as compared to the original LBG algorithm. 

• The memory requirements for the feature 
vectors are about 77 KB each (for a 6-
second speech input). After VQ, the 
memoiy requirements go to about 20 KB, 
for all the three codebooks. 

• The processing time (however, on a 1.47-
GHZ AMD Athlon XP Processor) is real-
time, less than 10 seconds. 

• The code size for the entirc front-end 
application is about 240 KB. 

• The recognition performance, for a FSG 
grammar, provided by the SPHINX-11 
developers at CMU, which provided also 
the about 1000-vvord vocabulary and 
phonetic transcriptions, along with the 
acoustic HMM training, is close to the one 
obtained using the baseline SPHFNX-II 
system: around 68%, for our systern, as 
compared to 76%, for the self-contained 
SPHINX-II system. 

It is worth mentioning that these relative low 
recognition rates are due to the poor-quality 
desktop microphone used, as compared to the 
microphones used for SPHINX-II training, 
which was performed at CMU. 

V. CONCLUSIONS AND FURTHER 
DEVELOPMENTS 

A novei front-end designed was prop>osed, 
starting from the ETSI DSR standard. Our 
system emphasized the idea of circumventing 
additional signal processing associated with the 
DSR task: echo cancellation, spectrum 
equalization etc, by a careful signal analysis and 
feature extraction. Thus, besides the energy and 
ceptsral coefTicients, we used their first order 
variations aJso, providing more robustness to 
environmental conditions variation. 

In order to further improve system performance, 
we used a vector quantization approach, but in a 
supervised manner. considering multiple 
codebook building. The use of more than one 
codebook per feature vector, at the cost of minor 
increment of memory requirements, offers better 
error protection, at a real-time computation time. 

The xMotorola Star Core 140 architecture chosen 
allows us to parallelize the process of codebook 
generation, along with the one of the feature 
veaors generation, which offers us real-time 
performance. 

As fiirther developments, we intend to use the 
front-end implementation on the MSC8101 ADS 
Development Board [lOJ, which encloses an 
audio codec, along with an IEEE 802.3 Ethernet 
connection, besides the actual SC 140 DSP core. 
Thus, we plan to connect the MSC8101 ADS to 
a PC, using an Ethernet connection, and to repeat 
the previously performed tests within this new 
Owiework. 
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