
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 1, 2004

An Efficient Distributed Speech Recognition Front-End
Implementation using a Motorola Star Core 140-Based

Platform
Comeliu Burileanu\ Vladimir Popescu

Abstract - An efTicient implementation of a Distributed
Speech Recognition (DSR) on a Digital Signal Processor
(DSP) platform is shown. Although complying with the
European Telecommunications Institute (ETSl) DSR
standard, feature extraction and data compression
enhancements are added, in order to address three
issues: computaţional speed of the signal analysis
process, reliability of the representative signal features,
and low channel bandwidth utilization, when
transmitting the speech features. A series of tests and
simulations are provided, in order to show the
functionality of the proposed system.

Keywords: Distributed Speech Recognition, Feature
Extraction, Vector Quandzation

L INTRODUCTION

Portable devices (such as PDAs- Personal Digital
Assistant and mobile devices) have become very
popular nowadays. Since the size of these devices is
becoming smaller and smaller, their manipulation by
traditional means (i.e., keyboard, touch-screen) can be
cumbersome. Therefore, the idea of using speech
recognition to control portable devices is natural.
However, these devices are fitted with low computing
power processing units, and with low amounts of
memory also. This is why speech recognition, which
is a computaţionally very demanding task cannot be
implemented on such devices in a straightforward
manner. Previous trials of speech recognition system
implementations on DSPs (which fit mobile devices)
have been pursued [2], but the results were rather
poor: connected word recognition of a small
vocabulary (100 words). But in order to interact with
portable devices in a more natural way, this is not
enough: continuous speech recognition of a large
vocabulary (1000 words) is much more appealing. In
order to accomplish this task, the idea of Distributed
Speech Recognition has emerged a few years ago; it
eventually attained a slandardized description, in 2003
[1]. However, the standard specifies only parts of the
entire DSR system: the feature extraction block
(called front-end), which includes a speech

parametrization module, a voice activit> detcction
(VAD) module, and a pitch extraction module. The
standard also specifies the techniques for voice
reconstruction, at the server side (called back-cnd).
Although several implementations of the ETSI DSR
standard are known, some issues are still intensively
studied: the robustness of the DSR system to the
channel penurbations and variabilities, more
specifically. to additive distortions (channel noise)
and convolutive distortions (channel frequency
response). These issues can be basically addressed in
two ways: robustness of the back-end speech
recognition enginc itself, and specific signal
processing techniques: echo cancellation, spectral
equalization.
Our paper proposes an alternative approach:
improving the DSR system performance by careful
speech analysis (parametrization) and vector
quantization (VQ) of ihe feature vectors obtained. The
ETSI DSR standard also specifies a quantization
procedure, but in an unsupervised manner. Instead, we
propose a vector quantizer designed using a modified
version of the Linde-Buzo-Gray (LBG) algorithm.
The modification from the original LBG algorithm is
so as to reduce the computaţional power required, at
no accuracy cost.
The paper is structured as follows: Section II gives an
overview of the DSR system architecture,
emphasizing the feature extraction part; Section III
brings insights on the front-end implementation, on a
Motorola Star Core 140 core; Section IV shows some
results from simulations of the proposed system,
specilying the practicai framework used and testing
policy; Section V concludes the paper and asserts
future developments.

11. SYSTEM ARCHITECTURE

A. Overview

The proposed DSR system consists, as stated before,
of two parts: the actual system, placed on the server,
which encloses a back-end for the recognition task

' Facultatea de Electronică , Telecomunicapi şi Tehnologia Informaţiei, Universitatea
"Politehnica" Bucureşti, Bd. I. Maniu Nr 1-3, Bucureşti, e-mail cburileanu(a)messnei pub.ro

305
BUPT

and a front-end also, for the signal processing needed
to train the system, and a front-end placed remotely,
on the client device, needed for system testing. From
these, the former is implemented on a standard
Personal Computer (PC), and the latter, on a DSP-
based platform (fitted with a Motorola SC 140 Core).
A block diagram of the DSR system is given in Figure
1.

IEEE802.3i^2.11
FrontrEnd Link
(SC 140)

Testing

Back-End
(PC - Server)

Trcdnig and
Recogrulion

Fig. 1 DSR system architecture

As seen from Fig.l, the back-end and the front-end
are connected through an usual IEEE 802.3 (Ethernet)
link, or through an IEEE 802.11 (Wireless) Link. We
will use the former connection in our experiments.

B . The Front'End

The client side of the DSR system is concemed
mainly with speech signal acquisition, endpoint
detection and feature extraction. These analysis
features are accomplished following the ETSI DSR
standard [1], but with slight modifications:

• the VAD module uses also the zero cross
rate (ZCR) for the speech/silence decision,
into an adaptive algorithm, as shown in [3];

• the preemphasis(PE) of the speech signal
is performed before framing, as it is the
case in the nowadays speech recognition
engines [4];

• the feature vectors are considered by
taking, besides the Mei Frequency
Cepstrum Coefficients (MFCC), the
differenced MFCC coefficients also
(AMFCC);

• the differenced energy (AEN) is taken
along with the energy (EN), in composing
the feature vector of each speech frame.

Using the EN parameter, along with the ZCR, the
VAD process simplifies considerably; the algorithm
reduces itself to successive comparisons of the EN
and ZCR with some fixed. specified thresholds: for
the EN, these thresholds are computed from the
maximum and mean values of the energy, for a given
utterance: for the ZCR, the thresholds are computed

from the sum of the ZCRs, and a form of dispersion of
this sum [3]. This algorithm alleviates the need for the
complex spectral estimation blocks, present in the
ETSI standard [1].
The inversion of the PE and the framing processing
features is performed for compatibility reasons: most
of the continuous speech recognition engines extract
the feature vectors in this way [4], [5]. Thus, one
creates the premises for the ease of the back-end
recognition task, at no computaţional cost for the
front-end.
Considering the first order temporal variations of the
mel-cepstral coefficients is particularly suited for the
short-term stationary speech signal, since this way one
can take into account the coarticulatory eflects,
between phonemes or even words [4]. Temporal
changes in the spectra play an important role in
human perception; this is particularly true for speaker
independent recognition, where formant slopes are
more relevant than the absolute formant locations [4].
We also chose the AMFCCs for compatibility reasons:
the most speech recognition engines perfbrm this
feature extraction for their server-side front-end
[4],[5]. The AMFCCs are computed with:

AMFCCit) = MFCC(t + 6>) - MFCC{t - d) (1)

We used also the differenced energy (priorly
normalized by subtracting the mean value in a frame.
from each energy value in the frame; one thus
alleviates the need for the log-energy computation,
reducing thus more the cost!), which provides
information about relative changes in amplitude or
loudness. It is given below:

^EN{t) = EN(î ^ 6) - EN(t - 0) (2)

In order to fiirther increase the efficiency of the
system, a vector quantization (VQ) is performed,
using a modified version of the Linde-Buzo-Gray
(LBG) algorithm.
We first used the classical LBG algorithm [2], taking
as the first centroid, the arithmetical mean of the
feature vectors of all the frames of a given utterance,
then, choosing a small division parameter, we built
the codebook for the feature vectors, representing the
frames for a given input utterance.
Then, in order to further reduce the computaţional
power, we adapted a modified version of the LBG
algorithm, in which, by interverting the optimization
loop with the division loop, one practically optimizes
the codebook only when it reaches its final dimension
[2]. A flowchart of the modified LBG algorithm is
shown in Figure 2 [2].
The feature extraction also includes a decision block,
used in order to map the feature vector to the
corresponding codebook, so as to minimize a certain
distance between the codeword and the feature vector.

306 BUPT

Fig.2 The modified version of the LBG algorithm

Due to the computaţional simplicity, we have chosen
the Euclidean distance, also used in the state-of-the-
arl speech recognition applications:

d(x,y[J]) = (3)

codebooks reduce the distortion by partitioning the
feature space into several smaller subspaces.
Another advantagc of multiple codebooks is the large
increase in the dynamic range and precision of the
resulting parameters. With three codebooks, therc are
256^ possible parameter combinations using just
256 X 3 parameters. With such an increase in precision
comes the ability to make fîner distinctions.
However, the independence assumption with multiple
codebooks is inaccurate, Also, more memory and time
are needed with multiple codebooks. But the modified
version of the LBG algorithm can compensate partly
this increment in computation time and memor>
requirements.
As a conclusion to what was stated in this subsection.
the block diagram of the proposed front-end is shown
in Figure3.

3p.«ch lopji -

K- C5:OEBOCK«I

^ Lii^ L H
JL R

CCDEBOOK» J ^
-1 00DESC0K«3

- t

For each frame of speech, not one but several
codebooks are used to replace the input vector. Since
each input vector is a vector of symbols, the
recognition algorithms at the back-end are producing
multiple symbols for each frame. By assuming that
multiple output observations are independent, the
output probability of emitting multiple symbols can
be computed as the product of the probabilities of
producing each symbol. Thus, the coefficients can be
divided into distinct sets, each set being quantized
into a separate codebook. For our system, following
previous approaches [4], three codebooks were
created, each with 256 centroids. These codebooks
were generated from: 1) the MFCC coefficients, 2)
the differenced MFCC coefficients, AMFCC, and 3)
an equally weighted combination of energy (EN) and
differenced energy (AEN).
The muhiple codebook approach has a distinct
advantage over the single codebook approach
specified in the ETSI DSR standard - namely,
reduced quantization error. If too many features are
used in VQ, the distortion will be very large, which
means the observed vectors will match their
corresponding prototype vectors poorly. Multiple

Fig. 3 The front-end block diagram

For further enhancement of the resuhing front-end, a
Hamming window can be added, following the
framing block.
Besides these specifications, with the exception of the
Pitch extraction module (which is not implemented at
present). the proposed front-end follows the ETSI
DSR standard [1].

C . The Back'End

In order to ensure compatibility with actual speech
recognition engines and even software products, we
used the Carnegie Mellon Universit>'s SPHINX-II
speech recognition engine [5] for our DSR system
back-end.
The SPHlNX-II system has a phonemic-HMM three-
stage Viterbi decoder and is designed for building
applications of small, medium and large vocabulary
speaker-independent continuous speech recognition,
being one of the state-of-the art products in its fieid
[7], [8].
In order to integrate the SPHFNX system, which is a
standalone recognition engine, with our DSR system,
we had to adapt the input/output Application
Progr^ming Interface (API), so as to process the
(fixed-point) code vectors, instead of its own
(floating-point) code vectors. The API of the
SPHINX-II system is described in detail in [8]. Thus,

307
BUPT

the modified version of SPHTNX provides only
training (this is why we kept its own feature
extraction block) and actual recognition, which is
based on three knowledge sources: l) the vocabulary
(for the English language at the moment), 2) the
(three-state triphone) HMM acoustic models, and 3)
the grammar. For our tests we chose a finite state
word-pair grammar (FSG) (which is simple to
implement, and offers higher perplexit>' than an n-
gram language model).
In fact, the architecture of SPHINX-II îs more
complex, but this is not our concern yet. A simplified
architectural overview of the SPHINX-II system is
given in Figure 4, adapted from [7].

Fig. 4 SPHINX-II system block diagram

In our system, the "Testing" block is replaced by a
"Communication'' block, which encloses the reception
of the (coded) features from the client device.

III. MOTOROLA SC 140 IMPLEMENTATION

The architecture of the Motorola Star Core 140 DSP
core is presented in detail in [9]; a brief overview of
the processor is given also in [10].
For our implementation, we used CodeWarrior 2.52
as the Integrated Development Environment (IDE) for
the front-end implementation. Furthermore, we
simulated its behavior using the Motorola SC 100 Sim
Star Core Simulator. Thus we could perform some
benchmarks conceming the execution speed and the
memor>' requirements. This way, we depicted the
follovving issues:

• The fixed-point implementation involves
possible overflow when computing
parameters like EN or even N^CC,
therefore scaling methods should be used.

• The computation of the FFT involves
extensive memory usage, therefore
attention should be paid when configuring
the memory layout.

• The parallel architecture (4 Arithmetic-
Logic Units - ALUs and 2 Address
Generation Units - AGUs) permits the
parallelization of the codebooks generation
process, and also of the energy and zero
cross rate computation.

In the fixed-point implementation, many scaling
techniques can be used:

- the normalization through division, with respect
to the maximum value of a certain feature, considered
over a window of analysis (Hamming-window
weighted or not);

- the normalization through division, with respect
to the summation of all the values of a certain feature.
considered over a window of analysis (Hamming-
window weighted or not);

- the normalization through subtraction, with
respect to the mean value of a certain feature,
considered over a window of analysis (Hamming-
window weighted or not).
From all these, we preferred the normalization
through subtraction of the mean value of the features
within a frame.
Our choice is motivated by the fact that in this way
one performs mostly additions (for the computation of
the mean value) and subtractions (for the actual
normalization), which are more robust to possible
overflow or underflow, on a fixed-point platform. The
only division is performed when computing the mean
value, but this can be eased by choosing a number of
features within a fi-ame which is a power of two (e.g.
32 features per frame); the division becomes in this
case a right shift by a number of positions equal to the
respective power of two.
As for the memory required to compute the FFT, one
can depict a memory layout in which to place the
stack segment very high in the 16-bit address space,
and furthermore, the code segment is placed right
below the stack segment, reserving as much space for
the code as it is needed. And then, the rest of the
memory remains basically for the data segment.
The space required by the code segment can be
determined by simulating the code execution on an
Intel x86-based PC platform (e.g. using Microsoft
Visual C-H-), and looking (with a debugger) at the
memory consumed by the actual code.
A possible memory layout is shown in Figure 5.

TopOfMemory H*gn odO+iv»

Low

Olotoist Jkc OâCt

hnefropl v̂iTl&f UDI«

. TopOfStAck

.ScackStart

. Dacascart

Fig. 5 SC 140 Core memory layout

308 BUPT

As for the parallelization of the tasks, a naive
approach is to use standard optimization techniques
[9] for all the computaţional routines. In this way, one
accomplishes still a sequential codebook computation
flow, which is not efficient. Tliis is why we propose a
parallelization at the main routine level, which calls
the codebook generation routine three times, in
paralleK using as inputs the already-computed feature
vectors. This way, although achieving a lower
performance for a single codebook computation, the
overall performance is better, since one has all the
three codebooks generated at the same time.

IV. EXPERIMENTS

At the moment when our experiments were
performed, we simulated our front-end using
Microsoft Visual C-H- and building a project
enclosing the routines described below. Using this
environment, we could also simulate (syntactically)
the SC 140 Core (including the prototype function
defmitions for the intrinsic routines associated with
SC 140 [9]. This way, starting from the wave (.wav)
files, we generated the feature vectors and the
codebooks (with the code words) in corresponding
files (.dat). These .dat files were used as input to a
Simulink model, with which we simulated charmel
distortions (additive and convolutive). The outputs of
the Simulink model (which are also some .dat files),
were used as input to the (already trained) SPHINX-II
System. As for the recognition back-end, we used an
adapted application provided by CMU, in order to
launch the Viterbi decoder using the .dat files
(provided by the Simulink model) as codeword inputs.
In the Simulink chaimel simulation, a Gaussian noise
can be added, along with an analog Butterworth 12-
order bandpass filter, in order to simulate the
convolutional perturbations. The model is shown in
Figure 6.

From ril«
mfoc_m_vq.dat

butter From ril«
mfoc_m_vq.dat / \ From ril«
mfoc_m_vq.dat / \ From dJtFIie Analog

Filtir Dtsion

M
Rjndom
Sourc«

output.wav

Fig. 6 The channel simulation

The performance evaluations show the following:

• The modified LBG algorithm brings an
about 32% decrement in computing time,
along with only 6% increment in error rate,
as compared to the original LBG algorithm.

• The memory requirements for the feature
vectors are about 77 KB each (for a 6-
second speech input). After VQ, the
memoiy requirements go to about 20 KB,
for all the three codebooks.

• The processing time (however, on a 1.47-
GHZ AMD Athlon XP Processor) is real-
time, less than 10 seconds.

• The code size for the entirc front-end
application is about 240 KB.

• The recognition performance, for a FSG
grammar, provided by the SPHINX-11
developers at CMU, which provided also
the about 1000-vvord vocabulary and
phonetic transcriptions, along with the
acoustic HMM training, is close to the one
obtained using the baseline SPHFNX-II
system: around 68%, for our systern, as
compared to 76%, for the self-contained
SPHINX-II system.

It is worth mentioning that these relative low
recognition rates are due to the poor-quality
desktop microphone used, as compared to the
microphones used for SPHINX-II training,
which was performed at CMU.

V. CONCLUSIONS AND FURTHER
DEVELOPMENTS

A novei front-end designed was prop>osed,
starting from the ETSI DSR standard. Our
system emphasized the idea of circumventing
additional signal processing associated with the
DSR task: echo cancellation, spectrum
equalization etc, by a careful signal analysis and
feature extraction. Thus, besides the energy and
ceptsral coefTicients, we used their first order
variations aJso, providing more robustness to
environmental conditions variation.

In order to further improve system performance,
we used a vector quantization approach, but in a
supervised manner. considering multiple
codebook building. The use of more than one
codebook per feature vector, at the cost of minor
increment of memory requirements, offers better
error protection, at a real-time computation time.

The xMotorola Star Core 140 architecture chosen
allows us to parallelize the process of codebook
generation, along with the one of the feature
veaors generation, which offers us real-time
performance.

As fiirther developments, we intend to use the
front-end implementation on the MSC8101 ADS
Development Board [lOJ, which encloses an
audio codec, along with an IEEE 802.3 Ethernet
connection, besides the actual SC 140 DSP core.
Thus, we plan to connect the MSC8101 ADS to
a PC, using an Ethernet connection, and to repeat
the previously performed tests within this new
Owiework.

309
BUPT

REFERENCES

[1] ETSI ES 202 211 vl.1.1 (2003-08), ''ETSI Distrihuled Speech
Recognition Standard\ ww\v.etsi.org, 2003
[2] L. Bojan, Contribuţii la analiza semnalului vocal, PhD Thesis,
University "Politehnica" of Bucharest, 1997
[3] M. lonita. Strategii de recunoaştere a semnalului vocal, PhD
Thesis, University "Politehnica" of Bucharest, 2003
[4] K.-F. Lee, H.-W. Hon, R. Reddy, "An Overview of the SPHINX
Speech Recognition System", IEEE Trans. On Acoustics. Speech
and Signal Processing, Voi. 38, No. 1, Jan. 1990
[5] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, R. Rosenfeld,
The SPHINX-Il Recognition System: An Overview, CMU-CS-92-
112, Camegie Mellon University, 1992;
[6] M-K. Ravishankar, Efficient Algorithms for Speech
Recognition, PhD Thesis, Camegie Mellon University, 1996
[7] R. Singh, Subphonetic modeling for Continuuus Speech
Recognition, PhD Thesis, Camegie Mellon University, 1997
[8]M-K. Ravishankar, K. A. Lenzo, Sphinx-II User Guide,
Camegie Mellon University, 2004
[9] Motorola, Inc. SC J40 DSP Core Reference Manual, Rev. 3,
2001
[10] D. Burileanu, A. Fecioru, D. Ion, M. Stoica, C. Ilaş, "An
Optimized TTS System Implementation Using a Motorola Star
Core SC140-Based Processor", Proc. of ICASSP2004, Montreal,
Canada, 2004

310 BUPT

