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Abstract 

The goal of this papcr is to give a comparison bctneen 
t^o methods for phase approximations: non-compact 
gain technique for linear frequency domain and the 
approach based on logarithmic sampling of gain for 
logarithmic frequency domain, using signals affected by 
random perturbations. A compaiison of the behavior of 
these algorithms, considering signals affected by 
perturbations, respectively signals that are not affected 
by perturbations, will be also presented. f o r this 
purpose we first recall Hilbert transform and Bode 
relationships, then the two methods will be discussed. 
Numerical cxamples are provided to emphasize the 
advantages and dîsadvantages of each method and 
computer simulations performed using Matlab are aiso 
presented. 
Ke>^ords: phase approximation, logarithmic sampling, 
linear sampling, Hilbert transform, Bayard-Bode 
rclationships. 

I. TNTRODUCTION 

The non-compact gain technique cannot be employed 
when the gain characteristic has slopes difîerent from 
zero at zero and at high frequency. Since the Bode 
transfer functions do not satisfy the last requirement, 
in order to overpass this inconvenient, we have 
proposed the modified Bode transfer functions to be 
uscd in implementation. 
We will present three cases of how signals are 
affected by random perturbations: 
1. signal affected by a complex random 

perturbation; 
2. system fîinction affected by a real random 

perturbation; 
3. parameters of the Bode transfer function, 

respectively of the modified Bode transfer 
function affected by a real random perturbation. 

The proposed methods are then tested on some 
numerical exaniples. Cur analysis will be 
concentrated on minimum-phase functions, since the 

experimental results can be ver>̂  easily applied to non 
minimum-phase functions [6]. 
Hilbert transform and Bayard-Bode relationships [1] 
have been recognized as ver>' important methods in 
circuit theoi-y, communications and control science. 
Their sampled derivations have been encountered in 
different applications from science and engineering. 
In some situations the domain is restricted or other 
explicit conditions are imposed. A criticai issue is 
related to the singularities involved in the Hilbert 
transform computation, since we are confronted with 
an improper integral (Section 2). If the integral cannot 
be evaluated in a closed form, as it is the case with 
discrete input data, numerical implementation is in 
general complicated [2], as localized errors should 
lead to localized errors. Hilbert transform has the 
advantage of not requiring derivatives, but the serious 
disadvantage that it is not a bounded operator from L̂  
to . To solve the problem, different approaches for 
gain-phase relationships in logarithmic frequency 
domain have been proposed. A suitable change of 
variable can give the bounded operator (5) from 4 
L̂  forany /• > 1 [3]. 

The goal of this paper is to give a comparison 
between linear and logaritmic frequency domain 
phase approximations, using as test signals, signals 
that are affected by random perturbations. There is 
also presented a comparison of these algorithms, 
considering signals that are affected by perturbations, 
respectively signals that are not affected by 
perturbations. 
The paper is organised as follows. In Section 2 we 
shortly remind Hilbert transform and Bode 
relationships. First we will discuss the logarithmic 
sampling of gain approach in Section 3, then in 
Section 4 die non-compact gain technique [4] is 
addressed. Furthermore, we derive the modified Bode 
transfer functions (Section 5) to be used in 
implementation. Finally it results a comparison based 
on numerical examples (Section 6) and we will drag 
conclusions (Section 7). 
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2. BAYARD-BODE RELATIONSHIPS AND 
HILBERT TRANSFORM 

The Bayard-Bode r^lations method is based on the 
faci that the transform 

HUco) = R{aj)'^jI{co\ (1) 

of a causal fUnction h(t) is uniquely determined in 
terms of R(aj) or Ifoj) (subject to an arbitrary 
reactance value if detennined from R(co) and to an 
arbitrary real vaJue, if determined from f((o)) [1]. 
Proofs based on Cauchy's residue theorem [13] or on 
convolution [6] establish 

R{co) = RM-- i - ^ d y ^ 
n jiy-co 

= j. ni 

M 

2'tyl{y)-C0l{(0) 
(2) 

dy 

t ts (6) 
A>1 

Using quadrature formulae, several approximations 
resuits. Here vve shall' consider for study that one 
derived from Simpson approach (the parabolic rule): 

2inA 

1 
a{ajA)-a 

Zn 

-> •» "H 2 1 _•! ( ' ) 
A^-A'^ A ' - A - ' 

\-k > 

A'- ' -A'-* 

+2 

= (3) 
n i^y-Ci) (O ^ y -o)' 

or 

One can easily obtain the gain-phase relationships (or 
the Bayard-Bode relations) from (2) and (3) directly 
by taking logarithms [6], after flilfilling the 
requirements needed to satisfy the right half plane 
analyticity conditions of the Hilbert transform, i.e. the 
stable and minimum phase conditions. Under tlie 
assumption that H{s) is not only analytic, but has no 

zeros for Rc{s) > O, then: 

(4) 

will be also analytical in the right-hand plane. Thus 
the phase ^(co) (in nepers), using a change of 

variable u = lT\[y/co^), where co^. is a normalizing 
frequency, will be: 

p - p 

peZ 

1 + ^ 

81nA 

41nA 
3;r(A' '-A"' ' ) 

2lnA 
3 ; r ( A ' ' - A ' ' ) 

O, othenvise 

, p = ±2,...±2m 

, /7 = ±3, . . .±{2m-l) 

, ;j = ±(2/« + l) (8) 

n i y -O)' 

2 
n e -e 

du 
a(coy) in cothl^^ 1 du 

(5) 

4. PHASE APPROXIMATION IN LINEAR 
FREQUENCY DOMAIN 

The formula between the imaginary and real parts of a 
complex function of real frequency as expressed in 
equation (3) can be rewritten in many ways [4]. By 
integrating the right member of (3) by parts one can 
find: 

3. PHASE APPROXIMATION IN LOGARITHMIC 
FREQUENCY DOMAIN 

The scope is to fmd a phase approximation fiom the 
gain samples, given at equally spaced points on the 
logarithmic frequency domain: 

TT 
y-^OJ 
y-co 

dy 

provided 

(9) 
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(10) 

Alternatively, we can continue by integrating the right 
member of (9) by parts, i.e. a double integration by 
parts of the right member of (3) and the integrând will 
be: 

provided 

y-hco 
y-OJ 

f l l ) 

and 

lim 7?'(;/)>•<«> (13) 

Previous relationships are seldom integrated 
analytically and in practice it is customary to use 
approximations to find the relationship between phase 
and gain. An idea is to use straight-line segments so 
that the second derivative o '̂Xy) is a set of impulses 
[2]. Gain functions will satisfy the following: 

• Second derivative consists of groups of 2 
impulses; 

• Each group has a positive impulse at the 
origin and a negative impulse at a frequency 

• Only positive cô  'n need to be considered. 

Thus the second derivative of the gain is given as 

(14) 
n 

It follows succesivelly that^: 

_iy-O) n ± 

n 

Finally we have: 

-y\n 

y-o) 

y-YW 

(10) 

dy = 

y-(0 
= (15) 

/ \ (D 
(16) 

where 

0(v)=:(v+l) ln | v + l , + ( v - l ) l n | v - l i - 2 v l n | v i 

Remarks 
1. The a„ numbers are determined by a broken-

line approximation to the gain-versus-
arithmeiic-frequency characteristic. 

2. This procedure cannot be employed when the 
gain characteristic has slopes different from 
zero at zero and at high frequency. 

3 The non-compact support gain method can 
be easily extended to broken-parabolic (or 
higher order curve approximation. 

(12) 5. MODIFIED BODE TRANSFER FUîs'CTIONS 

Previous attempts to test the phase approximations 
approaches have used the Bode transfer ftinctions [1] 

\s \s/H |1 
1 (17) 

1 
s/H + \ 

The magnitude of the frequency response | H(jco) | is 
given by: 

^i-K'aj'f + jK-Hcof 

yji-K^Ho)' + / / ) ' + [K'co' - ( / / + l)<yf 

and the gain a{a)) has slopes different from zero at 
high frequency. 
We shall slightiy modify the Bode transfer ftinctions 
as follows: 

H{s) = - As + B 

S + - - 1 
(18) 

1 

S/H + ] 

and now we are looking what requirements should 
satisfy the parameters A , B, K and H such that 
the gain has zero slopes at zero and at high frequency. 
We have the following expresions for H^s), H{j(D) 
and \Hija))\ respectively: 

AK's'^- {AH + B)K^s'- + {A + BK' )Hs + BH 

[BH-{AH + B)KW] + j[{A + BK^)H(o-AK'(o'] 

An extended form of P{ai) can be t'ound in [11] 
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y][BH-(AH + B)KW-f +[(A + BK')Ha)-AK'a)']' 

Thus 

2 2 

where 

U(a)) = [BH -{AH + B)K'(0^Y + 
+[(A + BK')Ha)-AK'(o'f; 

V(a)) = (// - K'Hio'Y +[(H + l)(o-K'co'f 

The gain slope is given by^ 

U\a))V{(o)-V\a))U((o) 
ce 1(0) = = 

2U(a))V{(0) 

-(2 A' + B'K' K + ••• + (• • •)H'(0 
(19) 

Now, 
1. From IimQr'(w) = 0, we need 

2. From \[ma\co) = 0, it follovvs 

Consequently, the modified Bode transfer functions 
should satisfy the requirements: 

A'B'KH^^ (20) 

To see the behaviour of the phase approximation 
algorithms under random perturbation conditions in 
the logarithmic frequency domain, we have three 
cases: 

1. signal affected by a complex random 
perturbation 

^lusi U^) - + ^oise _ complex (21) 

2. systern function affected by a real random 
perturbation 

I {jco) H H{jco) I ^noise _ real (22) 

= A' + noise _ real 

6. SIMULATIONS 

(24) 

Now we are going to compare the given approaqhes. 

A. Logarithmic Frequency Domain 

For logarithmic frequency domain, the selected 
transfer ftinction is: 

H{s) = l (25) 
5 + 

4 5 + 

where we used the Bode transfer function (17), 
considering K = H = 2 . The phase of the selected 
transfer function (i) is almost constant for ^6x0.01 
and a )> \0 [1], consequently the interval of interest 
in our experiments was [0.01,10]. We select 

A = V2 as sample ratio. Three plots are shown for 
different number of samples: k = 5 (ii), k-9 (iii) 
and k = \l (iv). 

If noise is present, then it can affect the quality of 
phase approximation. The phase (v) and phase 
approximations for different number of samples: 
k-S (vi), ^ = 9 (vii) and k-\l (viii) using as test 
signal one that is affected by random perturbations are 
also ploted. 
1. signal affected by a complex random perturbation 

t i 
to- -W 10* 

(-) • -r : : i ' 

.10' 

9 C 

itT 

j".. i 

-•.Uii;:. 

-̂ ---rkv- ^ 
to- lOÎ 

C-v) 44:;;: , 1::; 

tor* itf 

3. parameters of the Bode transfer function, 
respectively of the modified Bode transfer 
function affected by a real random 
perturbation 

^itsi = ̂  noise _ real (23) 

Fig. 1. Phase (i) and phase approximation (ii), (iii), (iv) for the 
transfer function (25); phase (v) and phase approximation (vi), (vii), 

(viii) using signal affected by a complex random perturbation 

2. system function affected by a real random 
perturbation 

An extended form of a{(o) can be found in [8] 
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Fig 2 Phase (i) and phase approximation (li), (lii), (iv) for the 
transfer funclion (25), phase (v) and phase approximation (vi), (vii), 
(viii) using systeni function affected by a real random pernirbation 

3. parameters of the Bode transfer function affected 
by a real random perturbation 
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Fig 3. Phase (i) and phase approximation (ii), (iii), (iv) for the 
transfer function (25); phase (v) and phase approximation (vi), (vii), 

(viii) using parameters affected by a real random perturbation 

B. Linear Frequency Domain 

For linear fiequency domain, the selected transfer 
function is: 

(26) 

5 + -

5 + 1 

where we used the modified Bode transfer function 
(18), considering A = B=^K = H = \. Relation (26) 
respects the requirement of iniţial and final slopes 
given by (20). The gain of the selected transfer 
function together vvith its piecewise-linear 
aproximation (i) are shown in next figures, for 

frequencies varying from O to 10. Outside this 
interval, both gain and phase of the transfer function 
do not exhibit important variations. The phase and the 
approximated phase are also shown (ii). If noise is 
present, then it can affect the quality of phase 
approximation. The gain (iii) and phase 
approximation (iv) using as test signal one that is 
affected by random perturbations are also ploted. 
1. signal affected by a complex random perturbation 

Tt"^-

Ol) ^ : : : : ; : : ' • ' . . 

1 

1 i —̂;—• • . ^ lî ,. 1 t i L-L 

Fig. 4. Gain (-) and gain samples ( • ) (i) used in linear 
approximation of gain for (26), phase (-) and phase approxmiations 

(.) with this hnear approximation of gain (ii); gain (-) and gain 
samples ( • ) (iii), respectively phase (-) and phase approximations 

(.) (iv) for signals affected by complex random perturbations 

2. system function affected by a real random 
perturbation 

Fig. 5 Gain (-) and gain samples ( • ) (i) used in linear 
approximation of gain for (26), phase (-) and phase approximations 

( ) with this linear approximation of gain (li); gain (-) and gain 
samples ( • ) (iii), respectively phase (-) and phase approximations 

( ) (iv) for signais affected bv real random perturbations 

3. parameters of the modified Bode transfer function 
affected by a real random perturbation 
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