
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara

Seria ELECTRONICĂ şi TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 1, 2004

Multiobjective fuzzy optimization method
Gabriel Oltean^

Abstract -The papcr proposes a new multiobjective
optimization method, bascd on fuzzy techniques. The
method performs a real multiobjective optimization,
every parameter modifîcation taking ioto account the
unfulfillment degrees of all the requirements. It uses
fuzzy sets to defîne fuzzy- objcctivcs and fuzzy systems to
compute new parameter values. The strategy to compute
new parameter values uses local gradient information
and encapsulates human expert thinking. After
introducing our optimization method, we optimize the
design of a finite response filter,
Keywords: multiobjective, fuzzy objective, fuzz>'
system, population of solutions

L INTRODUCTION

Mathematical formulation of general optimization
problem (GP - General Problem) is [1],[2]:

Find ;c that minimize /q (x)
subjectto: gj(x)<(), y = l,....m

q = l....p (1)

It is formulated an constrained optimization problem
with a single objectiv (a scalar one). The rigidity of
the mathematical problem posed by the general
optimization formulation is often remote from that of
a practicai design problem. Rarely does a single
objective with several hard constraints adequately
represent the problem being faced. More often there is
a vector of o b j e c t i v e s = {fi(x), f.Jx). ...,fofx)J
that must be traded off in some way. Multiobjective
optimization is concemed with the minimization of a
vector of objectives f(x) that may be subject of a
number of constrains or bounds:

Find X that minimise {fi(x)j2M fo(x)}
subjectto: gj(x)<Q, j =

hg(x) = 0, g = l...,p (2)

Xj <x<x^
Because f(x) is a vector, if any of its components are
competing, there is no unique solution to this
problem. Instead, the concept of noninferiority (also
called Pareto optimality) must be used to characterize
the objectives [2], [1], [4]. A noninferior solution is
one in which an improvement in one objective

requires a degradation of another. The techniques for
multiobjective optimization are wide and varied. Goal
attainment method of Gembicki involves expresing a
set of design goals / = {f i,f 2, • • 0} associated with
the set of design objectives. The multiobjective
optimization problem is then expressed as a standard
optimization problem using the formulation [5]:

mmimise) ysR

such ihsii ff^fxj'Wf^(xjy< fl^: k = l...,o (3)
In order to transpose the real word problem in the
mathematical language for the optimization first the
objective functions should be defined. The objective
functions are the measures between the actual values
of the functions and the required values. The objective
functions must be carefully selected so that they lead
to the requirements achievement.
In this paper, we propose a new fiizzy multiobjective
optimization method. Our method simultaneously
optimizes all the objectives so it directly solves the
multiobjective problem, without any transformation
into an one objective problem. The algorithm relays
on fuzz>' sets to formulate the optimization objectives
and on fuzzv' systems to compute the new values for
the variables in eveiy optimization iteration. Because
it is a gradient method, a population of solution can be
employed in order to dramatically increase the chance
to obtain the best possible solution.

11. THE FUZZY OPTIMIZATION METHOD

The optimization method should converge to a global
optimal solution in a reduced number of iterations.
This is not a simple task due to the complex relations
between variables and nonlinear multi-variables
functions to be optimized. A variable can affects quite
different more than one function at a time, so when it
is modified in order to improve one objective function
it can damage another.

A. Formulation of the optimization problem

Consecrated formulation of the optimization problem
is somehow rigid and does not always reflect the
reality. Such a formulation, very restrictive, reduces
the possibility to make trade-offs, a veiy important

Technical University of Cluj-Napoca

220 BUPT

factor in the optimization. Consequently, the solution
space is confined and in many cases, an optimal
solution does not exist. One way to overcome these
drawbacks is to use fuzzy sets to defme optimization
objectives. We will fiizzify the requirements getting
this way the possibility to consider different degrees
for requirement achievements and acceptability
degrees for a particular solution. We will associate
with each requirement one or two fuzz}' sets whose
membership ftinctions will represent the
corresponding fuzzy objective functions. For example
for the requirements '^greater or equal" fk(x)^k, and
"equaf fk(x)^fk the corresponding fuzzy objective
functions are presented in Fig 1.

fk(^) fK ft
a) b)

Fig.l. Fuzzy objective functions:

The ftizzy objective functions are

fK h

(4)

where Df^ is the range of possible values for ft^x).

/^k(fk(x)) indicates the error degree in accomplishing
the i^ requirement, so we will cal! them unfulfillment
degrees {UD), A value means a fully
achievement of the fuzzy objective. while a value
/iA=l means that fuzzy objective is not achieve at all,
this occurs vj\[Qnfk(x) takes an unacceptable value. In
Fig.l. We can see, for the current value of the
variables vector the corresponding value of the
unfulfillment degree is UD*. Our new multiobjective
optimization problem formulation is:

Find X that

minimise {M,(fi(x)), ^2(f2(x))..... ^o(foM)} (5)

B. The idea of population of solutions

Starting the optimization with only one iniţial
solution, we can remain blocked into a local Pareto
optimal point, where an improvement in one objective
requires a degradation of another. If we can obtain a
set of local Pareto optimal points, it is highly possible
to have the global Pareto optimal point among them.
So, instead of using one search path we suggest using
a parallel search dealing with the idea of population of
solutions consisting of candidate solutions. The
optimization starts with the iniţial candidate solutions.
In our implementation, these iniţial candidate
solutions can be obtained in several ways: randomly

generatcd, generated with Latin Hypercube
Tcchnique, or user provided.
In each iteration, for every candidate solution the
actual function value, the UDs and new parameter
values are computed. If the UDs for one candidate can
not be decreased anymore, we have found a local
Pareto optimal point and the future iterations will not
visit this candidate solution, shortening the entire
optimization time.
The optimization algorithm stops in one of the
following situations:
i) all the UDs become zero for one candidate
solution. This candidate solution is considered a
global Pareto optimal point and it is our fmal solution.
We will not continue to search other Pareto optimal
point on the remaining search paths.
ii) none of the candidate solutions can be further
improved, meaning that the set of local Pareto optimal
points was obtained. As the fmal optimal solution we
chose the one with the minimum value of the mean of
unfulfillment degrees (MUD), considered as global
optimal point.
Also the algorithm will stop if the maximum number
of iterations is reached.

C. New^ parameter values computing

The method for computing the new values for the
variables involves fuzzy lechniques and local gradient
information.
Each variable can affect more or less each objective
function. In our method the sign and the value to
modify a certain variable takes into account the UDs,
the gradients and the relative importance of the
involved variables in relations with the objective
functions.
Our method acts as a human expert for a certain
circuit performance:
• it is better to modify more the parameter with
greater importance, because it can really affect the
performance, and the modification also depends on
the unftilfilbnent degrees of the corresponding
requirements.
• the parameter with lower importance is modified
less or not at all, because its influence on circuit
performance is insignificant.
• the fmal modification of a parameter is a weighted
sum of the parţial modification (imposed by ever>'
objective function).
Such human expert knowledge is captured and
incorporated in our method by means of a fuzzy logic
system. The algorithm to compute the new variable
values follows:

In each iteration:

i) Compute the local gradients of the functions in
relation with each variable, the local gradient
offk function in relation with jc, variable.
ii) For every function f^ we compute the importance
of the variables v^ that shows the relative
importance of every x, in modifying the function fk.

221
BUPT

These importance of thc variables are computed based
on absolute values of the local gradienls:

-;/• = l,...n;k = o (6)

iii) For ever>' requirements f k compute the UD,, as a
membership degree of the actual value of the
corresponding function fk(x*) to the associated fuzz>'
objectives. Two examples are shown in Fig.l.
iv) For every variable x, and ever>' function fk we
compute a parţial coefficient to modify that
parameter. This parţial coefficient coefxi(fk) is
computed by a first order Takagi-Sugeno fuzzy
system (Fig. 2.)

UD
PARTC

(sugano)
f(u)

coef-part
importance

Table 1

Importaric^^
Z s M L

Z z
s VS S M
M s M L
L s L V L

Z - Z e r o
VS - Very Small
S -Small
M - Medium
L - Large
VL - Very Large

Thc control surface generated by this fuzz>' system is
presented in Fig. 3

gradient and on the direction (go up or go down) in
which the function must be modified. So we obtained
parţial coefficients with sign: scoef^ (f k) -

vi) For every variable X; we compute the function
influence upon variable modification p^{fk) that

shows the relative importance of every ftinction fk to
compute the modification of parameter.

k=l

vii)The coefficients used for modifying each
parameter are computed as weighted sum of the
parţial coefficients, the weight being the
influencesp^ It means that the greater the

influence is, the greater the contribution on the parţial
coefficient.

scoefj, = A:=l

Fig.2. Parţial cocfTicient computing

The fuzzy sets for the input linguistic variables "UD''
and 'importance" and for output linguistic variable
^'coef-part" are not presented here due to the lack of
space.
The fuzzy rules are presented in Table 1. where, for
example the column and the row give the
following fuzzy rules:

UDR is Medium and importance is Small then
coef-part is Small".

(8)

importance 0 0 j q
Fig 3 Control surface lo compute parţial coetTiciem

v) The parţial coefficients coef^ (f^.) receive a plus

or minus sign depending on the sign of the local

viii) Compute new variable values:

jc/'^"^ = jc^ + scoef^ • abs{x\)'\- xmin (9)

where jf'/ takes the value of x, from 3 iterations back
if in all these 3 iterations we have the same
modification sign for it as in the actual iteration.
Otherwise x'/ takes the value of x̂ from the current
iteration. We found that using x Vinstead of simple x,
we can change the variable sign and improve the
convergence of the algorithm. Also more help in the
sign changing, convergence and accuracy of final
solution can by obtained using the variable xmin. It
takes a default value to the beginning of the
optimization, and that value is dynamically decreased
if some oscillations appear in the mean of
unfulfillment degree.
Finally, we should mention that the optimization
method acts in an adaptive manner: when the UDs are
large (towards 1) we have large coefficients to modily
the variables (see Table 1). For small UDs we have
small coefficients to modify the variables, so we can
focus our search so that the solution converges to the
exact local Pareto optimal point.

IIL IMPLEMENTATION

In order to check and validate our mukiobjective
optimization algorithm we implemented a prototype
system in Matlab for Windows. The prototype
consists on a main function "optf\izz" and other
secondary fiinction. The main function should be

222 BUPT

invoked from Matlab vvorkspacc with a series of
arguments:
• fim - a string containing the name of the Matlab
function that computes the objective fiinctions;
• reqs - vector of numerical values of the
requirements;
• sign - vector with + 1 , - 1 or O values, with the
same length as reqs vector. When the values is +1
"optfuzz" attempt to make the objective function
greater or equal to corresponding requirements; for -
1 "optfuzz" attempt to make the objective function
less than the corresponding requirements; for
O^^optfuzz" attempt to make the objective equal with
the corresponding requirements
• nrvar - number of variables
• weight - vector with weight for the objective
ftinctions
• proc - vector with values in (0,1) that control the
f\izz>' sets defming fiizzy objectives
• Ib - a vector of lower bounds of the variables;
• ub - a vector of upper bounds of the variables;
• init sol - variable that set the method for
generating the iniţial solution
• options - vector with some options of the
optimization algorithm (number of iterations, number
of candidate solutions, iniţial value for xmin)
The user can provide empt>' values for some of the
above arguments; in this case, the default values are
used.
The user should only write his objective functions and
run the "optfuzz" with the arguments show above.
The optimization routine retum the final values of
objective fiinctions, the values of the variables, the
UD for each requirements and a curve with the
evolution of MUD during the optimization for the
candidate solution that provide fmal solution.

IV. RESULTS

In order to highlight the behavior of our new fuzz>
multiobjective optimization method, we use it to solve
some multiobjective optimization problems.
Consider designing a linear-phase Finite Impulse
Response (FIR) filter. The problem is to design a low
pass filter with magnitude one at all frequency
between O and 1.0 Hz and magnitude zero between
0.15 and 0.5 Hz. The frequency response / / (/) f o r
such a filter is defined by

some tolerance. We must use the discretization of the
frequency domain we are interested in. The number of
function to be optim ized equals the number of discrete
frequency, and the number of variables equals the
number of a coefficients.
First we use only 5 (uniform distributed) frequency in
each domain, so a number of 10 function to optimize
and a number of 15 variables. The value of the
requirements are 1 for the five frequency in [0; 0.1]
range, and O for the five frequency in [0.15; 0.5J.
Because frequency between 0.1 Hz and 0.15 Hz are
not specified, no requirements are needed here.
We run the optimization algorithm for a population of
9 candidate solutions, for 150 maximum number of
iterations, with randomly generated iniţial solutions.
In order to see how the internai computations deploy,
we reproduced in Fig.4. the evolution of 3 (from a
total of 10) UDs during the optimization, for 1"
candidate solution.

0 . 8 •

0 . 6 r

0.4

•t •

0.2^

50 100
tterations

150

3.5-

3 !
«

2 5

2\

1.5 ^

1 I

0 5-

Of

x 10

100 110 120 130 140 150
Rerations

Fig. 4. Evolution of there UDs
a) Full process, b) Details: final ilerations

77=0

/ i = 0

(10)

where A(f) is the magnitude of the frequency
response.
So the problem is to compute the magnitude
coefficients a(n) so that the magnitude response
matches the desired response (at each frequency) with

From the Fig.4. a) one can see that in the first
iterations (up to around 40) all the UDs have (large)
variations. This is because we are far from a good
solution and each function asks for high modification
of the variables. Remember that each function
depends on each variable. After this "transienf'
regime, all UDs falls towards zero and continue to
decrease, up to an magnitude order of 10"* in the final
iterations (fig.4. b)), to reach, as close as possible, a O
value for UDs. Fig.5. depicts the evolution of the
mean unfulfillment degree MUD (arithmetic mean of
all 10 UDs), that globally characterize the

223
BUPT

optimization process, also for the candidate
solulion. In the first 50 iterations. large oscillations
(due to large changes in each UD) and then a rapid
improvement in the value of MUD can be seen. The
algorithm is very close to a good solution
(MUD=0.00676355294315. in iteration 50) After that,
the algorithm try to improve the solution, continuing

0.8

0.6

0.4

0 2

Table 2

o 20

X io"*

40 60
Iterations

80 100

3.5

3

2.5,

2

1.5i

1;

0.5.
80 140

CANDIDATE
SOLUTION

MUD CANDIDATE
SOLUTION iniţial final

r 0.843818 0.000106
2° I.OO 0.015298
3° 0.950626 0.010040
4° 1.00 0.049173

0.900934 0.004372
1.00 0.034177

T 1.00 0.004431
r 1.00 0.001444
go 0.943818 0.000176

Table 3 present the iniţial and final values for every
function to be optimized together with the
corresponding requirements, for three candidate
solutions (T, 4° and 5°). We can see that even for the
solution 4° that is the poorest from the iniţial set, the
final values of the function are very close to the
requirements (e.g. 0.989 for 1; 1.006 for 1; 0.006 for
O, -0.002 for 0). For the best solution (T) the
differences are smaller (e.g. 1.0009 for 1; 0.9992 for
1; -0.00001 for O and so on).

Table 3

100 120
Iterations

Fig. 5. Evolution of the mean LTD.
up: full process, bottom: details for final iterations

to decrease the MUD up to the 0.00010635653417
value in iteration 150. The convergence is slower,
because we are close to the ideal solution, so the
algorithm should ^'move carefully around". If one will
run the algorithm for a larger number of iteration a
better solution can be reach. Let's mention that the
necessary time to run the optimization (9 candidate
solution, 10 functions, 15 variable, 150 iteration) was
583s on a Pentium IV, IGHz. 256 Mo RAM machine.
The results obtained for all 9 candidate solution are
presented in Table 2 and Table 3. Table 2 contains
information about the iniţial MUD (for iniţial value of
the variables) and final MUD (for value of variables
after optimization). For all candidate solutions, there
is a ver>' good evolution of unftilfillment degrees from
approximately 1 to 0.01 or even less. So, indeed, this
multiobjective problem has more than one good
solution. The best solution is given by the
candidate solution with a final value of MUD almost
zero, an acceptable solution for a practicai problem.

RE
Q

CAND. SOL. 1' CAND. SOL.
4 °

CAND. SOL.
5^

RE
Q

in i t . final i n i t . final i n i t . f m a l
15.00 0.99834 3.97 0.96669 -2.15 0.98948
5.34 1.00181 0.01 1.03974 -0.11 1.01156
-2.65 0.99824 -2.26 0.96304 1.65 0.98880
1.61 1.00099 2.65 1.02203 -0.28 1.00651
0.99 0.99921 5.01 0.98105 -3.31 0.99505

0 1.48 0.00092 4.07 0.01999 -0.41 0.00612
0 075 -0.00051 3.52 -0.01199 1.81 -0.00294
0 -0.07 -0.00001 -0.50 -0.00403 -1.60 -0.00218
0 0.43 0.00022 6.12 0.00518 -0.01 0.00097
0 1.0 0.00021 5.74 0.00693 -5.54 0.00180

1 .

0.8;

0.6

M 0.4'

0.2

.1 îi,
I

I'

O 50 100 160
Iterations

Fig. 6. Evolution of MUDs for ihe candidate solutions 1°, 4® , 5®

Also the evolution of the MUDs for these three
candidate solutions are presented in Fig. 6.
Now, let us consider a more complex situation. For
the same FIR application take 50 (uniform
distributed) frequency in each domain, so a number of

224 BUPT

100 function to optimize and a number of 15
variables. The problem is rwo-fold complicaled. First,
the number of ftinction to be optimized is higher (100
instead of 10). Second, we have only 15 variables to
set the required value for each function. After running
the optimization we reached our best final solution
after 57 iteration, with a final MUD of
0.013577363182378. The evolution of the MUD
during the optimization is presented in Fig. 7. Further
iterations can not improve the solution.

having smaller oscillations than the other one
(bottom).

0 . 6 >

B
M 0.4

0 . 2 -

0 10 20 30 40 50 60
tteration

Fig. 7. Evolution of MUD for 100 optimization functions

To see the power of our method we compared the
previous result with the result obtain with the Goal
Attainment method. The Goal Attainment method is
also a multiobjective optimization method,
implemented in the Optimization Toolbox from
Matlab [5]. For the same problem, with the same
iniţial point (1 for al 1 15 iniţial variables), the results
obtained with both method are presented in Tabel 4.
In order to have the same measure for both method we
computed the absolute error between the function
value after optimization and the required value, for
ever>' function. The mean absolute error over all 100
functions shows that our method (Fuzzy
multiobjective optimization) provided a more accurate
solution than the Goal attainment method, 0.009502
being Ies than 0.017347. The price paid is a larger
number of iterations and accordingly more time to
complete the optimization. Anyway, the time for our
method remains small enough for practicai
applications.

Table 4

METHOD
MEAN
ABS.

ERROR

MAX.
ABS.

ERROR
ITER. TIME

Fuzzy 0.009502 0.055248 57 250s
Goal attain. 0.017347 0.025996 4 4s

• 5

response computed with the variables (the a
coefficients) provided by the optimizations method
(up - ftizzy multiobjective optimization and bottom -
Goal attainment optimization) with the ideal
magnitude response. We can easily see that both
optimization methods ensure nice firequency
characteristics. The characteristic provided by our
optimization method (up) is closer to the ideal one.

0 . 2 0 . 3 0 4 0 . 5
Frequency

Fig. 8. Magnitude response with variable values provided by
Multiobjective optimization up; Goal Attainment - bottom

V. CONCLUSION

In this paper a new multiobjective optimization
method using fiizzy logic has been introduced. The
method really allows optimization of several
objectives simultaneously because the modification of
each parameters is a function of the unfulfillment
degrees of all the requirements.
The resuhs obtained after optimizing the coefficients
of a FIR filter show that our method works very well.
Due to the population of solutions, we can fmd a set
of optimal points. The method has a very large chance
to fmd the global optimal solution due to its multiple
search paths. Also in the proximity of the fmal
solutions, the method works well to continue decrease
MUD up to the local optimal points. The quality of
each final solution is very high. This is possible
because the method uses local gradient information
and works in an adaptive manner: while the UDs
decrease, the step in the parameter modification also
decreases. Compared with other multiobjective
optimization method (Goal Attainment) our method
assures a better accuracy of the final solutions.

REFERENCES

[1] Boyd, S., Vandeberghe, L., Introduction to Convex
Optimization with Engineering Application, Stanford University,
1999.
[2] Branch, Mary Ann, Grace, A., Optimization Toolbox For Use
with Matlab, The MathWork Inc., 1996
[3] Grimbleby, J., B., Computer-Aided Analysis and Design of
Electronic Networks, Pitman Publishing 1990, pp. 157-190;
[4] Mauhk, P.C, Comments on "FPAD: A Fuzzy Nonlinear
Programming Approach to Analog Circuit Design", IEEE Trans. on
Computer Aided Design of Integrated Circuits and Systems. No 6,
June 1997, pp.656;
[5] Optimization Toolbox Help for Matlab RI3, The
MathWork Inc. 2002.

225
BUPT

