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Abstract -The papcr proposes a new multiobjective 
optimization method, bascd on fuzzy techniques. The 
method performs a real multiobjective optimization, 
every parameter modifîcation taking ioto account the 
unfulfillment degrees of all the requirements. It uses 
fuzzy sets to defîne fuzzy- objcctivcs and fuzzy systems to 
compute new parameter values. The strategy to compute 
new parameter values uses local gradient information 
and encapsulates human expert thinking. After 
introducing our optimization method, we optimize the 
design of a finite response filter, 
Keywords: multiobjective, fuzzy objective, fuzz>' 
system, population of solutions 

L INTRODUCTION 

Mathematical formulation of general optimization 
problem (GP - General Problem) is [1],[2]: 

Find ;c that minimize /q (x) 
subjectto: gj(x)<(), y = l,....m 

q = l....p (1) 

It is formulated an constrained optimization problem 
with a single objectiv (a scalar one). The rigidity of 
the mathematical problem posed by the general 
optimization formulation is often remote from that of 
a practicai design problem. Rarely does a single 
objective with several hard constraints adequately 
represent the problem being faced. More often there is 
a vector of o b j e c t i v e s = {fi(x), f.Jx). ...,fofx)J 
that must be traded off in some way. Multiobjective 
optimization is concemed with the minimization of a 
vector of objectives f(x) that may be subject of a 
number of constrains or bounds: 

Find X that minimise {fi(x)j2M fo(x)} 
subjectto: gj(x)<Q, j = 

hg(x) = 0, g = l...,p (2) 

Xj <x<x^ 
Because f(x) is a vector, if any of its components are 
competing, there is no unique solution to this 
problem. Instead, the concept of noninferiority (also 
called Pareto optimality) must be used to characterize 
the objectives [2], [1], [4]. A noninferior solution is 
one in which an improvement in one objective 

requires a degradation of another. The techniques for 
multiobjective optimization are wide and varied. Goal 
attainment method of Gembicki involves expresing a 
set of design goals / = {f i,f 2, • • 0} associated with 
the set of design objectives. The multiobjective 
optimization problem is then expressed as a standard 
optimization problem using the formulation [5]: 

mmimise) ysR 

such ihsii ff^fxj'Wf^(xjy< fl^: k = l...,o (3) 
In order to transpose the real word problem in the 
mathematical language for the optimization first the 
objective functions should be defined. The objective 
functions are the measures between the actual values 
of the functions and the required values. The objective 
functions must be carefully selected so that they lead 
to the requirements achievement. 
In this paper, we propose a new fiizzy multiobjective 
optimization method. Our method simultaneously 
optimizes all the objectives so it directly solves the 
multiobjective problem, without any transformation 
into an one objective problem. The algorithm relays 
on fuzz>' sets to formulate the optimization objectives 
and on fuzzv' systems to compute the new values for 
the variables in eveiy optimization iteration. Because 
it is a gradient method, a population of solution can be 
employed in order to dramatically increase the chance 
to obtain the best possible solution. 

11. THE FUZZY OPTIMIZATION METHOD 

The optimization method should converge to a global 
optimal solution in a reduced number of iterations. 
This is not a simple task due to the complex relations 
between variables and nonlinear multi-variables 
functions to be optimized. A variable can affects quite 
different more than one function at a time, so when it 
is modified in order to improve one objective function 
it can damage another. 

A. Formulation of the optimization problem 

Consecrated formulation of the optimization problem 
is somehow rigid and does not always reflect the 
reality. Such a formulation, very restrictive, reduces 
the possibility to make trade-offs, a veiy important 
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factor in the optimization. Consequently, the solution 
space is confined and in many cases, an optimal 
solution does not exist. One way to overcome these 
drawbacks is to use fuzzy sets to defme optimization 
objectives. We will fiizzify the requirements getting 
this way the possibility to consider different degrees 
for requirement achievements and acceptability 
degrees for a particular solution. We will associate 
with each requirement one or two fuzz}' sets whose 
membership ftinctions will represent the 
corresponding fuzzy objective functions. For example 
for the requirements '^greater or equal" fk(x)^k, and 
"equaf fk(x)^fk the corresponding fuzzy objective 
functions are presented in Fig 1. 

fk(^) fK ft 
a) b) 

Fig.l. Fuzzy objective functions: 

The ftizzy objective functions are 

fK h 

(4) 

where Df^ is the range of possible values for ft^x). 

/^k(fk(x)) indicates the error degree in accomplishing 
the i^ requirement, so we will cal! them unfulfillment 
degrees {UD), A value means a fully 
achievement of the fuzzy objective. while a value 
/iA=l means that fuzzy objective is not achieve at all, 
this occurs vj\[Qnfk(x) takes an unacceptable value. In 
Fig.l. We can see, for the current value of the 
variables vector the corresponding value of the 
unfulfillment degree is UD*. Our new multiobjective 
optimization problem formulation is: 

Find X that 

minimise {M,(fi(x)), ^2(f2(x))..... ^o(foM)} (5) 

B. The idea of population of solutions 

Starting the optimization with only one iniţial 
solution, we can remain blocked into a local Pareto 
optimal point, where an improvement in one objective 
requires a degradation of another. If we can obtain a 
set of local Pareto optimal points, it is highly possible 
to have the global Pareto optimal point among them. 
So, instead of using one search path we suggest using 
a parallel search dealing with the idea of population of 
solutions consisting of candidate solutions. The 
optimization starts with the iniţial candidate solutions. 
In our implementation, these iniţial candidate 
solutions can be obtained in several ways: randomly 

generatcd, generated with Latin Hypercube 
Tcchnique, or user provided. 
In each iteration, for every candidate solution the 
actual function value, the UDs and new parameter 
values are computed. If the UDs for one candidate can 
not be decreased anymore, we have found a local 
Pareto optimal point and the future iterations will not 
visit this candidate solution, shortening the entire 
optimization time. 
The optimization algorithm stops in one of the 
following situations: 
i) all the UDs become zero for one candidate 
solution. This candidate solution is considered a 
global Pareto optimal point and it is our fmal solution. 
We will not continue to search other Pareto optimal 
point on the remaining search paths. 
ii) none of the candidate solutions can be further 
improved, meaning that the set of local Pareto optimal 
points was obtained. As the fmal optimal solution we 
chose the one with the minimum value of the mean of 
unfulfillment degrees (MUD), considered as global 
optimal point. 
Also the algorithm will stop if the maximum number 
of iterations is reached. 

C. New^ parameter values computing 

The method for computing the new values for the 
variables involves fuzzy lechniques and local gradient 
information. 
Each variable can affect more or less each objective 
function. In our method the sign and the value to 
modify a certain variable takes into account the UDs, 
the gradients and the relative importance of the 
involved variables in relations with the objective 
functions. 
Our method acts as a human expert for a certain 
circuit performance: 
• it is better to modify more the parameter with 
greater importance, because it can really affect the 
performance, and the modification also depends on 
the unftilfilbnent degrees of the corresponding 
requirements. 
• the parameter with lower importance is modified 
less or not at all, because its influence on circuit 
performance is insignificant. 
• the fmal modification of a parameter is a weighted 
sum of the parţial modification (imposed by ever>' 
objective function). 
Such human expert knowledge is captured and 
incorporated in our method by means of a fuzzy logic 
system. The algorithm to compute the new variable 
values follows: 

In each iteration: 

i) Compute the local gradients of the functions in 
relation with each variable, the local gradient 
offk function in relation with jc, variable. 
ii) For every function f^ we compute the importance 
of the variables v^ that shows the relative 
importance of every x, in modifying the function fk. 
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These importance of thc variables are computed based 
on absolute values of the local gradienls: 

-;/• = l,...n;k = o (6) 

iii) For ever>' requirements f k compute the UD,, as a 
membership degree of the actual value of the 
corresponding function fk(x*) to the associated fuzz>' 
objectives. Two examples are shown in Fig.l. 
iv) For every variable x, and ever>' function fk we 
compute a parţial coefficient to modify that 
parameter. This parţial coefficient coefxi(fk) is 
computed by a first order Takagi-Sugeno fuzzy 
system (Fig. 2.) 

UD 
PARTC 

(sugano) 
f(u) 

coef-part 
importance 

Table 1 

Importaric^^ 
Z s M L 

Z z 
s VS S M 
M s M L 
L s L V L 

Z - Z e r o 
VS - Very Small 
S -Small 
M - Medium 
L - Large 
VL - Very Large 

Thc control surface generated by this fuzz>' system is 
presented in Fig. 3 

gradient and on the direction (go up or go down) in 
which the function must be modified. So we obtained 
parţial coefficients with sign: scoef^ ( f k ) -

vi) For every variable X; we compute the function 
influence upon variable modification p^{fk) that 

shows the relative importance of every ftinction fk to 
compute the modification of parameter. 

k=l 

vii)The coefficients used for modifying each 
parameter are computed as weighted sum of the 
parţial coefficients, the weight being the 
influencesp^ It means that the greater the 

influence is, the greater the contribution on the parţial 
coefficient. 

scoefj, = A:=l 

Fig.2. Parţial cocfTicient computing 

The fuzzy sets for the input linguistic variables "UD'' 
and 'importance" and for output linguistic variable 
^'coef-part" are not presented here due to the lack of 
space. 
The fuzzy rules are presented in Table 1. where, for 
example the column and the row give the 
following fuzzy rules: 

UDR is Medium and importance is Small then 
coef-part is Small". 

(8) 

importance 0 0 j q 
Fig 3 Control surface lo compute parţial coetTiciem 

v) The parţial coefficients coef^ (f^.) receive a plus 

or minus sign depending on the sign of the local 

viii) Compute new variable values: 

jc/'^"^ = jc^ + scoef^ • abs{x\)'\- xmin (9) 

where jf'/ takes the value of x, from 3 iterations back 
if in all these 3 iterations we have the same 
modification sign for it as in the actual iteration. 
Otherwise x'/ takes the value of x̂  from the current 
iteration. We found that using x Vinstead of simple x, 
we can change the variable sign and improve the 
convergence of the algorithm. Also more help in the 
sign changing, convergence and accuracy of final 
solution can by obtained using the variable xmin. It 
takes a default value to the beginning of the 
optimization, and that value is dynamically decreased 
if some oscillations appear in the mean of 
unfulfillment degree. 
Finally, we should mention that the optimization 
method acts in an adaptive manner: when the UDs are 
large (towards 1) we have large coefficients to modily 
the variables (see Table 1). For small UDs we have 
small coefficients to modify the variables, so we can 
focus our search so that the solution converges to the 
exact local Pareto optimal point. 

IIL IMPLEMENTATION 

In order to check and validate our mukiobjective 
optimization algorithm we implemented a prototype 
system in Matlab for Windows. The prototype 
consists on a main function "optf\izz" and other 
secondary fiinction. The main function should be 
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invoked from Matlab vvorkspacc with a series of 
arguments: 
• fim - a string containing the name of the Matlab 
function that computes the objective fiinctions; 
• reqs - vector of numerical values of the 
requirements; 
• sign - vector with + 1 , - 1 or O values, with the 
same length as reqs vector. When the values is +1 
"optfuzz" attempt to make the objective function 
greater or equal to corresponding requirements; for -
1 "optfuzz" attempt to make the objective function 
less than the corresponding requirements; for 
O^^optfuzz" attempt to make the objective equal with 
the corresponding requirements 
• nrvar - number of variables 
• weight - vector with weight for the objective 
ftinctions 
• proc - vector with values in (0,1) that control the 
f\izz>' sets defming fiizzy objectives 
• Ib - a vector of lower bounds of the variables; 
• ub - a vector of upper bounds of the variables; 
• init sol - variable that set the method for 
generating the iniţial solution 
• options - vector with some options of the 
optimization algorithm (number of iterations, number 
of candidate solutions, iniţial value for xmin) 
The user can provide empt>' values for some of the 
above arguments; in this case, the default values are 
used. 
The user should only write his objective functions and 
run the "optfuzz" with the arguments show above. 
The optimization routine retum the final values of 
objective fiinctions, the values of the variables, the 
UD for each requirements and a curve with the 
evolution of MUD during the optimization for the 
candidate solution that provide fmal solution. 

IV. RESULTS 

In order to highlight the behavior of our new fuzz> 
multiobjective optimization method, we use it to solve 
some multiobjective optimization problems. 
Consider designing a linear-phase Finite Impulse 
Response (FIR) filter. The problem is to design a low 
pass filter with magnitude one at all frequency 
between O and 1.0 Hz and magnitude zero between 
0.15 and 0.5 Hz. The frequency response / / ( / ) f o r 
such a filter is defined by 

some tolerance. We must use the discretization of the 
frequency domain we are interested in. The number of 
function to be optim ized equals the number of discrete 
frequency, and the number of variables equals the 
number of a coefficients. 
First we use only 5 (uniform distributed) frequency in 
each domain, so a number of 10 function to optimize 
and a number of 15 variables. The value of the 
requirements are 1 for the five frequency in [0; 0.1] 
range, and O for the five frequency in [0.15; 0.5J. 
Because frequency between 0.1 Hz and 0.15 Hz are 
not specified, no requirements are needed here. 
We run the optimization algorithm for a population of 
9 candidate solutions, for 150 maximum number of 
iterations, with randomly generated iniţial solutions. 
In order to see how the internai computations deploy, 
we reproduced in Fig.4. the evolution of 3 (from a 
total of 10) UDs during the optimization, for 1" 
candidate solution. 
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Rerations 

Fig. 4. Evolution of there UDs 
a) Full process, b) Details: final ilerations 

77=0 

/ i = 0 

(10 ) 

where A(f) is the magnitude of the frequency 
response. 
So the problem is to compute the magnitude 
coefficients a(n) so that the magnitude response 
matches the desired response (at each frequency) with 

From the Fig.4. a) one can see that in the first 
iterations ( up to around 40) all the UDs have (large) 
variations. This is because we are far from a good 
solution and each function asks for high modification 
of the variables. Remember that each function 
depends on each variable. After this "transienf' 
regime, all UDs falls towards zero and continue to 
decrease, up to an magnitude order of 10"* in the final 
iterations (fig.4. b)), to reach, as close as possible, a O 
value for UDs. Fig.5. depicts the evolution of the 
mean unfulfillment degree MUD (arithmetic mean of 
all 10 UDs), that globally characterize the 
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optimization process, also for the candidate 
solulion. In the first 50 iterations. large oscillations 
(due to large changes in each UD) and then a rapid 
improvement in the value of MUD can be seen. The 
algorithm is very close to a good solution 
(MUD=0.00676355294315. in iteration 50) After that, 
the algorithm try to improve the solution, continuing 

0.8 

0.6 

0.4 

0 2 

Table 2 

o 20 

X io"* 

40 60 
Iterations 

80 100 

3.5 

3 

2.5, 

2 

1.5i 

1; 

0.5. 
80 140 

CANDIDATE 
SOLUTION 

MUD CANDIDATE 
SOLUTION iniţial final 

r 0.843818 0.000106 
2° I.OO 0.015298 
3° 0.950626 0.010040 
4° 1.00 0.049173 

0.900934 0.004372 
1.00 0.034177 

T 1.00 0.004431 
r 1.00 0.001444 
go 0.943818 0.000176 

Table 3 present the iniţial and final values for every 
function to be optimized together with the 
corresponding requirements, for three candidate 
solutions (T, 4° and 5°). We can see that even for the 
solution 4° that is the poorest from the iniţial set, the 
final values of the function are very close to the 
requirements (e.g. 0.989 for 1; 1.006 for 1; 0.006 for 
O, -0.002 for 0). For the best solution (T) the 
differences are smaller (e.g. 1.0009 for 1; 0.9992 for 
1; -0.00001 for O and so on). 

Table 3 

100 120 
Iterations 

Fig. 5. Evolution of the mean LTD. 
up: full process, bottom: details for final iterations 

to decrease the MUD up to the 0.00010635653417 
value in iteration 150. The convergence is slower, 
because we are close to the ideal solution, so the 
algorithm should ^'move carefully around". If one will 
run the algorithm for a larger number of iteration a 
better solution can be reach. Let's mention that the 
necessary time to run the optimization (9 candidate 
solution, 10 functions, 15 variable, 150 iteration) was 
583s on a Pentium IV, IGHz. 256 Mo RAM machine. 
The results obtained for all 9 candidate solution are 
presented in Table 2 and Table 3. Table 2 contains 
information about the iniţial MUD (for iniţial value of 
the variables) and final MUD (for value of variables 
after optimization). For all candidate solutions, there 
is a ver>' good evolution of unftilfillment degrees from 
approximately 1 to 0.01 or even less. So, indeed, this 
multiobjective problem has more than one good 
solution. The best solution is given by the 
candidate solution with a final value of MUD almost 
zero, an acceptable solution for a practicai problem. 

RE 
Q 

CAND. SOL. 1' CAND. SOL. 
4 ° 

CAND. SOL. 
5^ 

RE 
Q 

in i t . final i n i t . final i n i t . f m a l 
15.00 0.99834 3.97 0.96669 -2.15 0.98948 
5.34 1.00181 0.01 1.03974 -0.11 1.01156 
-2.65 0.99824 -2.26 0.96304 1.65 0.98880 
1.61 1.00099 2.65 1.02203 -0.28 1.00651 
0.99 0.99921 5.01 0.98105 -3.31 0.99505 

0 1.48 0.00092 4.07 0.01999 -0.41 0.00612 
0 075 -0.00051 3.52 -0.01199 1.81 -0.00294 
0 -0.07 -0.00001 -0.50 -0.00403 -1.60 -0.00218 
0 0.43 0.00022 6.12 0.00518 -0.01 0.00097 
0 1.0 0.00021 5.74 0.00693 -5.54 0.00180 

1 . 

0.8; 

0.6 

M 0.4' 

0.2 

.1 îi, 
I 

I' 

O 50 100 160 
Iterations 

Fig. 6. Evolution of MUDs for ihe candidate solutions 1°, 4® , 5® 

Also the evolution of the MUDs for these three 
candidate solutions are presented in Fig. 6. 
Now, let us consider a more complex situation. For 
the same FIR application take 50 (uniform 
distributed) frequency in each domain, so a number of 
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100 function to optimize and a number of 15 
variables. The problem is rwo-fold complicaled. First, 
the number of ftinction to be optimized is higher (100 
instead of 10). Second, we have only 15 variables to 
set the required value for each function. After running 
the optimization we reached our best final solution 
after 57 iteration, with a final MUD of 
0.013577363182378. The evolution of the MUD 
during the optimization is presented in Fig. 7. Further 
iterations can not improve the solution. 

having smaller oscillations than the other one 
(bottom). 

0 . 6 > 

B 
M 0.4 

0 . 2 -

0 10 20 30 40 50 60 
tteration 

Fig. 7. Evolution of MUD for 100 optimization functions 

To see the power of our method we compared the 
previous result with the result obtain with the Goal 
Attainment method. The Goal Attainment method is 
also a multiobjective optimization method, 
implemented in the Optimization Toolbox from 
Matlab [5]. For the same problem, with the same 
iniţial point (1 for al 1 15 iniţial variables), the results 
obtained with both method are presented in Tabel 4. 
In order to have the same measure for both method we 
computed the absolute error between the function 
value after optimization and the required value, for 
ever>' function. The mean absolute error over all 100 
functions shows that our method (Fuzzy 
multiobjective optimization) provided a more accurate 
solution than the Goal attainment method, 0.009502 
being Ies than 0.017347. The price paid is a larger 
number of iterations and accordingly more time to 
complete the optimization. Anyway, the time for our 
method remains small enough for practicai 
applications. 

Table 4 

METHOD 
MEAN 
ABS. 

ERROR 

MAX. 
ABS. 

ERROR 
ITER. TIME 

Fuzzy 0.009502 0.055248 57 250s 
Goal attain. 0.017347 0.025996 4 4s 

• 5 

response computed with the variables (the a 
coefficients) provided by the optimizations method 
(up - ftizzy multiobjective optimization and bottom -
Goal attainment optimization) with the ideal 
magnitude response. We can easily see that both 
optimization methods ensure nice firequency 
characteristics. The characteristic provided by our 
optimization method (up) is closer to the ideal one. 

0 . 2 0 . 3 0 4 0 . 5 
Frequency 

Fig. 8. Magnitude response with variable values provided by 
Multiobjective optimization up; Goal Attainment - bottom 

V. CONCLUSION 

In this paper a new multiobjective optimization 
method using fiizzy logic has been introduced. The 
method really allows optimization of several 
objectives simultaneously because the modification of 
each parameters is a function of the unfulfillment 
degrees of all the requirements. 
The resuhs obtained after optimizing the coefficients 
of a FIR filter show that our method works very well. 
Due to the population of solutions, we can fmd a set 
of optimal points. The method has a very large chance 
to fmd the global optimal solution due to its multiple 
search paths. Also in the proximity of the fmal 
solutions, the method works well to continue decrease 
MUD up to the local optimal points. The quality of 
each final solution is very high. This is possible 
because the method uses local gradient information 
and works in an adaptive manner: while the UDs 
decrease, the step in the parameter modification also 
decreases. Compared with other multiobjective 
optimization method (Goal Attainment) our method 
assures a better accuracy of the final solutions. 
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