
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara 

Seria ELECTRONICA si TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 2, 2004 

leL Com - an integrated module for 
communicatioii in E-learning 

B.Orza\ M. Gîvan\ A. Vlad\ A. 01ah\ A.Vlaicu^ 

Abstract - leL Com is a module of the 
integrated environment for educaţional activities 
management leL. This module, developed by us, 
permits students, professors, tutors and 
administrators to communicate each other using a 
chat-whiteboard appiication. The appiication 
permits a group of persons to draw together, on a 
shared table, using the client appiication that runs 
on a computer connected in a net>\ork. Application 
puts at command users a set of graphic and textual 
objects that couid be used to realize graphic 
objects. Participants can communicate through 
text box (chat) using a dedicated zone in the 
window. 
Lsers can be students and tutors involved in the 
virtual universit>' managed by leL environment. 
There is necessary the authentication of the users, 
this will have access only to those chat rooms in 
which he is involved. He can also have more than 
one chat or whiteboard open >vindo>v, one for each 
user involved in the session. 
leL Com is a client-server appiication developed 
using the C# technology. Due the utilization of the 
technology specialized for the development 
distributed applications (.Net Remoting), that 
permits appeal of the object methods located on 
server as these objects find out on local client, we 
could use OOP (Object Oriented Programming) 
concepts and architectures like polymorphism, 
listener concept or view-control architecture. 

Keywords: e-learning, remoting, whiteboard, .net 

I. INTRODUCTION 

The appiication will allow a group of people to dravv 
together, on a joint whiteboard, each of ihe members 
of the group being in front of a pc connected to the 
network. The appiication allows the user to draw 
using different graphic objects and different ways of 
manipulating them. The participants can communicate 
by writing text on a special design part of the screen. 

H. TEHNOLOGY 

NET Remoting is for web services, what ASP was to 
CGl programming. .Net gives us a large array of tools 
and facilities, e.g. allows the work with objects that 
keep dieir state after being called. It also allows 
different transfer mechanisms (HTTP and TCP), 
coding mechanisms (SCAP) and securit)' mechanisms 
(IIS, SSL). 
One of the major advantages of this technology is the 
easy way in wiich one can create distributed 
applications. Ihere are no intermediary steps in the 
case of compiling the proxy/stub like in the case of 
Java RMT One doesn't have to defme interfaces in 
special programming languages like in the case of 
CORBA and DCOM. By changing only a word in the 
configuration file we have the possibility to select the 
coding format used starting from the binaiy fonnat to 
the SOAP format. 

A. EXTENDED ARCHITECTURE 
The technology offers to the developers and 
administrators a great variet) of protocols and 
formats. Ever>' time a client appiication gets a 
reference to an object on the server, the object will be 
represented through a proxy, thus "masking" the 
destination object. The methods of the object will be 
called through the proxy. Ever>' time a call will reach 
the proxy, the call will be converted into a message, 
and the message will pass through numerous layers. 
The message will be passed to the serialization layer 
that will convert it into a special format (SOAP, 
binaiy). The serialized message will then reach the 
transport channel, where it will be transferred to the 
server through a protocol like HTTP or TCP. On the 
server side, the message cross inversely the formatting 
layer, the serialized message being brought to the 
original form and then seni to the dispatcher. Finally 
the dispatcher calls the method of the object and sends 
back the answer through the same layers. 

By changing only a few parameters in the 
configuration file, we can change through different 

' Technicai University of Cluj Napoca, 26-28 G Baritiu sireei. Cluj Napoca. 
0264-401309, fax 0264-591689. Bogdan.Orza(acom.uteluj ro 

341 
BUPT



types of layer implementations without writing any 
code wit ing. Th\s way an application that uses TCP 
can be very easily modified so that it will use HTTP 
as a transport channel, thus having a better scalability. 

Fig. l. Simplified architecture o f .NET 
Remoting 

B. INTERFACE DEFINITION 
Many distributcd systems like DCE/RPC. RMl and 
J2EE, need to manually create the so called 
proxy/stub objects. The proxy encapsulates the 
connection to the remote object and sends calls to the 
object on the server. In many of those systems 
(CORBA, DCE/RPC and DCOM) -the source code" 
that gcnerates these objects must be written in IDL 
(Interface Defmition Language) and precompiled in 
order to generate the header files for some 
programming languages. 

In contrast with this traditional approach, ,Net 
Remoting uses a generic proxy for all this kind of 
objects. This is possible because .Net was conceived 
from the beginning as a distributed applications 
platform. this facilities being added lately to the other 
technologies. 

C. DATA SERJALIZATION 
All the frameworks used for distributed applications 
support the automatic coding of objects in any of the 
follovving formats binary, XML or SOAP. The 
problem arises when we want to transfer a copy frora 
the ser\'er to the client, but COM+ doesn't offer this 
facilit>' as Java RMl and EJB do. In this case we use 
ActiveX objects for the transfer, but their use means 
sending a big amount of data through the network. 

In .Net it is sufficient to mark the object with the 
Serializable attribute or to implement the Iserializable 
interface and the platform will take care of the rest. 
We also may transfer data via XML. 

D. OBJECT LJFE SPAN MANAGEMENT 
There are three ways to control the life span of objects 
in distributed applications. The first one consists of a 
connection (e.g. a TCP connection between the client 
and the server). When this connection is closed, the 
object/objects on the server will be destroyed. DCOM 
uses another method; it combines the pinging 

mechanism and reference counter. In this case the 
server receives the messages from the client at 
predefined intervals of time. When it stops receiving 
messages, the server will release the resources. 

In the Internet era, we still don't know too much of 
the clients at the other end of the line, we cannot relay 
on the possibility to create a direct TCP connection 
between the clients and server. The user may be 
behind a firewall which allows only HTTP trafTic to 
pass tlirough. The same router can block pings sent by 
the server to the user. Taking into account all this, the 
.Net Remoting object life span management can be 
customized for every application. First to an object 
will be assigned a certain life span, and at every client 
call that life span will be increased. Also a so called 
sponsor register to the object on the server may exist. 
The sponsor is contacted before the life span expires, 
and if exists the object life span will be increased. 

III. APPLICATION CLASSES 

Iei Com is a client server application, We will fiirther 
describe the sen'er side architecture and the 
architecture of the client-server/server-client 
communication module. 
Because of the use of a specialized technology for 
calling the remote objects (.Net Remoting), we wore 
able to use OOP specific concepts and architectures 
like polymorphism, listeners, or model view controller 
architecture. 
The next figure shows the simplified architecture of 
the classes used for this application as the way they 
communicate with the leL platfonn. 

Fig. 2. Simplified architecture of the 
application 

342 BUPT



Classes WCIientModel and WServerModel 
correspond to the models from Model Vievv 
Controller, WConnection to the controller, 
WhiteboardGui and ChatGui to the interface. 

IV. COMMLfNlCATION MECHANISM BETWEEN 
THE CLIENT AND THE SERVER 

A. COMMinsJICATION PROTOCOL 
In the first phase the client sends to the server an 
authentication request. The server takes the request 
and interrogates the database. If the name and 
pa5S\Vord are correct, the server will return to the 
client a connection object that contains some 
information for the user (the user t>'pe, the name, the 
database id etc.). If the authentication is not made the 
server will retum NULL, this is interpretcd by the 
client interface by displaying an error message. if the 
authentication is made the client can communicate 
with the server by sending and receiving WObject 
objects or derivate objects form WObject. The 
communication is made between users subscribed to a 
certain course, they send objects to the ser\ er, and the 
server sends those objects to the rest of the users on 
the same course. At the server side and client side the 
objects are stockated, thus allowing operations like 
save and undo, if this will be done only at the server 
side the traffic will be much higher if one vvould need 
to save or undo. 

For instance if we want to obtain information 
regarding the number of students on every course, the 
number of online users at a certain moment of time, 
the courses that are running now. the client calls the 
getUserInfs (WIntMess mess) method of the 
WConnection object. By doing this the user does not 
interrogates directly the database, but communicates 
with it through objects on the server, thus increasing 
the application level of security. 

We use WIntMess objects to manage the application, 
although the objects are derived from WObject (to 
assure transparency at the transport layer) they will be 
not stored in the lists of the corresponding course on 
the server and the client, but they will be used only to 
transmit data regarding different events that are 
occurring, like: a user enters or exits, someone logs on 
another machine, someone makes an undo, etc.). in all 
this cases the client or the server will create such 
objects, set their desired message attribute and they 
will send them in the network to let know the users of 
the events described earlier. 

At the client side, the objects received from the server 
will be sent to the graphic interfaces of the chat and 
whiteboard in order to be displayed. For this we have 
used the listener pattem, which means that we add to 
a list all the WClientModeLIstner objects 
corresponding to the graphical interface and then we 
run through the list every time we receive a new 

object that will be finally sent to the graphical 
interface. 

B. CLASSES AND OBJECTS USED FOR 
COMMUNICATION 
The communication between the client and the server 
is made using the WObject objects. From this generic 
type we have derived all the other objects which arc 
used for dravving or lext display. 

Fig. 3. Inheritance relationship between the 
objects used for drawing 

So at the client we will display drawings in graphical 
format not as bitmaps. The advantage of this 
representation is that wc keep the semantic content of 
the drawings, and thus one can ver> easil> modify or 
change the drawings. The use of this solution is based 
on the concept of polymorphism. so in the network we 
transmit only on object type, WObject, which can be 
instances of other objects derived from WObject 
(WEllipse, WLine, WIntMess, etc.) that will be 
recognized and treated as needed at the moment they 
reach the client graphical interface. 

To transfer objects through the network we can use 
the follovving: value transfer or reference transfer. The 
value object transfer supposes the serialization of the 
objects, including also the referenţial objects from the 
class, in a persistent form from which they will be 
reconstructed at reception. An object can bc serialized 
if it's marked with the [SerializableJ attribute or if it 
implements the ISerializable interface. After the 
serial ization we will have an XML document that will 
be sent to the server which will interpret and remake 
the original object. 

It is important to outiine that transfer by value does 
not imply the existencc of remote objects. All the 
object methods will be locally executed in the same 
context as calling one. This means that the compiled 
classes need to be available also at the client side. 
Although objects, that are derived from the 
MarshalByRefObjects. will not imply that. 

When an object that needs to be transferred by value 
has a reference to another object, this last one has to 
be derivate from MarchalByRefObjects or need to be 
marked with the [Serializable] attribute. 

The other types of objects are the ones that run on the 
server and allow the client to call their methods. It is 

343 
BUPT



mandatory that these objccts inherit the 
MarshalByRefDbjects class. Instead of transferring a 
value that points to such an object, in the network ii 
will be transferred only one type of objects: ObjRef, 
objects contain the name of the server/ip and an 
identifier, indicating uniquely an object on the server. 
In the case of lelCom we use both transfer types. The 
graphical objects and text are serialized in the XML 
format and they are sent from the client to the server 
vvhere they are stored on the corresponding server list 
and then depending on the destination they have they 
are sent to the appropriate client. Every object has tvvo 
addresses. The first one is the user name of the user 
(this name is unique in the data base) and the second 
one is a combination between identifiers representing 
the address of the client and the address of the 
graphical interface to which the object is sent. Al! the 
other identifiers are attributes of WObject class, in 
such a way that all the derived classes will inherit 
ihem. WLogin Class makes the authentication and 
creates the connection object (WConnection) for each 
client. This class inherits the MarshalByRefDbjects, 
so the transfer is made through the interface. Such a 
method is WConnection doLogin (String user, String 
pass, String type) which checks if the user is in the 
database and if the answer is affirmative it will create 
the connection object. 

Fig. 4. The logging mechanism 

So all the clients will communicate with the server 
through their communication object, thus the 
application is more secure because the client does not 
have direct access to any data on the server, this 
makes possible the implementation of a more 
complex security system that doesn't exist at this at 
this point in our application. The connections are 
object uniquely identified by two attributes: the client 
user name and a number generated by the server. 
The connections are instances of WConnection class 
having two important methods: sendData (WObject 
obj) that allows transfer of objects from the client to 
the server, and addNewObj (WObject obj) through 
which a client receives objects from the server. 

C. CLIENT AND SERVER SIDE OBJECT 
STORING 

The object storing is made on the server side but also 
on the client side. We chose this method because we 
wanted to keep a low traffic when we want to save the 
drawings. The storing is made in lists of ArrayList 
type, where we can store WObject objects and 
WObject objects. The user subscribed at the virtual 
university can open a chat and/or a white board 
session for every course that is running, and he can 
communicate with any other user through a private 
chat. 

For each of these communication methods there is a 
list where the text and objects of the drawings are 
stored. The server keeps the corresponding models of 
every opened course with active users; the client 
keeps only the ones where the user is active at that 
moment of time. 

To distribute the objects from the server to the 
destination clients it was implemented an algorithm 
based in the listener concept. This concept presume 
that once a connection is made, it is added on a list on 
the server (WServerModel) and at the moment an 
object appears on the server, the list will be read and it 
will be sent to the appropriate connections. 
From here through a thread the objects will be taken 
by an object corresponding to the WClientModel 
client model and the temporary list will be emptied. 
The following code sample is an example of the way 
objects are distributed on connections through the 
function wakeUpLismers (WObject obj). 

The listener concept is also used in the case of 
graphical interfaces (whiteboard and chat) which are 
registered as listeners to WClientModel. So the 
objects that come will be redirected depending on the 
destination application (the text for chat and the 
graphical objects for the whiteboard). 

The WClientModel class as the WServerModel class 
implements the Singleton pattem, in such a way that 
there will be only one instance of every class on the 
whole application. To obtain the private class 
constructor is declared, such that we cannot instantiate 
the class outside. First is declared a static attribute of 
the class type, the value of this attribute will be set 
initially to nuli. It will be declared also a static 
method that will initiate tlie attribute just once. The 
uniqueness of the object corresponding to the models 
is very important because it is necessary to be able to 
obtain references to them from different points of the 
application, more then this they offer flexibility 
because we can add new modules wnthout doing 
important changes of the application. 

So any graphical interface, or any other module that 
needs the user identification data, can access them 
through the reference to the WClientModel provided 
by the method getlnstanceQ-

344 BUPT



For a better management of the application we havc 
defined the WIntMess class. Through objects of that 
class the messages are sent and received from the 
sen'er. This objects are not stored on the server, they 
are used just for the management of the application. 
There are two attributes of the class: query and 
response. When the client wants to obtain some 
information from the server, for instance the number 
of student in a course, he will not point directly the 
data base because that can cause security problems. 
The solution is the creation of a WIntMess object with 
the query attribute set with the proper message, vvhich 
is then sent to the sen'er. The server will take the 
object and analyze the request and after that it will set 
the response attribute of the object with the object that 
holds the information desired by the client. The object 
will be then sent on the connection that came from. 
This type of object is also use to signal if a client 
connects on another machine, if he left the 
application, or if he wants to create a new drawing. 

An interesting advantage of the application is that of 
undo. Although for stand-alone application this is 
quite a simple thing to implement, in the case of 
distributed applications this arise some problems. The 
first problem appears when we want to establish the 
way we want to make the undo. There are at least to 
possibilities: the first one is that the user is able to 
make undo only to the objects that he created, but this 
contrast the principie of shared whiteboard, because 
the users must be able to modify also the work of 
others. The second possibility is that the user can 
make undo on aJl the objects on the drawing, this is 
also what we choose for our implementation. So it 
was created a WIntMess object that sends the undo 
message to the server every time a user hits the Undo 
button from the graphical interface. This message 
reach the server, the server will update the model 
using the updateModels (WIntMess mess) method, 
which will eliminate the last added object. The 
message is also sent on the connections corresponding 
to the online users through the wakeUpListeners 
(WObject obj). 

The application was developed using .NetRemoting 
technology, because it is a good compromise betwecn 
the bandvvidth needed to communicate and the easc of 
implementation. Although it requircs a larger 
bandwidth than the use of sockcts, .NetRemoting 
providcs the programmer an advanced 
implementation environment, which abstracts the 
transport layer from the OSI model, ailowing the 
transmission of objects through the network and the 
calling of remote methods. In the casc of 
.NetRemoting as in the case of Java RMI, due to 
actual security demands, the application configuring 
process is hard enough, because often there are added 
new security levcls from one version of the frame 
work to the otiier, thus the need of adding new 
information in the configuration files. 

The use of these technologies ailows an easier 
implementation of the object oriented programming 
concepts (polymorphism, inheritance, etc ), it adds 
scalability plus to applications so that one can add 
more easily new modules ajid facilities. This is also 
the case of leL Com, the developer can add new 
graphical objects, deriving the appropriate classes 
belonging to WObject, without worrying about the 
transmission through the network. 

Bibliography 

[1] I. Raramer, "Advanced Net Remoiing (C^ eduion) ' , APress 
2002. 
[2] A. Turtschi, "C' - .Net". Syngress Publishing, Inc. 
[3] A Vlaicii. V Dobrolă, S. lacob. Tehnologii muluraedia. 
sisteme, reţele şi aplicaţii UTCN 
[4] B. Orza, M Givan. S Crisiea, A. Vlaicu, "lEL 2 - an 
Integrated Solul ion jar Management, Evaluai ion and 
Communicaifon m E-Uarnmg" . Iniemational Conference 
Advanced tools for E-leaming in the Environmental Education, 12-
13 February, Napoli, Italy 
[5] B. Orza, M. Givan, S Cnstea, A Vlaicu, "Integrând solution 

for management, evaluation and communication in distancc 
education systems Optimization Of Electrical And Electronic 
Equipment Optim 04. May 20-22, 2004, Braşov, Romania 

V. CONCLUSIONS 
Taking into account the continuous growing of the use 
of computers in the academic environment, such an 
application (chat and whiteboard) is a very usefbl tool 
that can be successfully used for distance education. 
At the moment the application doesn't need a large 
bandwidth for transferring the information from tlie 
client to the server, so it can be used even with poor 
internet connections (e.g. dial-up). 

leL Com is part of the integrated environment for 
distance education leL, being a synchronous 
communication solution for students and teachers, 
administrators and tutors, creating a virtual space 
where the teachers or the tutors can teach their 
courses and the students can ask questions and receive 
their answers in real time. 

345 
BUPT


